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Abstract.

Let G be a semi-simple Lie group with finite center and S ⊂ G a semigroup
with intS 6= Ø . A closed subgroup L ⊂ G is said to be S -admissible if S
is transitive in G/L . In [10] it was proved that a necessary condition for
L to be S -admissible is that its action in B (S) is minimal and contractive
where B (S) is the flag manifold associated with S , as in [9]. It is proved
here, under an additional assumption, that this condition is also sufficient
provided S is a compression semigroup. A subgroup with a finite number
of connected components is admissible if and only if its component of the
identity is admissible, and if L is a connected admissible group then L is
reductive and its semi-simple component E is also admissible. Moreover, E
is transitive in B (S) which turns out to be a flag manifold of E .

Key words: semigroups, semi-simple groups, flag manifolds, transitive groups,
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1. Introduction

Let G be a connected and noncompact semi-simple Lie group. The problem we
address here is that of finding the pairs (S, L) formed by a semigroup S ⊂ G
with nonvoid interior and a closed subgroup L of G such that S is transitive in
the homogeneous space G/L. In such a pair we say that L is S -admissible. We
approach this problem by looking at the actions of S and L in the flag manifolds
of G. In [9] one of these flag manifolds, say B (S), was intrinsically attached to S
in such a way that the invariant control set for S on B (S) contracts to one point
through iterations of regular elements inside the interior of S . Thus it becomes
natural to search conditions on L which involve its action on B (S). There is
indeed the necessary condition for the transitivity of S on G/L, proved in [10],
which ensures that the action of L on B (S) must be minimal and contractive.
In this article we prove that these conditions are also sufficient as long as S is a
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compression semigroup and the reflection θ (L) of L under a Cartan involution of
G satisfies the same conditions as L. Once we have this necessary and sufficient
conditions for transitivity we proceed to analyze those subgroups satisfying them.
As we shall see they impose severe restrictions on L so we get, as a rule, that
transitivity of proper semigroups is a rare event. We consider mainly connected
subgroups and make the basic assumption that G is a simple group. In this case
an application of a result by Vinberg [12], namely that a triangular linear group
has a fixed point in any compact invariant subset of the projective space, allow us
to show that any admissible connected subgroup L is reductive and is such that
its semi-simple part E is noncompact and transitive in B (S). Moreover, E is also
admissible and B (S) is a flag manifold of E . So that the connected admissible
subgroups are essentially those noncompact semi-simple subgroups of G which
have a common flag manifold with G. In particular, if B (S) is the maximal flag
manifold then there are no S -admissible proper connected subgroups.

As to the case where L is not connected we observe first that if it has a
finite number of connected components then L is admissible for some S if and
only if its identity component L0 is admissible so that this case is easily reduced
to the connected case. On the other hand, we have little to say about the case
where L has an infinite number of components: We remark that the algebraic
closure zc (L) of L is also admissible and has a finite number of components so
that the semi-simple part of the identity component of zc (L) is also admissible.
A consequence of this fact is that the S -admissible subgroups are discrete if G is
simple and B (S) is the maximal flag manifold of G. Also we reproduce here a
proof for the well known fact in control theory which says that any semigroup with
nonvoid interior in G is transitive in G/L if this homogeneous space admits a finite
invariant measure. This shows in particular that any lattice in G is admissible for
any semigroup with interior points.

2. Preliminaries on semigroups and flags

In this section we recall some results about semigroups in semi-simple Lie groups
which will be needed afterwards. Throughout the paper we let G be a noncompact
semi-simple Lie group with finite center and denote by g its Lie algebra. Let
g = k⊕ s be a Cartan decomposition and denote by θ the corresponding Cartan
involution either of g or of G. Select a maximal abelian subalgebra a ⊂ s and let
Π be the set of roots of the pair (g, a). We shall say that H ∈ a is regular real
provided α (H) 6= 0 for every root α . More generally, H ∈ g is regular real if it
is conjugate to a regular real element in a, or equivalently if it is regular real in
some abelian subalgebra conjugate to a. In a similar way, we say that h ∈ G is
regular real if h = expH for some regular real H ∈ g.

Choose a simple system of roots Σ ⊂ Π and denote by Π+ the correspond-
ing set of positive roots. Let m be the centralizer of a in k. The standard minimal
parabolic subalgebra of g is given by p = m⊕ a⊕ n where

n =
∑

α∈Π+

gα

is the nilpotent constituent of the Iwasawa decomposition. As usual we denote by
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K and N the connected subgroups whose Lie algebras are k and n respectively.
The normalizer P of p in G is a minimal parabolic subgroup and G/P is the
maximal flag manifold of G. It is well known that p is the Lie algebra of P .

Given Θ ⊂ Σ let 〈Θ〉 be the subset of positive roots generated by Θ and
denote by n− (Θ) the subalgebra spanned by the root spaces g−α , α ∈ 〈Θ〉. We
denote by pΘ the parabolic subalgebra

pΘ = n− (Θ)⊕ p .

Its normalizer PΘ in G is a parabolic subgroup whose Lie algebra is pΘ . We
put BΘ = G/PΘ for the corresponding flag manifold. If MΘ = PΘ ∩ K then
BΘ = K/MΘ .

Recall that if h ∈ G is regular real then it has a finite number of fixed
points in BΘ . Each fixed point is hyperbolic and there is just one attractor, i.e.,
whose stable manifold is open and dense. The decomposition of BΘ into stable
manifolds of h is the so called Bruhat decomposition. In fact, the stable manifolds
are the orbits of the group N− = exp n− where n− is the subalgebra opposed to n.
We note furthermore that the open stable manifold is also given by N−Θ b0 where
b0 = PΘ is the origin in BΘ = G/PΘ and N−Θ = exp n−Θ . Here

n−Θ =
∑

α

gα ,

with the sum extended to the negative roots outside −〈Θ〉, is the subalgebra
spanned by root spaces complementary to pΘ in g.

Denote by W the Weyl group of the pair (g, a), and by WΘ the subgroup
of W generated by the reflections with respect to the roots in Θ ⊂ Σ. In [9,
Section 4] it was associated with a semigroup S ⊂ G with intS 6= Ø a subgroup
W (S) ⊂ W which accounts for the number of S -control sets on the maximal
boundary B . It was shown that W (S) = WΘS for some subset ΘS of the simple
system of roots. We use the notation B (S) = BΘS . The main property of B (S)
which will be used here is that if C ⊂ B (S) stands for the invariant control set for
S then C is contained in the stable manifold of the attractor b in B (S) of any
h ∈ intS which is regular real. This implies that C is contractive with respect to
h in the sense that hkx→ b as k →∞ for all x ∈ C .

In the sequel we shall use often the notion of contractive sequences in G
(see Guivarc’h and Raugi [3]): Let gk be a sequence in G and write its polar
decomposition as gk = vkakuk with vk, uk ∈ K and ak ∈ clA+ . Here A+ = exp a+ ,
where a+ ⊂ a is an open Weyl chamber. For a root α ∈ Π and a ∈ exp a, put
φα (a) = exp (α (log a)). The sequence gk is said to be contractive if φα (ak)→ 0 as
k → +∞ for all negative roots α . Moreover, the sequence is said to be contractive
with respect to a flag manifold BΘ if φα (ak)→ 0 for every negative root α which
is not in the subset −〈Θ〉 of roots spanned by −Θ.

In general, given a sequence gk = vkakuk there exists a subsequence gkn =
vknaknukn such that vkn → v and ukn → u in K , and there is a map τ : n−Θ → n−Θ
such that for every Y ∈ n−Θ

gknu
−1 exp (Y ) b0 → v exp (τY ) b0. (1)
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(see [3] and [10, Prop. 2.5]). The linear map τ is diagonal and its eigenvalues are
limφα (ak) with α a negative root outside −〈Θ〉. Because of this the limit in (1)
is uniform for Y in a compact subset of n−Θ . The subsequence is contractive with
respect to BΘ if and only if τ = 0. In this case (1) implies that gknx → vb0 for
all x ∈ u−1N−Θ b0 , that is, for all x of the form x = u−1 exp (Y ) b0 with Y ∈ n−Θ .

From the limit in (1) we get the following criteria: If gkx→ x0 for all x in
an open subset of BΘ then gk admits a contractive subsequence. In fact, it follows
from (1) that τY = 0 for Y in an open subset of n−Θ so that τ = 0 (c.f. Corollary
2.6 in [10]).

Another fact about contractive sequences we shall need below is that if gk
is a contractive sequence with respect to BΘ then for every h, l ∈ G, hgkl admits
a contractive subsequence. This follows immediately from Corollary 2.6 in [10]
(see also [3, Cor. 2.3]). In fact, if gk is contractive then gkl converges to a point
for an open and dense subset. So that the same happens to hgkl and hence this
sequence admits a contractive subsequence.

In the sequel we shall say that the action of a subgroup L ⊂ G on a flag
manifold B is contractive, or simply that L is contractive on B , if there is a
contractive sequence gk ∈ L with respect to B .

Recall that the action of a group L on the topological space X is said to
be minimal if every orbit Lx, x ∈ X is dense in X . Equivalently, the action is
minimal if there is no proper invariant closed subset. In the sequel we say simply
that L is minimal on X if its action on X is minimal.

3. Transitive semigroups

Let S ⊂ G be a semigroup with int S 6= Ø. A closed subgroup L ⊂ G is said to be
S -admissible if S is transitive in G/L. From [10] we have the following necessary
conditions for a subgroup to be S -admissible.

Theorem 3.1. Let S ⊂ G be a semigroup with intS 6= Ø and L ⊂ G a closed
subgroup. In order that S is transitive on G/L it is necessary that

1. the action of L on B (S) is minimal, and

2. L admits a contractive sequence with respect to B (S).

The objective of this section is to prove a partial converse of this theorem,
namely that the conditions on L are sufficient as far as S is a compression
semigroup and the subgroup θ (L) satisfies the same conditions as L, where θ
is a Cartan involution of G.

We consider here only those compression semigroups of their invariant
control sets in a flag manifold. More precisely, let C be the invariant control
set for S in B (S). Then S is the compression semigroup of C if

S = {g ∈ G : gC ⊂ C}. (2)

We note that such semigroups indeed exist. In fact, let S0 be a semigroup
with int S0 6= Ø and denote by C its invariant control set on B (S0). If S is
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defined by (2) then C is the invariant control set for S because S0 ⊂ S . Any
maximal semigroup with nonempty interior in G is the compression semigroup of
its invariant control set in some minimal flag manifold (see [9]).

We start by proving the following lemma. For its statement we fix an
Iwasawa decomposition G = KAN and the minimal parabolic subgroup P =
MAN . If Q ⊃ P is a parabolic subgroup we denote by b0 the origin in the flag
manifold B = G/Q.

Lemma 3.2. Let σ stand for the open Bruhat component containing b0 . Take
k ∈ K and let C ⊂ kσ be a compact subset. Suppose that gi ∈ G is a sequence
such that gib0 → kb0 . Then for some subsequence gij we have that C ⊂ θ

(
gij
)
σ ,

j ≥ j0 .

Proof. Let gi = uiaini stand for the Iwasawa decomposition of gi with ui ∈ K ,
ai ∈ A and ni ∈ N . Then gib0 = uib0 because b0 is invariant under aini . Also,
θ (gi) = uia

−1
1 θ (ni), and since σ is invariant under AN− , θ (gi) σ = uiσ . By

taking a subsequence we can assume that ui → u ∈ K . Since uib0 → kb0 and
uib0 → ub0 we have that ub0 = kb0 . Therefore if we write B = K/MΘ then
u = km with m ∈MΘ .

Now, MΘ normalizes N−Θ and fixes b0 so that mσ = σ . Therefore if we put
vi = uim

−1 then vi → k , viσ = uiσ and kv−1
i → 1. On the other hand, the action

of K on B is continuous with respect to the compact-open topology on the set of
continuous maps of B . Therefore the fact that C ⊂ kσ implies that kv−1

i C ⊂ kσ
for i big enough. This means that v−1

i C ⊂ σ , that is, C ⊂ viσ = uiσ . Since
θ (gi) σ = uiσ , the lemma follows.

The proof that a semigroup is transitive on a homogenous space is simplified
by the following device.

Lemma 3.3. Let G be a topological group, L ⊂ G a closed subgroup and S ⊂ G
a semigroup with intS 6= Ø. We have,

1. If S is transitive on G/L then int gSg−1 ∩ L 6= Ø for all g ∈ G.

2. Reciprocally, suppose that G/L is connected. Then S is transitive in G/L
if int gSg−1 ∩ L is not empty for all g ∈ G.

Proof. See Corollary 2.2 in [10].

As mentioned above we shall prove the converse of Theorem 3.1 under the
additional assumption that the action of θ (L) is contractive and minimal. At this
regard we note that contractivity of the L-action ensures trivially that the action
of θ (L) is contractive. In fact, let gn ∈ L be a contractive sequence and write
gn = unanvn for its polar decomposition. Then θ (g−1

n ) = v−1
n anu

−1
n has the same

radial component as gn , so that θ (g−1
n ) is also contractive.

We can prove now the main result of this section.
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Theorem 3.4. Let S ⊂ G be a semigroup with intS 6= Ø and denote by C its
invariant control set on B (S). Suppose that S is the compression semigroup of
C , i.e.,

S = {g ∈ G : gC ⊂ C}.
Let L be a closed subgroup and assume that its action on B (S) is contractive.
Assume also that both L and θ (L) are minimal on B (S). Then S is transitive
on G/L.

Proof. We keep fixed an Iwasawa decomposition of G which gives rise to a
standard parabolic subgroup which is assumed to be the isotropy at the origin b0

of B (S). The corresponding open Bruhat component N−b0 will be denoted by
σ . We can assume without loss of generality that C ⊂ σ .

Take g ∈ G. We wish to show that L ∩ int gSg−1 6= Ø. The fact that S is
a compression semigroup implies that

gSg−1 = {h ∈ G : hgC ⊂ gC}.
Therefore in order to prove that the above intersection is not trivial it is enough
to show that there exists l ∈ L such that lgC ⊂ int gC . In fact, the action of
G on B (S) is continuous with respect to the compact-open topology so that l
belongs to int (gSg−1) if and only if it maps gC into its interior. This l ∈ L will
be provided by a contracting sequence in L.

Let gi = xiaiyi ∈ L with ai ∈ clA+ and xi, yi ∈ K be a contracting
sequence such that xi → x and yi → y−1 with x, y ∈ K . The limit in (1) implies
that gib→ xb0 for all b ∈ yσ . Since L is minimal on B (S), we can find h ∈ L such
that b1 = hxb0 belongs to int gC . Hence the contracting sequence li = hgi ∈ L
satisfies lib→ b1 for all b ∈ yσ .

On the other hand, write g = kan, k ∈ K , a ∈ A, n ∈ N− for the Iwasawa
decomposition of g . Then gσ = kσ and gC ⊂ kσ because C ⊂ σ . Since the
action of θ (L) is minimal on B (S), there exists a sequence mi ∈ θ (L) such that
miyb0 → kb0 . By Lemma 3.2 there exists i big enough such that gC ⊂ θ (miy)σ .
Since θ (miy) = θ (mi) y we get m ∈ L such that gC ⊂ myσ .

Now, take the contracting sequence hi = lim
−1 ∈ L. Then hib→ b1 for all

b ∈ myσ . In particular, this sequence contracts gC to b1 , and the convergence is
uniform in gC because this set is compact. But b1 ∈ int gC , so that there exists i0
such that hi0gC ⊂ int gC . Since hi0 ∈ L this shows that L intercepts the interior
of the compression semigroup of gC , concluding the proof of the theorem.

This theorem raises the question of whether the minimal action of L implies
that the action of θ (L) is also minimal. For the time being we do not know
the complete answer to this question. However there are some cases where the
answer is in the affirmative. In fact, given a flag manifold G/Q there is the dual
flag manifold G/θ (Q) which is diffeomorphic to G/Q through the commutative
diagram

G/Q - G/θ(Q)
θ

G - G
θ

? ?
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where θ (gQ) = θ (g) θ (Q). The actions of G on G/Q and G/θ (Q) are inter-
changed by θ through the formula θ ◦g = θ (g)◦θ . This implies that L is minimal
on G/Q if and only if θ (L) is minimal on G/θ (Q). In some cases θ (Q) is con-
jugate to Q and hence G/θ (Q) coincides with G/Q. In these cases the minimal
action of L on G/Q is equivalent to the minimal action of θ (L). Conjugacy of
Q and θ (Q) holds for instance if Q is a minimal parabolic subgroup or for any
parabolic subgroup if θ is an inner automorphism of G. We recall that if g is a
real form of a simple complex Lie algebra then θ is an inner automorphism if the
diagram of the roots of the pair (g, a) is not of the type Al , Dl , l odd or E6 .
Hence in a good deal of groups the minimal action of L implies that of θ (L). In
addition to these conditions on the flag manifolds, we mention that if L is con-
nected then it will be proved in the next section that L is reductive. This implies
that L is invariant under some Cartan involution. Two Cartan involutions θ1 and
θ2 are related by θ1 = θ2 ◦Cg for some g ∈ G where Cg (h) = ghg−1 . Hence if the
action of L is minimal on G/Q, the same happens to the action of θ (L).

Regarding still the minimal action of θ (L) we note that if L is S -admissible
then θ (L) is minimal in B (S). In fact, S is transitive in G/L if and only if S−1

is transitive. Now, it follows from the theory in [9] that B (S−1) = G/θ (Q) if
B (S) = G/Q. Therefore L is minimal on G/θ (Q), which by the above duality
implies that θ (L) is minimal on B (S).

As a final comment about Theorem 3.4 we stress that it ensures that S
is transitive in G/L only in case S is the compression semigroup of the subset
C . This condition is needed because our method of proof consists in showing
that some element of L maps C into its interior. We do not know, however, if
the conditions of Theorem 3.4 remain sufficient for more general semigroups with
nonvoid interior.

4. Connected subgroups

The conditions of Theorem 3.1 open the way to a close analysis of the admissible
subgroups. In this section we start this analysis by reducing the possibilities for
the connected subgroups. We do not need here the contractive property of an
admissible subgroup, but only its minimal action in some flag manifold. Therefore,
along this section B stands for a flag manifold of G and L for a connected Lie
subgroup whose action on B is minimal. We do not assume in advance that L is
closed in G.

Since we only consider semi-simple groups with finite center, we may assume
without loss of generality that the center is trivial, so we are actually working in
the identity component of the adjoint group Ad (G). Also, in order to simplify
most of the arguments we assume from now on that g is simple.

In this context we shall prove below that L is reductive, i.e., its Lie algebra
l is the direct sum of its center z and a semi-simple component, say e. With the
further assumption that L is closed it turns out that its action on B is actually
transitive.

The proof that L is reductive uses successively the following lemma which
is a consequence of a theorem of Vinberg [12]. In the sequel we say that a nilpotent
subalgebra h ⊂ g is triangular in g if the weights of the adjoint representation of
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h in g are real.

Lemma 4.1. Let Q be a parabolic subgroup and put B = G/Q. Let also L ⊂ G
be a connected subgroup with Lie algebra l, and suppose that its action on B is
minimal. Then {0} is the only nilpotent triangular ideal of l.

Proof. Let i be a nilpotent triangular ideal. The connected subgroup I whose
Lie algebra is i is normal in L. If we check that I has a fixed point in B then
we are done. In fact, if x is fixed by I then any y ∈ Lx is also fixed because
I is normal. Since Lx is dense in B this implies that Iz = z for all z ∈ B .
But the action of G on B is effective because we are assuming G to be simple
and centerless. Therefore I has a fixed point in B if and only if I = {1}, or
equivalently, i = 0.

The existence of a point fixed by I follows from [12]: Since i is triangular
the adjoint action of i and I on g can be represented as a group of triangular
matrices. This property is preserved when passing to exterior products of the
adjoint representation. Since Q is the normalizer of its Lie algebra, B can be
realized as a compact projective G-orbit in some exterior product. Now [12]
ensures that any triangular group has a fixed point in a compact invariant subset
of a projective space. It follows that I has a fixed point in B , showing the lemma.

From this lemma we get at once that the solvable radical x of l, i.e., the
maximal solvable ideal, is abelian. In fact, by the Theorem of Lie on represen-
tations of solvable Lie algebras, the derived algebra x′ is triangular in g. Hence
the lemma implies that x′ = 0, so that x is abelian. Taking into account the Levi
decomposition of l, we conclude:

Lemma 4.2. Let the notations and assumptions be as in Lemma 4.1. Then

l = e⊕ v

with e semi-simple and v and abelian ideal of l.

Once we have this lemma we proceed to show that l is a reductive Lie
algebra, or equivalently, that X ∈ v commutes with l. In order to show this we
must look in detail at the adjoint representation of v in g, and afterwards at the
adjoint representation of e in v.

For X ∈ v denote by SX and NX respectively the semi-simple and nilpotent
parts of the Jordan decomposition of adg (X). Since g is semi-simple, there are
unique XS, XN ∈ g such that SX = ad (XS) and NX = ad (XN ). We have
X = XS +XN , and of course these elements of g commute between themselves.

Let sv denote the subspace of g spanned by XS with X running through
v. Similarly, denote by nv the subspace spanned by XN with X ∈ v. We have,

Lemma 4.3. The subspaces sv , nv and sv + nv are abelian subalgebras of g.
Moreover, nv is triangular whereas the elements of sv are semi-simple.
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Proof. From the general theory of representations of nilpotent Lie algebras (see
e.g. [11]), we can decompose the complexification gC of g into weight spaces for
the adjoint representation of v. For each X ∈ v the restriction of adgC (X) to
a weight space has just one eigenvalue. Hence the restriction of SX to a weight
space is a scalar matrix. This implies that

adg[XS, YS] = adgC[XS, YS] = [SX , SY ] = 0

for any pair X, Y ∈ v. Since g is centerless, it follows that [XS, YS] = 0 so that sv

is abelian. Using again the fact that SX is a scalar matrix inside a weight space
and taking into account that each weight space is NX -invariant, we get for all
X, Y ∈ v, that [XS, YN ] = [SX , NY ] = 0. Since v is abelian, it follows that

0 = [X, Y ] = [XN , YN ].

Hence nv is an abelian subalgebra commuting with sv , so that sv + nv is also
abelian.

The last statement follows from the fact that NX , X ∈ v, are simulta-
neously triangular, and the complexifications of SX , X ∈ v, are simultaneously
diagonalizable.

From the construction of the subspaces, it is clear that

v ⊂ sv + nv, sv ⊂ v + nv and nv ⊂ v + sv. (3)

In order to continue we must look at the bracket relations between these
subspaces and the semi-simple component e of l. For this note first that since
v is an abelian ideal of l, adl (X)2 = 0 for all X ∈ v. On the other hand, the
linear maps SX and NX , X ∈ v are polynomials in adg (X) so that they leave
invariant both v and l. Hence the restriction of SX to l is zero. This implies that
[e, sv] = 0. In particular, sv is invariant under adg (e). Combining this with the
inclusions (3) we conclude that sv + nv is an invariant subspace under the adjoint
representation of e in g. We show below that nv is also invariant. Before that we
need the following lemma, which will be needed also afterwards in the proof that
L is transitive.

Lemma 4.4. Let X ∈ sv then the eigenvalues of adg (X) are purely imaginary.

Proof. Since adg (X) is semi-simple, X belongs to some Cartan subalgebra,
say j (see [13, Prop. 1.3.5.4]). For this subalgebra there exists a Cartan decompo-
sition g = k⊕ s such that

j = jk ⊕ js

where jk = j ∩ k and js = j ∩ s. The eigenvalues of the adjoint in g of the
elements in jk are purely imaginary and those of js are real. Let θ be the
Cartan involution associated with the Cartan decomposition and consider the
inner product Bθ (Y, Z) = −〈Y, θZ〉 where 〈·, ·〉 is the Cartan-Killing form of
g. With respect to Bθ , adg (Y ), Y ∈ k is skew-symmetric while adg (Z), Z ∈ s

is symmetric.
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Now, put l1 = l+(sv + nv) and take a basis of g which is orthonormal with
respect to Bθ and such that its first elements are in l1 . Since SX annihilates l
and sv + nv is abelian it follows that the matrix of adg (X) in this basis is of the
form

adg (X) =

(
0 ∗
0 ∗

)
.

On the other hand if we write X = Xk +Xs with Xk ∈ jk and Xs ∈ js then

adg (Xk) =

(
a b
−bt c

)

with a and c skew-symmetric because Xk ∈ k. Also, Xs ∈ s hence

adg (Xs) =

(
α β
βt γ

)

with α and γ symmetric. Comparing these matrices we get a = α = 0 and β = b.
Moreover, Xk, Xs ∈ j and j is abelian. Hence

adg[Xk, Xs] =

(
2bbt ∗
∗ ∗

)
= 0,

which shows that b = β = 0. Therefore Xs centralizes l1 . We can now apply
Lemma 4.1 to show that Xs = 0: The subspace spanned by Xs is an ideal of l1 .
Let L1 be the connected subgroup whose Lie algebra is l1 . Since L is assumed
to be connected, L ⊂ L1 , hence L1 is minimal on B . Since adg (Xs) has real
eigenvalues, the ideal spanned by Xs is triangular so that Xs = 0 concluding the
proof of the lemma.

Now we can prove that nv is invariant under the adjoint representation of e.

Lemma 4.5. Let s⊥v denote the orthogonal complement of sv with respect to
the Cartan-Killing form 〈·, ·〉 of g. Then nv = s⊥v ∩ (sv + nv) , and nv is adg (e)-
invariant.

Proof. If X ∈ sv and Y ∈ nv then adg (X) adg (Y ) is upper triangular. Hence

tr (adg (X) adg (Y )) = 0.

This means that nv ⊂ s⊥v ∩ (sv + nv). On the other hand, Lemma 4.4 implies
that 〈X,X〉 < 0 if 0 6= X ∈ sv . It follows that the restriction to sv of 〈·, ·〉 is
nondegenerate so that s⊥v ∩ sv = 0 and g = s⊥v ⊕ sv . Therefore

sv + nv = sv ⊕
(

s⊥v ∩ (sv + nv)
)
.

Since nv ⊂ s⊥v ∩ (sv + nv) these subspaces are equal.

Finally, note that the adg (e)-invariance of sv implies that s⊥v is also invari-
ant. Since sv + nv is invariant we conclude that nv is an invariant subspace under
the adjoint action of e.
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From this lemma it is easy to apply Lemma 4.1 to show that the subspace
nv reduces to zero: Put l1 = l+ (sv + nv). Then l1 is a subalgebra because sv + nv

is adg (e)-invariant. Since nv is invariant under adg (e), it is an ideal in l1 . By
construction nv is triangular. Let L1 be the connected subgroup whose Lie algebra
is l1 . The assumption that L is connected implies that L ⊂ L1 so that L1 is
minimal on B . Therefore by Lemma 4.1, nv = 0. This implies that v = sv and
since sv commutes with l, v is the center of l.

Summarizing all the previous discussion in this section we have:

Theorem 4.6. Suppose that a connected subgroup L ⊂ G acts minimally on a
flag manifold B of G. Let l be the Lie algebra of L. Then l is reductive, that
is, l = e ⊕ z with e semi-simple and z the center of l. Moreover, for all X ∈ z,
adg (X) is semi-simple and has purely imaginary eigenvalues.

Up to this point the only requirement about L, in addition to its minimal
action, was that it is a connected Lie subgroup. We impose now the condition
that L is closed and prove that its action on B is actually transitive. Note first
that since we are assuming that G is centerless, the fact that the eigenvalues of
adg (X) are imaginary implies that the connected subgroup Z whose Lie algebra
is z is relatively compact in G. Hence Z is relatively compact in L if L is closed.
Its closure Z is contained in the center of L. Hence the Lie algebra of Z is z.
Since Z is connected it follows that Z = Z and Z is compact.

Theorem 4.7. Suppose that a closed and connected subgroup L ⊂ G acts
minimally on a flag manifold B of G. Then L is transitive on B .

Proof. Write as above l = e + z with e semi-simple and z the center of l.
Denote by E and Z the connected subgroups whose Lie algebras are e and z
respectively. Every g ∈ L is a product of exponentials of elements of l. Since Z
is a central subgroup, L = ZE with Z is compact. However E has a compact
orbit in B because it is a semi-simple subgroup. Let Ex0 be this orbit. Then
Lx0 = ZEx0 is compact. But the action of L is minimal. Hence Lx0 = B , and L
is transitive.

5. Semi-simple subgroups

In the previous section we restricted attention to subgroups acting minimally on
some flag manifold. We return here to the admissible groups, which satisfy also a
contractive property.

For the admissible groups we have a slightly stronger result than Theorem
4.7, namely that the semi-simple component of L is also admissible. In fact, let
S ⊂ G be a semigroup with intS 6= Ø and suppose that S is transitive in G/L.
Then L = ZE with Z a central compact subgroup and E semi-simple. Hence
L/E is a compact group so that the canonical fibration

G/E −→ G/L

is a connected principal bundle with compact structure group L/E . This implies
that S is transitive on G/L if and only if it is transitive on G/E (see [6] or [2]).
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Hence E is S -admissible provided L is S -admissible and if this is the case then
E is also transitive on the flag B (S), as follows from Theorem 4.7.

After these preliminaries we proceed to the analysis of the admissible semi-
simple groups.

Throughout this section we let E stand for an admissible, noncompact and
connected semi-simple subgroup of G. As before we denote by S a semigroup
with nonempty interior which is transitive on G/E , so that the action of E on
B (S) is transitive and contractive.

Let e be the Lie algebra of E and write e = k1 + s1 for a Cartan decom-
position of e. It is well known that there exists a Cartan decomposition g = k + s

such that k1 ⊂ k and s1 ⊂ s. Also, we can choose compatible abelian subalgebras
a1 ⊂ a with a1 maximal in s1 and a maximal in s. With these choices we denote
by Π the set of roots of the pair (g, a) and by Π1 the set of roots of (g1, a1).

Given a root α ∈ Π1 and H ∈ a1 , α (H) is an eigenvalue of ade (H) and
hence of adg (H). However the eigenvalues of adg (H) are given by the values in
H of the roots in Π because a1 ⊂ a. Therefore every root in Π1 is the restriction
to a1 of a root in Π. In general a set of positive roots in Π does not restrict to
a set of positive roots of Π1 . But we can choose a simple system of roots for Π
compatible with a simple system for Π1 , that is, in such a way that the positive
roots in Π contain the positive roots in Π1 . In fact, let H ∈ a1 be a regular real
element of e. Then H belongs to the closure of a Weyl chamber in a. Let a+

be one of these chambers, and denote by Σ the corresponding simple system of
roots and by Π+ the set of positive roots thus obtained. The roots in Π+ assume
nonnegative values in H . By the same token, the values assumed in H by the
roots in Π− = −Π+ are ≤ 0.

On the other hand, H is regular real in e so that it belongs to a Weyl
chamber a+

1 ⊂ a1 . Let

Π+
1 = {α ∈ Π1 : α (H) > 0}

be the set of positive roots and denote by Σ1 the simple system associated with
a+

1 . For α ∈ Π+
1 we have α (H) > 0, and since the values of the roots in Π− are

nonpositive in H , α is the restriction to a1 of some β ∈ Π+ . Therefore, we have

Lemma 5.1. Let Π+
1 be a positive system of roots for (e, a1) and denote by a+

1

the corresponding Weyl chamber. Pick H ∈ a+
1 . Then there is a positive system

Π+ for (g, a) such that α (H) ≥ 0 for all α ∈ Π+ . In this case Π+
1 and Π+ are

compatible, i.e., every β ∈ Π+
1 is the restriction to a1 of some α ∈ Π+ .

Compatible positive systems induce compatible Iwasawa decompositions.
In fact, with the same notations as in the lemma, put

n1 =
∑

β∈Π+
1

eβ.

Then n1 is the sum of eigenspaces of ade (H) associated to positive eigenvalues.
Since these eigenspaces are contained in n =

∑
α∈Π+ it follows that n1 ⊂ n. We

remark that even if the simple systems are compatible it may happen in general
that a+

1 is not contained in cl a+ . This is due to the fact that some root α ∈ Π+
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may be negative in some H ′ ∈ a+
1 . Nevertheless we shall prove below that for

admissible subgroups the inclusion between the Weyl chambers actually holds.

Let B be a flag manifold of G. If we take a simple system Σ for Π, then
B = BΘ for some subset Θ ⊂ Σ. Let Ψ ⊂ Σ be the subset of simple roots which
vanish identically on a1 . The next statement relates Θ and Ψ in case the action
of E on BΘ is contractive.

Proposition 5.2. Take compatible simple systems Σ1 and Σ, and suppose that
Ψ ⊂ Θ. Then the action of E on BΘ is contractive.

Reciprocally, if the action of E on the flag manifold B is contractive then
there are Weyl chambers a+

1 ⊂ a1 and a+ ⊂ a, defining compatible simple systems
Σ1 and Σ such that if B = BΘ with Θ ⊂ Σ, and Ψ ⊂ Σ is as above the annihilator
of a1 in Σ then Ψ ⊂ Θ.

Proof. Keeping the notations as above, a1 intercepts the closure of a+ because
the simple systems were chosen to be compatible. Set

b = {H ∈ a : α (H) = 0 for all α ∈ Ψ}

if Ψ 6= Ø and b = a if Ψ = Ø. Clearly, a1 ⊂ b. The intersection of b with the
closure of a+ is given by those elements H ∈ b such that α (H) ≥ 0 for all α ∈ Σ.
This is a cone in b whose interior is the “subchamber”

b+ = {H ∈ b : α (H) > 0, α ∈ Σ− Ψ}.

By the choice of a+ , a1 intercepts the closure of b+ . Actually, a1 intercepts b+

itself because Ψ is exactly the subset of simple roots which vanish on a1 . Hence
there exists H ∈ a1 ∩ b+ . This means that α (H) > 0 for every root α ∈ Σ− Ψ.
But by assumption Ψ ⊂ Θ, so that α (H) < 0 for every negative root outside
−〈Θ〉. Therefore the sequence exp (nH), n ≥ 0 is contractive in BΘ , showing the
first statement.

For the converse take at first an arbitrary Weyl chamber a+ ⊂ a, and use
the notations A = exp a, A+ = exp a+ and A1 = exp a1 . Then B = BΘ for
some Θ ⊂ Σ, where Σ is the simple system associated with a+ . Let gn ∈ E
be a sequence which is contractive w.r.t. B . Then there are the two polar
decompositions

• gn = unhnvn , with un, vn ∈ K and hn ∈ clA+ , and

• gn = snantn with sn, tn ∈ K1 and an ∈ A1 .

The second of these decompositions is intrinsic in E . Since A1 ⊂ A it
follows that an ∈ A. Hence there exists wn in the Weyl group of a such that
bn = wnanw

−1
n belongs to the closure of A+ . By the second decomposition we

can write gn = snw
−1
n bnwntn , so that the uniqueness of the radial part in a polar

decomposition ensures that hn = bn = wnanw
−1
n .

By assumption gn is contractive. Hence φα (hn) → 0 for α outside −〈Θ〉.
This means that φα (wnanw

−1
n )→ 0, or, equivalently, φw−1

n α (an)→ 0 for all α < 0,
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α /∈ −〈Θ〉. Taking a subsequence we can assume that wn = w is independent of
n. Then there exists a ∈ A1 such that φw−1α (a) < 1 for every negative root
α /∈ −〈Θ〉. In other words there exists H ∈ a1 such that α (H) < 0 for every
negative root α /∈ −〈w−1Θ〉. By continuity we can take H to be regular real in a1 .
Now consider the simple system Σ′ = w−1Σ and the subset Θ′ = w−1Θ ⊂ Σ′ . Of
course B = BΘ′ with the construction made from Σ′ . Let WΘ′ be the subgroup
generated by the reflections with respect to the roots in Θ′ . By Lemma 5.3 below
there exists u ∈ WΘ′ such that (u−1α) (H) = α (uH) ≥ 0 for all α ∈ Θ′ . We
have that u−1 leaves 〈Θ〉 invariant. Hence (u−1α) (H) > 0 for every positive root
α /∈ 〈Θ〉. Therefore if we put Σ′′ = u−1Σ′ , Θ′′ = u−1Θ′ and let Ψ′′ be the subset of
roots in Σ′′ which are identically zero on a1 , then Ψ′′ ⊂ Θ′′ and the data H ∈ a1 ,
Ψ′′ , Θ′′ and Σ′′ accomplish the requirements.

Lemma 5.3. For a subset Θ ⊂ Σ denote by WΘ the subgroup generated by the
reflections with respect to the roots in Θ. Take H ∈ a. Then there exists u ∈ WΘ

such that α (uH) ≥ 0 for all α ∈ Θ.

Proof. For α ∈ a∗ let Hα ∈ a be defined by α (·) = 〈Hα, ·〉. Denote by aΘ the
subspace generated by Hα , α ∈ Θ. The subset {Hα : α ∈ 〈Θ〉} is a root system
in aΘ containing ΣΘ = {Hα : α ∈ Θ} as a simple system and whose Weyl group
is WΘ . Write H = H1 +H2 with H1 ∈ aΘ and H2 orthogonal to aΘ . Then there
exists u ∈ WΘ such that wH2 belongs to the Weyl chamber defined by ΣΘ . Since
uH2 = H2 for all u ∈ WΘ the lemma follows.

We can prove now that B (S) is a flag manifold for semi-simple admissible
subgroups.

Theorem 5.4. Let E ⊂ G be a connected semi-simple subgroup and suppose
that its action on the flag manifold B of G is contractive and transitive. Then B
is also a flag manifold of E .

Proof. Let P1 = M1A1N1 be a minimal parabolic subgroup of E . We must
show that P1 has a fixed point in B . Take an abelian subgroup A ⊂ G such that
A1 ⊂ A. For a Weyl chamber A+ ⊂ A denote by Σ the corresponding simple
system of roots. By the above proposition we can choose a chamber A+ ⊂ A and a
regular real h ∈ A1 such that h belongs to the closure of A+ and α (log h) < 0 for
every negative root α /∈ −〈Θ〉, where Θ ⊂ Σ is the subset defining the standard
parabolic subgroup PΘ which gives B = G/PΘ . Let x0 be the origin in G/PΘ .
By the choice of h ∈ A1 , we have that x0 is its attractor with stable manifold
N−x0 , that is, hnx→ x0 as n→∞ for all x ∈ N−x0 where N− is the nilpotent
group given by the negative roots defined by Σ.

In the minimal parabolic subgroup P1 ⊂ E we can take N1 to be exp n1

where n1 is the sum of the root spaces associated with the roots of a1 which are
positive on log h. With this choice we have compatible Iwasawa decompositions
so that N1 ⊂ N . This implies that A1N1x0 = x0 .

On the other hand, take m ∈ M1 . Then mx0 is fixed by h because
hm = mh. From this we get that x0 is fixed under the identity component (M1)0
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of M1 . In fact, since the stable manifold N−x0 is open, there is a neighborhood
of the identity U ⊂ M1 such that Ux0 ⊂ N−x0 . But the only h-fixed point in
N−x0 is x0 itself. Hence Ux0 = x0 which shows that (M1)0 x0 = x0 .

Let Q ⊂ E be the isotropy at x0 for the E -action. So far we have shown
that (M1)0 A1N1 is contained in Q. This implies that the Lie algebra m1 +a1 +n1

of (M1)0 A1N1 is contained in the isotropy subalgebra q at x0 . Therefore q is a
parabolic subalgebra of e. Let Q1 be the corresponding parabolic subgroup. Then
Q is a subgroup of finite index in Q1 so that the canonical equivariant fibration

π : B = E/Q −→ E/Q1

is a covering. The equivariance of π implies that y = π (x0) is an attractor for the
action of h in E/Q. Hence the elements in the fiber over y are also attractors.
However the stable manifold at x0 is dense, so that there is just one attractor and
B = E/Q1 , showing that B is indeed a flag manifold of E .

Corollary 5.5. Let E be as in the theorem above and suppose that the Weyl
chambers a+

1 and a+ in e and g are compatible in the sense of Lemma 5.1. Then
a+

1 ⊂ cl a+ .

Proof. Since B is a flag manifold of E there is a point x0 ∈ B which is a
common attractor for h ∈ A+

1 . The stable manifold of this attractor is N+
Θx0 =(

exp n+
Θ

)
x0 where

n+
Θ =

∑
gα

with the sum running through the negative roots α ∈ −〈Θ〉. On the other hand,
let b+ be as in the proof of Proposition 5.2 and suppose that H ∈ a+

1 is not in the
closure of b+ . Then there exists a negative root α /∈ −〈Θ〉 such that α (H) > 0
because Ψ ⊂ Θ and hence x0 is not an attractor for expH . Therefore every
H ∈ a+

1 is in the closure of a+ .

With the above theorem it is virtually possible to get all the admissible
connected subgroups by checking the list of flags for the different noncompact
semi-simple real Lie groups. As an example we mention that the projective space
Pn−1 is a flag manifold for Sl (n,R). The list of semi-simple groups transitive on
Pn−1 was provided by Boothby and Wilson [1]. The connected subgroups which
are admissible for a semigroup S with B (S) = Pn−1 are in that list. By checking it
we can see that the only one which is contractive and hence admissible is Sp (m,R)
with n = 2m (c.f. [10]).

In addition to this specific example we also obtain that G is the only
connected subgroup admissible for semigroups associated to the maximal flag
manifold:

Proposition 5.6. Suppose that in Theorem 5.4 the group G is simple and B
is the maximal flag manifold of G. Then E = G.
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Proof. Take compatible Cartan decompositions e = k1 ⊕ s1 and g = k ⊕ s,
and let a1 ⊂ s1 be a maximal abelian subalgebra. By Proposition 5.2 there exists
H ∈ a1 which is regular real in g. Since B is a flag manifold of E , the compact
group K1 = exp k1 is transitive on it. On the other hand since B is the maximal
flag manifold of G it is the Ad (K)-orbit of H and therefore B = Ad (K1)H .
This orbit is contained in s1 and generates s. Hence s1 = s. Since g is simple s
generates g so that e = g.

6. Nonconnected subgroups

In the preceding sections we made the basic assumption that the admissible sub-
group L is connected. Here we make some comments about the nonconnected
admissible subgroups. First of all, the case where there are a finite number of con-
nected components is easily reduced to the connected case. In fact, if L0 stands
for the identity component in L then there is the canonical fibration

G/L0 −→ G/L

which makes G/L0 a principal bundle with L/L0 as structure group. If the number
of connected components of L is finite then L/L0 is finite and hence a semigroup
S ⊂ G with intS 6= Ø is transitive in G/L0 if and only if it is transitive in G/L
(see [6], [2]). Therefore L is admissible if and only if L0 is admissible and we are
back to the situation of the previous sections.

We say now a few words about subgroups with infinite connected com-
ponents. Suppose that G is centerless. Then G is the identity component of
an algebraic group and we can consider it in the Zariski topology. For a sub-
set C ⊂ G we let zc (C) stand for its Zariski closure. If L ⊂ G is a subgroup
then zc (L) is a closed subgroup with a finite number of connected components.
Moreover, since L ⊂ zc (L) we have that zc (L) is admissible for the semigroup S
if L is S -admissible. Let (zc (L))0 be the identity component of zc (L) and put
L1 = L ∩ (zc (L))0 . Then L/L1 is isomorphic to a subgroup of (zc (L)) / (zc (L))0

so L1 is a subgroup of finite index in L which is also admissible. We have thus
proved that any admissible subgroup has a subgroup of finite index which is Zariski
dense in a connected admissible group.

Recall that if a subspace of g is invariant under L then it is also invariant
under the algebraic closure (zc (L))0 . Therefore the Lie algebra l of L is an ideal of

the Lie algebra l̃ of zc (L). Hence if (zc (L))0 is simple either l = 0 or l = l̃ . In the
latter case L contains (zc (L))0 so it has a finite number of connected components
and we are back to the previous situation. On the other hand if l = 0 then L is
discrete. Combining this fact with Proposition 5.6 we obtain:

Proposition 6.1. Suppose that G is simple with finite center and B (S) is the
maximal flag manifold. Suppose also that L 6= G is a subgroup such that S is
transitive on G/L. Then L is discrete.

Concerning the discrete infinite subgroups which are admissible we mention
that there is an easy case, namely when L is a lattice in G. Recall that a discrete
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subgroup H of a topological group is said to be a lattice if there exists a G-
invariant probability measure µ on G/H , that is, µ (g−1A) = µ (A) for all g ∈ G
and measurable sets A ∈ G/H . In case L is a lattice, the Recurrence Theorem
implies that any semigroup S ⊂ G with int S 6= Ø is transitive in G/L. This is a
well known fact in the context of control systems (see [5], [8]), whose proof extends
to more general semigroup actions. For the sake of completeness we provide
here a proof which works for the action of a semigroup of homeomorphisms in
a topological space. We need first the

Lemma 6.2. Let M be a topological space and T a semigroup of homeomor-
phisms of M . Denote by H the group of homeomorphisms of M generated by
T ∪ T−1 . Assume that

(1) There exists a finite measure µ on the Borel subsets of M which is invariant
under H and such that µ (A) > 0 for any open set A ⊂M .

(2) The action of H on M is transitive. Let U ⊂M be a non empty open subset
which is invariant under T . Then U is dense in M .

Proof. Since H is transitive in M , we must show that clU is H -invariant.
This invariance follows at once if we show that clU is invariant under T−1 . In
order to check this, suppose to the contrary that there exists x ∈ clU , an open
subset V with V ∩clU = Ø and g ∈ T such that g−1x ∈ V . Apply the Recurrence
Theorem (see e.g. [4]) to g to get a subset F ⊂ gV with µ (F ) = µ (gV ) such
that for any y ∈ F there exists an integer k > 1 such that gky ∈ gV . Since µ is
positive on open sets and µ (F ) = µ (gV ) it follows that F is dense in gV . Hence
U ∩ F 6= Ø because U ∩ gV is open in gV . If y ∈ U ∩ F and k > 1 is such that
gky ∈ gV then gk−1y ∈ V which contradicts the fact that U is T -invariant.

From this Lemma we obtain sufficient conditions for the transitivity of
semigroups.

Proposition 6.3. Suppose that T and M are as in the previous lemma and
assume further that for all x ∈ M , int (Tx) and int (T−1x) are not empty. Then
T is transitive on M .

Proof. Pick x, y ∈ M . By the lemma int (Tx) is dense in M . Hence
int (T−1y) ∩ int (Tx) 6= Ø which shows that there exists g ∈ T such that gx = y
and hence T is transitive.

Finally, we have the following hereditary property for admissible subgroups.

Proposition 6.4. Suppose that L is S -admissible and let H ⊂ L be a closed
subgroup such that S ∩ L is transitive in L/H . Then S is transitive in G/H .

Proof. Consider the canonical fibration

π : G/H −→ G/L

with fiber L/H . Let x0 = L be the origin in G/L. The assumption that S ∩ L
is transitive in L/H implies that S is transitive along the fiber π−1 (x0). Since S
is transitive in G/L it follows that S is transitive in G/H .
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