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Abstract. We extend wavelet analysis to the symmetric tube domains

and their Shilov boundaries. Our approach is based on the theory of Jordan

algebra.

One-dimensional wavelet analysis can be explained in terms of square-integrable
representation of the affine group (cf. [4], [6]). It is an intermediate between the
function theory on the upper half-plane of one complex variable and the harmonic
analysis on the real line (cf. [7], [9]). In this paper we extend wavelet analysis to
the symmetric tube domains and their Shilov boundaries, the higher dimensional
analogues of the upper half-plane and the real line. We assume that V is a simple
Euclidean Jordan algebra, Ω is the associated symmetric cone and TΩ is the
symmetric tube domain over Ω. In §1, we recall some notations and facts about
Jordan algebras and symmetric cones, especially the Iwasawa subgroup P of the
holomorphic automorphism group of TΩ . P has a natural unitary representation
π on L2(V ). In §2, we decompose L2(V ) into the direct sum of the irreducible
invariant closed subspaces under π . In §3, we give an explicit characterization
of the admissibility condition in terms of Fourier transform and Jordan algebra.
We also give a family of admissible wavelets, which is a complete orthonormal
system in a sense. Finally in §4, we use wavelet transforms to decompose the
weighted L2 -space on the tube domain TΩ into a direct sum of subspaces such
that the first component is exactly the weighted Bergman space.

A good reference on Jordan algebras, symmetric cones and tube domains
is the book [3] by J. Faraut and A. Korányi. Various authors developed the
theory of continuous wavelet in view of square-integrable group representations,
for example, in [5], [8] and in particular [1].

1. Iwasawa subgroup

Throughout this paper we keep the following assumptions and notations, which
are the same as in [3].
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V is an n -dimensional simple Euclidean Jordan algebra with identity e .
xy denotes the Jordan product of x and y . tr(x) and det(x) are defined as in
[3]. We also write ∆(x) instead of det(x). The inner product on V is given by
(x|y) = tr(xy). L(x) is the linear map of V defined by L(x)y = xy . An element
c ∈ V is idempotent if c2 = c . The only eigenvalues of L(c) are 1, 1

2 , and 0.
The corresponding eigenspaces are denoted by V (c, 1), V (c, 1

2
) and V (c, 0). We

fix a Jordan frame {c1, · · · , cr} , where r is the rank of V . Then we have the
Peirce decomposition

V =
⊕

j≤k
Vjk

where

Vii = V (ci, 1) = Rci,

Vij = V (ci,
1

2
) ∩ V (cj ,

1

2
).

d = dimVij , which does not depend on i and j , is called the degree of V . Let

P (x) = 2L(x)2 − L(x2)

be the quadratic representation, and write

x�y = L(xy)− [L(x), L(y)].

For given j and for z(j) ∈⊕r
k=j+1 Vjk the Frobenius transform τ(z(j)) is defined

by
τ(z(j)) = exp(2z(j)�cj).

Let Ω be the symmetric cone which consists of elements x in V such that
L(x) is positive definite. G(Ω) denotes the automorphism group of Ω and G
is the identity component of G(Ω). G has Iwasawa decomposition G = NAK ,
where

K = {g ∈ G : ge = e},

A = {P (a) : a =

r∑

j=1

ajcj , aj > 0},

N = {τ(z(1)) · · · τ(z(r−1)) : z(j) ∈
r⊕

k=j+1

Vjk}

are compact, diagonal and strict triangular respectively. A normalizes N and

(1.1) P (a)τ(z(j)) = τ(z̃(j))P (a)

where

z(j) =
∑

j<k

zjk, zjk ∈ Vjk,

z̃(j) =
∑

j<k

z̃jk, z̃jk ∈ Vjk,

z̃jk =
ak
aj
zjk.



Liu 353

T = NA is a semi-direct product. We will use another parametrization of the
triangular subgroup T . Set

V+ = {u =

r∑

j=1

ujcj +
∑

j<k

ujk : uj > 0, ujk ∈ Vjk}.

For u ∈ V+ , we define

t(u) = P (b1)τ(u(1))P (b2) · · · τ(u(r−1))P (br),

where

bj = c1 + · · ·+ cj−1 + ujcj + cj+1 + · · ·+ cr,

u(j) =
r∑

k=j+1

ujk.

Then
T = {t(u) : u ∈ V+}.

Using (1.1), it is easy to determine the left and right Haar measures of T . The
left Haar measure of T is given by

dµl(t(u)) = 2r
r∏

j=1

u
−d(j−1)−1
j du,

and the right Haar measure of T is given by

dµr(t(u)) = 2r
r∏

j=1

u
−d(r−j)−1
j du.

T acts simply and transitively on Ω. If

x =
r∑

j=1

xjcj +
∑

j<k

xjk

is the Peirce decomposition of x = t(u)e , then

xj = u2
j +

1

2

j−1∑

k=1

‖ukj‖2,

xjk = ujujk + 2

j−1∑

l=1

uljulk.

We identify Ω with T by identification of x = t(u)e and t(u). Then we have

dx = 2r
r∏

j=1

u
d(r−j)+1
j du,

∆(x) =

r∏

j=1

u2
j .
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Therefore
∆(x)−

n
r dx = dµl(t(u)),

which gives the G -invariant measure on Ω.

Let V C denote the complexification of V . TΩ = V + iΩ is the tube
domain over Ω in V C . G(TΩ) denotes the holomorphic automorphism group of
TΩ and G(TΩ)0 is the identity component of G(TΩ). The Iwasawa decomposition
of G(TΩ)0 is given by G(TΩ)0 = NAK , where

K = {g ∈ G(TΩ)0 : g(ie) = ie} ⊃ K,
N = N+N,

N+ = {τu : z 7→ z + u, u ∈ V } ∼= V.

Therefore,
G(TΩ)0 = N+TK.

We call it the partial Iwasawa decomposition as in Terras’ book [11]. T normal-
izes N+ as

t(v)τu = τt(v)ut(v), u ∈ V, v ∈ V+.

P = NA = N+T is called the Iwasawa subgroup. P is a nonunimodular group.
Using the parametrization (u, v) for τut(v) ∈ P , the left Haar measure of P is
given by

dµl(u, v) = 2r
r∏

j=1

v
−d(r+j−2)−3
j du dv =

r∏

j=1

v
−d(r−1)−2
j du dµl(t(v)),

and the right Haar measure of P is given by

dµr(u, v) = 2r
r∏

j=1

v
−d(r−j)−1
j du dv = du dµr(t(v)).

P acts on TΩ simply and transitively. We identify TΩ with P by identification
of τut(v)(ie) and τut(v). If x+ iy = τut(v)(ie) = u+ it(v)e , then

∆(y)−
2n
r dx dy = dµl(u, v),

which is the G(TΩ)0 -invariant measure on TΩ . Note that

Det(g) = ∆(ge)
n
r , g ∈ G.

P has a natural unitary representation on L2(V ) defined by

π(u,v) : f(x) 7→ ∆(t(v)e)−
n
2r f(t(v)−1x− t(v)−1u).

We shall decompose L2(V ) into the direct sum of irreducible invariant closed
subspaces under π .
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2. The decomposition of L2(V )

In order to decompose L2(V ), we need to identify the non-degenerate T -orbits
of V under the contragredient action of T , which is given by x 7→ t(v)′ −1x
where t(v)′ denotes the transpose of t(v). First we prove

Lemma 1. (1) Suppose zij ∈ Vij , wkl ∈ Vkl, i < j, k < l, i 6= l, k 6= j , then

[zij�ci, wkl�ck] = 0.

(2) Suppose zij ∈ Vij , then

(zij�ci)′ = zij�cj .

Proof. (a) To prove (1), we use the facts

Vij · Vjk ⊂ Vik, if i 6= k,

Vij · Vkl = {0}, if {i, j} ∩ {k, l} = Ø,

xy =
1

2
(x|y)(ci + cj), if x, y ∈ Vij

( cf [3], Theorem IV.2.1 (iii) and Proposition IV.1.4 (i) ). We also use the matrix
of z�c with respect to the Peirce decomposition, when c is idempotent in V
and z ∈ V (c, 1

2) ( see [3], proof of Lemma VI.3.1 ). Let

x =
r∑

j=1

xjcj +
∑

j<k

xjk, xjk ∈ Vjk.

We compute separately in four cases.

1) If k = i, l = j, i < j , then

(zij�ci)(wij�ci)x =
xi
4

(zij |wij)cj = (wij�ci)(zij�ci)x.

2) If k = i, l 6= j, i < j, l , then

(zij�ci)(wil�ci)x =
xi
2
zijwil = (wil�ci)(zij�ci)x.

3) If k 6= i, l = j, i, k < j , then

(zij�ci)(wkj�ck)x =
1

2
(zij |xikwkj)cj =

1

2
(wkj |xikzij)cj = (wkj�ck)(zij�ci)x,

where the second equality is due to the associativity of the inner product.
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4) If k 6= i, j, l 6= i, j, i < j, k < l , we may assume i < k , then

(zij�ci)(wkl�ck)x = zij(xikwkl) = wkl(xikzij) = (wkl�ck)(zij�ci)x,

where the second equality follows from the Lemma V.3.2 in [3].

(b) Take x = zij , y = ci + cj in the identity

[L(x), L(y2)] + 2[L(y), L(xy)] = 0

( cf [3]. Proposition II.1.1 ), we obtain

[L(ci), L(zij)] = [L(zij), L(cj)].

It follows that
(zij�ci)′ = ci�zij = zij�cj .

Let zjk ∈ Vjk (j < k) and put

z(j) =
r∑

k=j+1

zjk, z(k) =
k−1∑

j=1

zjk.

Put
τ ′(z(k)) = exp(2z(k)�ck).

If zij ∈ Vij , wkl ∈ Vkl, i < j, k < l, i 6= l, k 6= j , Lemma 1 implies that

τ(zij)τ(wkl) = τ(wkl)τ(zij)

and
τ(zij)

′ = τ ′(zij).

Thus τ ′(zij) is a dual Frobenius transform. Also, by Lemma 1,

τ(z(j)) = τ(zj,j+1) · · · τ(zj,r),

τ ′(z(k)) = τ ′(z1,k) · · · τ ′(zk−1,k).

Therefore, for

u =
r∑

j=1

ujcj +
∑

j<k

ujk, uj > 0, ujk ∈ Vjk,

we have, by also using (1.1),

t(u) = P (b1)τ(u(1))P (b2) · · · τ(u(r−1))P (br)

= P (b1)τ(u12)P (b2)τ(u13)τ(u23) · · ·P (br−1)τ(u1r) · · · τ(ur−1,r)P (br).

t(u)′ = P (br)τ
′(ur−1,r)τ

′(ur−2,r) · · · τ ′(u1r)P (br−1) · · ·P (b2)τ ′(u12)P (b1)

= P (br)τ
′(u(r))P (br−1) · · · τ ′(u(2))P (b1)
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where

u(k) =
k−1∑

j=1

ujk.

For j = 1, · · · , r , let V (j) be the subalgebra V (c1 + · · ·+ cj , 1) of V and
W (j) be the subalgebra V (cr−j+1 + · · · + cr, 1) of V . Pj and P ∗j denote the

orthogonal projections onto V (j) and W (j) respectively. det(j) and det∗(j) are

the determinants relative to V (j) and W (j) respectively. We define

∆j(x) = det(j)(Pjx),

∆∗j (x) = det∗(j)(P
∗
j x).

Furthermore, for s = (s1, · · · , sr). We let

∆s(x) = ∆1(x)s1−s2 · · ·∆r−1(x)sr−1−sr∆r(x)sr ,

∆∗s(x) = ∆∗1(x)s1−s2 · · ·∆∗r−1(x)sr−1−sr∆∗r(x)sr .

For x ∈ V, t(u) ∈ T , we have

(2.1) ∆∗s(t(u)′x) = u2sr
1 · · ·u2s1

r ∆∗s(x) = ∆∗s(t(u)′e)∆∗s(x).

In particular, ∆∗s is invariant under the Frobenius transform τ ′(z(k)) ( cf [3],
Proposition VII.1.5 ).

Set

E = {ε =

r∑

j=1

εjcj : εj = 1 or i},

Ωε = {x ∈ V : x = t(u)′P (ε)e, u ∈ V+}.

Lemma 2. (1) The Ωε ’s are disjoint and simply transitive orbits under the
contragredient action of T . (2)

⋃
ε∈E Ωε is a set with a complementary of

measure zero.

Proof. (a) Suppose that

t(u)′P (ε)e = t(v)′P (δ)e, u, v ∈ V+, ε, δ ∈ E.

Write
g = P (δ)t(v)′ −1t(u)′P (ε).

Since t(u), t(v) are triangular and P (ε), P (δ) are diagonal, g is triangular. On
the other hand, since ge = e , from the Proposition VIII.2.4 in [3] g is an
automorphism of V C and g′ = g−1 . Therefore g is diagonal. Because t(u), t(v)
have positive diagonal elements and P (ε), P (δ) have diagonal elements 1,−1 or
i , it is concluded that u = v, ε = δ .

(b) Set
B = {x ∈ V : ∆∗k(x) 6= 0, k = 1, · · · , r}.
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Obviously, V \ B is a zero measure set. We will prove that B =
⋃
ε∈E Ωε . It is

easy to see that B ⊃ ⋃ε∈E Ωε . Assume that

x =

r∑

j=1

xjcj +
∑

j<k

xjk ∈ B.

By [3], Theorem VI.3.5 we can write

x = τ ′(z(r)) · · · τ ′(z(2))
r∑

j=1

ajcj

where

z(k) =

k−1∑

j=1

zjk ∈
k−1⊕

j=1

Vjk,

aj =
∆∗r−j+1(x)

∆∗r−j(x)
6= 0, j = 1, · · · , r − 1,

ar = ∆∗1(x) 6= 0.

Set

εj =

{
1, if aj > 0,

i, if aj < 0,

uj =
√
|aj |,

ujk = ukzjk.

Then, by (1.1),
x = t(u)′P (ε)e.

Remark. Clearly, Ωe = Ω, Ωie = −Ω. Ωε is a connected open set in V
because Ωε is homeomorphic to V+ . But Ωε may not be convex neither K -
invariant in general.

A simple example of Lemma 2 can be given as follows. Let V be the space
Sym(m,R) of all m×m symmetric matrices and cj = diag(0, · · · , 0, 1, 0, · · · , 0).
An element t in T has the following form: tx = uxu′ , where u is a lower
triangular matrix with positive diagonal elements. Let Σ denote the set of all
diagonal matrices with diagonal elements ±1. Ωσ(σ ∈ Σ) consists of all matrices
of form u′σu . Then Ωσ ’s are disjoint and simply transitive orbits under the
adjoint action of T and

⋃
σ∈Σ Ωσ is a total measure set. Now we are ready to

decompose L2(V ). Set

Hε = {f ∈ L2(V ) : suppf̂ ⊆ Cl(Ωε)}.

Proposition 1. Each of Hε is an irreducible invariant closed subspace of
L2(V ) under π and

(2.2) L2(V ) =
⊕

ε∈E
Hε.
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Proof. (2.2) follows from Lemma 2. Because

(π(u,v)f )̂ (y) = ∆(t(v)e)
n
2r e−i(u|y)f̂(t(v)′y),

it is easy to see that Hε is invariant under π . We need to prove that Hε is
irreducible. Let W be a non-zero invariant closed subspace of Hε under π and
W+ the orthogonal complement of W in Hε . Taking a function g ∈ W , not
identically zero, if f ∈W+ , then

〈f, π(u,v)g〉L2(V ) =

∫

V

f(x)π(u,v)g(x)dx = 0, u ∈ V, v ∈ V+.

Write

g̃(x) = g(−x),

gt(v)(x) = ∆(t(v)e)−
n
2r g(t(v)−1x).

We have

(2.3) 〈f, π(u,v)g〉L2(V ) = f ∗ g̃t(v)(u).

Therefore,

(2.4) (f ∗ g̃t(v))̂ (y) = ∆(t(v)e)
n
2r f̂(y)ĝ(t(v)′y) = 0, a.e. y ∈ V.

Set

S1 = suppf̂ ∩ Ωε,

S2 = suppĝ ∩ Ωε.

Sd1 and Sd2 consist of points of density of S1 and S2 respectively. Sd2 is a
positive measure set since g is not identically zero. If Sd1 has positive measure,
by Lemma 2, there exists t(v0) ∈ T such that S = Sd1 ∩ t(v0)′ −1Sd2 has positive
measure. But

(f ∗ g̃t(v))̂ (y) 6= 0, y ∈ S,
which contradicts (2.4). Therefore f is identically zero. This proves that Hε is
irreducible.

Remark. For F in H2(TΩ), the Hardy space on TΩ , the following limit exists,

lim
y→0,y∈Ω

F (·+ iy) = f, in L2(V ).

Then

H2(V ) = {f ∈ L2(V ) : there exists F ∈ H2(TΩ) such that f = limF}

is called the Hardy space on V . It is easy to see that He = H2(V ) and
Hie = H2(V ).
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3. The admissibility condition

The restriction of π on Hε is square-integrable, i.e. , there exists a function
φ(6= 0) in Hε such that

(3.1) Cφ =
1

‖φ‖2L2(V )

∫

P

|〈φ, π(u,v)φ〉L2(V )|2dµl(u, v) <∞.

(3.1) is called the admissibility condition and φ is called an admissible wavelet.
We want to give a characterization of the admissibility conditioin in terms of
Fourier transform and Jordan algebra, which does not involve any group repre-
sentation.

Lemma 3. Suppose x = t(u)′P (ε)e in Ωε . If

x =
r∑

j=1

xjcj +
∑

j<k

xjk

is the Peirce decomposition of x , then

xj = ε2
ju

2
j +

1

2

r∑

k=j+1

ε2
k‖ujk‖2,

xjk = ε2
kukujk + 2

r∑

l=k+1

ε2
l ujlukl.

Lemma 3 can be proved in a similar way as in [3], Proposition VI.3.8.

For the transformation x = t(u)′P (ε)e , by Lemma 3, it is easy to
compute that

dx = 2r
r∏

j=1

u
d(j−1)+1
j du

=

r∏

j=1

u
2d(j−1)+2
j dµl(t(u)).

Let
s = (1 + d(r − 1), 1 + d(r − 2), · · · , 1).

By (2.1),
∆∗s(x) = ∆∗s(t(u)′e)∆∗s(P (ε)e).

Therefore,
|∆∗s(x)| = ∆∗s(t(u)′e).

and we have

(3.2) |∆∗s(x)|−1dx = dµl(t(u)).

We denoted by AWε the set of all admissible wavelets in Hε .
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Theorem 1. Suppose φ(6= 0) in Hε . Then φ ∈ AWε if and only if

Cφ =

∫

Ωε

|φ̂(y)|2|∆∗s(y)|−1dy <∞.

Proof. Using (2.3), we have

Cφ =
1

‖φ‖2L2(V )

∫

P

|〈φ, π(u,v)φ〉L2(V )|2dµl(u, v)

=
1

‖φ‖2L2(V )

∫

T

(∫

V

|φ ∗ φ̃t(v)(u)|2du
)

r∏

j=1

v
−d(r−1)−2
j dµl(t(v))

=
1

(2π)n
1

‖φ‖2L2(V )

∫

T

(∫

Ωε

|φ̂(y)φ̂(t(v)′y)|2dy
)
dµl(t(v))

=
1

(2π)n
1

‖φ‖2L2(V )

∫

Ωε

|φ̂(y)|2
(∫

T

|φ̂(t(v)′y)|2dµl(t(v))

)
dy.

For y ∈ Ωε , there exists v1 ∈ V+ such that y = t(v1)′P (ε)e . Using (3.2) we
obtain

∫

T

|φ̂(t(v)′y)|2dµl(t(v))

=

∫

T

∣∣∣φ̂
(

(t(v1)t(v))′P (ε)e
)∣∣∣

2

dµl(t(v))

=

∫

T

|φ̂(t(v)′P (ε)e)|2dµl(t(v))

=

∫

Ωε

|φ̂(y)|2|∆∗s(y)|−1dy.

The proof of Theorem 1 is completed.

Suppose φ and ψ are admissible wavelets. We define the “inner produc-
t”of φ and ψ by

〈φ, ψ〉AW =

∫

V

φ̂(y)ψ̂(y)|∆∗s(y)|−1dy.

Remark. If φ ∈ AWε, ψ ∈ AWδ, ε 6= δ , then 〈φ, ψ〉AW = 0. For f ∈ Hε, φ ∈
AWε , we define the wavelet transform of f with respect to φ by

Wφf(u, v) = 〈f, π(u,v)φ〉L2(V ).

Theorem 2. Suppose f, g ∈ Hε, φ, ψ ∈ AWε . Then

〈Wφf,Wψg〉L2(P, dµl) = 〈ψ, φ〉AW 〈f, g〉L2(V ).
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In particular,
‖Wφf‖2L2(P, dµl)

= Cφ‖f‖2L2(V ).

Theorem 2 can be proved in a similar way as Theorem 1. From the theory
of square-integrable representation of nonunimodular groups ( cf [2] ), Theorem
1 and Theorem 2 are equivalent.

We are going to construct a family of admissible wavelets which is com-
plete and orthonormal with respect to 〈·, ·〉AW .

Let {cljk : l = 1, · · · , d} be an orthonormal basis of Vjk . The set of
indices A is defined by

A = {α ∈ V : α =
r∑

j=1

αjcj +
∑

j<k

d∑

l=1

αljkc
l
jk, αj , α

l
jk are nonnegative integers}.

Let L
(µ)
m (s) be the Laguerre polynomials defined by

L(µ)
m (s) =

m∑

j=0

(
m+ µ

m− j

)
(−s)j
j!

=
1

m!
ess−µ

( d
ds

)m
(e−ssm+µ), µ > −1,

and Hm(s) be the Hermite polynomials defined by

Hm(s) =

[m/2]∑

j=0

(−1)j
m!

j!(m− 2j)!
(2s)m−2j = (−1)mes

2( d
ds

)m
(e−s

2

).

The Laguerre polynomials and the Hermite polynomials satisfy the following
orthogonal relations respectively.

∫ ∞

0

e−ssµL(µ)
m (s)L

(µ)
k (s) ds = Γ(µ+ 1)

(
m+ µ

m

)
δmk,

∫ ∞

−∞
e−s

2

Hm(s)Hk(s) ds = π
1
2 2mm!δmk.

And they are complete in L2(R+, e−ssµds) and L2(R, e−s
2

ds) respectively ( cf
[10], Chapter V ). We also need following notations. For

α =

r∑

j=1

αjcj +
∑

j<k

d∑

l=1

αljkc
l
jk ∈ A,

we set

|α| =
r∑

j=1

αj +
∑

j<k

d∑

l=1

αljk,

α! =

r∏

j=1

αj !
∏

j<k

d∏

l=1

αljk!,

α0 = (α1, · · · , αr),

|α0| =
r∑

j=1

αj ,

α0! =

r∏

j=1

αj!.
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For s ∈ Cr, λ ∈ C , we write

s + λ = (s1 + λ, · · · , sr + λ).

The gamma function of the symmetric cone Ω is defined by

ΓΩ(s) =

∫

Ω

e−tr(x)∆s(x)∆(x)−
n
r dx

= (2π)
n−r

2

r∏

j=1

Γ
(
sj − (j − 1)

d

2

)
, Resj > (j − 1)

d

2
, j = 1, · · · , r.

Assume that

v =
r∑

j=1

vjcj +
∑

j<k

d∑

l=1

vljkc
l
jk ∈ V+,

we define

ψα(v) = C

r∏

j=1

e−v
2
j v
ν−nr
j L(µj)

αj (2v2
j )
∏

j<k

d∏

l=1

e−
1
2 (vljk)2

Hαl
jk

(vljk)

where

C = 2
1
2 (νr−n+|α|−|α0|)α0!(α!)−

1
2 ΓΩ(α0 + ν − n

r
)−

1
2 ,

µj = ν − n

r
− 1− d

2
(j − 1), ν > 1 + d(r − 1).

We regard ψα(v) as the functions on group T . From the orthogonal relations and
completeness of the Laguerre polynomials and Hermite polynomials, we conclude
that {ψα(v) : α ∈ A} is an orthonormal basis of L2(T, dµl).

Now we define a family of functions φεα by

φ̂εα(y) =

{
ψα(v), y = t(v)′P (ε)e,

0, y /∈ Ωε.

Then φεα ∈ Hε is admissible and {φεα : ε ∈ E,α ∈ A} is an complete orthonormal
system with respect to 〈·, ·〉AW .

4. The decomposition of L2
ν(TΩ)

The weighted L2 -space on the symmetric tube domain TΩ is defined by

L2
ν(TΩ) = {F : ‖F‖2ν =

∫

TΩ

|F (x+ iy)|2∆(y)ν−
2n
r dx dy <∞}.
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H2
ν(TΩ), the weighted Bergman space, is the subspace of all holomorphic func-

tions in L2
ν(TΩ), i.e. ,

H2
ν(TΩ) = {F ∈ L2

ν(TΩ) : F is holomorphic on TΩ}.

We assume that ν > 1 +d(r− 1) so that H2
ν(TΩ) 6= {0} . We want to decompose

L2
ν(TΩ) into the direct sum of subspaces such that the first component is exactly

the weighted Bergman space H2
ν(TΩ).

Suppose f ∈ Hε, φ ∈ AWε . For ν > 1+d(r−1), we define the weighted
wavelet transform W ν

φ by

F (u+ it(v)e) = W ν
φ f(u+ it(v)e) = C

− 1
2

φ Wφf(u, v)∆(t(v)e)−
ν
2 .

Set
Hεα = {F = W ν

φεα
f : f ∈ Hε}.

Proposition 2. For ν > 1 + d(r − 1) , we have

(4.1) L2
ν(TΩ) =

⊕

ε∈E,α∈A
Hεα

and
He0 = H2

ν(TΩ).

Proof. By Theorem 2, W ν
φ is an isometric operator from Hε into L2

ν(TΩ)

and Hεα ’s are mutually orthogonal subspaces of L2
ν(TΩ). We need to prove

L2
ν(TΩ) ⊂

⊕

ε∈E,α∈A
Hεα.

Suppose F ∈ L2
ν(TΩ). Write Fv(u) = F (u + it(v)e). For v ∈ V+ almost every

where, Fv ∈ L2(V ). We let G(v, y) = F̂v(y). Fix y = t(v1)′P (ε)e ∈ Ωε , then
G(v, y), regarded as the function on T , is in L2(T,∆(t(v)e)ν−

n
r dµl(t(v)) ). Since

{∆(t(v)e)−
ν
2 + n

2r φ̂εα(t(v)′y) : α ∈ A}

is an orthonormal basis of L2(T,∆(t(v)e)ν−
n
r dµl(t(v)) ), we get

G(v, y) =
∑

α∈A
aα(y)∆(t(v)e)−

ν
2 + n

2r φ̂εα(t(v)′y), y ∈ Ωε.

We define the functions f εα by

f̂εα(y) =

{
aα(y), y ∈ Ωε,

0, y /∈ Ωε.

It is easy to see that f εα ∈ Hε . Therefore we have

F (u+ it(v)e) =
∑

ε∈E,α∈A
W ν
φεα
fεα(u+ it(v)e).
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This proves (4.1).

Now we assume that

F (u+ it(v)e) = W ν
φe0
f(u+ it(v)e), f ∈ He.

Note that

tr(y) =
r∑

j=1

yj =
r∑

j=1

v2
j +

1

2

∑

j<k

d∑

l=1

|vljk|2,

∆(y) =
r∏

j=1

v2
j , y = t(v)′e,

we have

φ̂e0(y) =

{
ΓΩ(ν − n

r )−
1
2 2

νr−n
2 e−try∆(y)

ν
2− n

2r , y ∈ Ω,

0, y /∈ Ω.

Therefore,

F (u+ it(v)e) = ∆(t(v)e)−
ν
2− n

2r

∫

V

f(x)φ(t(v)−1x− t(v)−1u) dx

= (2π)−n∆(t(v)e)−
ν
2 + n

2r

∫

Ω

f̂(y)ei(u|y)φ̂(t(v)′y) dy

= (2π)−nΓΩ(ν − n

r
)−

1
2

∫

Ω

ei(u+it(v)e|y)f̂(y)∆(2y)
ν
2− n

2r dy,

where we make use of the equality

∆(t(v)e) = Det(t(v))
r
n = Det(t(v)′)

r
n = ∆(t(v)′e).

We define the map Fν by

g(y) = Fνf(y) = (2π)−
n
2 ΓΩ(ν − n

r
)−

1
2 f̂(y)∆(2y)−

ν
2 + n

2r

and the map Lν by

F (u+ it(v)e) = Lνg(u+ it(v)e) = (2π)−
n
2

∫

Ω

ei(u+it(v)e|y)g(y)∆(2y)ν−
n
r dy.

It is obvious that Fν is an isomorphism from H2(V ) onto L2
ν(Ω) =

L2(Ω,∆(2y)ν−
n
r dy). Lν is an isomorphism from L2

ν(Ω) onto H2
ν(TΩ) ( cf [3] ).

We see that W ν
φe0

= Lν ◦ Fν and

‖F‖2L2
ν(TΩ) = ΓΩ(ν − n

r
)‖g‖2L2

ν(Ω) = ‖f‖2L2(V ).

Clearly, He0 is exactly the weighted Bergman space H2
ν(TΩ).
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