Addendum to:
 Crofton formulae and geodesic distance in hyperbolic spaces

Guyan Robertson*

Communicated by A. Valette

In Remark 2.6 of [1] we asked whether one could find a direct proof of the fact that the distance function on quaternionic hyperbolic space is a kernel of negative type. This is indeed possible, by considering the following 24 points. For $\sigma \in\{+1,-1\}$ and $\epsilon \in\{ \pm i, \pm j, \pm k\}$, let $x_{\epsilon}^{\sigma}=(3,2 \sigma+2 \epsilon, 0)$ and $y_{\epsilon}^{\sigma}=(3,0,2 \sigma+2 \epsilon)$. Direct calculation shows that

$$
\sum d\left(x_{\epsilon}^{\sigma}, x_{\delta}^{\rho}\right)+\sum d\left(y_{\epsilon}^{\sigma}, y_{\delta}^{\rho}\right)-\sum d\left(x_{\epsilon}^{\sigma}, y_{\delta}^{\rho}\right)=417.03-415.77>0
$$

This shows that the condition for negative type fails with the number +1 being associated to the x_{ϵ}^{σ} and -1 to the y_{ϵ}^{σ}.

We take the opportunity to point out that there is a misprint in Remark 2.6: the word "Hilbert" should be replaced by the word "hyperbolic."

References

[1] Robertson, G., Crofton formulae and geodesic distance in hyperbolic spaces, Journal of Lie Theory 8 (1998), 163-172.

Department of Mathematics
University of Newcastle
NSW 2308
AUSTRALIA
guyan@maths.newcastle.edu.au

Received December 19, 1997

[^0]
[^0]: * This research was supported by the Australian Research Council.

