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2 Helling, Kim, and MennickeA very general method which can be used for problems of the above type issmall cancellation theory. This path has been followed by R. C. Lyndon. Inan unpublished manuscript, Lyndon has by an application of small cancellationtheory proved that F (2;m) is in�nite for m � 11. This manuscript whichoriginally contained some aws was corrected by D. Johnson and a student ofhis. To apply small cancellation theory, the presentation (1) is not suitable. Butit is easy to see that F (2;m) is generated by x1 and x2 , and can be de�ned bytwo relators. These two relators can be manipulated to exhibit a suitable smallcancellation condition.Our approach here is di�erent. We start o� from the presentation (1). We tryto construct a nice 3{dimensional complex which has F (2;m) as its fundamentalgroup. An obvious suggestion is to take m triangles with edges labelled as in �gure1 and patch them according to the labelling of the edges. We obtain a connected�nite 2{complex with fundamental group F (2;m). It is, of course, not at all clearwhether this object is the 2{skeleton of a nice 3{complex. In the case that m � 6is an even integer we show in chapter 1 that a suitable modi�cation of this ideaworks. We proveTheorem A. Let m = 2n be an even positive integer. Then there is a 3{complex Mn which consist of one 3{cell, 2n triangles, 2n edges, and one vertex.The complex Mn is a closed, compact, orientable 3{manifold, and it satis�es�1(Mn) = F (2; 2n):As a simple application, we could now establish (P1) for even parameters m. To dothis, we just take the list of possible �nite fundamental groups of closed, compact3{manifolds, and prove by again computing commutator quotients that F (2; 2n)is none of them for n � 3. We also obtain all properties satis�ed by fundamentalgroups of 3{manifolds now for F (2; 2n). We note(P2) F (2; 2n) is a Noetherian group.This means that every �nitely generated subgroup is �nitely presented. To proceedin our study of F (2; 2n) we now have to study the 3{manifolds Mn . The theory ofW. Thurston forces us to look for geometric structures on Mn or its universalcover. The �rst result in this direction isProposition B. M3 is an a�ne Riemannian manifold.The group{theoretic implication of Proposition B is:(P3) F (2; 6) is a torsion{free �nite extension of Z3:This result was known. It is in fact easy to see that F (2; 6) is isomorphic to a3{dimensional a�ne group.Next we establish



Helling, Kim, and Mennicke 3Theorem C. Mn is a hyperbolic manifold for n � 4. This means that F (2; 2n)is isomorphic to a discontinuous subgroup �n of the group of orientation preparingisometries of hyperbolic 3{space H 3 so that(2) Mn �= �nnH 3:We establish this result by describing a tessellation of H 3 by compact polyhedrawhich are replica of the complex Mn . We note that for n = 5, our tessellationis the well{known tessellation of H 3 by regular icosahedra. In all other cases,the tessellation is not regular, but it is isohedral: all the faces on the boundaryare regular triangles, and they are all isometric. Hence the classical icosahedraltessellation described byH. S. M. Coxeter belongs to an in�nite one{parameterfamily. As group{theoretic consequences we note:(P4) F (2; 2n) is torsion{free for n � 4:(P5) Every abelian subgroup of F (2; 2n) is cyclic for n � 4:It seems interesting to remark that we also have solved the classical algorithmicproblems of M. Dehn for F (2; 2n):(P6) The groups F (2; 2n) have solvable word and conjugacy problems .In fact, together with our tessellation of H 3 comes an explicit embedding ofF (2; 2n), n � 4, into PSL2(C ), which is the group of orientation{preservingisometries of H 3 . The algorithms for (P6) can then be found by the usual methodfrom the action of F (2; 2n) on H 3 .Since a �rst version of the present paper was written in preprint form the groupswere studied in particular by Hilden, Lozano, Montesinas [12], [13]. Theyfound another way to answer the question which Fibonacci groups are arithmetic.For this reason, we drop our original proof.It is our pleasure to o�er cordial thanks to a number of colleagues for stim-ulating discussions, to W. Haken and to C. C. Sims, and in particular toF. Grunewald whom we owe much inspiration and who helped us to turn the�nal manuscript into a form which is more suitable for publication. Our thanksalso go to Stephan Helling for some numerical checks on the computer. Actu-ally one of theses checks showed us how to transform a combinatorial tessellationarising from the universal covering of a 3{manifold into a semiregular tessellationof hyperbolic 3{space. Our thanks go to J. Montesinos, Madrid, and J. Howie,CBE, Edinburgh, who showed us how our work relates to some special problems inknot theory, and to Thurston's theory of hyperbolic structures on 3{manifolds.We dedicate this work to the memory of Roger C. Lyndon as a mathematicianof great ingenuity, as a colleague, and as a friend. Although his work on Fibonaccigroups does not directly enter into the present work, we owe to his inspiration tosee algebraic and even arithmetic problems from a geometric point of view.The �rst part of the present work was done during a workshop in Korea, organisedby the second named author. We gratefully acknowledge excellent hospitality, and�nancial support fromDeutsche Forschungsgemeinschaft, and from Korean Scienceand Engineering Council.



4 Helling, Kim, and Mennicke1. Fibonacci groups as fundamental groups of certain 3{manifoldsIn this section, we shall de�ne a series of closed, compact, orientable 3{manifoldsMn such that �1(Mn) = F (2; 2n):The following con�guration was found by the authors in special cases, and thenby C. C. Sims in general.The con�guration is a tessellation of the 2{sphere S2 , consisting of 4n triangles,6n edges, and 2n + 2 vertices.The oriented edges can be labelled in the following manner. The oriented edgesfall into 2n classes, each class consisting of 3 edges. Oriented edges in the sameclass carry the same label, say x1; x2; : : : ; x2n .Each triangle has a boundary xjxj+1x�1j+2 for some j mod 2n. For each j mod 2n,there are precisely two triangles with this boundary.Notice that for n = 5, we obtain a combinatorial icosahedron. We want toconstruct a 3{manifold from this con�guration.Consider an oriented polyhedron which is bounded by 2m triangles. For eachtriangle, de�ne a mate, such that the boundary consists of m pairs of triangles.For each pair, de�ne an identi�cation of the two triangles, such that the triangleinherits opposite orientations from either side. The resulting 3{dimensional com-plex K is an orientable pseudomanifold. It is homogeneous except possibly for thevertices, where a neighbourhood is a star bounded by a surface of genus h � 0.There is a simple criterion, due to H. Seifert and W. Threlfall, for K to bea manifold, i.e. for h = 0.Proposition 1.1. (See [10], p.208, Satz I) Let K be an orientable, closed,3{dimensional pseudomanifold arising from a (simply connected) polyhedron byidentifying pairs of faces on the boundary.K is a manifold if and only if its Euler characteristic vanishes:�(K) = 0:Consider the polyhedron which is the 2{ball with the boundary displayed in �gure1. The faces are labelled by F1; F2; : : : ; F2n , each Fi occurring precisely twice. Foreach i mod 2n, identify the two copies of Fi such that the corresponding orientededges on the boundary carrying the same label are identi�ed. The identi�cationproduces a complex Mn , say, with�0 = 1 vertex�1 = 2n edges�2 = 2n 2{cells�3 = 1 3{cell :Proposition 1.1 applies and yields
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6 Helling, Kim, and MennickeTheorem 1.2. The complex Mn constructed above is a closed, compact, ori-entable 3{manifold. We have �1(Mn) �= F (2; 2n):The proof of the last statement is obvious, since the 2n triangles Fi with boundaryxixi+1x�1i+2 form the 2{skeleton of Mn , and there is only one vertex.Fundamental groups of closed, compact, orientable 3{manifolds are a very re-stricted class of �nitely generated groups. Hence Theorem 1.2 contains a lot ofinformation about the group{theoretical structure of the abstract group F (2; 2n),such as described in the introduction.For the sake of completeness, we reproduce the commutator quotient group, whichnow occurs as the �rst homology group of Mn .Corollary 1.3. H1(Mn;Z)�= F (2; 2n)ab:(1) F (2; 2n)ab = ( ZN �Z5N; N = f(n0) � g(n0) for n = 2n0ZN �ZN; N = g(n) for n = 2n0 + 1:Here f(n); g(n) are the Fibonacci{Lucas numbers de�ned by the equationh(n+ 2) = h(n) + h(n + 1);and the initial valuesf(0) = 0; f(1) = 1; and g(0) = 2; g(1) = 1:The order of the commutator quotient group is in the literature, see [3].After we had completed our work, it was discovered independently by Mon-tesinos, Lozano, Hilden, and by J. Howie that the manifolds Mn arebranched coverings of the 3{sphere S3 , branched cyclically over the �gure 8 knot,which is the knot 41 in the table of Alexander, Briggs, Reidemeister.Theorem 1.4. (Montesinos, Lozano, Hilden, and J.Howie)2. The man-ifolds Mn are branched coverings of the 3{sphere S3 , branched cyclically over theknot 41 . 2. Some elementary hyperbolic geometryIn this section, we shall collect some formulae from 3{dimensional hyperbolicgeometry. The proofs are standard, and we can leave them to the reader.We shall mainly work in the upper halfspace model of 3{dimensional hyperbolicgeometry:(1) H 3 = fP = (z; r); z 2 C ; r 2 R+g:2 private communication, letters of J. MONTESINOS, and of J. HOWIE to the authors, bothdated Feb. 28th, 1989



Helling, Kim, and Mennicke 7The distance between two points P = (z; r) and P 0 = (z0; r0) is given by(2) d(P;P 0) = log(� +p�2 � 1);(3) � = �(P;P 0) = jz � z0j2 + r2 + r022rr0 :We shall work with the distance function �(P;P 0).The planes are the northern hemispheres perpendicular to the plane r = 0, andthe lines are the half{circles in H 3 which are perpendicular to the plane r = 0.The angles are the Euclidean angles.For our purposes, it is more convenient to describe the points, planes and linesdi�erently.Consider(4) P = � a bc �a� 2 SL2(C );a 2 C ; b; c 2 R; c > 0:The matrix P 2 SL2(C ) can also be used to describe the point P = (z; r) 2 H 3 .The two descriptions are related by(5) � a bc �a�$ (ac ; 1c ):A plane and a line can also be described by elements of SL2(C ).(6) E = � a i bi c a � 2 SL2(C );a 2 C ; b; c 2 R:E describes the hyperbolic plane over the circle Ez = z in the plane r = 0.(7) G = � a bc �a� 2 SL2(C ):G describes the hyperbolic line over the �xed points of the matrix G in the planer = 0.Remark . Remember that H 3 �= SL2(C )=SU2 . The group SU2 is the maximalcompact subgroup of SL2(C ). The description (4) of points is a canonical choiceof coset representatives for the coset space SL2(C )=SU2 .Proposition 2.1. The group of isometries G = PSL2(C ) operates on pointsP , on lines G, and planes E as follows:(8) X : P ! X P X�1G! X GX�1E ! X EX�1 X 2 SL2(C ):



8 Helling, Kim, and MennickeProposition 2.2. (i) A point P belongs to a line G i�(9) GP = PG;(ii) A line G belongs to a plane E i�(10) GE = �EG;(iii) A point P belongs to a plane E i�(11) tr(PE) = 0:Proposition 2.3. (i) The distance function �(P;Q) for two points P;Q isgiven by(12) �(P;Q) = �12 tr(PQ);(ii) The angle between two intersecting planes E;F is given by(13) cos(E;F ) = 12 tr(EF ):Proposition 2.4. Let P;Q;R be points which are not collinear. Putx1 = �(P;Q); x2 = �(Q;R); x3 = �(R;P ):The (oriented) plane E through the points P;Q;R is given by(14) E = 12q1 + 2x1x2x3 � x21 � x22 � x23 (PQR�RQP ):Notice that the quantity(15) det(P;Q;R) = ������� 1 x1 x2x1 1 x3x2 x3 1 ������� = 1 + 2x1x2x3 � x21 � x22 � x23vanishes i� P;Q;R are collinear.Proposition 2.5. A plane E and a line G intersect in a point P if and onlyif(16) tr(F GE G) < 2The point P is given by(17) �P = 1q2� tr(EGE G) (GE + EG):The line G is perpendicular to the plane E if and only if(18) GE = EG:



Helling, Kim, and Mennicke 9This happens if and only if(19) tr(EGE G) = �2;and in this case, the formula (17) reduces to(20) P = GE:If tr(EGE G) > 2, then(21) F = 1q2� tr(EGE G)(GE + EG)is the plane perpendicular to both E and G.Proposition 2.6. The planes E;F intersect in a line G if and only if(22) j tr(EF )j < 2:The line G is given by(23) G = 1q4� tr(EF )2 (EF � FE):If j tr(EF )j > 2, then (23) gives the line G which is perpendicular to both E andF .Proposition 2.7. Let E;F;H be three planes, any two of which intersect. Putx1 = 12 tr(EF ); x2 = 12 tr(EH); x3 = 12 tr(FH):Then(24) jxij < 1; i = 1; 2; 3:Put(25) det(E;F;H) = ������� 1 x1 x2x1 1 x3x2 x3 1 ������� = 1 + 2x1x2x3 � x21 � x22 � x23:The planes E;F;H intersect in a point P if and only if(26) det(E;F;H) > 0:The point P is given by(27) �P = 12qdet(E;F;H) (EFH �HFE):If(28) det(E;F;H) < 0;and if (24) holds, then there is a uniquely determined plane K which is perpendic-ular to E;F;H . It is given by(29) K = 12qdet(E;F;H)(EFH �HFE):



10 Helling, Kim, and MennickeProposition 2.8. Let x1; x2; x3 be real numbers, and suppose(30) xi > 1; i = 1; 2; 3:A triangle with vertices P1; P2; P3 , and edges of length�(Pi; Pj) = xk; i; j; k = 1; 2; 3;all di�erent, exists if and only if(31) 4 = ������� 1 x1 x2x1 1 x3x2 x3 1 ������� = 1 + 2x1x2x3 � x21 � x22 � x23 > 0:An equivalent condition is this: The quadratic form belonging to the symmetricmatrix(32) B = 0B@ 1 x1 x2x1 1 x3x2 x3 1 1CAsatis�es the real equivalence(33) B tR 0B@�1 0 00 �1 00 0 11CA :Proposition 2.9. Let xi;j; i; j = 1; 2; 3; 4; i 6= j , be real numbers satisfying(34) xi;j > 1; xi;j = xj;i:A tetrahedron with vertices P1; P2; P3; P4 , and edges of length �(Pi; Pj) = xi;j existsif and only if the symmetric matrix(35) B = 0BBB@ 1 x12 x13 x14x12 1 x23 x24x13 x23 1 x34x14 x24 x34 1 1CCCAsatis�es the equivalence over R:(36) B tR 0BBB@�1 0 0 00 �1 0 00 0 �1 00 0 0 11CCCA :Proposition 2.10. Let xi;j; i; j = 1; 2; 3; 4; i 6= j , be real numbers satisfying(37) jxi;jj < 1; xi;j = xj;i:A tetrahedron spanned by four planes Ei; i = 1; 2; 3; 4, such that any two planesEi; Ej intersect in a line under the angle(38) cos^(Ei; Ej) = xi;j



Helling, Kim, and Mennicke 11exists if and only if the symmetric matrix(39) C = 0BBB@�1 x12 x13 x14x12 �1 x23 x24x13 x23 �1 x34x14 x24 x34 �11CCCAsatis�es the equivalence over R:(40) C tR 0BBB@�1 0 0 00 �1 0 00 0 �1 00 0 0 11CCCA :Proposition 2.11. Consider a tetrahedron spanned by the points Pi , i =1; 2; 3; 4. Put(41) xi;j = �(Pi; Pj):The angle between the faces meeting in the edge (Pi; Pj) is given by(42) cos(Pi; Pj) = ������� 1 xij xikxij 1 xilxik xil xkl �������q4(i; j; k)q4(i; j; l);where(43) 4(i; j; k) = 1 + 2xikxjkxij � x2ik � x2jk � x2ij:Remark 1. Notice that (42) is the 3{dimensional version of the cosine formulain elementary plane hyperbolic geometry.Remark 2. Notice that we have formulated most of the elementary proposi-tions such that the generalisation to n{dimensional hyperbolic geometry for n > 3is obvious.Proposition 2.12. Let x1 = cos�; x2 = cos �; x3 = cos ; where �; �;  arethree angles satisfying(44) 0 � �; �;  � 180�:Then(45) �+ � +  = 360�if and only if(46) ������� 1 x1 x2x1 1 x3x2 x3 1 ������� = 0:
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Pk Pi PlPjxjk xilxik xklxij xjlFig. 23. A semiregular tesselation of hyperbolic 3{spaceIn this section, we shall construct a series of semiregular tessellations of hyperbolic3{space, for n � 4. A fundamental domain is a semiregular polyhedron which isa metric realisation of the combinatorial polyhedron described in Section 1.The polyhedron is bounded by 4n regular triangles which are all congruent. Itconsists of three parts: a pyramid on the top, a box in the middle, and a pyramidunderneath.The pyramid on the top consists of n tetrahedra Aj .The tetrahedron Aj has vertices Q;Z1; P2j; P2j+2 . The face QP2j P2j+2 is aregular triangle. The angle at the edge (Q;Z1) is 2�n . The angles at the edges(P2j ; Z1) and (P2j+2; Z1) are right angles.We introduce some notation.(1) x = �(Q;P2j) = �(Q;P2j+2) = �(P2j; P2j+2)y = �(Z1; P2j) = �(Z1; P2j+2)z = �(Q;Z1)�n = � = cos 2�n :All tetrahedra Aj are congruent. Hence we shall simply refer to the tetrahedronA.Proposition 3.1. In the tetrahedron A, the quantities y; z can be expressed asfollows:(2) yz = x(3) y2 = x� �1� � :
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Fig. 3The angle at the edge (Q;P2) or (Q;P4) is given by(4) cos(Q;P2)A = cos(Q;P4)A = sx� x� � �2x+ 1 :The angle at the edge (P2; P4) is given by(5) cos(P2; P4)A = xs 1 + �(x� �)(2x+ 1) :In the pyramid, the angle at the edge (Q;P2) is twice the angle given by (4):(6) cos(Q;P2) = �2x�+ 2� + 12x + 1 :Proof. The proof is a straightforward computation, invoking Proposition 2.11.Join the two tetrahedra A1 and A2 along the face QP4 Z1 . Consider the tetra-hedron spanned by Q;P2; P6; P4 . Notice that in this tetrahedron, the angle atthe edge (Q;P4) is given by (6). Use Proposition 2.11 to compute the distancebetween P2 and P6 , obtaining:(7) �(P2; P6) = 2x+ 2x� � 2� � 1:



14 Helling, Kim, and MennickeWe consider the box.We introduce the center Z of the box, as the midpoint between Q and R .We project from Z to each of the triangles Pj Pj+1 Pj+2 shown in the middle stripof �gure 1. We obtain n tetrahedra which we call Bj .
xP3

P4xP2 u u uZxFig. 4The tetrahedron Bj has the vertices Z;Pj ; Pj+1; Pj+2 . The distances between Zand Pj are all equal.We introduce the notation(8) u = �(Z;Pj) = �(Z;Pj+1) = �(Z;Pj+2):The tetrahedra Bj are all congruent, and will be referred to as tetrahedra B .Proposition 3.2. In the tetrahedron B , the quantity u can be expressed asfollows:(9) u2 = 2x � x�� �2(1 � �) + x� 12(1� �)s1 + �2 :The angle at the edge (P4; Z) is given by(10) cos(P4; Z)B = �12 +s1 + �2 :The angle at the edge (P2; P4) is given by(11) cos(P2; P4)B = up2p2x+ 1vuut1 �s1 + �2 :



Helling, Kim, and Mennicke 15The angle at the edge (P2; P3) of the polyhedron is twice the angle given by (11):(12) cos(P2; P3) = x� (x+ 1)q2(1 + �)2x+ 1 :Proof. Use Proposition 2.11 to produce the formulae(13) cos(P2; P4)B = upx� 1p2x + 1p2u2 � x� 1(14) cos(P4; Z)B = u2 � x2u2 � x� 1 :Join the tetrahedra B2; B3; B4 along their common faces, obtaining a polyhedronwith vertices P2; P3; P4; P5; P6; Z . At the edge (P4; Z), the angle in this polyhedronis three times the angle given by (14). In the polyhedron, consider the tetrahedronspanned by P2; P4; P6; Z . Apply Proposition 2.11 to this tetrahedron, obtaining(15) �(P2; P6) = 16u4x� 12u4 � 24u2x2 + 12u2 + 4u2 + 9x3 � 2x2(2u2 � x� 1)2Comparing the distances (7), (15), we obtain a polynomial equation between uand x:(16) 8u2(1 � �) + 8u2(�2x+ x�+ �) + 7x2 � 2x2�+ 2x� 4x� � 1 � 2� = 0:This equation has the solution(17) u2 = 2x� x�� �2(1 � �) + � x� 12(1� �)s1 + �2 ; � = �1:The sign � in (17) is determined as follows. Insert (17) in (13) and computesin(P2; P4)B , obtaining(18) sin(P2; P4)B = s x+ 12(2x+ 1)q1 + �p2 + 2�:The last term on the right hand side of (18), which is independent of x, is realonly for � = +1.Insert (17), with � = +1, into (13), (14), obtaining (10), (11), and (12). The proofof Proposition 3.2 is complete.Join the n tetraheda Bj along their common faces. We shall show that thecon�guration closes, giving a mould with center. We have to �ll this mould fromabove, and from below, in order to obtain the box.In order to �ll the mould, we consider the tetrahedron Cj spanned by the verticesP2j ; P2j+2; Z; Z1 . The lengths of the edges are as follows:�(P2j; Z1) = �(P2j+2; Z1) = y(19) �(P2j; Z) = �(P2j+2; Z) = u�(P2j; P2j+2) = x;The angle at the edge (Z;Z1) is 2�n .All tetrahedra Cj with the data (19) are congruent, and will be referred to astetrahedra C .
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Fig. 5Proposition 3.3. In the tetrahedron C , the distance �(Z;Z1) is given by(20) �(Z;Z1) = uy :The angles at the edges (P2; Z1) and (P4; Z1) are right angles:(21) cos(P2; Z1)C = cos(P4; Z1)C = 0:The angles at the edges (P2; Z) and (P4; Z) are equal, and are given by(22) cos(P2; Z)C =vuut�1 + 3�2 + (1 + �)s1 + �2 :The angle at the edge (P2; P4) is given by(23) cos(P2; P4)C = uys1 + �1 � � (2�q2 + 2�):Proof. The proof is a straightforward application of Proposition 2.11, makinguse of Propositions 3.1 and 3.2.So far, we have collected local conditions which are necessary for the existence ofthe semiregular polyhedron. We now turn to the global situation.



Helling, Kim, and Mennicke 17Proposition 3.4. Assume that the tetrahedra A;B;C exist, for a given valueof the parameter x.Join the n tetrahedra Bj along common faces, obtaining a con�guration whichcloses, a mould.Join the n tetrahedra Cj along common faces, along their common edge (Z;Z1),obtaining a polyhedron which will be referred to as the inverted pyramid.The inverted pyramid has a top face which is a regular n{gon.The inverted pyramid �ts into the mould from above.The same way, insert a copy of the inverted pyramid into the mould from below,obtaining a polyhedron referred to as the box.Join the n tetrahedra Aj along common faces, along their common edge (Q;Z1),obtaining a pyramid. Put the pyramid on top of the box.Join a copy of the pyramid to the other side, underneath the box.Obtain a semiregular polyhedron which is bounded by 4n regular triangles. Alledges have the same length.There are precisely three di�erent angles between adjacent faces. Using the labelsof edges described in �gure 1, these angles occur at each edge xj . The angles aregiven by (6), (12), and(24)cos(P2; P4) = 1p2(x� �)(2x+ 1) np2x2(1 + �)� x(x+ 1)p1 + ��qx4(1� 3� + 2�2) + x3(1� 8� + 8�2) + x2(�1� 6�+ 12�2) + x(�1 + 8�2)+ � + 2�2 + 2(x2 � x2� + x� 2x� � �)(x2 + x)p2 + 2� o :Proof. Join the n tetrahedra Cj along common faces, along their comonedge (Z1; Z). The angle condition in (19) guarantees that we obtain an invertedpyramid. The equations (21) guarantee that the inverted pyramid has one topface, which is a regular n{gon.Join the n tetrahedra Bj along common faces. The con�guration may not closeat one face, say at P2; P1; Z .We show that the inverted pyramid �ts locally into the possibly not closed mould.We consider the edge (P4; Z). In this edge, �ve faces meet. The angles are threetimes the angle (10), coming from the tetrahedra B of the mould, and two timesthe angles (22), coming from the inverted pyramid. We must show that theseangles add up to 360� .Abbreviate the right hand sides of (10) and (22) by r; t, respectively.The angles add up to 360� if and only if(25) 4r3 � 3r = 2t2 � 1;and if the angles lie in the appropriate range. An easy computation shows that(25) holds. Use (10) to conclude that three times the angle (10) is more than 180� .Use (22) to conclude that twice the angle (22) is less than 180� . Hence the anglesadd up to 360� , and hence the inverted pyramid �ts locally into the mould.Inserting the inverted pyramid into the mould, we conclude that the mould closesin the vertex P2 .



18 Helling, Kim, and MennickeUse the same argument inserting a copy of the inverted pyramid into the mouldfrom below, concluding that the mould also closes in the vertex P1 . Hence it closesat the face P2; P1; Z .The remaining statements of Proposition 3.4 are now obvious. The slightly com-plicated formula (24) arises by adding up the angles (23), (11), and (5). The proofof Proposition 3.4 is complete.It remains to show the existence of the tetrahedra A;B;C for some �xed valueof the parameter x. We shall come back to this problem in the proof of the nexttheorem.We want to construct a semiregular tessellation of hyperbolic 3{space such thatthe polyhedron discussed in Proposition 3.4 is a fundamental domain. A necessarycondition for the existence of the tessellation is that the three angles in Proposition3.4 add up to 360� . It was show by B. Maskit [7] that this angle condition isalso su�cient.Here is our result.Theorem 3.5. For n � 4, there exists a semiregular tessellation of H 3 , calledthe Fibonacci tessellation F (2; 2n) with the following properties.A fundamental domain for the tessellation is the semiregular polyhedron discussedin Proposition 3.4. The polyhedron is bounded by 4n regular triangles. All edgeshave the same length, given by(26) x = 14(1 � �)f4 + 2� � 4�2 + (3 � 2�)p2 + 2�g;where(27) � = cos(2�n ):The three angles are obtained by inserting (26) in (24), (12), (6). The Fibonaccigroup F (2; 2n) operates transitively on copies of the polyhedron as described inSection 1.Proof. We want to choose the parameter x such that the three angles inProposition 3.4 add up to 360� .A direct application of Proposition 2.12 leads to an awkward computation. So weuse a slightly modi�ed argument.Collecting the angles of the tetrahedra A;B;C which are involved, we can statethe angle condition as follows:(28) 2:^(Q;P4)A + ^(P2; P4)A + 3:^(P2; P4)B + ^(P2; P4)C = 360�:It is advantageous to add up the contributions from the tetrahedra A;B;C sepa-



Helling, Kim, and Mennicke 19rately. For the reader's convenience, we write out these contributions:(29) x1 = cos(2:(Q;P4)A + (P2; P4)A)= �2x2 + (�3 + 2�)x + 2�(2x+ 1)p2x+ 1px� � p1 + �;x2 = cos(3:(P2; P4)B)= � u(2x+ 1)p2x+ 1(1 + 2(x+ 1)p2 + 2�)q2�p2 + 2�;x3 = cos(P2; P4)C = us1 + �x� �(2 �p2 + 2�):At this point, we do not want to use the range assumptions in Proposition 2.12.Without these assumptions, Proposition 2.6 still gives a necessary condition for(28).Insert (29) into (2.18), obtaining a polynomial of degree 4 in x:x4(�28� 44� � 8�2) + x3(�68� 88� + 8�2 + 8�3) = x2(�1052 � 39� + 50�2 + 20�3+ x(�13 + 10� + 44�2 + 16�3)� 12 + 5� + 10�2 + 4�3+ fx4(20 + 20�) + x3(48 + 38� � 16�2) + x2(732 + 12� � 38�2)+ x(9� 10� � 28�2) + 12 � 4� � 6�2gp2 + 2� = 0:This polynomial has twice the factor x+1. Dividing out these factors, we obtain:(30) x2(�28 � 44� � 8�2) + x(�12 + 24�2 + 8�3)� 12 + 5� + 10�2 + 4�3+ fx2(20 + 20�) + x(8� 2� � 16�2) + 12 � 4� � 6�2gp2 + 2� = 0:For n = 5, the polynomial (30) vanishes identically.For n 6= 5, the equation (30) can be solved in the �eld Q(p2 + 2�) = Q(cos �n ).The solutions are:(31) x = 14(1 � �)f2� +p2 + 2�g; and(32) x = 14(1 � �)f4 + 2� � 4�2 + (3 � 2�)p2 + 2�g:For n = 4, the solution (31) is x < 1, and hence not a geometric solution.For n � 6, one can easily verify that the solution (31) does not satisfy the anglecondition (28), and that (32) does satisfy (28), also for n = 4.The case n = 5 must be treated directly, using Proposition 2.12. It turns out thatalso in this case, (32) is the only solution with x > 1 which satis�es the anglecondition (28).We shall now prove the existence of the tetrahedra A;B;C for the value x in (32).For the tetrahedron A, use (2), (3), and Proposition 2.9 to conclude that thetetrahedron exists if x > �1 � �:



20 Helling, Kim, and MennickeConclude from (32) that this condition holds true for n � 4. Similarly, use (2),(3), (9), (20), and Proposition 2.9 to prove the existence of the tetrahedra B andC .We have now shown the existence of one tile of the tessellation. Consider theordered triples of points (P3; P4; P5) and (Q;P2; P4). Both triples are the verticesof a regular triangle on the boundary of the polyhedron.There is precisely one orientation{preserving isometry x1 which maps one orderedtriple onto the other: x1 : P3; P4; P5 ! Q;P2; P4:The same way, we de�ne 2n isometries xj :(33) x2j�1 : P2j+1; P2j+2; P2j+3 ! Q;P2j; P2j+2x2j : P2j+2; P2j+3; P2j+4 ! R;P2j+1; P2j+3;j mod n:Each of these isometries maps the fundamental polyhedron onto a neighbouringpolyhedron, and for each face, there are two neighbours which meet in the face.By Maskit's Theorem, we obtain a tessellation of hyperbolic 3{space. Let � bethe group of isometries generated by x1; : : : ; x2n :(34) � = hx1; x2; : : : ; x2ni:We can easily verify from (33) thatx1x2x�13 (P4) = P4;x1x2x�13 (Q) = Q:Consider the centers of the polyhedra which meet in the edge (P4; Q). One caneasily verify that at least one of these centers is �xed under x1x2x�13 . Hence thisisometry is the identity: x1x2x�13 = 1:The same argument shows that(35) xjxj+1x�1j+2 = 1; j mod n:Hence the relations of F (2; 2n) hold in �.The tessellation is a covering of the manifold Mn . Because the hyperbolic spaceis simply connected, the covering is the uniquely determined universal covering.Let F be the monodromy group belonging to the universal covering. For any tworepresentatives of Mn in the universal covering which meet in a common face,there is precisely one element of F which maps one representative onto the other.The same holds for the group �. Hence we can view � as a metric realisation ofthe monodromy group F . The monodromy group F in turn is isomorphic to thefundamental group �1(Mn). Hence we have established the isomorphism(36) � �= �1(Mn);



Helling, Kim, and Mennicke 21and the tessellation is a metric realisation of the universal covering of Mn .By Theorem 1.4 we have the isomorphism(37) � �= F (2; 2n):We have now completed the proof of Theorem 3.5.Corollary 3.6. The Fibonacci group F (2; 2n) acts e�ectively as a discontinu-ous group of transformations on hyperbolic 3{space. A fundamental domain is thesemiregular polyhedron described in Theorem 3.5.Proof. The Corollary is just a reformulation of Theorem 3.5.Corollary 3.7. There exists a one{parameter family of semiregular polyhedraas described in Proposition 3.4.Proof. The functions in Proposition 2.9 are continuous functions. The Corol-lary follows by continuity, when x ranges in a certain interval.Corollary 3.8. For large n, the polyhedron in Theorem 3.5 looks like a atdisk. In fact, as n goes to in�nity, we have(38) x!1u = �(Z;Pj)!1�(Q;R)! 1^(Q;P2)! 180�^(P2; P3)! 120�^(P2; P4)! 60�Proof. The �rst assertion follows from (26), for � ! 1. Inserting (26) in (9),we �nd(39) u = 14(1 � �)f2 + (3 � 2�)p2 + 2�g:This yields the second assertion.Obtain from (2), (3), (9), (20), (26):(40) �(Q;Z) = 2 + �� 2�2:This yields the third assertion (38).The formulae for the angles now follow from (6), (12), (24). For the readersconvenience, we give the numerical data for the �rst few polyhedra:



22 Helling, Kim, and Mennicken x u �(Q;Z) � (Q;P2) � (P2; P3) � (P2; P4)4 2.06 1.56 2.0 101.26 116.28 142.465 2.93 2.12 2.12 120.00 120.00 120.006 3.73 2.73 2.0 132.63 121.83 105.547 4.55 3.43 1.85 141.65 122.66 95.688 5.42 4.21 1.71 148.36 122.97 88.669 6.35 5.09 1.59 153.50 123.01 83.4910 7.37 6.06 1.5 157.51 122.91 79.5811 8.47 7.13 1.43 160.71 122.74 76.5512 9.67 8.30 1.37 163.29 122.55 74.16This completes the proof.
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