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Abstract. Let G be a connected reductive linear algebraic group over
C and let (ρ, V ) be a regular representation of G . There is a locally fi-
nite representation (ρ̂,C[V ]) on the affine algebra C[V ] of V defined by
ρ̂(g)f(v) = f(g−1v) for f ∈ C[V ] . Since G is reductive, (ρ̂,C[V ]) decomposes
as a direct sum of irreducible regular representations of G . The represen-
tation (ρ, V ) is said to be multiplicity free if each irreducible representation
of G occurs at most once in (ρ̂,C[V ]) . Kac has classified all irreducible
multiplicity free representations. In this paper, we classify arbitrary regular
multiplicity free representations, and for each new multiplicity free repre-
sentation we determine the monoid of highest weights occurring in its affine
algebra.

1. Facts about Multiplicity Free Representations

Throughout this paper G will denote a connected reductive linear algebraic group
over the complex numbers C. B will denote a Borel subgroup of G, and we will
write B = HN to denote the decomposition of B into a maximal torus H and
a unipotent radical N . We will suppose (ρ, V ) is a regular representation of G
and let (ρ̂,C[V ]) denote the representation of G on the affine algebra C[V ] of V
defined by (ρ̂(g)(f))(v) = f(ρ(g−1)v). Since G is reductive and (ρ̂,C[V ]) is locally
regular, the affine algebra decomposes as a direct sum of irreducible G modules.
(ρ, V ) also induces the structure of an irreducible affine G–variety on V, and the
following definition makes sense for any affine G–variety V :

Definition 1.1. The representation (ρ, V ) is said to be multiplicity free pro-
vided that the decomposition of (ρ̂,C[V ]) into a direct sum of irreducible G mod-
ules contains no irreducible module more than once.

We let Λ (or ΛG ) denote the set of highest weights of G. Let S[V ] =⊕
χ∈Λ S[V ]χ be the decomposition of the symmetric algebra S[V ] = P [V ∗] into

its isotypic components and define Λ(V ) = {χ ∈ Λ|S[V ]χ 6= 0} ⊆ h∗ . Likewise,
let P [V ] = S[V ∗] =

⊕
χ∈Λ S[V ∗]χ be the decomposition of P [V ] into its isotypic
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components and define Λ(V ∗) = {χ ∈ Λ|S[V ∗]χ 6= 0} ⊆ h∗ . Note that Λ(V ∗) =
−w0Λ(V ), where w0 is the longest element of the Weyl group.

We first review some basic facts concerning multiplicity free representations
and multiplicity free affine actions in general. Let C[V ]N denote the set of
N –invariant polynomials in C[V ] and C(V )B denote the B–invariant rational
functions on V . Recall that the highest weight vectors in C[V ] are just the
elements of C[V ]N which are eigenvectors for the action of H . Also, recall that an
affine G–variety Z is said to be spherical if B has a dense orbit in Z . The following
theorem gives several characterizations of multiplicity free represenations.

Theorem 1.2. The following are equivalent:

(i) (ρ, V ) is multiplicity free.

(ii) V is a spherical G–variety.

(iii) C(V )B = C.

(iv) B has only finitely many orbits in V .

(v) C[V ]N = C[g1, . . . , gn] where the gi are algebraically independent and the
weights of the gi are Q–linearly independent.

Proof. (i) ⇐⇒ (ii) ⇐⇒ (iii) is proved for irreducible G–varieties in [9,
p. 199]. (iv) =⇒ (ii) is clear from basic properties of orbits of algebraic groups.
(ii) =⇒ (iv) was proved independently by Brion [4] and Vinberg [15]. (This
result has also been obtained by Knop in [8, Corollary 2.6] and can be deduced
from a result of Matsuki [13].) (v) =⇒ (i) is clear, since the highest weight
vectors in P [V ] are exactly the monomials in the gi . For (iii) =⇒ (v), note
that [2, Lemma 6] shows that P [V ]N is a polynomial algebra. So we can write
P [V ]N = C[g1, . . . , gn], where the gi are algebraically independent and, again, the
highest weight vectors are the monomials in the gi . The space of highest weight
vectors corresponding to each weight will be one–dimensional exactly when the
weights of the gi are Q–linearly independent.

The next corollary, first proved by Kac in [7], follows immediately from
Theorem 1.2 (ii) by noting that dimB = 1

2
(dimG+ rankG).

Corollary 1.3. Suppose (ρ, V ) is a multiplicity free representation of a group
G. Then

dimV ≤ 1

2
(dimG+ rankG).

By Theorem 1.2 (v), if (ρ, V ) is multiplicity free, Λ(V ∗) is a free abelian
monoid with generators the weights of g1, . . . , gn . We shall denote the correspond-
ing generators of the monoid Λ(V ∗) [resp., Λ(V )] by Λ+(V ∗) [resp., Λ+(V )]. It
is clear that (ρ, V ) is multiplicity free if and only if (ρ∗, V ∗) is multiplicity free.
For computational reasons, it is often more convenient to deal with Λ(V ) rather
than Λ(V ∗), so we will consider Λ(V ) in what follows.

The irreducible multiplicity free representations were classified by Kac [7]:
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Theorem 1.4. A complete list of multiplicity free irreducible linear actions of
connected reductive linear algebraic groups is [up to equivalence] as follows:

(1) SLn , Spn , SOn ⊗ C∗ , S2GLn , Λ2SLn for n odd, Λ2GLn for n even,
SLm ⊗ SLn for m 6= n, GLn ⊗ SLn , GL2 ⊗ Spn , GL3 ⊗ Spn , GL4 ⊗ Sp4 ,
SLn⊗ Sp4 for n > 4, Spin7⊗C∗ , Spin9⊗C∗ , Spin10 , G2⊗C∗ , E6⊗C∗ .

(2) G⊗ C∗ for the semisimple groups G from list (1).

Here, the representation denoted by a group G is the representation cor-
responding to the first fundamental weight of the group. G1 ⊗ G2 denotes the
action of G1 × G2 on the tensor product of the representations corresponding to
the respective first fundamental weights. S2GLn , Λ2GLn , etc., follow the same
pattern.

Remark 1.5. Each representation in the theorem actually stands for an equiv-
alence class of representations: Given two triples (G, ρ, V ) and (G′, ρ′, V ′), we say
that (G, ρ, V ) ∼ (G′, ρ′, V ′) if and only if there exists an isomorphism ψ : V 7→ V ′

such that the induced map GL(ψ) : GL(V ) 7→ GL(V ′) has GL(ψ)(ρ(G)) = ρ′(G′).
In addition to (ρ, V ) the equivalence class will contain the dual representation
(ρ∗, V ∗) and (ρ ◦ i, V ), where i : G̃→ G is a surjective homomorphism with a fi-
nite kernel. Thus, any representation obtained by an automorphism of the Dynkin
diagram is in the same equivalence class. Since any reductive group can be covered
by a group S × (C∗)r , where S is a semisimple group, we can assume G is of this
form when necessary.

Howe and Umeda [6] discuss the structure of C[V ] for each of the repre-
sentations in Theorem 1.4. Table 1 summarizes some of their results. Note that
we denote the ith fundamental weight of the first simple group (reading from left
to right in the graph) by ωi (with ωn = 0 for SLn ), the ith fundamental weight
of the second simple group by ω′i , and so forth. The fundamental weight of the
C∗ acting on the first irreducible representation will be denoted by ε. In subse-
quent sections, the fundamental weight of the C∗ acting on the second irreducible
representation will be denoted by ε′ , and so forth.

2. A Summary of Our Results

Since Kac’ classification of multiplicity free representations, there has been addi-
tional work on this topic. In particular, Brion [3] has extended Theorem 1.4 to
a classification of all multiplicity free representations of simple groups. The goal
of this paper is the extension of Theorem 1.4 to a classification of multiplicity
free representations for arbitrary reductive groups. (This result was also obtained
independently by Benson and Ratcliff in [1].) We shall also determine Λ(V ) for
each of these multiplicity free representations.

The next lemma follows by noting that if Y is a closed G–invariant sub-
variety of an affine G–variety Z , then the restriction map C[Z] −→ C[Y ] is a
surjective G–homomorphism and hence takes isotypic components onto isotypic
components.
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Representation Λ+(V )
SLn ⊗ C∗ ω1 + ε
SLn ⊗ SLm ⊗ C∗ ω1 + ω′1 + ε, ω2 + ω′2 + 2ε, . . . , ωr + ω′r + rε

where r = min(m,n) and ωr = 0 (resp., ω′r = 0) if n = r
(resp., m = r)

S2Cn ⊗ C∗ 2ω1 + ε, . . . , 2ωn−1 + (n− 1)ε, nε
Λ2Cn ⊗ C∗ ω2 + ε, ω4 + 2ε, . . . , ω2bn2 c +

⌊
n
2

⌋
ε, where ωn = 0

Spn ⊗ C∗ ω1 + ε
Spn ⊗ SL2 ⊗ C∗ ω1 + ω′1 + ε, ω2 + 2ε, 2ε
Spn ⊗ SL3 ⊗ C∗ ω1+ω′1+ε, ω2+ω′2+2ε, ω′2+2ε, ω1+3ε, ω2+ω′1+4ε, ω3+3ε

where the last weight is zero when n = 4
Sp4 ⊗ SLn ⊗ C∗ ω1 + ω′1 + ε, ω2 + ω′2 + 2ε, ω1 + ω′3 + 3ε, ω′2 + 2ε, ω2 + ω′1 +

ω′3 + 4ε, ω′4 + 4ε
where the last weight is zero when n = 3

SOn ⊗ C∗ ω1 + ε, 2ε
Spin10 ⊗ C∗ ω1 + 2ε, ω5 + ε

Table 1: Λ+(V ) for some irreducible representations.

Lemma 2.1. The restriction of a multiplicity free affine G–action to any closed
G–invariant subvariety is multiplicity free.

Let (ρ, V ) be a multiplicity free representation of G and suppose V =
V1 ⊕ · · · ⊕ Vk as a direct sum of irreducible modules. Lemma 2.1 implies that
(ρ|Vi, Vi) is an irreducible multiplicity free representation of G.

Definition 2.2. Let (ρ, V ) be a representation of a group G. We say that
(ρ, V ) is indecomposable if (ρ, V ) is not equivalent (cf., Remark 1.5) to (ρ1, V1)⊕
(ρ2, V2), where (ρ1, V1) and (ρ2, V2) are multiplicity free representations of G1 and
G2 , respectively, and G = G1 ×G2 .

Note that by restricting the torus in the representation (C∗ ⊗ SLn,Cn) ⊕
· · · ⊕ (C∗ ⊗ SLn,Cn) to the diagonal subgroup {(z, . . . , z)|z ∈ C∗} ⊆ (C∗)n ,
one trivially obtains an indecomposable representation. The following definition
eliminates examples like this.

Definition 2.3. A representation (ρ, V ) of G is said to be saturated if V =
V1 ⊕ · · · ⊕ Vk as a sum of irreducible G–modules and ρ(G) ⊇ (C∗)k .

Theorem 1.4 shows that each irreducible multiplicity free representation has
at most two simple factors acting on it. Thus, the following definition makes sense.

Definition 2.4. Let (ρ, V ) be a representation of a group G and let V =
V1 ⊕ · · · ⊕ Vk be a decomposition of V into a direct sum of irreducible modules.
Then the representation diagram of (ρ, V ) is a graph with one edge for each Vi
and one vertex for each simple factor of G and such that a vertex is an endpoint
of an edge if the corresponding factor of G acts nontrivially on the irreducible
submodule. (By definition, an irreducible submodule on which only one simple
factor acts has both ends connected to the vertex corresponding to that simple
factor.)
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The representation diagrams of the representations in Theorem 1.4 have
two forms: hq or q q . Note that a representation is indecomposable if and only
if its representation diagram is a connected graph. With this notation in hand we
can state our first result.

Theorem 2.5. The following is the list [up to equivalence] of all saturated
indecomposable multiplicity free representations.

(i) A representation from Theorem 1.4 of a group with exactly one C∗ factor.

(ii) One of the following representations:

����r����
SO8 V (ω4)

1.
����r����
SLn Λ2SLn

n ≥ 42.
����r����
SLn SLn

n ≥ 23.
����r����
SLn (Λ2SLn)∗

n ≥ 44.
����r����
SLn (SLn)∗

n ≥ 25.

����r
SLn rSLn ⊗ SLm

n,m ≥ 26.
����r
SLn r(SLn ⊗ SLm)∗

n,m ≥ 27.

r r rSLn ⊗ SL2 SL2 ⊗ SLk

n ≥ 2, k ≥ 28.
����r����
Spn Spn

n ≥ 4 even9.

r r rSLk ⊗ SL2 SL2 ⊗ Spn

k ≥ 2, n ≥ 4 even10.

r r rSpk ⊗ SL2 SL2 ⊗ Spn

k, n ≥ 4 even11.
����r
SL2 rSL2 ⊗ Spn

n ≥ 4 even12.

The edges in these graphs are labeled according to which representation in
Theorem 1.4 they correspond. Note that each representation is unique only up
to the equivalence given in Remark 1.5. Our second result characterizes which
subgroups of the torus will yield multiplicity free representations upon restriction.

Theorem 2.6. Let (ρ, V ) be a representation of a group G. Suppose that
V = V1 ⊕ · · · ⊕ Vs is a decomposition of V into a direct sum of irreducible
submodules. Suppose also that (C∗)k ⊆ ρ(G). Let S = 〈Λ(V )〉 ∩ X , where X
is the character group of (C∗)s , and suppose H is an algebraic subgroup of (C∗)s
which has character group X/T . Then the representation obtained by restricting
the C∗ factors of G to H is multiplicity free if and only if the quotient map
S → X/T is an injection (equivalently, if and only if S ∩ T = 0).

Here, 〈Λ(V )〉 denotes the group generated by Λ(V ). To ease our compu-
tations, we will determine SQ , a basis for the Q–linear span of S .

These two theorems together yield a method for determining all multiplicity
free representations: By adding C∗ factors, if necessary, and applying a homomor-
phism with a finite kernel, we can assume every multiplicity free representation is
obtained by restriction from a saturated representation. If (ρ, V ) is a saturated
multiplicity free representation of a group G, then by Lemma 2.1 G = G1×· · ·×Gk

and V = W1 ⊕ · · · ⊕Wk , where (ρ|Wi
,Wi) is an indecomposable multiplicity free

representation of Gi and Gi acts trivially on Wj for j 6= i. Conversely, let (ρi,Wi)
be a multiplicity free representation of Gi . If Bi is a Borel subgroup of Gi and
Biwi ⊆ Wi is an open orbit, then B1w1× · · ·×Bkwk is an open orbit of the Borel
subgroup B1 × · · · ×Bk of G = G1 × · · · ×Gk in V . Hence, by Theorem 1.2 (ii),
(ρ, V ) is multiplicity free and it follows that every saturated representation is a sum
of indecomposable saturated representations. Consequently, every multiplicity free
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representation is obtained by restriction from a sum of indecomposable saturated
representations. The conditions on ρ(G)∩ (C∗)k such that a representation (ρ, V )
is multiplicity free is precisely the condition given in Theorem 2.6.

In short, all multiplicity free representations can be obtained as follows:

1. Choose finitely many saturated indecomposable representations (Gi, Vi) and
let V =

⊕
i Vi and Ḡ =

∏
Gi .

2. Choose a subspace T of XQ =
⊕

i(Xi)Q . This corresponds to a connected
normal subgroup G of Ḡ such that Ḡ/G is a torus.

3. Then (G, V ) is multiplicity free if and only if the condition in Theorem 2.6
is met with respect to SQ =

⊕
i(Si)Q .

In Section 3 we present more general facts about multiplicity free repre-
sentations and develop an initial list of possible saturated indecomposable mul-
tiplicity free representations which can be written as a sum of two irreducible
summands (Lemma 3.5). The section ends with a characterization of such rep-
resentations in terms of the decomposition of tensor products within their affine
algebras (Lemma 3.7). In Section 4 we use this additional characterization to
determine which representations in Lemma 3.5 are not multiplicity free. In Sec-
tion 5, we show the remaining representations in Lemma 3.5 are multiplicity free,
and describe how to determine their affine algebras. In Section 6, we demonstrate
that there are no indecomposable multiplicity free representations which can be
written as the sum of more than two irreducible summands. In Section 7, we give
the proof of Theorem 2.6. A summary of our results is given in Table 2

3. An Initial List of Possible Saturated Representations

As noted previously, the irreducible multiplicity free representations in Theo-
rem 1.4 are only representatives of a class of representations which include, in
particular, the dual of the representation. It is not clear a priori that V ⊕ W
being a multiplicity free representation of G implies that V ⊕W ∗ must be a mul-
tiplicity free representation of G. We next show that this is in fact true. This
substantially reduces the number of cases that must be considered in Lemma 3.5.

For a representation (ρ, V ) of an algebraic group H , let #V/H denote the
number of orbits of H in V and Hv = {h ∈ H|hv = v} denote the isotropy
subgroup of v ∈ V in H . Now suppose (ρ, V ) and (σ,W ) are two representations
of H .

Lemma 3.1. #(V ⊕W )/H <∞ if and only if #V/H <∞ and #W/Hv <∞
for all v ∈ V .

Proof. Clearly, #(V ⊕ W )/H < ∞ implies #V/H < ∞. Also, (v, w) and
(v, w′) are in the same H orbit if and only if w and w′ are in the same Hv orbit.
This implies #W/Hv < ∞. Conversely, suppose v1, . . . , vs are representatives of
the finitely many H orbits in V and wi1, . . . , wiri ∈ W are representatives of the
Hvi orbits in W. Then {(vi, wj)|1 ≤ i ≤ s, 1 ≤ j ≤ ri} are the representatives of
the H orbits in V ⊕W .
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Rep. Λ+(V ) SQ
1. ω1 + ε, ω3 + ε+ ε′, ω4 + ε′, 2ε, 2ε′ 〈ε, ε′〉Q
2. ω2k + kε′, ω2k−1 + ε + (k − 1)ε′

k = 1, . . . , bn/2c
〈ε〉Q n even
〈ε+ (n− 1)ε′〉Q n odd

3. ω1 + ε, ω1 + ε′, ω2 + ε + ε′ 〈ε, ε′〉Q n = 2
〈ε− ε′〉Q n > 2

4. n even: ω2k−1 + ε+ (bn/2c− (k−1))ε′,
ω2k−2 + (bn/2c − (k − 1))ε′, (k =
1, . . . , bn/2c), ω1 + ε
n odd: ω2k−1 + (bn/2c − (k − 1))ε′,
ω2k + ε + (bn/2c − (k − 1))ε′, (k =
1, . . . , bn/2c), ω1 + ε

〈ε〉Q n even
〈ε− (n− 1)ε′〉Q n odd

5. ω1 + ε, ωn−1 + ε′, ε+ ε′ 〈ε, ε′〉Q n = 2
〈ε+ ε′〉Q n > 2

6. ωk + ω′k + kε′,
k = 1, . . . ,min(m,n),

ωk + ω′k−1 + ε + (k − 1)ε′,
k = 1, . . . ,min(m,n),

ωm+1 + ω′m + ε +mε′ for n > m

〈ε, ε′〉Q n = m
〈ε, ε′〉Q n = m+ 1
〈ε− ε′〉Q n > m+ 1
〈ε〉Q m > n

7. ωn−k + ω′m−k + kε′,
k = 1, . . . ,min(m,n),

ωn−k+1 + ω′m−k + ε + kε′,
k = 1, . . . ,min(m,n)− 1,

ω1 + ε,
ωn−m+1 + ε +mε′ for n > m

〈ε, ε′〉Q n = m
〈ε, ε′〉Q n = m+ 1
〈ε+ ε′〉Q n > m + 1
〈ε〉Q m > n

8. ω1+ω′1+ε, ω2+2ε, ω′1+ω′′1 +ε′, ω′′2 +2ε′,
ω1 + ω′′1 + ε + ε′

0 n, k > 2
〈ε〉Q n = 2, k > 2
〈ε′〉Q k = 2, n > 2
〈ε, ε′〉Q k = n = 2

9. ω1 + ε, ω1 + ε′, ω2 + ε + ε′, ε + ε′ 〈ε, ε′〉Q
10. ω1 + ω′1 + ε, ω2 + 2ε, ω′1 + ω′′1 + ε′,

ω1 + ω′′1 + ε + ε′, ω′′2 + 2ε′, 2ε′
〈ε, ε′〉Q k = 2
〈ε′〉Q k > 2

11. ω1 + ω′1 + ε, ω2 + 2ε, 2ε, ω′1 + ω′′1 + ε′,
ω′′2 + 2ε′, 2ε′, ω1 + ω′′1 + ε + ε′

〈ε, ε′〉Q

12. ω1+ε, ω1+ω′1+ε′, ω′2+2ε′, 2ε′, ω′1+ε+ε′ 〈ε, ε′〉Q
Table 2: Λ+(V ) and SQ for the representations in Theorem 2.5. By convention,
ω0 = 0 and ωn = 0 for SLn .
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Proposition 3.2. #(V ⊕W )/H <∞ if and only if #(V ⊕W ∗)/H <∞.

Proof. By Lemma 3.1, #(V ⊕ W )/H < ∞ if and only if #V/H < ∞ and
#W/Hv < ∞ for all v ∈ V . By a result of Pyasetskii [14], if H is an algebraic
group and V is a representation of H , then #V/H if finite if and only if #V ∗/H
is finite. In particular, #W/Hv < ∞ for all v ∈ V if and only if #W ∗/Hv < ∞
for all v ∈ V . But then the Lemma implies that #(V ⊕W ∗)/H <∞.

The following corollary then follows from Theorem 1.2.

Corollary 3.3. Suppose (ρ, V ) and (σ,W ) are two representations of G. The
representation (ρ⊕ σ, V ⊕W ) is multiplicity free if and only if (ρ⊕ σ∗, V ⊕W ∗)
is multiplicity free.

By induction, it follows that a representation which decomposes as a direct
sum of several irreducible modules will be multiplicity free if and only if the
representation obtained by replacing any number of the irreducible summands with
their duals is multiplicity free. We now make use of these results to determine an
initial list of possible saturated indecomposable multiplicity free representations
which can be written as a sum of two irreducible summands.

Remark 3.4. Given an indecomposable representation with two irreducible
summands, its representation diagram is a connected graph with exactly two
edges. The graph cannot have more than three vertices, since then it would be
disconnected, so it must be one of the following:

����r���� ����r r r r r �� �r r

Lemma 3.5. Let (ρ, V ) be a saturated indecomposable representation with two
nontrivial irreducible submodules. Then, up to replacing one of the summands by
its dual, it is necessary that (ρ, V ) be one of the following:

����r����
Λ2SLn SLn

n ≥ 41.
����r����
SLn SLn

n ≥ 22.
����r
S2SLn rSLn ⊗ SLm

n,m ≥ 23.
����r

Λ2SLn rSLn ⊗ SLm

n ≥ 4, m ≥ 24.
����r
SLn rSLn ⊗ SLm

n,m ≥ 25.

r r rSLn ⊗ SLm SLm ⊗ SLk

m,n, k ≥ 26.

�� �r rSLn ⊗ SLm
SLn ⊗ SLm

n > 2 or m > 27.

�� �r rSLn ⊗ SLm
SLn ⊗ (SLm)∗

n > 2 or m > 28.
����r����
Spn Spn

n ≥ 4 even9.

����r
S2SLm rSLm ⊗ Spn

m = 2, 3, n ≥ 410.
����r
SLm rSLm ⊗ Spn

m = 2, 3, n ≥ 4 even11.
����r
Spn rSpn ⊗ SLm

m = 2, 3, n ≥ 4 even12.
����r
S2SLn rSLn ⊗ Sp4

n ≥ 413.

����r
SLn rSLn ⊗ Sp4

n ≥ 414.
����r
Λ2

0Sp4 rSp4 ⊗ SLn

n ≥ 415.
����r
Sp4 rSp4 ⊗ SLn

n ≥ 416.
����r

Λ2SLn rSLn ⊗ Sp4

n ≥ 417.

r r rSLk ⊗ Spn Spn ⊗ SLl

n > 4, 2 ≤ k, l ≤ 318.

r r rSpm ⊗ SLn SLn ⊗ Spk

n = 2, 3, m, k ≥ 419.

r r rSLk ⊗ SLm SLm ⊗ Spn

m = 2, 3, k ≥ 2, n ≥ 420.

r r rSLk ⊗ Sp4 Sp4 ⊗ SLn

n, k ≥ 221.
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r r rSp4 ⊗ SLk SLk ⊗ Sp4

k ≥ 422.

r r rSLm ⊗ SLn SLn ⊗ Sp4

m ≥ 2, n ≥ 423.

�� �r rSLn ⊗ Spm
SLn ⊗ Spm

n = 2, 3, m ≥ 424.

�� �r rSLn ⊗ Sp4

SLn ⊗ Sp4

n ≥ 425.

����r����
Spin10 SO10

26.
����r����
V (ω4) SO8

27.
����r����
SOn SOn

n ≥ 728.

Remark 3.6. Let (ρ, V ) be a representation of G. Suppose that ι : H → G
is an isomorphism and that (σ,W ) is a representation of H . By Remark 1.5 we
must also consider the representation (ρ ◦ ι ⊕ σ, V ⊕ W ) as a representation of
H which may be multiplicity free. Thus, we have had to consider representations
(such as 15 and 27) obtained by the isomorphisms of the low–dimensional Lie
algebras. (Here Λ2

0C4 is the irreducible, five–dimensional representation of Sp4 of
weight ω2 .) The other representations obtained by low–level isomorphisms in this
manner yield representations which are subsumed by other cases.

Proof. The possible representation diagrams of an indecomposable multiplic-
ity free representation with two nontrivial irreducible submodules are given in
Remark 3.4. Theorem 1.4 gives all of the irreducible multiplicity free representa-
tions, up to the conditions discussed in Remark 1.5. One obtains a list of possible
saturated indecomposable multiplicity free representations by filling in the dia-
grams allowed by the remark with all possible combinations of representations
from Theorem 1.4, noting that by Corollary 3.3 a representation in Lemma 3.5
will be multiplicity free if and only if the representation obtained by replacing one
of the summands by its dual is multiplicity free. From this list, all representations
which do not satisfy the condition in Corollary 1.3 are eliminated to arrive at the
result.

We now determine which of these representations are multiplicity free.
Suppose (ρ, V ) and (σ,W ) are two multiplicity free representations of G and
consider (ρ⊕σ, V ⊕W ). Write G as a product G1×G2×G3 of reductive groups,
where G1 acts trivially on V and G3 acts trivially on W . The decomposition
of S[V ] into a direct sum of irreducible G = G1 × G2 × G3 modules is S[V ] =⊕

α,β V (α)⊗ V (β) where α ∈ ΛG1 , β ∈ ΛG2 , and the sum is taken over all pairs
of highest weights α and β of G1 and G2 , respectively, such that V (α)⊗ V (β) ⊂
S[V ]. Similarly, S[W ] =

⊕
β′,γ V (β ′) ⊗ V (γ) where β ′ ∈ ΛG2 , γ ∈ ΛG3 , and the

sum is taken over all pairs of highest weights β ′ and γ of G2 and G3 , respectively,
such that V (β ′) ⊗ V (γ) ⊂ S[W ]. (ρ, V ) (resp., (σ,W )) is multiplicity free when
each irreducible module V (α)⊗V (β) (resp., V (β ′)⊗V (γ)) appears exactly once.
The next lemma is obvious from the fact that S[V ⊕ W ] = S[V ] ⊗ S[W ] =⊕

α,β,β′,γ V (α)⊗ V (β)⊗ V (β ′)⊗ V (γ).

Lemma 3.7. Let (ρ, V ) and (σ,W ) be multiplicity free representations of a
group G and assume the notation of the previous paragraph. Then (ρ⊕σ, V ⊕W )
is multiplicity free if and only if

(1) for every β and β ′ such that V (α)⊗ V (β) is an irreducible module in S[V ]
and V (β ′) ⊗ V (γ) is an irreducible module in S[W ] the decomposition of
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V (β) ⊗ V (β ′) into a direct sum of irreducible modules contains no module
more than once; and

(2) if V (α) ⊗ V (β1) and V (α) ⊗ V (β2) occur in S[V ] and V (β ′1) ⊗ V (γ) and
V (β ′2)⊗V (γ) occur in S[W ] (with β1 6= β2 or β ′1 6= β ′2 ), then V (β1)⊗V (β ′1)
and V (β2)⊗ V (β ′2) do not share a summand.

The generators of the set of highest weight vectors in S[V ] for the relevant
irreducible modules in Theorem 1.4 are given in Table 1. From this set of gen-
erators, one can then write down the module structure of S[V ] for each of these
representations. Tensor products of representations of SLn can be decomposed
using the Littlewood–Richardson Rule and the Clebsch–Gordon Formula. (See [5]
for a summary of this method and [12] for a proof.) The computations in these
cases are straightforward and will be omitted. Note that to show a representation
is not multiplicity free it will suffice to find a single example of a tensor product
which does not satisfy condition (1) or (2) of Lemma 3.7.

4. Non–Multiplicity Free Representations in Lemma 3.5

Lemma 4.1. The following representations enumerated in Lemma 3.5 are not
multiplicity free: 3 with n ≥ 3, 4 with n ≥ 5, 6 with m ≥ 3, 7, and 8.

Proof. These representations are not multiplicity free because they fail to satisfy
condition (1) of Lemma 3.7.

The symmetric algebra in 6 can be written as:

⊕

ai,bj≥0

V ((a1 + · · ·+ rar)ε)⊗ V (a1ω1 + · · ·+ arωr)⊗ V (a1ω
′
1 + · · ·+ arω

′
r)

⊗ V (b1ω
′
1 + · · ·+ bsω

′
s)⊗ V (b1ω

′′
1 + · · ·+ bsω

′′
s )⊗ V ((b1 + · · ·+ sbs)ε

′) (1)

where r = min(m,n) and s = min(n, k). Set a1 = a2 = b1 = b2 = 1 and the rest
of the coefficients to zero. (This is possible by the assumption that m ≥ 3.) This
gives the module V (ω′1 + ω′2)⊗ V (ω′1 + ω′2) and the module V (ω′1 + ω′2 + ω′3) has
multiplicity two in this tensor product.

The symmetric algebra in 4 can be written as:

⊕

ai,bj≥0

V
((
a2 + · · ·+

⌊n
2

⌋
a2bn

2
c
)
ε
)
⊗ V

(
a2ω2 + · · ·+ a2bn

2
cω2bn

2
c
)

⊗ V (b1ω1 + · · ·+ brωr)⊗ V (b1ω
′
1 + · · ·+ brω

′
r)⊗ V ((b1 + · · ·+ rbr)ε

′) (2)

When a2 = a4 = 1 and b1 = b2 = 1 we have V (ω2 + ω4) ⊗ V (ω1 + ω2), and
V (ω1 + ω3 + ω5) occurs with multiplicity two in the decomposition of this tensor
product. (The assumption that n ≥ 5 is necessary for this to be true.)

The symmetric algebra in 3 can be written as:

⊕

ai,bj≥0

V ((a1 + · · ·+ nan)ε)⊗ V (2a1ω1 + · · ·+ 2an−1ωn−1)

⊗ V (b1ω1 + · · ·+ brωr)⊗ V (b1ω
′
1 + · · ·+ brω

′
r)⊗ V ((b1 + · · ·+ rbr)ε

′) (3)
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When a1 = a2 = b1 = b2 = 1, we have V (2ω1 + 2ω2) ⊗ V (ω1 + ω2), and
V (2ω1 +2ω2 +ω3) occurs with multiplicity two in the decomposition of this tensor
product. (Note that it is necessary for n ≥ 3 for this to occur.)

The symmetric algebra in 7 can be written as:

⊕

ai,bj≥0

V ((a1 + · · ·+ rar)ε)⊗ V (a1ω1 + · · ·+ arωr)⊗ V (a1ω
′
1 + · · ·+ arω

′
r)

⊗ V (b1ω1 + · · ·+ brωr)⊗ V (b1ω
′
1 + · · ·+ brω

′
r)⊗ V ((b1 + · · ·+ rbr)ε

′) (4)

The lemma is true for m = n = 2 by dimension considerations so without loss
of generality we assume m ≥ 3. When a1 = a2 = b1 = b2 = 1, we have
V (ω1 + ω2)⊗ V (ω1 + ω2). Now argue as in 3.

For the representation in 8, note that the symmetric algebra in this case is
obtained by replacing the second SLm modules by its dual (and ε′ by −ε′ ) in the
previous case. We may assume m > 2 or n > 2, since otherwise SL2 is self–dual
and we are then in the previous case. Then we may assume that n > 2 by taking
a dual of one of the summands of the representation, if necessary. Now argue as
in 7.

Lemma 4.2. Representation 3 with n = 2 and 4 with n = 4 in Lemma 3.5 are
not multiplicity free.

Proof. These representations are not multiplicity free because they fail to satisfy
satisfy condition (2) of Lemma 3.7.

The symmetric algebra in 3 can be written as:

⊕

a1,a2,b1,b2≥0

V ((a1 + 2a2)ε)⊗ V (2a1ω1)⊗ V (b1ω1)

⊗ V (b1ω
′
1 + b2ω

′
2)⊗ V ((b1 + 2b2)ε′) (5)

(Note ω′2 = 0 if m = 2.) The Clebsch–Gordan Formula implies that V (2ω1) ⊗
V (3ω1) contains V (5ω1), so when a1 = a2 = 1, b1 = 3 and b2 = 0, we will obtain
the irreducible summand V (3ε)⊗V (5ω1)⊗V (3ω′1)⊗V (3ε′). The Clebsch–Gordan
formula also implies that V (6ω1)⊗V (3ω1) contains V (5ω1). So when a1 = b1 = 3,
and a2 = b2 = 0, we obtain this summand again.

The symmetric algebra in 4 can be written as:

⊕

a2,a4,bj≥0

V ((a2 + 2a4)ε)⊗ V (a2ω2)⊗ V (b1ω1 + · · ·+ brωr)

⊗ V (b1ω
′
1 + · · ·+ brω

′
r)⊗ V ((b1 + · · ·+ rbr)ε

′) (6)

where r = min(4, m). When a4 = b1 = b2 = 1, V (4ε)⊗V (ω1 +ω2)⊗V (ω′1 +ω′2)⊗
V (3ε′) is an irreducible module in this term (where ω′2 = 0 when m = 2). When
a2 = 2 and b1 = b2 = 1, this irreducible module also appears.

Corollary 4.3. Representations 10, 13, 17, 18, 21, 22, 23, 24, and 25 of Lem-
ma 3.5 are not multiplicity free. In addition representation 19 with n = 3 and
representation 20 with m = 3 are also not multiplicity free.



378 Leahy

Proof. Suppose one of the representations in the lemma is multiplicity free.
If each Spn is replaced by an SLn , the resulting representation is multiplicity
free. (Compare the orbits of Borel subgroups.) This contradicts the results of the
previous Lemma.

For representations of Spn and Spinn we make use of a method for decom-
posing tensor products developed by Littelmann. This technique for decomposing
tensor products and a discussion of generalized Young tableaux can be found in
[10].

Lemma 4.4. The tensor product V (2ω1 + ω2) ⊗ V (2ω1) of irreducible Spn
modules (n ≥ 4 even) contains the module V (2ω1 + ω2) with multiplicity two.

Proof. We must find all those tableaux T of shape p(2ω1) = (4, 0, . . . , 0) which
are (2ω1+ω2)–dominant and such that (2ω1+ω2)+ν(T ) = 2ω1+ω2 . (Equivalently,
ν(T ) = 0.) The shape of p(2ω1) is .

Write n = 2m. The condition ν(T ) = 0 implies that the number j
(1 ≤ j ≤ m) appears in T the same number of times as the number 2m − j + 1
appears in T . (This follows directly from the definition of ν(T ).) But then
(2ω1 + ω2)–dominance implies that 1 ≤ j ≤ 2, since otherwise we can use the
fact that T is weakly increasing in the columns to construct a dominant weight
with the coefficient of ωj a negative number. We are left with T being either

1 1 2m 2m or 2 2 2m− 12m− 1 and it is trivial to check that both of
these are Spn–standard and (2ω1 + ω2)–dominant.

Lemma 4.5. Representations 12 and 16 from Lemma 3.5 are not multiplicity
free.

Proof. None of these representations is multiplicity free because each fails to
satisfy condition (1) of Lemma 3.7.

The symmetric algebra in 12 can be written in two ways, depending on
whether m = 2 or m = 3. For the first case, the symmetric algebra is:

⊕

k,r,s,t≥0

V ((s+ 2t+ 2r)ε′)⊗ V (sω′1)⊗ V (sω1 + tω2)⊗ V (kω1)⊗ V (kε).

When s = k = 2 and t = 1, the resulting term contains the tensor product
V (2ω1 + ω2)⊗ V (2ω1). Now use Lemma 4.4.

For the second case in representation 12 as well as representation 16, it
suffices to find a term in the symmetric algebra of both representations which
contains the tensor product in Lemma 4.4. Moreover, since the representation of
Spn on Cn is a factor in all three cases, it suffices to find a term in the symmetric
algebra of Sp4 ⊗ SLn and Spn ⊗ SL3 containing the Spn module V (2ω1 + ω2).
But this is clear from the module structure in each case.

Lemma 4.6. The Sp4 module V (2ω2) is a submodule of the tensor product
V (ω1 + ω2)⊗ V (2ω2) of Sp4 modules.
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Proof. The shape of the partition p(2ω2) is . The tableau T =

2 2 4 4

1 1 3 3

is Sp4 –standard and (ω1 + ω2)–dominant. Since ν(T ) = 0, it follows
that V (ω1 + ω2) is a summand in the decomposition of the tensor product into
irreducible submodules.

Lemma 4.7. Representations 11 with m = 3, 13, and 15 of Lemma 3.5 are
not multiplicity free.

Proof. The representations are not multiplicity free because they do not satisfy
condition (2) of Lemma 3.7.

The symmetric algebra for representation 11 with m = 3 can be written as:
⊕

k,ti≥0

V (kε)⊗ V (kω1)⊗ V ((t1 + t6)ω1 + (t2 + t4)ω2)

⊗ V ((t1 + t5)ω′1 + (t2 + t6)ω′2 + t3ω
′
3)⊗ V ((t1 + 2t2 + 3t3 + 2t4 + 3t5 + 4t6)ε′)

(7)

For k = t1 = t4 = t5 = 1, we have the term

V (ε)⊗ V (ω1)⊗ V (ω1 + ω2)⊗ V (2ω′1)⊗ V (6ε′) (8)

The irreducible module V (ε) ⊗ V (2ω1 + ω2) ⊗ V (2ω′1) ⊗ V (6ε′) occurs in the
decomposition of this module into a direct sum of irreducibles. For k = 1 and
t1 = t4 = 2, we have the term

V (ε)⊗ V (ω1)⊗ V (2ω1 + 2ω2)⊗ V (2ω′1)⊗ V (6ε′) (9)

Since ω3 = 0, the irreducible module is a submodule of this term as well. This
proves that condition (2) of Lemma 3.7 does not hold.

The symmetric algebra in representation 13 can be written as:
⊕

k,ti≥0

V (kε)⊗ V (kω1)⊗ V ((t1 + t5)ω1 + (t2 + t4)ω2 + (t3 + t5)ω3 + t6ω4)

⊗ V ((t1 + t3)ω′1 + (t2 + t5)ω′2)⊗ V ((t1 + 2t2 + 3t3 + 2t4 + 4t5 + 4t6)ε) (10)

For k = t1 = t2 = t3 = 1, the irreducible module

V (ε)⊗ V (2ω1 + ω2 + ω3)⊗ V (2ω′1 + ω′2)⊗ V (6ε′) (11)

is a submodule of the resulting term. When t1 = 2 and k = t5 = 1, the irreducible
module (11) is a submodule of this term as well. This proves that condition (2) of
Lemma 3.7 does not hold.

For representation 15, note that since the representation Λ2
0C4 is obtained

via the isomorphism so5
∼= sp4 , the generators of the monoid Λ(V ) are 2ε and

ω2+ε (since the isomorphism so5
∼= sp4 interchanges the indices of the fundamental

weights). The symmetric algebra of this representation can thus be written as:
⊕

r,s,.ti≥0

V ((r + 2s)ε)⊗ V (rω2)⊗ V ((t1 + t5)ω1 + (t2 + t5)ω2)

⊗V ((t1 + t5)ω′1 +(t2 + t4)ω′2 +(t3 + t5)ω′3 + t6ω
′
4)⊗V ((t1 +2t2 +3t3 +4t5 +4t6)ε′)

(12)
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Now set t1 = t2 = 1 and ti = 0 for i > 2. For r = 0 and s = 1, we have the term
V (2ε) ⊗ V (ω1 + ω2) ⊗ V (ω′1 + ω′2) ⊗ V (3ε′) When r = 2 and s = 0, Lemma 4.6
implies this tensor product contains the irreducible module as well.

Lemma 4.8. The tensor products V (ω1 + 5ω5) ⊗ V (ω1) and V (ω1 + 5ω5) ⊗
V (3ω1) of Spin10 modules both contain V (2ω1 + 5ω5).

Proof. The shape of the partition p(ω1) is and it is easy to see that
the tableau T = 1 1 is Spin10 –standard and (ω1 + 5ω5)–dominant. Since
(ω1 + 5ω5) + ν(T ) = 2ω1 + 5ω5 , the result follows in this case. Similarly, the
shape of the partition p(3ω1) is and it is easy to see that the
tableau T = 1 1 1 1 10 10 is Spin10 –standard and (ω1 + 5ω5)–dominant. Since
(ω1 + 5ω5) + ν(T ) = 2ω1 + 5ω5 , the result follows in this case.

Lemma 4.9. Representations 26 and 28 of Lemma 3.5 are not multiplicity free.

Proof. These representations fail to be multiplicity free because they do not
satisfy condition (2) of Lemma 3.7.

The symmetric algebra in representation 28 can be written as:

⊕

k,m,r,s≥0

V ((k + 2m)ε)⊗ V (kω1)⊗ V (rω1)⊗ V ((r + 2s)ε′) (13)

For k = 2 and m = r = s = 4, we have the term V (10ε) ⊗ V (2ω1) ⊗ V (4ω1) ⊗
V (12ε′). When k = 4, m = 3, r = 2, and s = 5, this term also results.

The symmetric algebra in representation 26 can be written as:

⊕

k,m,r,s≥0

V ((k + 2m)ε)⊗ V (kω1)⊗ V (rω1 + sω5)⊗ V ((s+ 2r)ε′) (14)

For k = r = 1, m = 2, and s = 5, we have the term V (5ε) ⊗ V (ω1) ⊗
V (ω1 + 5ω5) ⊗ V (7ε′) For k = 3, m = r = 1, and s = 5, we have the term
V (5ε)⊗V (3ω1)⊗V (ω1 + 5ω5)⊗V (7ε′) We can conclude from Lemma 4.8 that the
irreducible term V (5ε)⊗V (2ω1+5ω5)⊗V (7ε′) appears in both of these summands.

5. Multiplicity Free Representations in Lemma 3.5

We will next show that the remaining representations in Lemma 3.5 are multiplicity
free and describe how to determine Λ+(V ) for each representations.

Lemma 5.1. Representation 6 in Lemma 3.5 is multiplicity free and Λ+(V ) =
{ω1 + ε, ω1 + ε′, ω2 + ε+ ε′}.
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Proof. The symmetric algebra of the representation can be written as:

⊕

k,m≥0

V (kε)⊗ V (kω1)⊗ V (mω1)⊗ V (mε′) (15)

For fixed k,m ≥ 0, the Littlewood–Richardson Rule shows

V (kω1)⊗ V (mω1) =

min(k,m)⊕

j=0

V ((k +m− 2j)ω1 + jω2) (16)

(Note ω2 = 0 when n = 2.) This shows condition (1) of Lemma 3.7 holds.

Now consider a term in the direct sum (15). For k 6= k′ , V (kε) 6= V (k′ε).
Similarly, for m 6= n, V (mε′) 6= V (nε′). So condition (2) of Lemma 3.7 holds
trivially.

To determine Λ+(V ), note that Equations (15) and (16) imply

S[V ] =
⊕

k,m≥0
j=0,... ,min(k,m)

V (kε)⊗ V ((k +m− 2j)ω1 + jω2)⊗ V (mε′)

Setting k = 1 in shows that ω1 + ε is a highest weight in S[V ]. Similarly, setting
m = 1 and (resp., k = m = j = 1) shows that ω1 + ε′ (resp., ω2 + ε + ε′ ) is a
highest weight in S[V ]. Since

(k − j)(ω1 + ε) + j(ω2 + ε+ ε′) + (m− j)(ω1 + ε′) =

= kε + (k +m− 2j)ω1 + jω2 +mε′

every highest weight in S[V ] is an N–linear combination of these weights.

The calculation to determine S[V ] and Λ(V ) is similar in the remaining
cases, so it will be omitted. A table summarizing these results for all of the
indecomposable multiplicity free representations we determine can be found in
Section 2.

Lemma 5.2. Representation 5 of Lemma 3.5 is multiplicity free.

Proof. The symmetric algebra of the representation can be written as:

⊕

k,ai≥0

V (kε)⊗ V (kω1)⊗ V (a1ω1 + · · ·+ arωr)

⊗ V (a1ω
′
1 + · · ·+ arω

′
r)⊗ V ((a1 + · · ·+ rar)ε

′) (17)

where r = min(m,n). There are two cases to consider.

First, suppose r < n. Then ωr 6= 0. For fixed k and ai ,

V (kω1)⊗ V (a1ω1 + · · ·+ arωr)

=
⊕

0≤bj≤aj−1Pr+1
j=1 bj=k

V ((a1 + b1 − b2)ω1 + · · ·+ (ar + br − br+1)ωr + br+1ωr+1) (18)
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Note that we may not necessarily assume ωr+1 6= 0. To show that condition (1)
of Lemma 3.7 holds, we view the bi as a vector b = (b1, . . . , br+1) ∈ Cr+1 and
suppose there is another vector b′ = (b′1, . . . , b

′
r+1) ∈ C such that

V ((a1 + b1 − b2)ω1 + · · ·+ (ar + br − br+1)ωr + br+1ωr+1)

= V ((a1 + b′1 − b′2)ω1 + · · ·+ (ar + b′r − b′r+1)ωr + b′r+1ωr+1)

and
r+1∑

j=1

bj =
r+1∑

j=1

b′j = k . The uniqueness of the highest weight corresponding to

an irreducible module and the independence of the weights ω1, . . . , ωr imply that

bi and b′i satisfy ai + bi − bi+1 = ai + b′i − b′i+1 (i = 1, . . . , r) and

r+1∑

j=1

bj =

r+1∑

j=1

b′j .

This system is equivalent to an equation Ar+1b = Ar+1b
′ , where Ar+1 is an

(r + 1) × (r + 1) invertible matrix. So b = b′ and condition (1) of Lemma 3.7
holds. To show that condition (2) of Lemma 3.7 holds, consider a term in the
direct sum (17). For k 6= k′ , V (kε) 6= V (k′ε). For (a1, . . . , ar−1) 6= (a′1, . . . , a

′
r−1),

V (a1ω
′
1 + · · ·+ar−1ω

′
r−1) 6= V (a′1ω

′
1 + · · ·+a′r−1ω

′
r−1) (The condition r < n implies

r = m and so ω′r = 0.) Finally, given that a1, . . . , ar−1 are uniquely determined,
ar 6= a′r implies V ((a1+· · ·+(r−1)ar−1+rar)ε

′) 6= V ((a1+· · ·+(r−1)ar−1+ra′r)ε
′).

So condition (2) of Lemma 3.7 holds trivially.

Now suppose r = n (so that ωr = 0). Then

V (kω1)⊗ V (a1ω1 + · · ·+ ar−1ωr−1)

=
⊕

0≤bj≤aj−1Pr
j=1 bj=k

V ((a1 + b1 − b2)ω1 + · · ·+ (ar−1 + br−1 − br)ωr−1) (19)

If there are two isomorphic modules in the summation (19), this means we have
b = (b1, . . . , br), b

′ = (b′1, . . . , b
′
r) ∈ Cr satisfying Arb = Arb

′ . So, as before, b = b′

and condition (1) of Lemma 3.7 is satisfied. The argument for condition (2) of
Lemma 3.7 proceeds as in the preceding case.

Lemma 5.3. Representation 6 of Lemma 3.5 is multiplicity free when m = 2.

Proof. The symmetric algebra of the representation can be written as:

⊕

p,q,r,s≥0

V ((p+ 2s)ε)⊗ V (pω1 + sω2)⊗ V (pω′1)⊗ V (qω′1)

⊗ V (qω′′1 + rω′′2)⊗ V ((q + 2r)ε′) (20)

(Note we may not necessarily assume that ω2 or ω′′2 is nonzero.) Condition (1) of
Lemma 3.7 is immediate from the Clebsch–Gordan formula applied to V (pω ′1) ⊗
V (qω′1). For p 6= p′ , V (pω1 + sω2) 6= V (p′ω1 + sω2). But for fixed p and s 6= s′ ,
we have V ((p + 2s)ε) 6= V ((p + 2s′)ε). A similar argument works for r and s.
This implies condition (2) holds.
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Lemma 5.4. Representation 1 of Lemma 3.5 is multiplicity free.

Proof. The symmetric algebra of the representation can be written as:

⊕

k,a2i≥0

V (kε)⊗ V (kω1)⊗ V
(
a2ω2 + · · ·+ a2bn

2
cω2bn

2
c
)

⊗ V
((
a2 + · · ·+

⌊n
2

⌋
a2bn

2
c
)
ε′
)

(21)

If n is even, then

V (kω1)⊗ V (a2ω2 + · · ·+ an−2ωn−2) =
⊕

0≤bi≤ai−1P
bi=k

V (b1ω1 + (a2 − b3)ω2 + b3ω3 + · · ·+ (an−2 − bn−1)ωn−2 + bn−1ωn−1)

(22)

To show that condition (1) of Lemma 3.7 holds, fix k and ai and suppose we have
two sequences (b1, b3, . . . , bn−1) and (b′1, b

′
3, . . . , b

′
n−1) such that 0 ≤ bj, b

′
j ≤ aj−1 ,∑

bj =
∑
b′j = k , and

V (b1ω1 + (a2 − b3)ω2 + b3ω3 + · · ·+ (an−2 − bn−1)ωn−1 + bn−1ωn−1)

= V (b′1ω1 + (a2 − b′3)ω2 + b′3ω3 + · · ·+ (an−2 − b′n−1)ωn−2 + b′n−1ωn−1) (23)

The independence of ω1, . . . , ωn−1 imply that bi = b′i and this is sufficient to show
condition (1) of Lemma 3.7.

Condition (2) of Lemma 3.7 holds trivially: For k 6= k′ , V (kε) 6= V (kε′).
Now suppose there exists some a′2 , a′4 , . . . , a′n−2 and b′1 , b′3 , . . . , b′n−1 such that

V (b1ω1 + (a2 − b3)ω2 + b3ω3 + · · ·+ (an−2 − bn−1)ωn−2 + bn−1ωn−1)

= V (b′1ω1 + (a′2 − b′3)ω2 + b′3ω3 + · · ·+ (a′n−2 − b′n−1)ωn−2 + b′n−1ωn−1) (24)

Then the independence of the fundamental weights implies

b1 = b′1, b3 = b′3, . . . , bn−1 = b′n−1,

a2 − b3 = a′2 − b′3, . . . , an−2 − bn−1 = a′n−2 − b′n−1 (25)

and hence a2 = a′2, . . . , an−2 = a′n−2 . But then an 6= a′n implies

V ((a2 + · · ·+ ((n− 1)/2)an−1 + (n/2)an) ε′) 6=
V ((a2 + a4 · · ·+ ((n− 1)/2)an−1 + (n/2)a′n) ε′) . (26)

If n is odd,

V (kω1)⊗ V (a2ω2 + · · ·+ an−1ωn−1) =
⊕

0≤bi≤ai−1P
bi=k

V (b1ω1 + (a2 − b3)ω2 + b3ω3 + · · ·+ (an−1 − bn)ωn−1) (27)

and the argument proceeds exactly as in the preceding case.
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Lemma 5.5. Representations 11 with m = 2, 19 with n = 2, and 20 with
m = 2 in Lemma 3.5 are multiplicity free.

Proof. In all cases, it is immediate from the Clebsch–Gordan formula that
condition (1) of Lemma 3.7 holds. The symmetric algebra in representation 20
(m = 2) can be written (as a sum of irreducible modules) as

⊕

m,p,r,s,t≥0
j=0,... ,min(m,r)

V ((m + 2p)ε)⊗ V (mω1 + pω2)⊗ V ((m+ r − 2j)ω′1)

⊗ V (rω′′1 + sω′′2)⊗ V ((r + 2s+ 2t)ε′)

The symmetric algebra in representation 19 (n = 2) can be written as:

⊕

m,p,q,r,s,t≥0
j=0,... ,min(m,r)

V ((m + 2p+ 2q)ε)⊗ V (mω1 + pω2)⊗ V ((m+ r − 2j)ω′1)

⊗ V (rω′′1 + sω′′2)⊗ V ((r + 2s+ 2t)ε′)

The symmetric algebra in representation 11 (m = 2) can be written as:

⊕

k,r,s,t≥0
j=0,... ,min(k,r)

V (kε)⊗ V ((k + r − 2j)ω1)⊗ V (rω′1 + sω′2)⊗ V ((r + 2s+ 2t)ε′)

For condition (2) of Lemma 3.7 we consider only the first case, as the other
cases are similar. If m 6= m′ [resp., p 6= p′ ], V (mω′1 +pω′2) 6= V (m′ω′1 +pω′2) [resp.,
V (mω′1 + pω′2) 6= V (mω′1 + p′ω′2)]. A similar argument works to show that r and
s must remain fixed. But then for t 6= t′ , V ((r+ 2s+ 2t)ε′) 6= V ((r+ 2s+ 2t′)ε′).

Lemma 5.6. The tensor product V (jω1) ⊗ V (kω1) of modules of Spn can be
written as a direct sum of irreducible Spn modules as

V (jω1)⊗ V (kω1) =
⊕

0≤r≤min(k,j)
0≤s≤min(j−r,k−r)

V ((j + k − 2r − 2s)ω1 + sω2) (28)

Proof. We can write n = 2m. We must find the kω1 –dominant Spn–standard
Young tableau of shape p(jω1). The shape p(jω1) is · · · (2j boxes).
Being kω1 –dominant implies that the numbers 3, 4, . . . , 2m − 1 cannot occur in
the tableau. Let 2r denote the number of boxes in the tableau that contain the
number 2m. Clearly, 0 ≤ r ≤ j . By kω1 –dominance, the weight 2kω1 + ν2r(T )
must be in the dominant Weyl Chamber of Sp2m . By the condition of being weakly
increasing in the rows, cT (2r)(2m) = 2r and cT (2r)(j) = 0 for j 6= 2m. It follows
that 2kω1 +ν2r(T ) = (2k−2r)ε1 , which is in the dominant Weyl chamber of Sp2m

if and only if 2k − 2r ≥ 0. It follows that 0 ≤ r ≤ min(k, j).
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Now let 2s denote the number of boxes in the tableau that contain the
number 2. Clearly, 0 ≤ s ≤ j−r . By kω1 –dominance, the weight 2kω1+ν2j+2r(T )
must be in the dominant Weyl chamber of Sp2m . But 2kω1 + ν2j+2r(T ) = (2k −
2r)ε1 +2sε2 = (2k−2r−2s)ω1 +2sω2 . So we must have 0 ≤ s ≤ min(k−r, j−r).
The remaining boxes in the tableau must be filled with ones. Since any tableau
satisfying these inequalities must be a Spn–standard Young tableaux of shape
p(jω1), it follows that the decomposition of the tensor product into a direct sum
of irreducibles is given by Equation 28.

In [11], Littelmann determines all pairs of fundamental weights (ω, ω ′) such
that V (kω)⊗V (lω′) decomposes without multiplicities. For these tensor products,
he also determines how they decompose as a direct sum of irreducibles. Lemma 5.6
can also be deduced from this result.

Lemma 5.7. Representation 9 in Lemma 3.5 is multiplicity free.

Proof. The symmetric algebra of the representation can be written as:

⊕

k,j≥0

V (kε)⊗ V (kω1)⊗ V (jω1)⊗ V (jε′) (29)

Condition (2) of Lemma 3.7 is clear: k 6= k′ implies V (kε) 6= V (k′ε) and j 6= j ′

implies V (jε′) 6= V (j ′ε′).

Condition (1)is clear from Lemma 5.6.

Lemma 5.8. The tensor product V (mω1) ⊗ V (kω4) of irreducible modules of
the simple group Spin8 can be written as a direct sum of irreducible modules as

V (mω1)⊗ V (kω4) =
⊕

0≤j≤min(m,k)

V ((m− j)ω1 + jω3 + (k − j)ω4) (30)

Proof. We must determine all Spin8 –standard tableaux that are of shape
p(k, k, k, k) and mω1 –dominant. (See the appendix of [10].) Note that a tableau
of shape p(k, k, k, k) consists of four left–justified rows of k boxes each—i.e., there
are k columns of four boxes each. It is not difficult to show that the only possible
Spin8 standard tableau that are of shape p(k, k, k, k) and mω1 –dominant are

1

2

3

4

· · ·
1

2

3

4

2

3

5

8

· · ·
2

3

5

8� �
j

� �k

where 0 ≤ j ≤ min(m, k). If T is a tableau of this form, then each column of the
form 1 2 3 4 contributes ε1 +ε2 +ε3 +ε4 to ν(T ), while each column of the form
2 3 5 8 contributes −ε1 + ε2 + ε3 − ε4 to ν(T ). If there are 0 ≤ j ≤ min(k,m)



386 Leahy

columns of this latter type (and thus k− j columns of the former type), it follows
that

mω1 + ν(T ) = mε1 +
1

2
[(k − 2j)ε1 + ε2 + kε3 + (k − 2j)ε4]

= (m− j)ω1 + jω3 + (k − j)ω4

which implies the result.

Lemma 5.9. Representation 27 of Lemma 3.5 is multiplicity free.

Proof. The representation V (ω4) of Spin8 is obtained by composing the rep-
resentation V (ω1) by an isomorphism obtained from triality. So we have

S[V (ω1)⊕ V (ω4)] =
⊕

p,q,s,t≥0

V ((p+ 2q)ε)⊗ V (pω1)⊗ V (sω4)⊗ V ((s+ 2t)ε)

Hence it is clear that condition (1) of Lemma 3.7 holds from Lemma 5.8. For
condition (2) of the lemma, we must show that distinct values of the parameters
lead to non–isomorphic modules. Suppose first that q 6= q′ . (The argument for t
will be the same.) Then V ((p + 2q)ε) 6= V ((p′ + 2q′)ε) unless p 6= p′ . So we are
in the case where p 6= p′ . (The argument for s 6= s′ will also be the same.) If we
have

V ((p+ 2q)ε)⊗ V ((p− j)ω1 + jω3 + (s− j)ω4)⊗ V ((s+ 2t)ε′)

= V ((p′ + 2q′)ε)⊗ V ((p′ − j ′)ω1 + j ′ω3 + (s′ − j ′)ω4)⊗ V ((s′ + 2t′)ε′)

then p 6= p′ and p − j = p′ − j ′ imply j 6= j ′ . But then the coefficients of ω3 in
the modules are distinct and they cannot be isomorphic.

This shows that the saturated indecomposable multiplicity free representa-
tions which can be written as a sum of two irreducible summands are precisely
those given in the statement of Theorem 2.5. We will show there are no saturated
indecomposable multiplicity free representation with more irreducible summands.

6. Indecomposable Representations: Three Irreducible Summands

Suppose (ρ, V ) is a saturated indecomposable multiplicity free representation
which can be written as a direct sum of three irreducible submodules. Then
Remark 2.1 implies that the restriction of the representation to any two of these
submodules is also multiplicity free. Hence, after removing an edge from the
representation diagram, the resulting representation diagram should be a diagram
for a representation given in Theorem 2.5. The only connected graphs with exactly
three edges which satisfy these conditions are:

������
��
����r

����
����
r r

���� ����r r %
%
%

e
e
er r
r

r r r r ����r r r ����
r r r
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The next lemma is proved exactly as Lemma 3.5, subject to the additional
constraint that the restriction to any two of the edges must be an element of
Theorem 2.5 (b).

Lemma 6.1. If (ρ, V ) is a saturated indecomposable multiplicity free represen-
tation of a group which can be written as a direct sum of three irreducible sum-
mands, then it is necessary (but not sufficient) that—up to replacing one of the
summands by its dual—the representation be one of the following:

������
��
����r

SLn

SLn

SLn

n ≥ 21.

����
����
r r

SLn

SLn

SLn ⊗ SLm

n ≥ 2,m ≥ 22.
���� ����r rSLn SLm

SLn ⊗ SLm

n,m ≥ 23.
����
r r rSLn ⊗ SL2 SL2 ⊗ SLk

SL2

n, k ≥ 24.

����r r rSLn ⊗ SL2 SL2 ⊗ SLk
SLn

n, k ≥ 25.

r r r rSLn ⊗ SL2 SL2 ⊗ SL2 SL2 ⊗ SLl

n, l ≥ 26.

������
��
����r

Spn

Spn

Spn

n ≥ 4 even7.

����
����
r r

SL2

SL2

SL2 ⊗ Spm

m ≥ 4 even8.
����r r rSLn ⊗ SL2 SL2 ⊗ Spk
SLn

n ≥ 2 and k ≥ 4 even9.
����
r r rSLn ⊗ SL2 SL2 ⊗ Spk

SL2

n ≥ 2 and k ≥ 4 even10.
����
r r rSpn ⊗ SL2 SL2 ⊗ Spk

SL2

n, k ≥ 4 even11.

r r r rSLn ⊗ SL2 SL2 ⊗ SL2 SL2 ⊗ Spl

n ≥ 2 and l ≥ 4 even12.

r r r rSpn ⊗ SL2 SL2 ⊗ SL2 SL2 ⊗ Spl

n, l ≥ 4 even13.

Lemma 6.2. Consider a representation (ρ, V ) of a group with an SLn simple
factor, where V = V1 ⊕ · · · ⊕ Vk as a sum of irreducible submodules. If the SLn
module V (ω1) appears in a term of S[Vi] for at least three distinct Vi , then (ρ, V )
is not multiplicity free.

Proof. If this is the case, then V (ω1) ⊗ V (ω1) ⊗ V (ω1) appears in a term of
the symmetric algebra S[V ] and the module V (ω1 + ω2) appears as a submodule
of this twice. (When n = 2, ω2 = 0 and this is the module V (ω1).) So the
representation does not satisfy condition (1) of Lemma 3.7.

Corollary 6.3. Representations 1, 2, and 4 of Lemma 6.1 are not multiplicity
free.

Proof. For each of these representations there is an SLn factor operating on
all three of the irreducible factors and the irreducible SLn module V (ω1) appears
in a term of the decomposition of each of the symmetric algebras. So the previous
Lemma shows that in each case the representation is not multiplicity free.

Lemma 6.4. Representations 3, 5, and 6 of Lemma 6.1 are not multiplicity
free.
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Proof. We will show that each of the representations does not satisfy condition (2)
of Lemma 3.7.

The symmetric algebra in 3 can be written as:

⊕

k,l,ai≥0

V (kε)⊗ V ((a1 + · · ·+ rar)ε
′)⊗ V (lε′′)

⊗ V (kω1)⊗ V (a1ω1 + · · ·+ arωr)⊗ V (lω′1)⊗ V (a1ω
′
1 + · · ·+ arω

′
r) (31)

(Here r = min(m,n) and we have ωr = 0 [resp., ω′r = 0] if r = n [resp., r = m].)
For k = l = 1 and a1 = 2, the irreducible module

V̂ = V (ε)⊗ V (2ε′)⊗ V (ε′′)⊗ V (ω1 + ω2)⊗ V (ω′1 + ω′2)

appears as a summand in the decomposition of this tensor product. (Note that
ω2 = 0 [resp., ω′2 = 0] if n = 2 [resp., m = 2].) Likewise, if we have k = l = a2 =
1, V̂ is an element of the tensor product decomposition of this module as well.
(Note, V (ω2) = 0 [resp., V (ω′2) = 0] if n = 2 [resp., m = 2].)

The symmetric algebra in 5 can be written as:

⊕

ai,bj ,k≥0

V (kε)⊗ V ((a1 + 2a2)ε′)⊗ V ((b1 + 2b2)ε′′)

⊗ V (kω1)⊗ V (a1ω1 + a2ω2)⊗ V (a1ω
′
1)⊗ V (b1ω

′
1)⊗ V (b1ω

′′
1 + b2ω

′′
2) (32)

For a1 = 2 and b1 = k = 1, the irreducible module V̂ = V (2ε′)⊗ V (ε)⊗ V (ε′′)⊗
V (ω1 + ω2)⊗ V (ω′1)⊗ V (ω′′1) appears as a summand in the decomposition of this
module into a direct sum of irreducible modules. (As above, ω2 = 0 when n = 2.)
For a2 = k = b1 = 1 V̂ appears as a summand of the decomposition of this module
into a sum of irreducible modules as well.

The symmetric algebra in 6 can be written as:

⊕

ai,bj ,ck≥0

V ((a1 + 2a2)ε)⊗ V ((b1 + 2b2)ε′)⊗ V ((c1 + 2c2)ε′′)⊗ V (a1ω1 + a2ω2)

⊗ V (a1ω
′
1)⊗ V (b1ω

′
1)⊗ V (b1ω

′′
1)⊗ V (c1ω

′′
1)⊗ V (c1ω

′′′
1 + c2ω

′′′
2 ) (33)

For a1 = c1 = 1 and b1 = 2, the irreducible module V̂ = V (ε)⊗ V (2ε′)⊗ V (ε′′)⊗
V (ω1) ⊗ V (ω′1)⊗ V (ω′′1)⊗ V (ω′′′1 ) appears as a term in the decomposition of this
module into a direct sum of irreducible modules. For a1 = c1 = b2 = 1 and
b1 = a2 = c2 = 0, we have V̂ again.

The proof of the following Corollary is the same as the proof of Corollary 4.3.

Corollary 6.5. None of representations 7, 8, 9, 10, 11, 12, and 13 is multi-
plicity free.

This completes the proof of Theorem 2.5.
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7. Non–Saturated Multiplicity Free Representations

Suppose that V = W1 ⊕ · · · ⊕Wr is a decomposition of W into indecomposable
multiplicity free submodules. (Note that r ≤ s and each Wi is either an irreducible
module or a sum of two irreducible modules.) Then S[V ] = S[W1]⊗ · · · ⊗ S[Wr]
Since there are distinct semisimple and C∗ factors acting on each Wi , the monoid
Λ(V ) of highest weights in S[V ] is the direct sum of the monoids of highest weights
occurring in each of the S[Wi]. Let X ∼= Zs be the character group of (C∗)s and
let S = 〈Λ(V )〉 ∩X . Recall that if H ⊆ (C∗)s is an algebraic subgroup, then the
character group of H is X/T where T = {χ ∈ X|χ(H) = 1}. We will now prove
Theorem 2.6.

Proof. We show that the restriction of the representation to H is not multi-
plicity free if and only if S ∩ T 6= {0}.

We use the characterization of multiplicity free representations given in
Theorem 1.2 (v). Since restricting to H does not change the highest weight vectors,
it suffices to determine when the condition that the elements of Λ+(V ) be linearly
independent holds.

For i = 1, . . . , r , let {χji |j = 1, . . . , sj} ⊆ Λ(Wj) be the generators of
Λ(Wj). If the restriction to H is not multiplicity free, then there is a nontrivial
linear dependency relation

∑
aijχ

j
i = 0 among the generators of the monoid

of highest weights. Each generator χji is a linear combination of fundamental
highest weights and the fundamental highest weights are linearly independent. So,
by grouping like terms, the equation

∑
aijχ

j
i = 0 is equivalent to a system of

homogeneous linear equations given by the coefficients of the distinct fundamental
weights. In particular, the coefficients of the fundamental weights of the semisimple
factors are zero. Thus, if we consider the weight

∑
aijχ

j
i as a weight of the

original group G (with the same semisimple factors and the maximal number of
C∗ factors), it must be that ν ∈ X . But ν(H) = 1. Thus, ν ∈ T and we have
ν ∈ S ∩ T .

Conversely, suppose ν ∈ S ∩ T , ν 6= 0. Since ν ∈ T , the restriction
of ν to H is zero. Since ν ∈ S = 〈Λ(V )〉 ∩ X , by writing ν as a Q–linear
combination of elements of Λ(V ), clearing the denominators of the coefficients of
this linear combination, and bringing the negative coefficients to the other side
of the equation (ν(H) = 0), it is clear that we can find two distinct weights in
Λ(V ) which yield the same weight upon restriction to H . This means that when
restricted to H the representation is not multiplicity free.

We now discuss indecomposable multiplicity free representations in this
context. A weight in 〈Λ(V )〉 will be in S exactly when it can be written as a
linear combination of the generators of Λ(V ) in such a way that all of coefficients
of the fundamental weights of the simple factors vanish. Thus, to determine S we
consider weights in Λ+(V ) as weights of the semisimple part of G and determine
which linear combinations of these vanish. A basis for this space will be a basis of
S . (In reality, we will work in 〈Λ(V )〉Q and X ∼= Q2 , so we will determine SQ .)

There are three cases that can occur: (1) If dimSQ = 2, SQ = XQ and so
SQ ∩ TQ 6= 0 unless TQ = 0. Thus, we must have H = (C∗)2 . (2) If dimSQ = 0,
then SQ ∩ TQ = 0 for all T and so H could be any subgroup of (C∗)2 . (In
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particular, H could be the trivial subgroup of (C∗)2 .) (3) if dimSQ = 1, then H
could be any subgroup of (C∗)2 such that TQ and SQ have trivial intersection. (In
particular, H must be either one–dimensional or two–dimensional.)

As an example, we will perform the computations for representation 2 of
Theorem 2.5. A complete summary of the results for the other cases is given in
Section 2. When restricted to the semisimple part of G (i.e., SLn ), the elements
of Λ+(V ) for the representation are ω1 , ω1 , and ω2 . Now consider the equation
aω1 + bω1 + cω2 = 0 For n > 2, we must have c = 0 and b = −a. Thus, SQ is
spanned by (ω1 + ε)− (ω1 + ε′) = ε− ε′ . When n = 2, we may have c 6= 0 (since
ω2 = 0). Then SQ = 〈ε− ε′, ε+ ε′〉Q = 〈ε, ε′〉Q

Note that this is equivalent to saying that when only one C∗ factor acts by
t 7→ tpI1 ⊕ tqI2 , the representation will be multiplicity free if and only if n > 2
and p 6= q . Moreover, when there are no C∗ factors, the representation will not
be multiplicity free.
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