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Abstract. Fibonacci groups are recovered as fundamental groups of certain closed hyper-
bolic 3-manifolds. This is achieved by constructing compact hyperbolic polyhedra in dimension
3 which are fundamental domains of torsion free lattices in SL,(C). Their presentation can be

read off by classical methods. This presentation can easily be given standard Fibonacci form.

Introduction

If a group (' is only given by a finite presentation, it is usually very difficult or
even impossible to decide the simplest questions concerning the structure of G'.
Many cases are known in the literature where some information has been extracted
from a presentation. A well-known example are the Fibonacci groups:

(1) F(2,m) = (a1, 22, ..., &m; TiTiy1 = ip2,7 mod m).

These were introduced by J. CONWAY [4]. References for the combinatorial study
of the F'(2,m) are given in [3].

The first problem which arises is whether F\(2,m) is trivial. This can easily be
settled by computing the commutator quotient of F'(2,m), which turns out to be
always finite and non—trivial for m # 1,2. The next question is considerably more
difficult. It asks whether F'(2,m) is infinite. This has been the concern of most of
the existing literature. The following has been shown:

(P1) F(2,m) is finite only for m = 1,2,3,4,5,7.

It is comparatively easy to prove the finiteness of F'(2,m) in the above cases. The
proofs which show that F'(2,m) is infinite in all other cases are of considerable
ingenuity. The difficult case m =9 was settled by M. NEWMAN [9].

L The first part of the present work was done during a workshop in Korea, organised by

the second named author. We gratefully acknowledge excellent hospitality, and financial support
from Deutsche Forschungsgemeinschaft, and from Korean Science and Engineering Council.
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A very general method which can be used for problems of the above type is
small cancellation theory. This path has been followed by R. C. LYNDON. In
an unpublished manuscript, LYNDON has by an application of small cancellation
theory proved that F(2,m) is infinite for m > 11. This manuscript which
originally contained some flaws was corrected by D. JOHNSON and a student of
his. To apply small cancellation theory, the presentation (1) is not suitable. But
it is easy to see that F'(2,m) is generated by #; and x2, and can be defined by
two relators. These two relators can be manipulated to exhibit a suitable small
cancellation condition.

Our approach here is different. We start off from the presentation (1). We try
to construct a nice 3—dimensional complex which has F(2,m) as its fundamental
group. An obvious suggestion is to take m triangles with edges labelled as in figure
1 and patch them according to the labelling of the edges. We obtain a connected
finite 2—complex with fundamental group F'(2,m). It is, of course, not at all clear
whether this object is the 2—skeleton of a nice 3—complex. In the case that m > 6
is an even integer we show in chapter 1 that a suitable modification of this idea
works. We prove

Theorem A. Let m = 2n be an even positive integer. Then there is a 3—
complex M,, which consist of one 3—cell, 2n triangles, 2n edges, and one vertex.
The complex M,, is a closed, compact, orientable 3—manifold, and it satisfies

m(M,) = F(2,2n).

As a simple application, we could now establish (P1) for even parameters m. To do
this, we just take the list of possible finite fundamental groups of closed, compact
3-manifolds, and prove by again computing commutator quotients that F(2,2n)
is none of them for n > 3. We also obtain all properties satisfied by fundamental
groups of 3—manifolds now for F(2,2n). We note

(P2) F(2,2n) is a Noetherian group.

This means that every finitely generated subgroup is finitely presented. To proceed
in our study of F(2,2n) we now have to study the 3—-manifolds M, . The theory of
W. THURSTON forces us to look for geometric structures on M, or its universal
cover. The first result in this direction is

Proposition B. M is an affine Riemannian manifold.
The group—theoretic implication of Proposition B is:

(P3) F(2,6) is a torsion—free finite extension of Z°.

This result was known. It is in fact easy to see that F(2,6) is isomorphic to a
3—-dimensional affine group.

Next we establish
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Theorem C. M, is a hyperbolic manifold for n > 4. This means that F(2,2n)
is isomorphic to a discontinuous subgroup I',, of the group of orientation preparing
isometries of hyperbolic 3 -space H? so that

(2) M, = T, \HP.

We establish this result by describing a tessellation of H® by compact polyhedra
which are replica of the complex M,. We note that for n = 5, our tessellation
is the well-known tessellation of H® by regular icosahedra. In all other cases,
the tessellation is not regular, but it is isohedral: all the faces on the boundary
are regular triangles, and they are all isometric. Hence the classical icosahedral
tessellation described by H. S. M. COXETER belongs to an infinite one—parameter
family. As group—theoretic consequences we note:

(P4) F(2,2n) is torsion—free for n > 4.

(P5) Every abelian subgroup of F(2,2n) is cyclic for n > 4.

It seems interesting to remark that we also have solved the classical algorithmic

problems of M. DEHN for F/(2,2n):
(P6) The groups F(2,2n) have solvable word and conjugacy problems .

In fact, together with our tessellation of H® comes an explicit embedding of
F(2,2n), n > 4, into PSLy(C), which is the group of orientation—preserving
isometries of H®. The algorithms for (P6) can then be found by the usual method
from the action of F(2,2n) on HP.

Since a first version of the present paper was written in preprint form the groups
were studied in particular by HILDEN, LOoZANO, MONTESINAS [12], [13]. They
found another way to answer the question which Fibonacci groups are arithmetic.
For this reason, we drop our original proof.

It is our pleasure to offer cordial thanks to a number of colleagues for stim-
ulating discussions, to W. HAKEN and to C. C. SiMS, and in particular to
F. GRUNEWALD whom we owe much inspiration and who helped us to turn the
final manuscript into a form which is more suitable for publication. Our thanks
also go to STEPHAN HELLING for some numerical checks on the computer. Actu-
ally one of theses checks showed us how to transform a combinatorial tessellation
arising from the universal covering of a 3—manifold into a semiregular tessellation
of hyperbolic 3—space. Our thanks go to J. MONTESINOS, Madrid, and J. HOWIE,
CBE, Edinburgh, who showed us how our work relates to some special problems in
knot theory, and to THURSTON’s theory of hyperbolic structures on 3—manifolds.

We dedicate this work to the memory of ROGER C. LYNDON as a mathematician
of great ingenuity, as a colleague, and as a friend. Although his work on Fibonacci
groups does not directly enter into the present work, we owe to his inspiration to
see algebraic and even arithmetic problems from a geometric point of view.

The first part of the present work was done during a workshop in Korea, organised
by the second named author. We gratefully acknowledge excellent hospitality, and
financial support from Deutsche Forschungsgemeinschaft, and from Korean Science
and Engineering Council.
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1. Fibonacci groups as fundamental groups of certain 3—manifolds

In this section, we shall define a series of closed, compact, orientable 3—manifolds
M, such that
m(M,) = F(2,2n).

The following configuration was found by the authors in special cases, and then
by C. C. SIMS in general.

The configuration is a tessellation of the 2-sphere S?, consisting of 4n triangles,
6n edges, and 2n + 2 vertices.

The oriented edges can be labelled in the following manner. The oriented edges
fall into 2n classes, each class consisting of 3 edges. Oriented edges in the same
class carry the same label, say x1,z2,...,29,.

Each triangle has a boundary :z:j:zjj+1:1;;_|}2 for some 7 mod 2n. For each 7 mod 2n,
there are precisely two triangles with this boundary.

Notice that for n = 5, we obtain a combinatorial icosahedron. We want to
construct a 3—manifold from this configuration.

Consider an oriented polyhedron which is bounded by 2m triangles. For each
triangle, define a mate, such that the boundary consists of m pairs of triangles.
For each pair, define an identification of the two triangles, such that the triangle
inherits opposite orientations from either side. The resulting 3—dimensional com-
plex K is an orientable pseudomanifold. It is homogeneous except possibly for the
vertices, where a neighbourhood is a star bounded by a surface of genus h > 0.

There is a simple criterion, due to H. SEIFERT and W. THRELFALL, for K to be
a manifold, i.e. for h = 0.

Proposition 1.1.  (See [10], p.208, Satz 1) Let K be an orientable, closed,
3—dimensional pseudomanifold arising from a (simply connected) polyhedron by
identifying pairs of faces on the boundary.

K is a manifold if and only if its Fuler characteristic vanishes:
X(K) =0.

Consider the polyhedron which is the 2-ball with the boundary displayed in figure
1. The faces are labelled by Fy, Iy, ..., Fs,, each F; occurring precisely twice. For
each 1 mod 2n, identify the two copies of F; such that the corresponding oriented
edges on the boundary carrying the same label are identified. The identification
produces a complex M, , say, with

o’ =1 vertex
o' =2 edges

a? =2n 2—cells
a® =1 3—cell .

Proposition 1.1 applies and yields
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X2n_ X1 XS X5
Fona [ Fono1 | |1 Fs ja by
Pap_g Pop_y Py P, P P, P Ps Py P
Xop—a [\Xon X X4 Xe
Fon_y Fon— Foy, Py Fy
Xop—
2 2 Xgn X2 X4
Xl XS X5
Xon—1
Fop_s Fona By s Fx
Pop 7 Pon_s Pon_s Por1 P P P Py P, Py,
Xon_s Xon-1 X1 X3 X5 X7
Fon—z | Fon F Fy Fs
X2n X2 X4 X6
R

Fig. 1



6 HELLING, KIM, AND MENNICKE

Theorem 1.2. The complex M, constructed above is a closed, compact, ori-

entable 3—manifold. We have

m(M,) = F(2,2n).
The proof of the last statement is obvious, since the 2n triangles F; with boundary
:1;2':1;24_1:1;2»__'_12 form the 2-skeleton of M, , and there is only one vertex.

Fundamental groups of closed, compact, orientable 3—manifolds are a very re-
stricted class of finitely generated groups. Hence Theorem 1.2 contains a lot of
information about the group—theoretical structure of the abstract group F(2,2n),
such as described in the introduction.

For the sake of completeness, we reproduce the commutator quotient group, which

now occurs as the first homology group of M, .

Corollary 1.3.
Hy{(M,, 7)== F(2,2n)".

Zin X Zsn, N = f(n')-g(n’) forn=2n
ab __ N 5N
(1) F(2,20)" = { Zin X Zn, N = g(n) forn =2n' + 1.

Here f(n),g(n) are the Fibonacci—Lucas numbers defined by the equation
h(n+2)=nh(n)+ h(n+1),
and the initial values

F(0) = 0.7(1) = 1, and g(0) = 2,g(1) = 1.

The order of the commutator quotient group is in the literature, see [3].

After we had completed our work, it was discovered independently by MON-
TESINOS, LOzZANO, HILDEN, and by J. HOWIE that the manifolds M, are
branched coverings of the 3-sphere 52, branched cyclically over the figure 8 knot,
which is the knot 4; in the table of ALEXANDER, BRIGGS, REIDEMEISTER.

Theorem 1.4. (MONTESINOS, LOzZANO, HILDEN, and J.HOWIE)?. The man-
ifolds M, are branched coverings of the 3-sphere S®, branched cyclically over the
knot 4, .

2. Some elementary hyperbolic geometry

In this section, we shall collect some formulae from 3-dimensional hyperbolic
geometry. The proofs are standard, and we can leave them to the reader.

We shall mainly work in the upper halfspace model of 3—dimensional hyperbolic
geometry:

(1) H° ={P=(z,r),z€ C,r e RT}.

2

private communication, letters of J. MONTEsINOS, and of J. HOWIE to the authors, both
dated Feb. 28th, 1989
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The distance between two points P = (z,r) and P’ = (z/,r) is given by

(2) d(P, P') = log(§ + /37 — 1),

2
=P+t 4
- )

(3) §=48(P,P) = |

2rr
We shall work with the distance function §(P, P’).

The planes are the northern hemispheres perpendicular to the plane r = 0, and
the lines are the half-circles in HP which are perpendicular to the plane r = 0.
The angles are the Fuclidean angles.

For our purposes, it is more convenient to describe the points, planes and lines
differently.

Consider

(4) p= (‘c‘ b_) € SLy(C),

aeC, beceR; ¢>0.

The matrix P € SLy(C) can also be used to describe the point P = (z,r) € H.
The two descriptions are related by

a b a 1
(5) (¢ ") edn
A plane and a line can also be described by elements of SLy(C).
a b
(6) E= (Z.C a) € SLo(C),
acC bceR.
E describes the hyperbolic plane over the circle £Z = z in the plane r = 0.

(7) G=(" b ) €512(C)

(G describes the hyperbolic line over the fixed points of the matrix G in the plane
r=20.

Remark .  Remember that H® = SLy(C)/SU,. The group SU, is the maximal
compact subgroup of SLy(C). The description (4) of points is a canonical choice
of coset representatives for the coset space SLy(C)/SUs;.

Proposition 2.1. The group of isometries G = PSLy(C) operates on points
P, on lines G, and planes E as follows:

PXPX '
(8) X G- XGX! X € SLy(C).
E—XEX '
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Proposition 2.2. (i) A point P belongs to a line G iff

(9) GP = PG,
(ii) A line G belongs to a plane E iff

(10) GE = —EG,
(iii) A point P belongs to a plane E iff

(11) tr(PE) = 0.

Proposition 2.3. (i) The distance function 6(P,Q) for two points P,Q is
given by

1 —

(12) 5(P.Q) = 4 1(PQ)

(ii) The angle between two intersecting planes E, F is given by
1 _

(13) cos(E, F) = 5 tr(FF).

Proposition 2.4.  Let P,Q), R be points which are not collinear. Put
Ty — (S(P, Q),l’g == (S(Q, R),l'g == (S(R, P)
The (oriented) plane E through the points P,Q, R is given by
1

(14) E= (PQR — RQP).
2\/1 + 22 @913 — 23 — w3 — 23

Notice that the quantity

1 1 T2
(15) det(P,Q,R) = |zy 1 3| =142 2005 — 2% — 22 — 22
T2 I3 1

vanishes iff P, (), R are collinear.

Proposition 2.5. A plane E and a line G intersect in a point P if and only
of
(16) tr(FGEG) <2
The point P is given by
1

(17) Lp = NETEE (GE + EG).

The line G is perpendicular to the plane FE if and only if
(18) GE = EG.
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This happens if and only if
(19) tr(EGEG) = -2,
and in this case, the formula (17) reduces to

(20) P =GE.

If tv(EGEG) > 2, then

(21) F= ! (GE + EG)

\/2 —tr(EGEG)
is the plane perpendicular to both E and G'.

Proposition 2.6. The planes E.F intersect in a line G if and only if

(22) |tr(ET)| < 2.
The line G is given by
1 — _
(23) G = —(EF — FF).
4 —tr(EF)?

If [tr(EF)| > 2, then (23) gives the line G which is perpendicular to both E and
.

Proposition 2.7.  Let I, F, H be three planes, any two of which intersect. Pul

v1 = (BT 2y = (), 2y = (P
Then
(24) | <1, =123
Put

1 1 T2
(25) det(E, F,H) = |21 1 x3|=1+ 2z 1209705 — 2} — 75 — 3.

o XT3 1

The planes K, F, H intersect in a point P if and only if

(26) det(F, F, H) > 0.

The point P is given by

(27) +P = ! (EFH — HFE).
N

If

(28) det(F, F, H) <0,

and if (24) holds, then there is a uniquely determined plane K which is perpendic-
ular to B, F, H. It is given by

1 _ _
(29) K= (EFH — HFE).

2 /det(E, F, H)
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Proposition 2.8.  Let xy, x4, 23 be real numbers, and suppose
(30) x> 1, 1 =1,2,3.
A triangle with vertices Py, Py, Ps, and edges of length
Py, P;) = xg, 1,7,k =1,2,3,
all different, exists if and only if

1 1 T2
(31) N=|z; 1 a3|=1+42z2925—7) — 25— 25> 0.
o XT3 1

An equivalent condition is this: The quadratic form belonging to the symmetric
matrix

(32) B = L1 1 T3

satisfies the real equivalence

~1 0 0
(33) Ba| 0 -1 0
0 0 1

Proposition 2.9.  Let z;;, 1,7 =1,2,3,4, 1 # 7, be real numbers satisfying
(34) Ti; > 1, Ti; = Zj-

A tetrahedron with vertices Py, Ps, Ps, Py, and edges of length §(P;, P;) = x; j exists
if and only if the symmetric matrix

(35) B=|""

13 23 1 T34
T14 T24 T34 1

satisfies the equivalence over R :

-1 0 0 0
0 —1 0 0
(36) B’néf 0 0 —1 0
0o 0 0 1

Proposition 2.10.  Let z;;, 1,7 =1,2,3,4, 1 # 7, be real numbers satisfying
(37) |$m‘| < 1 Ti; = Zj-

A tetrahedron spanned by four planes E;, 1 = 1,2,3,4, such that any two planes
E;, E; intersect in a line under the angle

(38) cos <(FE;, Ej) = a;
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exists if and only if the symmetric matrix

—1 22 713 214

(39) C = r12 —1 23 w4
13 Tez —1  wa4
14 Toa X3qg —1
satisfies the equivalence over R :
—1 0 0 0
0 —1 0 0
(40) ¢ ElO0O 0 =10
0 0 0 1

Proposition 2.11.  Consider a tetrahedron spanned by the points P;, 1 =
1,2,3,4. Put

(41) Tig = (S(PZ, P])
The angle between the faces meeting in the edge (P;, Pj) is given by
Iy ag

l’ij 1 Tl
Tik T4 Tl

(12) cos(Pyy Py) = —A b _TiL_T]
VAL G RWAG, L)

where

(43) A(l,], k) =1 —|— 2$ik$jk$ij — l’?k — l’?k — 1}22]

Remark 1. Notice that (42) is the 3—dimensional version of the cosine formula

in elementary plane hyperbolic geometry.

Remark 2.  Notice that we have formulated most of the elementary proposi-
tions such that the generalisation to n—dimensional hyperbolic geometry for n > 3
is obvious.

Proposition 2.12.  Let x; = cosa,xy = cos 3,23 = cosy, where o, 3,7 are
three angles satisfying

(44) 0<a,F,v<180°.
Then
(45) a+ [+~ =360°

if and only if

(46) 1 1 z3| = 0.

o XT3 1
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b

Fig. 2

3. A semiregular tesselation of hyperbolic 3—space

In this section, we shall construct a series of semiregular tessellations of hyperbolic
3—space, for n > 4. A fundamental domain is a semiregular polyhedron which is
a metric realisation of the combinatorial polyhedron described in Section 1.

The polyhedron is bounded by 4n regular triangles which are all congruent. It
consists of three parts: a pyramid on the top, a box in the middle, and a pyramid
underneath.

The pyramid on the top consists of n tetrahedra A;.

The tetrahedron A; has vertices Q), 2y, Pyj, P2j42. The face @ Py Pyjyq is a
regular triangle. The angle at the edge (@, 7Z;) is 27” The angles at the edges
(Pyj, Z1) and (Pzji2, Z1) are right angles.

We introduce some notation.

= 0(Q, Pay) = 0(Q, Pajy2) = 6(Paj, Pajia)
Yy = 5(Z17P2j) = 5(Z17P2j+2)
Z = 5(Q7Z1)

e 2T
Qap, = o = Cos T

(1)

All tetrahedra A; are congruent. Hence we shall simply refer to the tetrahedron

A.

Proposition 3.1.  In the tetrahedron A, the quantities y,z can be expressed as
follows:
(2) yz =
r—
(3) y' =
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Fig. 3

The angle at the edge (Q, P2) or (Q, Py) is given by

(4) cos(Q), Py)a = cos(Q), Py)a = \/W.

The angle at the edge (Py, Py) is given by

1+«
(5) cos( Py, Py)a = :1:¢(x S TORE L

In the pyramid, the angle at the edge (Q), Py) is twice the angle given by (4):

20+ 20+ 1
6 Py = - ‘
() cos(@, ) = 212
Proof.  The proof is a straightforward computation, invoking Proposition 2.11.

Join the two tetrahedra A; and A, along the face () Py Z;. Consider the tetra-
hedron spanned by @), P, Ps, Py. Notice that in this tetrahedron, the angle at
the edge (@, Py) is given by (6). Use Proposition 2.11 to compute the distance
between P, and Fs, obtaining:

(7) (P2, Ps) = 22 + 2za — 20 — 1.
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We consider the box.
We introduce the center Z of the box, as the midpoint between () and R.

We project from Z to each of the triangles P; Pj4y P42 shown in the middle strip
of figure 1. We obtain n tetrahedra which we call B;.

Fig. 4

The tetrahedron B; has the vertices Z, P;, Pjy1, P;4+2. The distances between Z
and P; are all equal.

We introduce the notation
(8) u:(s(vaj):5(Z7Pj+1):5(Z7Pj+2)‘

The tetrahedra B; are all congruent, and will be referred to as tetrahedra B.

Proposition 3.2.  In the teltrahedron B, the quantity u can be expressed as
follows:

20 —rxo — « z—1 1+«
9 2 = .
9 B 2—a) 20—V 2

The angle at the edge (Py, 7Z) is given by

1 1
(10) cos(Py, Z)p = — + ;O‘.

The angle at the edge (Py, Py) is given by

uﬂ . 1+«

11 Py, Py)p = ———=1|1 —
() st Pulp = 5T )
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The angle at the edge (Py, Ps) of the polyhedron is twice the angle given by (11):
r—(z+1)/2(1 + «
(12) cos( Py, P3) = ( Iy )
20 + 1
Proof.  Use Proposition 2.11 to produce the formulae

B uvr — 1
V2 IV — =1

(13) cos( Py, Py)B
o wt =
S 2ur—ax—1°
Join the tetrahedra B, B3, By along their common faces, obtaining a polyhedron
with vertices Py, Ps, Py, Ps, Ps, 7. At the edge (P4, 7), the angle in this polyhedron
is three times the angle given by (14). In the polyhedron, consider the tetrahedron
spanned by Py, Py, Ps, 7. Apply Proposition 2.11 to this tetrahedron, obtaining
16u*s — 12u* — 24u?2? + 12u® + 4u® + 922 — 222

(2u? —ax —1)?

Comparing the distances (7), (15), we obtain a polynomial equation between wu

(14) cos(Py, Z)p

(15) (P2, Ps) =

and z:
(16) 8u2(1 —a)+ 8u2(—2:1; +za+ o)+ 722 —22%a + 22 —4dza —1 — 2a = 0.

This equation has the solution

20 —rxo — « z—1 1+«
17 2= = 41.
(17) B i—a) T Su=al 2 ¢

The sign € in (17) is determined as follows. Insert (17) in (13) and compute
sin( Py, Py)p, obtaining

. z+1 / —
(18) SIH(P27P4)B == m 1—|—€\/2—|—206.
The last term on the right hand side of (18), which is independent of x, is real
only for ¢ = +1.
Insert (17), with € = +1, into (13), (14), obtaining (10), (11), and (12). The proof

of Proposition 3.2 is complete. [ ]

Join the n tetraheda B; along their common faces. We shall show that the
configuration closes, giving a mould with center. We have to fill this mould from
above, and from below, in order to obtain the box.

In order to fill the mould, we consider the tetrahedron C; spanned by the vertices

Py, Pyjyo, Z, Zy. The lengths of the edges are as follows:
0(Paj, Z1) = 6(Pajra, Z1) = y

(19) 5(P2j7Z) :5(P2j+27Z) =u
0(Paj, Pajya) = w;
The angle at the edge (Z,7;) is 2.

All tetrahedra C; with the data (19) are congruent, and will be referred to as
tetrahedra C'.
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Fig. 5

Proposition 3.3.  In the tetrahedron C, the distance §(Z,7y) is given by
u

(20) 82, 7,) = —.
)

The angles at the edges (P2, Z1) and (Py, Z1) are right angles:

(21) cos( Py, Z1)c = cos( Py, Z1)c = 0.

The angles at the edges (P2, Z) and (Py, Z) are equal, and are given by

1+3 1
(22) COS(PQ,Z)CZ\I— +20‘+(1+a) ;O‘.

The angle at the edge (Py, Py) is given by

(23) cos( Py, Py)o = ﬁw Tt 2a),

yV1l—«

Proof.  The proof is a straightforward application of Proposition 2.11, making
use of Propositions 3.1 and 3.2. [ ]

So far, we have collected local conditions which are necessary for the existence of
the semiregular polyhedron. We now turn to the global situation.
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Proposition 3.4.  Assume that the tetrahedra A, B,C exist, for a given value
of the parameter x.

Join the n tetrahedra B; along common faces, oblaining a configuration which
closes, a mould.

Join the n tetrahedra C; along common faces, along their common edge (Z,7;),
obtaining a polyhedron which will be referred to as the inverted pyramid.

The inverted pyramid has a top face which is a reqular n—gon.

The inverted pyramid fits into the mould from above.

The same way, insert a copy of the inverted pyramid into the mould from below,
obtaining a polyhedron referred to as the box.

Join the n tetrahedra A; along common faces, along their common edge (Q, Zy),
obtaining a pyramid. Put the pyramid on top of the box.

Join a copy of the pyramid to the other side, underneath the box.

Obtain a semiregular polyhedron which is bounded by 4n regular triangles. All
edges have the same length.

There are precisely three different angles between adjacent faces. Using the labels
of edges described in figure 1, these angles occur at each edge x;. The angles are
given by (6), (12), and

(24)

1
cos( Py, Py) =

222(1 + o) — + V1 +
\/5(:1; @t 1) {\/_:1; ( a) —x(x ) «
—/z1(1 = 3a + 20?2) + 23(1 — 8a + 8a2) + 22(—1 — 6a + 1202) + z(—1 + 8a2)
—|—oz—|—20z2—|—2(:1:2—:zjzoz—l—:z;—Zxoz—oz)(x?—l—x)\/Z—l—Zoz}.

Proof. Join the n tetrahedra ; along common faces, along their comon
edge (Z1,7). The angle condition in (19) guarantees that we obtain an inverted
pyramid. The equations (21) guarantee that the inverted pyramid has one top
face, which is a regular n—gon.

Join the n tetrahedra B; along common faces. The configuration may not close
at one face, say at P, Py, Z.

We show that the inverted pyramid fits locally into the possibly not closed mould.
We consider the edge (Py, 7). In this edge, five faces meet. The angles are three
times the angle (10), coming from the tetrahedra B of the mould, and two times
the angles (22), coming from the inverted pyramid. We must show that these
angles add up to 360°.

Abbreviate the right hand sides of (10) and (22) by r,t, respectively.

The angles add up to 360° if and only if

(25) Ar® = 3p = 24% — 1,

and if the angles lie in the appropriate range. An easy computation shows that
(25) holds. Use (10) to conclude that three times the angle (10) is more than 180°.
Use (22) to conclude that twice the angle (22) is less than 180°. Hence the angles
add up to 360°, and hence the inverted pyramid fits locally into the mould.
Inserting the inverted pyramid into the mould, we conclude that the mould closes
in the vertex Ps.
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Use the same argument inserting a copy of the inverted pyramid into the mould
from below, concluding that the mould also closes in the vertex P;. Hence it closes
at the face P, Py, Z.

The remaining statements of Proposition 3.4 are now obvious. The slightly com-
plicated formula (24) arises by adding up the angles (23), (11), and (5). The proof
of Proposition 3.4 is complete. [ ]

It remains to show the existence of the tetrahedra A, B,C for some fixed value
of the parameter x. We shall come back to this problem in the proof of the next
theorem.

We want to construct a semiregular tessellation of hyperbolic 3—space such that
the polyhedron discussed in Proposition 3.4 is a fundamental domain. A necessary
condition for the existence of the tessellation is that the three angles in Proposition
3.4 add up to 360°. It was show by B. MASKIT [7] that this angle condition is
also sufficient.

Here is our result.

Theorem 3.5.  For n > 4, there exists a semireqular tessellation of HP, called
the Fibonacci tessellation F(2,2n) with the following properties.

A fundamental domain for the tessellation is the semiregular polyhedron discussed
in Proposition 3.4. The polyhedron ts bounded by 4n regular triangles. All edges
have the same length, given by

1

(26) r = m{4—|—20z—40z2 + (3 — 2a)V2 + 20},
where
(27) o= COS(%T).

The three angles are obtained by inserting (26) in (24), (12), (6). The Fibonacci
group F(2,2n) operates transitively on copies of the polyhedron as described in
Section 1.

Proof. @ We want to choose the parameter = such that the three angles in
Proposition 3.4 add up to 360°.

A direct application of Proposition 2.12 leads to an awkward computation. So we
use a slightly modified argument.

Collecting the angles of the tetrahedra A, B, which are involved, we can state
the angle condition as follows:

(28)  2.4(Q, P)a + <Py, Pi)a+ 3.<(Pa, Pi)g + <t(Pa, Py)c = 360°,

It is advantageous to add up the contributions from the tetrahedra A, B, sepa-
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rately. For the reader’s convenience, we write out these contributions:

ry = cos(2.(Q, Pa)a + (P2, Py)a)
—22? + (=3 4 2a)zr + 2«

B 2z + 1)\2x + 1Vze — o Vita,

(29) g = cos(3.(P, Py)B)

= o 1;@%(1 +2(z+1)V2+ 2a)y/2 — V2 + 20,

s = cos(Py, Py)o :u¢

1+«

r —

(2= V24 2a).

At this point, we do not want to use the range assumptions in Proposition 2.12.
Without these assumptions, Proposition 2.6 still gives a necessary condition for
(28).

Insert (29) into (2.18), obtaining a polynomial of degree 4 in z:

2?(—28 — 440 — 8a?) + 2?(—68 — 88a + 8a? + 8a?) = 2*(—1F — 39a + 500* + 200°
+ 2(—13 4 10a + 44a? 4 160?) — % + 5a 4+ 10a? + 402
+ {2*(20 + 20a) 4+ 2*(48 + 38a — 16a?) + :1;2(72—3 + 12a — 38a?)
+ 2(9 — 10 — 28a?) + % —4a — 60?12 + 2a = 0.

This polynomial has twice the factor x4+ 1. Dividing out these factors, we obtain:

23(—28 — 44 — 8a?) + x(—12 + 24a* + 8a®) — % + 5a 4+ 10a? + 402

30
(30) + {2%(20 + 20a) 4+ 2(8 — 2a0 — 16a?) + % —4a — 6012 + 2a = 0.

For n =5, the polynomial (30) vanishes identically.
For n # 5, the equation (30) can be solved in the field Q(v/2 + 2a) = Q(cos 7).

The solutions are:

(31) T = ﬁ{Za + v2 + 2a}, and
(32) r = ﬁ{zurza—m? + (3 — 20)V2 + 2a}.

For n =4, the solution (31) is < 1, and hence not a geometric solution.

For n > 6, one can easily verify that the solution (31) does not satisfy the angle
condition (28), and that (32) does satisfy (28), also for n = 4.

The case n = 5 must be treated directly, using Proposition 2.12. It turns out that
also in this case, (32) is the only solution with # > 1 which satisfies the angle
condition (28).

We shall now prove the existence of the tetrahedra A, B, C for the value x in (32).

For the tetrahedron A, use (2), (3), and Proposition 2.9 to conclude that the

tetrahedron exists if o

x > .
]l -«
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Conclude from (32) that this condition holds true for n > 4. Similarly, use (2),
(3), (9), (20), and Proposition 2.9 to prove the existence of the tetrahedra B and
C.

We have now shown the existence of one tile of the tessellation. Consider the
ordered triples of points (Ps, Py, Ps) and (Q, Ps, Py). Both triples are the vertices
of a regular triangle on the boundary of the polyhedron.

There is precisely one orientation—preserving isometry x; which maps one ordered
triple onto the other:
vy Py, Py, Ps — Q, Py, Py

The same way, we define 2n isometries ;:
T2j-1 : Pajirs Prjyas Pajis = @, Poj, Pajio

(33) 2o 1 Pojio, Pojis, Pojya — R, Poji, Pajqia,

7 mod n.

Each of these isometries maps the fundamental polyhedron onto a neighbouring
polyhedron, and for each face, there are two neighbours which meet in the face.

By MASKIT’s Theorem, we obtain a tessellation of hyperbolic 3—space. Let ' be
the group of isometries generated by xy,...,z9,:

(34) I' = <$1,$2,...,$2n>.
We can easily verify from (33) that
$1$2$51(P4) = P47

90151?251?51(@) = Q.
Consider the centers of the polyhedra which meet in the edge (P, ). One can
casily verify that at least one of these centers is fixed under z;z,2z5". Hence this
isometry is the identity:
:1;1:1;2:1;51 = 1.

The same argument shows that
(35) :z:j:zjj+1:1;;_|}2 =1, 7 mod n.
Hence the relations of F(2,2n) hold in T'.

The tessellation is a covering of the manifold M,,. Because the hyperbolic space
is simply connected, the covering is the uniquely determined universal covering.

Let F' be the monodromy group belonging to the universal covering. For any two
representatives of M, in the universal covering which meet in a common face,
there is precisely one element of F' which maps one representative onto the other.

The same holds for the group I'. Hence we can view I' as a metric realisation of
the monodromy group F'. The monodromy group F' in turn is isomorphic to the
fundamental group w1 (M, ). Hence we have established the isomorphism

(36) L2y (M,),
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and the tessellation is a metric realisation of the universal covering of M, .

By Theorem 1.4 we have the isomorphism
(37) ['= F(2,2n).

We have now completed the proof of Theorem 3.5. ]

Corollary 3.6. The Fibonacci group F(2,2n) acts effectively as a discontinu-
ous group of transformations on hyperbolic 3—space. A fundamental domain is the
semiregular polyhedron described in Theorem 3.5.

Proof.  The Corollary is just a reformulation of Theorem 3.5. ]

Corollary 3.7. There exists a one—parameter family of semiregular polyhedra
as described in Proposition 3.4.

Proof.  The functions in Proposition 2.9 are continuous functions. The Corol-
lary follows by continuity, when z ranges in a certain interval. ]

Corollary 3.8.  For large n, the polyhedron in Theorem 3.5 looks like a flat
disk. In fact, as n goes to infinity, we have

Tr — o0
u=0(4,P;)— o0
S(Q.R) > 1
UQ, Py) — 180°
Pz, P3) — 120°
<):(P2, P4) — 60°

(38)

Proof.  The first assertion follows from (26), for o — 1. Inserting (26) in (9),
we find

(39) u = ﬁ{Z—I— (3 —2a)v2+ 2a}.

This yields the second assertion.

Obtain from (2), (3), (9), (20), (26):
(40) §5(Q,72) =2+ a—2a’

This yields the third assertion (38).

The formulae for the angles now follow from (6), (12), (24). For the readers
convenience, we give the numerical data for the first few polyhedra:
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nox ou Q. 7) £(Q.FB) £(PPs) £(B R
4 206 1.56 2.0 101.26 116.28 142.46
5 293 212 212 120.00 120.00 120.00
6 3.73 2.73 2.0 132.63 121.83 105.54
7 455 3.43 1.85 141.65 122.66 95.68
8 542 421 1.71 148.36 122.97 88.66
9 6.35 5.09 1.59 153.50 123.01 83.49
10 737 6.06 1.5 157.51 122.91 79.58
11 847 7.13 1.43 160.71 122.74 76.55
12 9.67 830 1.37 163.29 122.55 74.16

This completes the proof.
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