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Abstract. In this paper we determine upper bounds for the number of
control sets on flag manifolds of a real non-compact simple Lie group whose
Lie algebra is a real form of a complex simple Lie algebra. The estimates
for the number of control sets are based on the results of San Martin and
Tonelli [6]. They are determined by computing the orbits of a subgroup of
the Weyl Group.

1. Introduction

One of the first questions in the study of nonlinear control systems is the controlla-
bility of a system. Nonlinear systems may posses several regions in the state space
in which a local controllability property holds, without being globally controllable.
An important conceptual tool is to study the control sets. The notion of control
sets can be abstracted to arbitrary semigroup actions, and in particular, to actions
of subsemigroups of Lie groups on their homogeneous spaces.

An important problem in the geometric theory of semigroups and in the
geometric control theory is the determination of the number of control sets for
semigroup actions. Control sets for control systems have been studied by Colonius
and Kliemann [4]. In particular an upper bound for the number of control sets for
control semigroups acting on projective spaces has been obtained. An improved
version of this result was given by Barros and San Martin [2], where smaller upper
bounds have been given depending on the group that is acting on the projective
space. The theory of control sets for control systems has been developed by
Albertini, Sontag, Colonius, Kliemann and Wirth [1, 4, 3, 10]. A similar theory
for semigroup actions on homogeneous spaces has been developed by San Martin
and Tonelli [6, 7].

In this paper we determine upper bounds for the number of effective control
sets on the flag manifolds of the real simple non-compact Lie groups. We use some
results of San Martin and Tonelli [6]. These upper bounds are determined by the
orbits of a subgroup of the Weyl Group. The diagram for the restricted roots
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allows us to determine the upper bounds for the number of control sets. The
central idea is that we can decompose the diagram corresponding to a subset of
the set of simple roots in other diagrams of a known type.

2. Preliminaries

In this section we present the main result that will be used in the paper. We refer
to [6, 7] for the theory of control sets for semigroup actions and [9] for the theory
of semisimple Lie groups and their parabolic subgroups.

Thus let G be a connected semisimple Lie group with Lie algebra g. Let
g = k + s be a Cartan decomposition, where k is a maximal compact subalgebra
and s its complement with respect to the Cartan-Killing form. Let a ⊂ s be a
maximal abelian subalgebra, and a+ ⊂ a a Weyl chamber. Denote by Σ+ the
corresponding system of positive roots. The simple system of roots generating Σ+

is denoted by Π. The set of all roots is Σ = Σ+ ∪ (−Σ+). For a root λ ∈ Σ, we
let gλ = {X ∈ g : ad(H)X = λ(H)X} be its root space, and put

n+ =
∑

λ∈Σ+

gλ,

which gives rise to the Iwasawa decomposition g = k+a+n+ . The global Iwasawa
decomposition reads G = KAN+ , with K = exp k, A = exp a and N+ = exp n+ .
Let M be the centralizer of a (or A) in K , and M ∗ the normalizer. The finite
group W = M∗/M is the Weyl group of the pair (g, a).

Given a subset Θ ⊂ Π we denote by PΘ the parabolic subgroup associated
to Θ and by BΘ = G/PΘ the corresponding flag manifold.

Let S be a semigroup with interior points in G, i.e., intG(S) 6= Ø. The
number of control sets for S on the flag manifolds of G are given in terms of the
Weyl group W . San Martin and Tonelli in [6] proved that for each w ∈ W there
is a control set Dw for S on B . Furthermore, each control set for S on B is Dw

for some w ∈ W . The unique invariant control set on B is D1 , 1 ∈ W . It is also
shown in [6] that the subset defined by

W (S) = {w ∈ W : Dw = D1}
is a subgroup of W . The subgroup W (S) ⊂ W gives information about the struc-
ture of S and in particular about its effective control sets on the flag manifolds.
Based on the information provided by W (S) we have the following result of [6,
Corollary 5.2].

Proposition 1. Let S be a semigroup with interior points in G. The number
of control sets in a boundary BΘ = G/PΘ is the order of the set of double cosets
W (S)\W/WΘ where WΘ is the subgroup of W generated by the reflections defined
by Θ. Therefore an upper bound for the number of control sets on a flag manifold
BΘ is the order of W/WΘ .

3. The upper bounds

In this section we determine upper bounds for the number of control sets on flag
manifolds of a real non-compact simple Lie group whose Lie algebra is a real form
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of a complex simple Lie algebra. We analyze the diagram of the simple system of
roots. They can be obtained from [5, Table 9]. The Dynkin diagram associated
to the system of roots enables us to determine the order of WΘ , the subgroup of
the Weyl group generated by the reflections defined by Θ. The point is that the
Dynkin diagram corresponding to Θ is composed of diagrams of a known type.
Thus the order of WΘ is the product of the orders of the Weyl groups corresponding
to the diagrams. We refer to [5] for the orders of the Weyl groups. In order to
illustrate our method we present the explicit calculation for Cl :

1. (The simple system Π = Cl ) The set of simple roots is Π = {λ1−λ2, ..., λl−1−
λl, 2λl}. We use the notation αi = λi − λi+1, i = 1, ..., l − 1 and αl = 2λl .
The Dynkin diagram is

Cl, l ≥ 3 e e . . . e�
A
e

α1 α2 αl−1 αl

The Weyl group W has 2ll! elements. We consider Π(i, j) = {λr − λr+1 :
i ≤ r ≤ j and j < l}. Any Θ ⊂ Π can be written as one of the disjoint
union Θ = Π(i1, j1) ∪ ... ∪ Π(ik, jk) ∪ {2λl} or Θ = Π(i1, j1) ∪ ... ∪ Π(ik, jk)
with jn + 1 < in+1 for every n = 1, ..., k − 1 and k ≤ l − 1. If we consider
Θ = Π(i1, j1)∪ ...∪Π(ik , jk) the Dynkin diagram decomposes in k diagrams
of the type Ajn−in+1 and therefore | WΘ |= (j1 − i1 + 2)!...(jk − ik + 2)!.
It follows that an upper bound for the number of effective control sets
for S on BΘ is 2ll!/(j1 − i1 + 2)!...(jk − ik + 2)!. Let us assume that
Θ = Π(i1, j1)∪ ...∪Π(ik, jk)∪{2λl}. We have two possibilities: jk = l−1 or
jk < l− 1. If jk = l− 1 the Dynkin diagram decomposes on k− 1 diagrams
of the type Ajn−in+1 and a diagram of the type Cl−ik+1 corresponding to
Π(ik, jk)∪{2λl}. Thus |WΘ |= (j1−i1+2)!...(jk−1−ik−1+2)!(l−ik+1)!2l−ik+1

and the number of effective control sets in BΘ is at most (2ik−1l!)/(j1− i1 +
2)!...(jk−1−ik−1+2)!(l−ik+1)!. If jk < l−1 the Dynkin diagram decomposes
in k diagrams of the type Ajn−in+1 and the isolated root 2λl . Therefore the
order of WΘ is (j1 − i1 + 2)!...(jk − ik + 2)!.2 and an upper bound for the
number of control sets on BΘ is 2l−1l!/(j1 − i1 + 2)!...(jk − ik + 2)!.

Now, we present a table with upper bounds for the number of control sets
on flag manifolds of a Lie group whose Lie algebras have the simple system of roots
of type Al, Bl ,Cl and Dl . We use the notation nkp = p!/(j1− i1 +2)!...(jk− ik+2)!,
Πk = Π(i1, j1) ∪ ... ∪ Π(ik, jk) and Π(i, j) as above.
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Π Θ jk |W/WΘ|

Al Πk nkl+1

l − 1 (2ik−1/(l − ik + 1)!)nk−1
l

Bl Πk ∪ {λl} < l − 1 2l−1nkl
Πk 2lnkl

l − 1 (2ik−1/(l − ik + 1)!)nk−1
l

Cl Πk ∪ {2λl} < l − 1 2l−1nkl
Πk 2lnkl

l − 1 (2ik−1/(l − ik + 1)!)nk−1
l

Dl Πk ∪ {λl−1 + λl} < l − 1 2l−2nkl
Πk 2l−1nkl

In case of a flag manifold of a Lie Group with exceptional Lie algebra the
calculation of the number of control sets on these manifolds follows the same
method as above. As an illustration we make the calculation for the simple system
Π = F4 .

1. ( The simple system Π = F4 ). The Dynkin Diagram is

F4
e e eA

�
e

α1 α2 α3 α4

With the simple system of roots Π = {α1, α2, α3, α4}. The order of the Weyl
group is 1152. If Θ = Π−{α4} we get the Dynkin diagram of B3 . An upper
bound for the number of control sets for S on BΘ is 1152/(233!) = 24. For
Θ = Π− {α1} we get the Dynkin diagram of C3 and there exist at most 24
control sets for S on BΘ . Now, take Θ = Π − {α3} or Θ = Π − {α2}. In
these cases the Dynkin diagram corresponding to Θ consists of an isolated
root and a diagram of type A2 . Therefore an upper bound for the number
of control sets on BΘ will be 1152/((2)(3!)) = 96. For Θ = Π − {α1, α2}
or Θ = Π− {α3, α4} the Dynkin diagram corresponding to Θ is of type A2

and the number of control sets for S on BΘ is at most 1152/3! = 192. For
Θ = Π − {α1, α3}, Θ = Π − {α2, α3} or Θ = Π − {α2, α4} we have two
isolated roots and the order of WΘ will be 4. Therefore an upper bound
for the number of control sets on BΘ will be 1152/4 = 288. If we take
Θ = Π − {α1, α4} then the Dynkin diagram for Θ is of type B2 and there
are at most 1152/(222!) = 144 control sets on BΘ . It remains to look at the
case where Θ consist of only one root. In this case the order of WΘ is 2 and
there are at most 1152/2 = 576 control sets on BΘ .
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