Kazhdan Constants Associated with Laplacian on Connected Lie Groups.

M. E. B. Bekka, P-A. Cherix¹, P. Jolissaint

Communicated by A. Valette

Abstract. Let G be a finite dimensional connected Lie group. Fix a basis $\{X_i\}_{i=1,\dots,n}$ of the Lie algebra \mathfrak{g} and form the associated Laplace operator $\Delta = -\sum_{1 \leq i \leq n} X_i^2$ in the enveloping algebra $U(\mathfrak{g})$. Let π be a strongly continuous unitary representation of G; let $\overline{d\pi(\Delta)}$ be the closure of the essentially self-adjoint operator $d\pi(\Delta)$. We show that π almost has invariant vectors if and only if 0 belongs to the spectrum of $\overline{d\pi(\Delta)}$. From this, we deduce that G has Kazhdan's property (T) if and only if there exists $\epsilon > 0$ such that, for any unitary representation without non zero fixed vectors, one has $\epsilon < \min\{\operatorname{Sp}(\overline{d\pi(\Delta)})\}$. This answers positively a question of Y. Colin de Verdière. It also allows us to define new Kazhdan constants, that we compare to the classical ones.

1. Introduction

In 1967, Kazhdan introduced property (T), a fixed point property of unitary representations for locally compact groups. More precisely,

Definition 1.1. Let G be a locally compact group.

1. Let $\pi : G \to U(H_{\pi})$ be a strongly continuous unitary representation, $\epsilon > 0$ and let $K \subset G$ be a compact subset of G; a vector $\xi \in H_{\pi}^1$, the set of vectors of length 1 in H_{π} , is (ϵ, K) -invariant if

$$\sup\{\|\pi(g)\xi - \xi\| \mid g \in K\} < \epsilon.$$

- 2. π has almost invariant vectors if for every ϵ and K as above, there exists an (ϵ, K) -invariant vector.
- 3. G has property (T), if for all representations with almost invariant vectors, there exists a nonzero fixed vector.

¹Supported by Grant 20-43215.95 of the Swiss National Fund for Scientific Research

ISSN 0949–5932 / \$2.50 © Heldermann Verlag

This property has strong consequences both from practical and theoretical points of view (see [10]). In graph theory, the property (T) permits the construction of family of expanders via the knowledge of the Kazhdan constant (see [11]). Let (π, H_{π}) be a representation of G and let K be a compact generating set of G. We define $\kappa(G, K, \pi)$ as follows :

$$\kappa(G, K, \pi) = \inf_{\xi \in H^1_\pi} \max_{s \in K} \| \pi(s)\xi - \xi \| .$$

The Kazhdan constant of the group G relatively to K is defined by:

$$\kappa(G, K) = \inf\{\kappa(G, K, \pi) \mid \pi \in \tilde{G}^*\}$$

where \tilde{G}^* is the set of equivalence classes of unitary representations of G on separable Hilbert spaces, without nonzero fixed vectors.

Proposition 1.2. For G a locally compact group and K a compact generating set of G, the following assertions are equivalent :

- 1. G has property (T)
- 2. $\kappa(G, K) > 0$

A proof of this result is given in [4].

In general, it is difficult to see whether a group G has property (T). In this paper we give an equivalent definition of property (T) for connected Lie groups. This approach was suggested by Colin de Verdière [1].

2. Definitions and first properties

Let G be a connected Lie group with Lie algebra \mathfrak{g} and enveloping algebra $U(\mathfrak{g})$. We use on G a right invariant Haar measure dg.

Any unitary representation (π, H_{π}) of G induces a representation $d\pi$ of \mathfrak{g} on the subspace $\mathcal{C}^{\infty}(\mathcal{H}_{\pi})$ of \mathcal{C}^{∞} -vectors of π , i.e. the subspace of vectors $\xi \in H_{\pi}$ for which the function $x \mapsto \pi(x)\xi$ is a \mathcal{C}^{∞} function. $d\pi$ extends to a representation of $U(\mathfrak{g})$ on the same subspace $\mathcal{C}^{\infty}(\mathcal{H}_{\pi})$.

Let ξ and η be two vectors in H_{π} , we denote by $\varphi_{\xi,\eta}$ the function on G defined by $\varphi_{\xi,\eta}(g) = \langle \pi(g)\xi | \eta \rangle$. We call $\varphi_{\xi,\eta}$ the coefficient of π associated to ξ and η .

Lemma 2.1. Using the same notations as before, if ξ is in $C^{\infty}(\mathcal{H}_{\pi})$, η is in H_{π} and X is in \mathfrak{g} , then $\varphi_{\xi,\eta}$ satisfies :

- 1. $X\varphi_{\xi,\eta} = \varphi_{d\pi(X)\xi,\eta}$,
- 2. $\Delta \varphi_{\xi,\eta} = \varphi_{d\pi(\Delta)\xi,\eta}$,
- 3. $\Delta^n \varphi_{\xi,\eta} = \varphi_{d\pi(\Delta)^n \xi,\eta}$ for every $n \ge 1$.

Proof. By definition, we get for every g in G:

$$(X\varphi_{\xi,\eta})(g) = \lim_{t \to 0} \frac{\varphi_{\xi,\eta}(g\exp(tX)) - \varphi_{\xi,\eta}(g)}{t}$$
$$= \lim_{t \to 0} \frac{1}{t} \left[\left\langle \pi(\exp(tX))\xi \mid \pi(g^{-1})\eta \right\rangle - \left\langle \xi \mid \pi(g^{-1})\eta \right\rangle \right]$$
$$= \left\langle d\pi(X)\xi \mid \pi(g^{-1})\eta \right\rangle = \varphi_{d\pi(X)\xi,\eta}(g)$$

This proves (1). The assertions (2) and (3) follow from the fact that $d\pi(X)\xi$ is a \mathcal{C}^{∞} vector if ξ is.

Lemma 2.2. Let X be an element of \mathfrak{g} and ψ be a \mathcal{C}^{∞} function on G such that ψ and $X\psi$ lie in $L^1(G)$; then $\int_G (X\psi)(g)dg = 0$.

Proof. Suppose first that $\psi \in \mathcal{C}_0^{\infty}(G)$, the space of \mathcal{C}^{∞} with compact support on G:

$$\int_{G} (X\psi)(g) dg = \int_{G} \left(\lim_{t \to 0} \frac{\psi(g \exp(tX)) - \psi(g)}{t} \right) dg$$
$$= \lim_{t \to 0} \int_{G} \frac{\psi(g \exp(tX)) - \psi(g)}{t} dg = 0.$$

The two last equalities hold because $Supp(\psi)$ is compact and because the measure dg is invariant by right multiplication. Now, if $\psi \in \mathcal{C}^{\infty}(G)$ is such that ψ and $X\psi$ lie in $L^1(G)$, there exists a compact subset K of G such that $\int_{G-K} |\psi(g)| dg < \epsilon/3$ and $\int_{G-K} |(X\psi)(g)| dg < \epsilon/3$. So we have : $|\int_G (X\psi)(g) dg| < |\int_K (X\psi)(g) dg| + \epsilon/3$. For $\chi \in \mathcal{C}_0^{\infty}(G), \ \chi \equiv 1 \text{ on } K, \ 0 \le \chi \le 1, \ |(X\chi)(g)| \le 1$, we have

$$\int_{K} (X\psi)(g)dg = \int_{K} (X\psi)(g)\chi(g)dg$$

= $\int_{K} (X(\psi\chi))(g)dg$ (because $X\chi = 0$ on K)
= $-\int_{G-K} (X(\psi\chi))(g)dg$ (because $\int_{G} X(\psi\chi)(g)dg = 0$)
= $-\int_{G-K} (X\psi)(g)\chi(g)dg - \int_{G-K} (X\chi)(g)\psi(g)dg$

But $|\int_{G-K} (X\psi)(g)\chi(g)dg| \leq \int_{G-K} |(X\psi)(g)|dg \leq \epsilon/3$ and $|\int_{G-K} (X\chi)(g)\psi(g)dg| \leq \int_{G-K} |\psi(g)|dg \leq \epsilon/3$.

Corollary 2.3. Let X be an element of \mathfrak{g} and ψ be a \mathcal{C}^{∞} function on G such that ψ and $X\psi$ lie in $L^1(G)$. If ξ belongs to $\mathcal{C}^{\infty}(H_{\pi})$ and η belongs to H_{π} , then :

$$\int_{G} \left\langle \xi | \pi(g^{-1})\eta \right\rangle (X\psi)(g) dg = -\int_{G} \left\langle d\pi(X)\xi | \pi(g^{-1})\eta \right\rangle \psi(g) dg.$$

Proof. The corollary follows from 2.2, 2.1 (1) and from the equality :

$$\int_{G} \varphi_{\xi,\eta}(g)(X\psi)(g) dg + \int_{G} (X\varphi_{\xi,\eta})(g)\psi(g) dg = \int_{G} (X(\varphi_{\xi,\eta}\psi))(g) dg = 0.$$

Let X_1, \ldots, X_n be a basis of \mathfrak{g} ; set $\Delta = -\sum_{i=1}^n X_i^2 \in U(\mathfrak{g})$ The operator $d\pi(\Delta)$ is essentially selfadjoint [8], and we denote by $d\pi(\Delta)$ its closure and by $D(d\pi(\Delta))$ the domain of $d\pi(\Delta)$.

Corollary 2.4. If ψ is a C^{∞} function on G such that ψ , $X_i\psi$ and $X_i^2\psi$ belong to $L^1(G)$ for every i = 1, ..., n, then for every ξ in $D(d\pi(\Delta))$ and for every η in H_{π} :

$$\int_{G} \varphi_{\xi,\eta}(g)(\Delta \psi)(g) dg = \int_{G} \varphi_{\overline{d\pi(\Delta)}\xi,\eta}(g) \psi(g) dg.$$

Proof. By lemmas 2.1 and 2.3, the equality is true for $\xi \in C^{\infty}(H_{\pi})$. If $\xi \in D(\overline{d\pi(\Delta)})$, there exists a sequence $(\xi_k)_{k\geq 1}$ in $C^{\infty}(H_{\pi})$ such that

$$\|\xi_k - \xi\| + \|\overline{d\pi(\Delta)}\xi_k - \overline{d\pi(\Delta)}\xi\| \xrightarrow[k \to \infty]{} 0.$$

Then :

$$\begin{aligned} &|\int \varphi_{\xi,\eta}(g)(\Delta\psi)(g)dg - \int \left\langle \overline{d\pi(\Delta)}\xi | \pi(g^{-1})\eta \right\rangle \psi(g)dg |\\ &\leq |\int \left\langle \xi - \xi_k | \pi(g^{-1})\eta \right\rangle (\Delta\psi)(g)dg |\\ &+ |\int \left\langle \xi_k | \pi(g^{-1})\eta \right\rangle (\Delta\psi)(g)dg |\\ &- \int \left\langle \overline{d\pi(\Delta)}\xi_k | \pi(g^{-1})\eta \right\rangle \psi(g)dg |\\ &+ |\int \left\langle \overline{d\pi(\Delta)}\xi_k - \overline{d\pi(\Delta)}\xi | \pi(g^{-1})\eta \right\rangle \psi(g)dg |\\ &\leq (||\xi - \xi_k|| ||\Delta\psi||_1 + ||\overline{d\pi(\Delta)}(\xi_k - \xi)||||\psi||_1) ||\eta|| \xrightarrow[k \to \infty]{} 0. \end{aligned}$$

This finishes the proof.

Proposition 2.5. The following conditions are equivalent :

- 1. π has a non zero fixed vector.
- 2. 0 is an eigenvalue for $d\pi(\Delta)$.
- 3. 0 is an eigenvalue for $d\pi(\Delta)$.

Proof. The implications $1) \Rightarrow 2$ and $2) \Rightarrow 3$ are obvious.

We prove now $3 \Rightarrow 1$: Let ξ be a non zero vector in $Ker(d\pi(\Delta))$. Let $\eta \in H_{\pi}$ and $\psi \in \mathcal{C}_0^{\infty}(G)$. Then, using Corollary 2.4, we have in the sense of weak derivatives :

$$(\Delta \varphi_{\xi,\eta}, \psi) = (\varphi_{\xi,\eta}, \Delta \psi) = (\varphi_{\overline{d\pi(\Delta)}\xi,\eta}, \psi) = 0.$$

Therefore, $\Delta \varphi_{\xi,\eta} = 0$ as a distribution, and since Δ is hypo-elliptic (see [8]), $\varphi_{\xi,\eta}$ is a \mathcal{C}^{∞} function on G.

Since η is arbitrary, this implies that $g \mapsto \pi(g)\xi$ is weakly \mathcal{C}^{∞} and so, by a lemma due to Poulsen (see [15]), $g \mapsto \pi(g)\xi$ is strongly \mathcal{C}^{∞} . Therefore, $\overline{d\pi(\Delta)\xi} = d\pi(\Delta)\xi = 0$. Hence,

$$\sum_{i=1}^{n} \|d\pi(X_i)\xi\|^2 = \langle d\pi(\Delta)\xi|\xi\rangle = 0$$

Since $\{X_i\}_{i=1,\dots,n}$ is a basis of \mathfrak{g} , this implies that $d\pi(X)\xi = 0$ for every element of \mathfrak{g} . Hence, $\pi(g)\xi = \xi$ for every g in V, a suitable neighbourhood of e in G. As G is connected, V generates G and so ξ is fixed under the action of G.

3. Spectral characterisation of almost invariant vectors

The goal of this section is to prove :

Theorem 3.1. For a unitary representation (π, H_{π}) of G, the following conditions are equivalent :

- 1. π almost has invariant vectors.
- 2. 0 is an approximate eigenvalue of $d\pi(\Delta)$.
- 3. 0 is a spectral value of $\overline{d\pi(\Delta)}$.

Proof. The equivalence between 2) \Leftrightarrow 3) is clear, since $\overline{d\pi(\Delta)}$ is the closure of $d\pi(\Delta)$.

 $2) \Rightarrow 1)$

If 0 is an approximate eigenvalue of $d\pi(\Delta)$, there exists a sequence $\{\xi_m\}_{m\geq 0}$ of unit vectors in $\mathcal{C}^{\infty}(H_{\pi})$ such that $\lim_{m \to +\infty} ||d\pi(\Delta)\xi_m|| = 0$. So,

$$\lim_{m \to +\infty} \|d\pi(X_i)\xi_m\| = 0 \text{ for every } i = 1, \dots, n$$

Let V defined by

$$V = \{ \prod_{1 \le i \le n} \exp(t_i X_i) \mid -1 \le t_i \le 1 \}.$$

V is a compact neighbourhood of e, see [5].

Moreover, for every X in \mathfrak{g} and every $t \geq 0$, we have :

$$\pi(\exp(tX))\xi_m - \xi_m = \int_0^t \pi(\exp(sX))d\pi(X)\xi_m ds \,.$$

Let $\epsilon > 0$. Then, for $0 \le t \le 1$, we have :

$$\|\pi(\exp(tX_i))\xi_m - \xi_m\| \le t \|d\pi(X_i)\xi_m\| \le \epsilon/n$$

for $i = 1, \dots, n$ and m sufficiently large.

This implies that $||\pi(g)\xi_m - \xi_m|| \le \epsilon$ for every g in V as soon as m is large enough.

So we proved that, for every $\epsilon > 0$, there exist (ϵ, V) -invariant vectors. As G is connected, V generates G and one easily deduces that π has (ϵ, K) -invariant vectors for any compact subset K of G.

The remainder of this section is devoted to the proof of the implication $1) \Rightarrow 3$) which is much more involved. For this, we need to recall some facts about the heat kernel associated with Δ .

Let h denote the closure of Δ acting on $L^2(G)$. As -h is a selfadjoint and negative definite operator, by the Hille-Yosida theorem (see [16]), -h is the infinitesimal generator of a strongly continous semi-group of contractions T(t).

It is known (see [13]) that, for every t > 0, T(t) is given by the convolution from the right with a function p_t , the heat kernel. The function p_t is a

smooth function on G with positive values and integral 1. We briefly recall its construction.

Let δ denote the modular function associated with our right Haar measure, thus :

$$\int_G \delta(x) f(xy) dy = \int_G f(y) dy,$$

for every integrable function f over G. The right regular representation over $L^2(G)$ is given by :

$$(\rho(x)\xi)(y) = \xi(yx).$$

The left regular representation is then given by :

$$(\lambda(x)\xi)(y) = \delta(x^{-1})^{1/2}\xi(x^{-1}y).$$

If $\Delta = -\sum_{i=1}^{n} X_i^2$ and if h is the closure of Δ on $L^2(G)$, then h and $\lambda(x)$ commute for every x in G.

For every $t \ge 0$, let $T(t) = \exp(-th)$.

We claim that for every t > 0, T(t) is a regularising operator, that is, for every $\xi \in L^2(G)$, for every integer $m \ge 1$, $h^m T(t)\xi \in D(h)$. Indeed, let $h = \int_0^\infty \lambda dE(\lambda)$ be the spectral decomposition of h. As the function $\lambda \mapsto \lambda^{2m} \exp(-2t\lambda)$ is bounded on \mathbb{R}_+ , we have :

$$\int_0^\infty \lambda^{2m} \exp(-2t\lambda) dE_{\xi}(\lambda) = \|h^m T(t)\xi\|^2 < \infty, \, \forall \xi \in L^2(G).$$

By Sobolev's lemma, $T(t)\xi \in \mathcal{C}^{\infty}(G), \forall \xi \in L^2(G).$

By Schwartz Kernel theorem, there exists a \mathcal{C}^∞ function $p_t':G\times G\to\mathbb{R}_+$ such that

$$(T(t)\xi)(x) = \int_G p'_t(x,y)\xi(y)dy, \,\forall \xi \in L^2(G)$$

Hence,

$$\begin{aligned} (\lambda(x)T(t)\xi)(x') &= \delta(x^{-1})^{1/2}(T(t)\xi)(x^{-1}x') \\ &= \delta(x^{-1})^{1/2}\int_{G}p'_{t}(x^{-1}x',y)\xi(y)dy \end{aligned}$$

Moreover

$$\begin{aligned} (T(t)\lambda(x)\xi)(x') &= \int_{G} p'_{t}(x',y)(\lambda(x)\xi)(y)dy \\ &= \delta(x^{-1})^{1/2} \int_{G} p'_{t}(x',y)\xi(x^{-1}y)dy \\ &= \delta(x^{-1})^{1/2} \int_{G} \delta(x)p'_{t}(x',xy)\xi(y)dy \end{aligned}$$

As T(t) and $\lambda(x)$ commute, we deduce that

$$(*) p'_t(x^{-1}x', y) = \delta(x)p'_t(x', xy) \,\forall x, x', y \in G.$$

Set $p_t(x) = p'_t(e, x)$.

The above relation (*) shows that, for all $y \in G$,

$$p_t(x^{-1}y)\delta(x^{-1}) = p'_t(e, x^{-1}y)\delta(x^{-1}) = p'_t(x, y).$$

Hence

$$(T(t)\xi)(x) = \int p'_t(x,y)\xi(y)dy = \int p_t(x^{-1}y)\delta(x^{-1})\xi(y)dy$$
$$= \int p_t(y)\xi(xy)dy \text{ for } \xi \in L^2(G).$$

Recall that if π is a representation of G, then $\pi(f)$ is the operator defined for $f \in L^1(G)$ by

$$\pi(f)\eta = \int f(y)\pi(y)\eta dy$$
 for every $\eta \in H_{\pi}$.

Taking $\pi = \rho$ and $f = p_t$, we see that :

$$(\rho(p_t)\xi)(x) = \int p_t(y)(\rho(y)\xi)(x)dy = \int p_t(y)\xi(xy)dy = (T(t)\xi)(x).$$

As $T(t) = T(t)^*$, we have $p_t = p_t^*$, and p_t is a solution of the heat equation :

$$\frac{\partial p_t}{\partial t} = -\Delta p_t$$

Lemma 3.2. Δp_t belongs to $L^1(G)$ and

$$\lim_{s \to 0^+} \|\frac{p_{t+s} - p_t}{s} + \Delta p_t\|_1 = 0, \text{ for every } t > 0.$$

Proof. We denote by ρ_1 the right regular representation of G on $L^1(G)$. Following ([13], theorem 4, p.599), we set for t > 0 and for $f \in L^1(G)$:

$$P^t f = \int_G p_t(y) \rho_1(y) f dy.$$

By lemma 7.1 and theorem 4 of [13], $P^t f$ is an analytic vector in the following sense : there exists s > 0 such that

$$\sum_{m=0}^{\infty} \frac{1}{m!} \sum_{1 \le i_1, \dots, i_m \le n} \| d\rho_1(X_{i_1}) \dots d\rho_1(X_{i_m}) P^t f \|_1 s^m < \infty$$

In particular, $p_t = P^{t/2}p_{t/2}$ is analytic in the preceding sense, and $hp_t \in L^1(G)$. The last assertion is a consequence of mean value theorem and of Lebesgue's dominated convergence theorem.

Let now π be a unitary representation of G. Set

$$S(t) = \pi(p_t)$$
, if $t > 0$ and $S(0) = \mathbb{I}_{H_{\pi}}$.

 $(S(t))_{t\geq 0}$ is a strongly continuous semi-group on H_{π} with infinitesimal generator A. Moreover $S(t)^* = S(t)$ for every t because $p_t = p_t^*$.

By Corollary 10.6, p.41 of [14], A is selfadjoint. More precisely the following is true.

Lemma 3.3. With the same notations, one has $A = -\overline{d\pi(\Delta)}$, where $\overline{d\pi(\Delta)}$ denotes the closure of $d\pi(\Delta)$.

Proof. Let ξ be in $D(\overline{d\pi(\Delta)})$. We claim that, for every t > 0, $S(t)\xi$ belongs to D(A) and

$$AS(t)\xi = -S(t)\overline{d\pi(\Delta)}\xi.$$

Indeed, let η in H_{π} . Then, for $0 < s \le 1$:

$$\left\langle \frac{S(s)S(t)\xi - S(t)\xi}{s} | \eta \right\rangle = \frac{1}{s} \left\langle \pi(p_{t+s})\xi - \pi(p_t)\xi | \eta \right\rangle$$
$$= \frac{1}{s} \int (p_{t+s}(g) - p_t(g)) \left\langle \xi | \pi(g^{-1})\eta \right\rangle dg$$
$$= \int \frac{p_{t+s}(g) - p_t(g)}{s} \varphi_{\xi,\eta}(g) dg.$$

By lemma 3.2 and corollary 2.4,

$$\lim_{s \to 0^+} \left\langle \frac{S(s)S(t)\xi - S(t)\xi}{s} | \eta \right\rangle = \int (-\Delta p_t)(g)\varphi_{\xi,\eta}(g)dg$$
$$= -\left\langle S(t)\overline{d\pi(\Delta)}\xi | \eta \right\rangle.$$

By theorem 1.3, p.43 of [14], $S(t)\xi$ belongs to D(A) and $AS(t)\xi = -S(t)\overline{d\pi(\Delta)}\xi$. This proves the claim. But $||S(t)\xi - \xi|| \xrightarrow[t\to 0]{t\to 0} 0$ and $||AS(t)\xi - (-\overline{d\pi(\Delta)}\xi)|| = ||-S(t)\overline{d\pi(\Delta)}\xi + \overline{d\pi(\Delta)}\xi|| \xrightarrow[t\to 0]{t\to 0} 0$.

Since A is a closed operator, ξ belongs to D(A) and $A\xi = -\overline{d\pi(\Delta)}\xi$. So $-\overline{d\pi(\Delta)} \subset A$, and as they are selfadjoint, we have $-\overline{d\pi(\Delta)} = A$.

Lemma 3.4. If (π, H_{π}) is a unitary representation of a locally compact group G with almost invariant vectors and if μ is a probability measure over G, the spectrum of the operator $\pi(\mu) = \int \pi(g) d\mu(g)$ contains 1.

Proof. Let $(\xi_k)_{k\geq 1}$ a sequence of unit vectors in H_{π} such that φ_{ξ_k,ξ_k} tends to 1 uniformly over every compact set of G. We show that

$$\lim_{n \to \infty} \|\pi(\mu)\xi_k - \xi_k\| = 0.$$

Let $\epsilon > 0$; there exists a compact set K in G such that $\mu(G - K) \leq \epsilon$. So we have

$$\|\pi(\mu)\xi_k - \xi_k\| \le \int_K \|\pi(g)\xi_k - \xi_k\| d\mu(g) + 2\epsilon < 3\epsilon$$

for k sufficiently large.

As we now show, the converse is true under some restrictions on μ . Although we shall not use this result, we give the proof as we think it is of interest.

Lemma 3.5. Let G be a locally compact group and let μ be a absolutely continuous probability measure with respect to the Haar measure and such that the support generates topologically G. Let π be a unitary representation on a Hilbert space H_{π} . Then π has almost invariant vectors, if the spectrum of the operator $\pi(\mu) = \int \pi(g) d\mu(g)$ contains 1. **Proof.** By replacing μ by $\frac{1}{2}(\mu + \check{\mu})$, we can assume that μ is symmetric. Then $\pi(\mu)$ is selfadjoint and there exist unit vectors ξ_n such that $\|\pi(\mu)\xi_n - \xi_n\| \to 0$.

So we have :

$$\lim_{n \to \infty} \int_G (1 - \operatorname{Re} \langle \pi(x)\xi_n | \xi_n \rangle) d\mu(x) = 0$$

As $\mu \ge 0$ and $1 - \operatorname{Re} \langle \pi(x)\xi_n | \xi_n \rangle \ge 0$, there exist a subsequence of $\{\xi_n\}_{n\ge 0}$ (that we will also denote by $\{\xi_n\}_{n\ge 0}$), such that

$$\lim_{n \to \infty} 1 - \operatorname{Re} \left\langle \pi(x)\xi_n | \xi_n \right\rangle \ge 0$$

for μ -almost every $x \in G$.

On an other hand, by compactness of the unit ball of L^{∞} gifted with the weak^{*} topology, there exists a subsequence of $\{\xi_n\}_{n\geq 0}$ (still denoted by $\{\xi_n\}_{n\geq 0}$) and a positive type function φ on G such that

$$\lim_{n \to \infty} \varphi(x) - \operatorname{Re} \langle \pi(x)\xi_n | \xi_n \rangle \ge 0$$

almost everywhere with respect to the Haar measure (this is true first for the weak^{*} topology $\sigma(L^{\infty}, L^1)$ and the claim follows by the same arguments as before).

As μ is absolutely continuous, we have $\varphi = 1$ μ -almost everywhere. As φ is a measurable, positive definite function, φ is continuous. Hence $\varphi = 1$ on the support of μ .

Therefore, $\varphi = 1$ on the closed subgroup generated by $Supp(\mu)$ which is G, by assumption.

So $\lim_{n\to\infty} \operatorname{Re} \langle \pi(x)\xi_n|\xi_n \rangle = 1$ almost everywhere on G and by Lebesgue's dominated convergence, this is also true in the $\sigma(L^{\infty}, L^1)$ topology. By [2], Theorem 13.5.2, it follows that $\lim_{n\to\infty} \operatorname{Re} \langle \pi(x)\xi_n|\xi_n \rangle = 1$ uniformly on every compact subset of G and, hence, $\lim_{n\to\infty} ||\pi(x)\xi_n - \xi_n|| = 0$ uniformly on compact subsets of G. This shows that π almost has invariant vectors.

Now we are able to finish the proof of Theorem 3.1.

If π almost has invariant vectors, by lemma 3.4, the spectrum of $\pi(p_t)$ contains 1, for every t > 0.

Now $-\overline{d\pi(\Delta)}$ is the infinitesimal generator of the semi-group $(\pi(p_t))_{t\geq 0}$ so that 0 is in the spectrum of $\overline{d\pi(\Delta)}$ by functional calculus and lemma 3.3.

One may wonder whether it is necessary to use, as we did, arguments involving the heat kernel to prove $1) \Rightarrow 3$). For instance, one might think that if, for a compact neighbourhood V of e in G, $\{\xi_n\}_{n\geq 0}$ is a family of (1/n, V)invariant \mathcal{C}^{∞} vectors, then $|| d\pi(\Delta)\xi_n ||$ should tend to 0.

The following example shows that this is not always true.

Example 3.6. Let $G = \mathbb{R}$ be the real line. We define first, the following family of unitary representations of degree 2 :

$$s \mapsto \pi_n(s) = \left(\begin{array}{cc} \exp(is/n) & 0\\ 0 & \exp(isn) \end{array} \right).$$

We consider the unitary representation π defined by $s \mapsto \bigoplus_{n \geq 0} \pi_n(s)$.

We also define $\xi_n = (0, \dots, 0, \sqrt{\frac{n-1}{n}}, \sqrt{\frac{1}{n}}, 0, \dots)$ where the nonzero components of ξ_n are in $2n^{th}$ and $(2n+1)^{th}$ places.

By construction the ξ_n have norm 1. Let I be a compact subset of \mathbb{R} . Then, for every s in I, we have :

$$\|\pi(s)\xi_n - \xi_n\|^2 = |(\exp(is/n) - 1)\sqrt{\frac{n-1}{n}}|^2 + |(\exp(isn) - 1)\sqrt{\frac{1}{n}}|^2$$
$$= |(\exp(is/n) - 1)|^2 \frac{n-1}{n} + |\exp(isn) - 1|^2 \frac{1}{n}.$$

As $|\exp(is/n) - 1|^2 \xrightarrow[n \to \infty]{} 0$ uniformly for s in I and as $|\exp(isn) - 1|^2 \leq 4$, the ξ_n are (ϵ_n, I) -invariant vectors for a sequence $\{\epsilon_n\}_{n \geq 0}$ with $\epsilon_n > 0$ and $\lim \epsilon_n = 0$.

However this family ξ_n does not satisfy $|| d\pi(\Delta)\xi_n || \xrightarrow[n \to \infty]{} 0$. In fact,

$$d\pi(\Delta)\xi_n = (0, \dots, 0, \frac{1}{n^2}\sqrt{\frac{n-1}{n}}, n^2\sqrt{\frac{1}{n}}, 0, \dots).$$

Thus, $|| d\pi(\Delta)\xi_n || \approx n^{3/2}$; so it does not tend to 0.

Lemma 3.7. Let h be a selfadjoint operator on a Hilbert space H, with domain D(h), and such that its spectrum is bounded from below. Then

$$\min(\operatorname{Sp} h) = \inf_{\xi \in D(H)^1} \langle h\xi | \xi \rangle , \text{ where } D(H)^1 = \{\xi \in D(H) | \|\xi\| = 1\}.$$

Proof. As h is selfadjoint, its residual spectrum is empty. So every spectral value is an approximate eigenvalue. For every spectral value λ , there exists a sequence $\{\xi_n\}_{n\geq 0}$ in $D(h)^1$ such that $\langle h\xi_n|\xi_n\rangle \to \lambda$.

Hence,

$$\inf_{\in D(h)^1} \langle h\xi | \xi \rangle \leq \lambda.$$

Let $\lambda_0 = \min(\operatorname{Sp}(h))$ (the minimum exists since the spectrum of h is real, closed and bounded below). If we apply the last inequality to λ_0 , we get :

ξ

$$\inf_{\xi\in D(h)^1} \langle h\xi|\xi\rangle \leq \lambda_0.$$

As for the other inequality, let $h = \int \lambda dE(\lambda)$ be the spectral decomposition of h; we have $\langle h\xi|\xi\rangle = \int \lambda \langle dE(\lambda)\xi|\xi\rangle$ and $\langle \xi|\xi\rangle = \int \langle dE(\lambda)\xi|\xi\rangle$ for every fixed ξ in D(h). Then, for ξ in $D(h)^1$,

$$\langle h\xi|\xi\rangle = \int_{\operatorname{spec}(h)} \lambda \left\langle dE(\lambda)\xi|\xi\right\rangle \geq \lambda_0 \int_{\operatorname{spec}(h)} \left\langle dE(\lambda)\xi|\xi\right\rangle = \lambda_0$$

This finishes the proof.

Definition 3.8. $k(\overline{d\pi(\Delta)}, G)$ by

$$k(\overline{d\pi(\Delta)}, G) = \inf_{\xi \in D(\overline{d\pi(\Delta)})^1} \langle \overline{d\pi(\Delta)}\xi | \xi \rangle.$$

For a unitary representation π of G, we define the constant

Corollary 3.9. The following holds :

$$k(\overline{d\pi(\Delta)}, G) = \min \operatorname{Sp}(\overline{d\pi(\Delta)}) = \inf_{\xi \in [\mathcal{C}^{\infty}(H_{\pi})]^1} \sum_{i=1}^n \|d\pi(X_i)\xi\|^2$$

Proof. The first equality comes from the preceding lemma. On the other hand, it is clear that

$$k(\overline{d\pi(\Delta)},G) \leq \inf_{\xi \in [\mathcal{C}^{\infty}(H_{\pi})]^{1}} \left\langle \overline{d\pi(\Delta)}\xi | \xi \right\rangle = \inf_{\xi \in [\mathcal{C}^{\infty}(H_{\pi})]^{1}} \sum_{i=1}^{n} \| d\pi(X_{i})\xi \|^{2}.$$

To obtain the reverse inequality, it suffices to show that, for $\epsilon > 0$, there exists a C^{∞} vector η of norm 1 such that

$$|k(\overline{d\pi(\Delta)},G) - \langle d\pi(\Delta)\eta|\eta\rangle| < \epsilon$$
.

By definition, there exists ξ in $D(\overline{d\pi(\Delta)})$ of norm 1 such that

$$0 \le \left\langle \overline{d\pi(\Delta)}\xi|\xi\right\rangle - k(\overline{d\pi(\Delta)},G) < \epsilon/3.$$

As $\overline{d\pi(\Delta)}$ is the closure of $d\pi(\Delta)$, there exists a \mathcal{C}^{∞} vector η of norm 1 which is arbitrarily close to ξ with respect to the graph norm. As,

$$\begin{aligned} |k(\overline{d\pi(\Delta)},G) - \langle d\pi(\Delta)\eta|\eta\rangle| &\leq |k(\overline{d\pi(\Delta)},G) - \langle d\pi(\Delta)\xi|\xi\rangle| + \\ &|\langle \overline{d\pi(\Delta)}\xi|\xi\rangle - \langle \overline{d\pi(\Delta)}\xi|\eta\rangle| + \\ &|\langle \overline{d\pi(\Delta)}\xi|\eta\rangle - \langle d\pi(\Delta)\eta|\eta\rangle| \end{aligned}$$

this proves the claim.

Theorem 3.10. G has property (T) if and only if there exists an $\epsilon > 0$ such that $k(\overline{d\pi(\Delta)}, G) \ge \epsilon$ for every unitary representation π of G without non zero fixed vectors.

Proof. \Leftarrow) If π has almost invariant vectors, by the 3.1, $k(\overline{d\pi(\Delta)}, G) = \min \operatorname{Sp}(\overline{d\pi(\Delta)}) = 0$. The assumption then implies that π has non zero fixed vectors, i.e. G has property (T).

 \Rightarrow) Assume by contradiction that there exists a sequence of unitary representations $\{\pi_n\}_{n\geq 0}$ without non zero fixed vector such that $k(\overline{d\pi_n(\Delta)}, G) \to 0$. We claim that the representation $\sigma = \bigoplus_{n\geq 0} \pi_n$ satisfies $k(\overline{d\sigma(\Delta)}, G) = 0$. By the assumption, there exists, for every n, a vector $\xi_n \in \mathcal{C}^{\infty}(H_{\pi_n})^1$ such that $\langle d\pi_n(h)\xi_n | \xi_n \rangle < 1/n + k(\overline{d\pi_n(\Delta)}, G)$.

The vector η_n defined by $\eta_n = (0, \dots, 0, \xi_n, 0 \dots)$, with ξ_n at the nth place, is a \mathcal{C}^{∞} vector in H^1_{σ} and

$$\left\langle \overline{d\sigma(\Delta)}\eta_n \,|\, \eta_n \right\rangle = \left\langle \overline{d\pi_n(\Delta)}\xi_n \,|\, \xi_n \right\rangle < 1/n + k(\overline{d\pi_n(\Delta)}, G).$$

Hence, $k(\overline{d\sigma(\Delta)}, G) = 0$ and 0 is in the spectrum of $\overline{d\sigma(\Delta)}$. By Theorem 3.1, this implies that σ has almost invariant vectors. Since G has property T, σ has a nonzero fixed vector $\{\beta_n\}_{n\geq 0}$. Choose n so that $\beta_n \neq 0$. Then β_n is a non zero fixed vector for π_n , contradicting the assumption.

We can define $K(\Delta,G) = \inf_{\pi \in \widetilde{G}^*} k(\overline{d\pi(\Delta)},G)$, the Laplacian Kazhdan constant.

Corollary 3.11. G has property (T) if and only if $K(\Delta, G) > 0$.

This corollary is a direct consequence of the preceding proposition.

Remark 3.12. The above results (Theorem 3.1, Theorem 3.10 and Corollary 3.11) remain true if the vectors X_1, \ldots, X_n are only assumed to generate \mathfrak{g} as a Lie algebra. The relevant facts about the heat kernel associated with the sub-Laplacian $\Delta = -\sum_{i=1}^{n} X_i^2$ hold in this more general situation.

4. Comparison with the classical constants

Proposition 4.1. Let G be a connected Lie group and let $\{X_i\}_{i=1,...,n}$ be a basis of its Lie algebra. Fix $\epsilon > 0$ and set $S = \{\exp(tX_i) | t \in [0, \epsilon], i \in \{1, ..., n\}\}$. Then, for any unitary representation π of G, one has :

$$\kappa(G, S, \pi) \le \epsilon \sqrt{k(\overline{d\pi(\Delta)}, G)}.$$

In particular $\kappa(G,S) \leq \epsilon \sqrt{K(\Delta,G)}$.

 κ

Proof. Let π be a unitary representation of G and let $\xi \in \mathcal{C}^{\infty}(H_{\pi})$.

Then
$$\sup_{s \in S} \|\pi(s)\xi - \xi\| = \sup_{t \in [0,\epsilon]} \max_{i \in \{1...n\}} \|\pi(e^{tX_i})\xi - \xi\|$$

$$= \sup_{t \in [0,\epsilon]} \max_{i \in \{1...n\}} \|\int_0^t \pi(e^{sX_i})d\pi(X_i)\xi ds\|$$

$$\leq \sup_{t \in [0,\epsilon]} \max_{i \in \{1...n\}} \int_0^t \|\pi(e^{sX_i})d\pi(X_i)\xi\| ds$$

$$\leq \epsilon \max_{i \in \{1...n\}} \|d\pi(X_i)\xi\|$$

$$\leq \epsilon \sqrt{\sum_{i=1}^n \|d\pi(X_i)\xi\|^2}.$$

 So

$$(G, S, \pi) = \inf_{\xi \in H_{\pi}^{1}} \sup_{s \in S} \|\pi(s)\xi - \xi\|$$

$$\leq \inf_{\xi \in (\mathcal{C}^{\infty}(H_{\pi}))^{1}} \sup_{s \in S} \|\pi(s)\xi - \xi\|$$

$$\leq \epsilon \inf_{\xi \in (\mathcal{C}^{\infty}(H_{\pi}))^{1}} \sqrt{\sum_{i=1}^{n} \|d\pi(X_{i})\xi\|^{2}}$$

$$= \epsilon \sqrt{k(\overline{d\pi(\Delta)}, G)}$$

This ends the proof.

(ii) Proposition 4.1 states that :

$$\kappa(G, S, \pi) \le \epsilon \sqrt{k(\overline{d\pi(\Delta)}, G)},$$

for every unitary representation π of G. However the converse fails very strongly : there exists no continuous function $f : \mathbb{R}_+ \to \mathbb{R}_+$, such that f(0) = 0 and

$$k(\overline{d\pi(\Delta)}, G) \le f(\kappa(G, S, \pi)),$$

for every connected Lie group G and for every unitary representation π of G. Indeed, $\kappa(G, S, \pi) \leq 2$ for any representation π , and we shall exhibit a sequence $(\pi_k)_{k\geq 1}$ of unitary representations of \mathbb{R} such that $k(\overline{d\pi_k(\Delta)}, G) = k^2$ for every $k \geq 1$.

Let $H_k = L^2([k, +\infty))$ et T_k be the selfadjoint operator on H_k defined by :

$$D(T_k) = \{\xi \in H_k \mid \int_k^\infty \lambda^2 |\xi(\lambda)|^2 d\lambda < \infty\} \text{ and } (T_k\xi)(\lambda) = \lambda \xi(\lambda).$$

If $\pi_k(t) = \exp(itT_k)$, we have :

$$k(\overline{d\pi_k(\Delta)}, \mathbb{R}) = \inf_{\xi \in D(T_k)^1} \langle T_k^2 \xi | \xi \rangle = k^2$$

Example 4.3. 1. Let $G = SL(2, \mathbb{R})$. Take, as basis of the Lie algebra $\mathfrak{sl}_2(\mathbb{R})$, the matrices

$$H = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, V = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, W = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Then $\Delta = -(H^2 + V^2 + W^2)$ is equal to $\frac{1}{4}(\omega + 2W^2)$ with ω the Casimir operator in $U(\mathfrak{sl}_2(\mathbb{R}))$.

Let us use the coordinates (x, y, θ) on G, where a group element is expressed as

$$g = \begin{pmatrix} \sqrt{y} & x \\ 0 & \frac{1}{\sqrt{y}} \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}, \ (x,\theta \in \mathbb{R}, y > 0).$$

Then, in these coordinates, we find, viewing H, V, W as left invariant vector fields on G:

$$\Delta = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) + y \frac{\partial^2}{\partial x \partial \theta} + \frac{1}{2} \frac{\partial^2}{\partial \theta^2}$$

(see S. Lang, [9], Chap. X, $\S1$ and $\S2$).

Let $\mathbb{H} \cong G/K$, K = SO(2), be the Poincaré upper half space

$$\mathbb{H} = \{ z = x + iy \, | \, x, y \in \mathbb{R}, y > 0 \},\$$

with invariant measure $y^{-2}dxdy$.

Let π be the left regular representation of G on $L^{2}(\mathbb{H})$. As the functions on \mathbb{H} are independent of θ on the right, we have

$$d\pi(\Delta) = -y^2(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2})$$

which is the Laplace-Beltrami operator on $\mathbb H$.

It is well known that $\operatorname{Sp}(d\pi(\Delta)) \subseteq [1/4; +\infty[$. Here is a very elementary argument for this due to Mac Kean [12]: Let f be a real smooth function on \mathbb{H} with compact support. Then

$$\begin{aligned} \frac{1}{4} \left(\int_0^\infty f(x,y)^2 y^{-2} dy \right)^2 &= \left(\int_0^\infty f(x,y) \frac{\partial f}{\partial y}(x,y) y^{-1} dy \right)^2 \\ &\leq \int_0^\infty f(x,y)^2 y^{-2} dy \int_0^\infty \left(\frac{\partial f}{\partial y}(x,y) \right)^2 dy \end{aligned}$$

 So

$$\frac{1}{4} \int_0^\infty f(x,y)^2 y^{-2} dy \le \int_0^\infty \left(\frac{\partial f}{\partial y}(x,y)\right)^2 dy.$$

Hence

(see [9]).

$$\begin{aligned} \frac{1}{4} \|f\|_{L^{2}(\mathbb{H})}^{2} &\leq \int_{-\infty}^{+\infty} dx \int_{0}^{\infty} \left(\frac{\partial f}{\partial y}(x,y)\right)^{2} dy \\ &\leq \int_{-\infty}^{+\infty} dx \int_{0}^{\infty} \left[\left(\frac{\partial f}{\partial x}(x,y)\right)^{2} + \left(\frac{\partial f}{\partial y}(x,y)\right)^{2}\right] dy \\ &= -\int_{-\infty}^{+\infty} dx \int_{0}^{\infty} f(x,y) \left(\frac{\partial^{2} f}{\partial x^{2}}(x,y) + \frac{\partial^{2} f}{\partial y^{2}}(x,y)\right) dy \\ &= \langle d\pi(\Delta) f|f \rangle \,. \end{aligned}$$

This implies that $\lambda \geq 1/4$ for any $\lambda \in \text{Sp}(\pi(\Delta))$. It is actually known that $\inf \text{Sp}(\overline{d\pi(\Delta)}) = 1/4$, that is, $k(\overline{d\pi(\Delta)}, G) = 1/4$

2. Let G be the (three-dimensional) Heisenberg group. Thus $G = \mathbb{R}^3$ with group law

$$(p,q,t)(p',q',t') = (p+p',q+q',t+t'+\frac{1}{2}(pq'-qp')).$$

The left invariant vectors fields on G corresponding to the coordinates (p,q,t) are :

$$P = \frac{\partial}{\partial p} - \frac{1}{2}q\frac{\partial}{\partial t}, \ Q = \frac{\partial}{\partial q} + \frac{1}{2}p\frac{\partial}{\partial t}, \ T = \frac{\partial}{\partial t}.$$

As is well known, G has for each $h \in \mathbb{R}$, $h \neq 0$, an infinite dimensional unitary representation ρ_h on $L^2(\mathbb{R})$ so that

$$d\rho_h(P) = hD, d\rho_h(Q) = M, d\rho_h(T) = \frac{h}{2\pi i}\mathbb{I},$$

where $D = \frac{1}{2\pi i} \frac{\partial}{\partial x}$ and M is the multiplication operator by x on $L^2(\mathbb{R})$.

A version of the Heisenberg Uncertainty Principle states that :

$$\|Mu\|_{2}^{2} + \|Du\|_{2}^{2} \ge \frac{1}{2\pi} \|u\|_{2}^{2}, \forall u \in L^{2}(\mathbb{R})$$

with equality if and only if u is a multiple of the Gaussian $x \mapsto \exp(-\pi x^2)$ (see [3], Corollary (1.37)). Replacing in this inequality u by the function $x \mapsto |h|^{1/4} u(h^{1/2}x)$ yields

$$||Mu||_{2}^{2} + ||hDu||_{2}^{2} \ge \frac{|h|}{2\pi} ||u||_{2}^{2}$$

with equality if $u(x) = |h|^{1/4} \exp(-\pi |h|x^2)$. Thus, with $\Delta = -(P^2 + Q^2 + T^2)$, we see that

$$\langle d\rho_h(\Delta)u|u\rangle = \|Mu\|_2^2 + \|hDu\|_2^2 + \frac{|h|^2}{4\pi^2} \|u\|_2^2 \ge \left(\frac{|h|}{2\pi} + \frac{|h|^2}{4\pi^2}\right) \|u\|_2^2$$

with equality for the above Gaussian function.

Hence, we obtain the exact value for the Kazhdan constant

$$k(\overline{d\rho_h(\Delta)}, G) = \inf\{\lambda \mid \lambda \in \operatorname{Sp}(d\rho_h(\Delta))\}\$$
$$= \left(\frac{|h|}{2\pi} + \frac{|h|^2}{4\pi^2}\right)$$

3. The following well-known example was pointed out to us by A. Valette. Let G be a connected compact semi-simple Lie group. Let $\{X_i\}_{i=1,\dots,n}$ be a basis of its Lie algebra \mathfrak{g} , which is orthogonal relatively to the Killing form. Then $\Delta = -\sum_{i=1}^{n} X_i^2$ is the Casimir operator of G. As $\Delta \in Z(U(\mathfrak{g}))$, the Schur lemma insures that, for $\pi \in \hat{G}$, $d\pi(\Delta) = c\mathbb{I}$. This constant c can be determined in the following way : if λ is the highest weight of π and ρ is the half sum of the positive roots, as we can see in [7], p. 247, we have

$$k(d\pi(\Delta), G) = \langle \lambda + 2\rho \,|\, \lambda \rangle = \|\lambda + \rho\|^2 - \|\rho\|^2 \,.$$

Remark 4.4. Let G be a simply connected, connected nilpotent Lie group, and let π be a unitary irreducible representation of G. In [6], a bound is given for $k(\overline{d\pi(\Delta)}, G)$ in terms of the distance from 0 of the Kirillov orbit associated to π .

References

- [1] Colin de Verdière, Y., *Le trou spectral des graphes et leur propriété d'expan*sion, Séminaire de théorie spectrale et géométrie, Grenoble, (1993–1994), 51–63.
- [2] Dixmier, J., "Les C^{*}-algèbres et leurs représentations," Cahiers Scientifiques **29**, Gauthier-Villars, 1964.
- [3] Folland, G., "Harmonic Analysis on Phase Space," Princeton University Press, 1989.

- [4] de la Harpe, P., and A. Valette, "La propriété (T) pour les groupes localement compacts," Astérisque **175**, Société Mathématique de France, 1989.
- [5] Hochschild G., "La Structure des Groupes de Lie," Monographies Universitaires de Mathématiques **27**, Dunod, 1968.
- [6] Hulanicki, A., J. Jenkins, and J. Ludwig, *Minimum eigenvalues for positive Rockland operators*, Proc. Amer. Math. Soc. **94** (1985), 718–720.
- [7] Jacobson, N., "Lie Algebras," Interscience, 1962.
- [8] Jorgensen, P., "Operators and Representation Theory," Mathematics Studies **147**, North-Holland, 1988.
- [9] Lang, S., " $SL_2(\mathbb{R})$," Addison Wesley, 1975.
- [10] Lubotzky, A., "Discrete Groups, Expanding Graphs and Invariant Measures," Progress in Mathematics **125**, Birkhäuser, 1994.
- [11] Margulis, G., *Explicit constructions of concentrators*, Problems Inform. Transmission **9-4** (1973), 325–332.
- [12] Mc Kean, h., Selberg trace formula as applied to a compact Riemann surface, Comm. Pure Appl. Math. **25** (1972), 225–246.
- [13] Nelson, E., Analytic vectors, Annals of Mathematics **70** (1959), 572–615.
- [14] Pazy, A., "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences 44, Springer, 1983.
- [15] Poulsen, N., On C^{∞} -vectors and intertwining bilinear forms for representations of Lie groups, J. of Functional Analysis **9** (1972), 87–120.
- [16] Yosida K., "Functional Analysis," Die Grundlehren der mathematischen Wissenschaft 123, Springer, 1965.

URA CNRS 399 Département de mathématiques Université de Metz Ile de Saulcy F-57045 Metz, France bekka@poncelet.univmetz.fr School of mathematics, University of New South Wales Sydney, 2052, Australia pacherix@maths.unsw.edu.au Institut de mathématiques, Université de Neuchâtel Rue Emile-Argand 11 CH-2007 Neuchâtel Switzerland Jolissaint@maths.unine.ch

Received April 16, 1997 and in final form June 11, 1997