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Abstract. We study group-invariant Berezin transforms from a general

standpoint.

Introduction

In this note we shall study group-invariant Berezin transforms from a general
standpoint. To be more specific, let X be a locally compact space endowed with
a Radon measure µ . Let H be a closed subspace of L2(X, dµ) consisting of
continuous functions and we assume that H has a reproducing kernel κ . Then
the Berezin symbol σ(A) of a bounded linear operator A on H is the function
on X given by σ(A)(x) := (Aex | ex), where ex := κ(·, x)/κ(x, x)1/2 ∈ H . The
Toeplitz operator σ∗(f) with symbol f (f being a bounded function on X )
is the operator σ∗(f)h = P (fh) (h ∈ H) on H , where P is the orthogonal
projection operator L2(X, dµ)→ H . We note that the linear map σ∗ is adjoint
to σ in a suitable sense when both operators are considered on appropriate
Hilbert spaces, and it is this case which is studied in this article. The Berezin
transform B associated to H is, by definition, the composite B := σ ◦ σ∗ . We
are primarily interested in the situation where a locally compact group G acts on
X and H carries a unitary representation π of G arising from this action. We
show in Theorem 4 within this framework that not only is the Berezin transform
B a G -invariant operator but also B resides in the space of a subrepresentation
of the tensor product representation π ⊗ π† (π† being the conjugate of π )
transferred to a subrepresentation of the quasi-regular representation of G on
L2(X0, κ(x, x)dµ), where

X0 := {x ∈ X ; κ(x, x) 6= 0}

and the measure κ(x, x)dµ turns out to be G -invariant. The relationship be-
tween Berezin transforms and this type of tensor product representations was
observed by [7], [6] and [4] in their individual cases and our theorem says that
the relationship holds in quite a general context.
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Our idea in this note is based on the observation made in [6] that when
H is the Fock or the Bergman space, the Berezin transform comes also from
the diagonalization operator for the tensor product of the space of holomorphic
functions and the space of their conjugates. The diagonalization operator that
we consider in our general context is the operator M defined by

M(A)(x) =
1

κ(x, x)
ξ(x)η(x) (x ∈ X0)

for decomposable A = ξ ⊗ η ∈ H⊗ H† , where H† is the Hilbert space conjugate
to H . Identifying H ⊗ H† canonically with the Hilbert space of the Hilbert-
Schmidt operators on H , we show in Proposition 1 that M is a bounded operator
H ⊗ H† → L2(X0, κ(x, x)dµ) with ‖M‖ 5 1. Since obtaining an expression for
the adjoint operator M∗ is a plain matter (Lemma 2) and since M coincides
with σ , we thus get another way of showing that B is a bounded operator on
L2(X0, κ(x, x)dµ) (cf. [2] and [8]). After clarifying the relations of κ , M and B
to the group representation (Lemma 3, Theorem 4), the note is concluded with
two examples. The first example deals with the well-known case of the Fock
representation of the Heisenberg group. The second one concerns irreducible
representations (π,H) of compact Lie groups K in spaces of polynomials. We
will generalize Theorem 1.2 of [3] in a completely analogous way in Theorem 5:
the Berezin transform related to H restricts itself to the K -invariant functions as
the one-dimensional orthogonal projection operator onto the constant functions.
However, the proof given here is an application of Theorem 4 and much simpler.

This note is an outgrowth of a discussion with Professor Detlev Poguntke,
to whom the present author is grateful for his interest in the previous works [3]
and [4].

1. Diagonalization operator

Let X be a locally compact Hausdorff space. We assume throughout this
note that X is second countable for simplicity, though this assumption is not
absolutely necessary. Let µ be a Radon measure on X . Thus µ is a regular
Borel measure such that any compact subset of X has a finite µ -measure. The
inner product of the usual L2 -space L2(X, dµ) will be denoted as (· | ·). Let H
be a closed subspace of L2(X, dµ) consisting of continuous functions. Moreover
we make the following assumption about H .

Assumption. H has a continuous reproducing kernel κ . In other words,
there exists a continuous function κ on X × X such that κ(·, x) ∈ H and
h(x) = (h |κ(·, x)) for all h ∈ H and x ∈ X .

Let H† be the Hilbert space conjugate-linearly isomorphic to H such
that the underlying real Hilbert space is identical with that of H . We form the
algebraic tensor product space H ⊗alg H† carrying the canonical inner product.
The completion yields a Hilbert space H ⊗ H† called the Hilbert space tensor
product of H and H† . It is well-known that H ⊗ H† can be identified with the



Nomura 435

Hilbert space B2(H) of the Hilbert-Schmidt operators on H , the inner product
of B2(H) being (A |B)HS := tr (B∗A). Let

N := {x ∈ X ; κ(x, x) = 0}

and we put X0 := X \N . It is clear that X0 is open, so that X0 itself is locally
compact and second countable.

Proposition 1. Let

M
(∑

ξj ⊗ ηj
)

(x) :=
1

κ(x, x)

∑
ξj(x)ηj(x)

for
∑

ξj⊗ηj ∈ H⊗alg H† and x ∈ X0 . Then the right hand side is independent
of the expression A =

∑
ξj ⊗ ηj of A , and M extends to a bounded linear

operator H⊗ H† → L2(X0, κ(x, x)dµ) with ‖M‖ 5 1 .

Proof. The identification of H ⊗ H† with B2(H) is given by
∑

ξj ⊗ ηj ≡∑
(· | ηj)ξj . Thus if A =

∑
ξj ⊗ ηj ∈ H ⊗alg H† is considered as a finite rank

operator on H , then

(1) M(A)(x) =
1

κ(x, x)

∑
(ξj |κx)(κx | ηj) =

1

κ(x, x)
(Aκx |κx),

where we have put κx(y) = κ(y, x) for simplicity. Hence M(A) is independent
of the expression A =

∑
ξj ⊗ ηj of A .

Now we can assume that {ηj} is orthonormal in the expression A =∑
ξj ⊗ ηj by applying the Gram-Schmidt process to {ηj} if necessary. The

Schwarz inequality shows

|M(A)(x)| 5 1

κ(x, x)

(∑
|ξj(x)|2

)1/2 (∑
|ηj(x)|2

)1/2

.

Since the Bessel inequality gives

∑
|ηj(x)|2 =

∑
|(ηj |κx)|2 5 ‖κx‖2 = κ(x, x),

we then obtain

|M(A)(x)| 5 1

κ(x, x)1/2

(∑
|ξj(x)|2

)1/2

.

Therefore we arrive at
∫

X0

|M(A)(x)|2 κ(x, x) dµ(x) 5
∑

j

∫

X

|ξj(x)|2 dµ(x) =
∑

j

‖ξj‖2

=

∥∥∥∥
∑

j

ξj ⊗ ηj
∥∥∥∥

2

= ‖A‖2,

so that the proof of Proposition 1 is completed.
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From now on we put

dµ0(x) = κ(x, x) dµ(x)

for simplicity. We denote by (· | ·)0 the inner product of L2(X0, dµ0) or of
L2(X, dµ0) to avoid a possible confusion with that of L2(X, dµ). Let M∗ :
L2(X0, dµ0) → H ⊗ H† be the adjoint operator of the bounded linear operator
M : H ⊗ H† → L2(X0, dµ0). Let P be the orthogonal projection operator
L2(X, dµ)→ H .

Lemma 2. Under the identification of H ⊗ H† with B2(H) , one has for
f ∈ L2(X0, dµ0) ∩ L∞(X0)

M∗(f)h = P (fh) (h ∈ H),

where f is extended to a function on X by setting f(x) = 0 for x ∈ N . Thus
for such f , M∗(f) is the Toeplitz operator on H with symbol f .

Proof. By definition we have

(2) (M(A) | f)0 = (A |M∗(f))HS (A ∈ H⊗ H†, f ∈ L2(X0, dµ0)).

Take h1 ∈ H , h2 ∈ H† and consider A := h1 ⊗ h2 . Then, if f ∈ L2(X0, dµ0) ∩
L∞(X0), we have

(3) (M(A) | f)0 =

∫

X

h1(x)h2(x) f(x)dµ = (h1 | fh2) = (h1 |P (fh2)).

The right hand side of (2) for A = h1 ⊗ h2 is rewritten as

(4)
(A |M∗(f))HS = tr

(
M∗(f)∗[(· |h2)h1]

)

= (M∗(f)∗h1 |h2) = (h1 |M∗(f)h2).

From (2), (3) and (4), it follows that M ∗(f)h = P (fh) for any h ∈ H .

For every x ∈ X , let ex be the element of H defined by

ex :=





κx
‖κx‖

(x ∈ X0),

0 (x ∈ N).

For any bounded linear operator A on H , the Berezin symbol σ(A) is, by
definition, the function on X given by

σ(A)(x) = (Aex | ex) (x ∈ X).

The formula (1) says that M(A)(x) = σ(A)(x) for all x ∈ X0 . Thus the Berezin
transform B := σσ∗ on L2(X0, dµ0) associated to H coincides with MM ∗ . It is
clear that B is a positive selfadjoint operator and Proposition 1 implies ‖B‖ 5 1.
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2. Group-invariant Berezin transform

We now consider the situation where a locally compact group G acts on X
continuously and H carries a unitary representation of G arising naturally from
the G -action. Thus we have a continuous map G × X 3 (g, x) 7→ gx ∈ X . In
order to specify the representations that we have in mind, we assume that there
is a continuous function J on G×X with values in C \ {0} such that

(5)

{
J(e, x) = 1 (for all x ∈ X),

J(g1g2, x) = J(g1, g2x)J(g2, x) (g1, g2 ∈ G, x ∈ X),

where e denotes the unit element of G . We assume further that we have a
unitary representation π of G on L2(X, dµ) given by

(6) π(g)f(x) = J(g−1, x)−1f(g−1x) (g ∈ G, x ∈ X)

and that the closed subspace H is π(G)-invariant. While (5) ensures the ho-
momorphy of π , the unitarity condition ‖π(g)f‖2 = ‖f‖2 (f ∈ L2(X, dµ)) is
obviously equivalent to

(7) dµ(gx) = |J(g, x)|−2dµ(x) (g ∈ G, x ∈ X).

Lemma 3. One has

κ(gx, gy) = J(g, x)κ(x, y)J(g, y) (g ∈ G, x, y ∈ X).

In particular, the set X0 as well as N is G-invariant, and the measure dµ0 is
G-invariant.

Proof. By the reproducing property, we have for any h ∈ H

(h |κgy) = h(gy) = J(g, y)π(g−1)h(y)

= J(g, y)(π(g−1)h |κy) = J(g, y)(h |π(g)κy),

where it should be noted that π(g−1)h ∈ H for any g ∈ G by our assumption.
Hence it holds that κgy = J(g, y)π(g)κy , from which the first part of the lemma
follows immediately. Using (7) one obtains the invariance of dµ0 .

Lemma 3 implies that we have another unitary representation ρ of G on
L2(X0, dµ0) given by

ρ(g)f(x) = f(g−1x).

Recall the diagonalization operator M : H⊗ H† → L2(X0, dµ0).
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Theorem 4. (i) The closed subspace Range (M) is invariant under ρ(G) and
carries a representation of G equivalent to π ⊗ π†|Ker (M)⊥ .

(ii) B is a G-invariant operator, that is, Bρ(g) = ρ(g)B for all g ∈ G . More-
over, Range (M) is invariant under B and one has Ker (B) = Range (M)⊥ .

Proof. (i) We first show that M is an intertwining operator for the represen-
tations π ⊗ π† and ρ , that is,

(8) M(π(g)⊗ π†(g)) = ρ(g)M (g ∈ G).

Indeed if A =
∑

ξj ⊗ ηj ∈ H⊗alg H† , then

M(π(g)⊗ π†(g)A)(x) =
1

κ(x, x)

∑
π(g)ξj(x)π(g)ηj(x)

=
|J(g−1, x)|−2

κ(x, x)

∑
ξj(g

−1x)ηj(g−1x).

Since we have κ(x, x)|J(g−1, x)|2 = κ(g−1x, g−1x) by Lemma 3, the last term
is equal to M(A)(g−1x) = ρ(g)M(A)(x), so that we get (8). In particular,
Range (M) is ρ(G)-invariant. Let M = W |M | be the polar decomposition of
the bounded operator M , that is, |M | := (M ∗M)1/2 and W is a partial isometry
with the initial space Ker (M)⊥ and the final space Range (M) (see [5, VI.2.7]
for example). Noting that Ker (M)⊥ is (π ⊗ π†)(G)-invariant, we see that W
gives rise to a unitary intertwining operator for π⊗π† |Ker (M)⊥ and ρ |

Range (M)
.

(ii) Since both π ⊗ π† and ρ are unitary we also have

(π(g)⊗ π†(g))M∗ = M∗ρ(g) (g ∈ G).

Hence we get Bρ(g) = ρ(g)B for all g ∈ G . From (Bf | f)0 = ‖M∗(f)‖2HS

(f ∈ L2(X0, dµ0)), we see that

Ker (B) = Ker (M∗) = Range (M)⊥.

Since it is evident that Range (M) is stable under B , the proof of Theorem 4 is
now complete.

3. Examples

(a) Let X = Cn . Fixing λ > 0, we consider the normalized Gaussian measure

dµ(z) := (λ/π)ne−λ‖z‖
2

dm(z) on Cn , where dm is the euclidean measure on
Cn . The Fock space F of square µ -integrable entire functions on Cn is a closed
subspace of L2(Cn, dµ) with the reproducing kernel κ given by κ(z, w) = eλz·w ,
where z · w denotes the canonical Hermitian inner product of Cn . Take the
(2n+ 1)-dimensional Heisenberg group G = Cn × R with product

(z, t)(z′, t′) = (z + z′, t+ t′ − Im z · z′) (z, z′ ∈ Cn, t, t′ ∈ R).
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It is clear that G acts on Cn by (z, t) · w = z + w . Put

J((z, t), w) := eiλteλw·zeλ‖z‖
2/2 ((z, t) ∈ G, w ∈ Cn).

Then it is easy to verify that J satisfies the conditions in (5) and (7). Thus we
have a unitary representation π of G on L2(Cn, dµ) given by the formula (6).
Moreover it is obvious that F is invariant under π(G). In this case, the space F†

can be identified with the space F of complex conjugates of the functions in F .
Hence the Hilbert space tensor product F⊗F† ≡ F⊗F is regarded as the Hilbert
space of continuous functions F on Cn × Cn such that F (·, w) ∈ F for any
w ∈ Cn and F (z, ·) ∈ F for any z ∈ Cn . Under this identification, the operator

M in Proposition 1 is rewritten as MF (z) = e−λ‖z‖
2

F (z, z). We remark that
in this case we have X0 = X and M is injective with dense range (note that
the G -invariant measure dµ0 equals (λ/π)ndm). Finally it is well-known [2],
[8] that B = exp(−(1/4λ)T ), where T denotes the positive selfadjoint operator
defined by the minus Laplacian −∆ on Cn and the family {exp(−tT )}t>0 is the
one-parameter semigroup of operators generated by T .

(b) Let K be a compact Lie group acting linearly on a finite-dimensional real
vector space X . Equipping X with a K -invariant inner product, we consider the
normalized Gaussian measure dµ(x) := π−n/2e−‖x‖

2

dm(x), where n = dimX .
We have a unitary representation π of K on L2(X, dµ) given by

π(k)f(x) := f(k−1x).

It is evident that the space P(X) of polynomial functions on X is contained in
L2(X, dµ) and π(K)-invariant. Let H 6= {0} be a (necessarily finite-dimensional)
π(K)-irreducible subspace of P(X). Since H is finite-dimensional, the space
H , considered as a closed subspace of L2(X, dµ), has a reproducing kernel κ .
Let p1, . . . , pd (d := dim H) be an orthonormal basis of H . Then we have
κ(x, y) =

∑
pj(x)pj(y). Since the functions pj are polynomials, it is clear from

this expansion that the set N is µ -null. Thus we have the Berezin transform B
on L2(X, dµ0) associated to H , where dµ0(x) := π−n/2κ(x, x)e−‖x‖

2

dm(x). We
note that in this case κ is K -invariant:

κ(kx, ky) = κ(x, y) (k ∈ K, x, y ∈ X).

Theorem 5. B acts on the closed subspace L2(X, dµ0)K of K -invariant
functions as the orthogonal projection operator onto the one-dimensional subspace
of constant functions. In particular, one has ‖B‖ = 1 .

Proof. Since H is π(K)-irreducible, the multiplicity of the trivial representa-
tion of K in the tensor product H⊗H† is equal to one. Under the identification
of H⊗H† with B(H), the unique (up to scalar multiples) K -invariant in H⊗H†

is the identity operator I . Now we see immediately from the formula (1) that
M(I) equals the constant function 1 on X with value 1. Thus Theorem 4 says
that the restriction of B to L2(X, dµ0)K resides in the one-dimensional subspace
C1 . Since it is evident by Lemma 2 that M∗(1) = I , we have B1 = 1 . This
completes the proof of Theorem 5.



440 Nomura

References

[1] Aronszajn, N., Theory of reproducing kernels, Trans. Amer. Math. Soc.
68 (1950), 337–404.

[2] Berezin. F. A., Quantization, Math. USSR Izv. 8 (1974), 1109–1165.

[3] Fujita, E., and T. Nomura, Spectral decompositions of Berezin transfor-
mations on Cn related to the natural U(n)-action, J. Math. Kyoto Univ.
36 (1996), 877–888.

[4] —, Berezin transforms on the 2 × 2 matrix space related to the U(2)×
U(2)-action, Integral Equations Operator Theory, to appear..

[5] Kato, T., “Perturbation theory for linear operators, 2nd ed.,” Springer-
Verlag Berlin, etc. 1976.

[6] Ørsted, B., and G. Zhang, Weyl quantization and tensor products of Fock
and Bergman spaces, Indiana Univ. Math. J. 43 (1994), 551–583.

[7] Peetre, J., and G. Zhang, A weighted Plancherel formula III. The case
of the hyperbolic matrix ball, Collect. Math. 43 (1992), 273–301.

[8] Unterberger, A., and H. Upmeier, The Berezin transform and invariant
differential operators, Comm. Math. Phys. 164 (1994), 563–597.

Department of Mathematics
Faculty of Science,
Kyoto University
Kitashirakawa Oiwake-cho 606-8502,
Sakyo-ku, Kyoto, Japan
nomura@kusm.kyoto-u.ac.jp

Received February 20, 1998
and in final form April 24, 1998


