
Journal of Lie Theory
Volume 8 (1998) 335–350
C©1998 Heldermann Verlag

Order and Domains of Attraction of Control Sets
in Flag Manifolds

Luiz A. B. San Martin∗

Communicated by J. Hilgert

Abstract. Let G be a real semi-simple noncompact Lie group and S ⊂ G
a subsemigroup with intS 6= Ø . This article relates the Bruhat-Chevalley
order in the Weyl group W of G to the ordering of the control sets for S
in the flag manifolds of G by showing that the one-to-one correspondence
between the control sets and the elements of a double coset W (S) \W/WΘ

of W reverses the orders. This fact is used to show that the domain of
attraction of a control set is a union of Schubert cells.

Key words: semigroups, semi-simple groups, flag manifolds, control sets, Bruhat-
Chevalley order.

AMS 1991 subject classification: primary 20M20, 54H15; secondary 93B

1. Introduction

For the action of a semigroup of maps in some state space the transitivity structure
is described by the control sets, which are lasting regions of the evolution of
the semigroup, and by the transience between the control sets. In this article
we consider a noncompact semi-simple Lie group G and look at the transitivity
properties of the action of a semigroup S ⊂ G in the flag manifolds of G. A basic
assumption is that the semigroup has nonvoid interior in G. The control sets for
these actions were studied in [9], which provides us with the following picture:
Let W be the Weyl group of G. Then there is a parabolic subgroup W (S) of
W attached to S such that the control sets for the S -action in the maximal flag
manifold B of G are in one-to-one correspondence with the cosets in W (S) \W .
This fact extends to any other flag manifold BΘ establishing a bijection between
the control sets in BΘ and the double cosets in W (S) \W/WΘ where WΘ is the
parabolic subgroup of W associated with BΘ .

These results bring to the study of the semigroups in G, and their control
sets in the flag manifolds, the combinatorics of the Weyl group. The purpose of
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this paper is to relate the Weyl group also to the transience behavior between the
control sets. This is made as follows: There is a natural partial order ≤ between
the control sets, which is defined by putting D1 ≤ D2 if it is possible to steer the
points of D1 into D2 . Clearly, this order describes the transience between the
control sets. On the other hand, there is the well known Bruhat-Chevalley partial
order in the Weyl group W . These two orders are related by the above bijections.
In fact, in Theorem 4.1 below we show that the order between the control sets in
the maximal flag manifold is obtained by reversing the Bruhat-Chevalley order in
W and projecting onto W (S) \W so that the bijection is order reversing. This
fact is extended to the other flag manifolds in Proposition 7.1 where it is proved
that the control sets in a flag manifold BΘ are ordered according to the reverse of
the order induced by the Weyl-Chevalley order on the double coset W (S) \W/WΘ .

Intimately related to the order of the control sets is the concept of domain
of attraction of a control set D , which is defined to be the subset of points in
the state space that can be steered by the semigroup into D . It is not hard to
prove that D1 ≤ D2 if and only if D1 is contained in the domain of attraction
of D2 (see Proposition 2.1 below). In the Weyl group side this fact parallels
the classical Chevalley-Borel-Tits Theorem which characterizes the Schubert cells
from the Bruhat-Chevalley order and the Bruhat cells. In fact, we use this
theorem in Section 6. to show that the domain of attraction of a control set in
the maximal flag manifold is a union of Schubert cells. This is achieved in two
steps. First we construct a Schubert cell by starting from a point in B and
exhausting successively subsets with fibers of projections from B onto smaller
flag manifolds. This construction resembles the Bott-Samelson [1] construction of
the desingularization of a Schubert cell. Once we have this characterization of a
Schubert cell we apply it to show that the same exhausting procedure, starting
now from the minimal control set, yields the domain of attraction of a control set.
In this procedure the choice of the smaller flag manifolds is determined by the
element of the Weyl group associated with the control set.

The results proved in this paper show that the order of the control sets
reduces to the order of the Weyl group. The combinatorics of the Bruhat-Chevalley
ordering is extensively studied in the literature. We refer to [4], [5], [6], and
references therein, for a description of this order in the different Weyl groups.
This description provides the order of the control sets for the semigroups.

The author is thankful to J. Hilgert for pointing out to the relation between
the order of the control sets and the Weyl-Chevalley order. In particular, Theorem
4.1 below was conjectured by him in a personal talk.

2. Control sets

Let G be a Lie group, S ⊂ G a semigroup with intS 6= Ø and G/H a compact
homogeneous space with H ⊂ G a closed subgroup. Recall that a subset D ⊂ G/H
is said to be a control set for the S -action in G/H provided it satisfies

1. D ⊂ cl (Sx) for every x ∈ D ,

2. intD 6= Ø,



San Martin 337

3. the subset D0 = {x ∈ D : x ∈ (intS)x} is not empty, and

4. D is maximal with these properties.

The subset D0 appearing in the third condition is open and dense in D
(see [9]). We refer to it as the set of transitivity or the core of D .

The domain of attraction A (D) of a control set D is the subset of those
x ∈ G/H such that there exists g ∈ S with gx ∈ D .

The control sets for S on G/H are ordered by putting D1 ≤ D2 if there are
x ∈ D1 and g ∈ S such that gx ∈ D2 . Equivalently, D1 ≤ D2 if D1∩A (D2) 6= Ø.
The following statement clarifies the relation between the domain of attraction and
the order of the control sets.

Proposition 2.1. The domain of attraction A (D) of the control set D is open
and if x ∈ A (D) then there exists g ∈ intS such that gx ∈ D0 . Moreover, for
the control sets D1 and D2 the following statements are equivalent:

1. D1 ≤ D2 .

2. There exists x ∈ (D1)0 and g ∈ intS such that gx ∈ (D2)0 .

3. For any y ∈ (D1)0 and z ∈ (D2)0 there exists g ∈ intS such that gy = z .

4. D1 ⊂ A (D2).

Proof. Take x ∈ A (D) and h ∈ S such that hx ∈ D . Then S (hx) contains
a dense subset of D so that there exists g ∈ S with gx ∈ D0 . Since any point
in D0 is fixed by some element in intS we can choose g ∈ intS as claimed. This
implies that the open set g−1 (D0) contains x and is contained in A (D). Hence
A (D) is open.

As to the equivalent statements, suppose that D1 ≤ D2 . Then (D1)0 ∩
A (D2) 6= Ø because (D1)0 is dense in D1 and A (D2) is open. Hence (2) follows
from the statement about A (D). Now, take x and g as in (2). If y ∈ (D1)0 and
z ∈ (D2)0 then there are h1, h2 ∈ S such that h1y = x and h2gx = z (see [9,
Prop. 2.2]). So that (3) follows. Item (3) means that (D1)0 ⊂ A (D2). Since for
any x ∈ D1 there is g ∈ S such that gx ∈ (D1)0 we have that D1 ⊂ A (D2) as
well. Finally, D1 ≤ D2 if D1 ⊂ A (D2) as follows from the definitions.

In the sequel we write y  z if z ∈ (int S) y . From the third equivalent
statement in this proposition we have that y  z for any y ∈ (D1)0 and z ∈ (D2)0

if D1 ≤ D2 .

The order of the control sets for S−1 is given by reversing the order of the
control sets for S . In fact, there is a mapping D 7→ D− which associates to a
control set D for S the control set D− for S−1 which is related to D by D−0 = D0 .
From the third equivalent property in the above lemma we have that D−1 ≤ D−2 if
and only if D1 ≥ D2 .

Note that, since we are assuming that G/H is compact, a control set D is
invariant (i.e., Sx ⊂ D for all x ∈ D) if and only if D is maximal with respect
to the order. Also, a control set D is minimal if and only if D− is S−1 -invariant.
We refer to [3], [9] for further results about control sets.
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3. Flag manifolds

In what follows we are interested in semigroup actions on G/H with G a connected
and noncompact semi-simple Lie group and H a parabolic subgroup. We assume
throughout that G has finite center. For these groups we use the following standard
notation and terminology.

Let g be the Lie algebra of G. Take a Cartan decomposition g = k⊕s with
k the compactly embedded subalgebra and denote by θ the corresponding Cartan
involution. Let a be a maximal abelian subalgebra contained in s and denote by
Π the set of roots of the pair (g, a). Fix a simple system of roots Σ ⊂ Π. Denote
by Π+ the set of positive roots and by a+ the Weyl chamber

a+ = {H ∈ a : α (H) > 0 for all α ∈ Σ}.

Let
n =

∑

α∈Π+

gα

be the direct sum of the root spaces corresponding to the positive roots and

n− = θ (n) =
∑

α∈Π+

g−α

the opposed subalgebra.

The notations K , N and N− are used to indicate the connected subgroups
whose Lie algebras are k, n and n− respectively.

Let W be the Weyl group of G. It is constructed either as the subgroup
of reflections generated by the roots of (g, a) or as the quotient M ∗/M where M∗

and M are respectively the normalizer and the centralizer of a in K .

A minimal parabolic subalgebra of g is given by

p = m⊕ a⊕ n

where m, the Lie algebra of M , is the centralizer of a in k.

Let P be the minimal parabolic subgroup with Lie algebra p and put
B = G/P for the maximal flag manifold. We denote by b0 the base point in
G/P . This flag manifold fibers over the other boundaries of G, which are built
from subsets of Σ as follows: Given Θ ⊂ Σ let 〈Θ〉 be the subset of positive roots
generated by Θ and denote by n−Θ the subalgebra spanned by the root spaces g−α ,
α ∈ 〈Θ〉. Then

pΘ = n−Θ ⊕ p.

The normalizer PΘ of pΘ in G is a parabolic subgroup which contains P . The
corresponding flag manifold BΘ = G/PΘ is the base space for the natural fibration
πΘ : B → BΘ whose fiber is PΘ/P . This fiber is a flag manifold of a semi-simple
subgroup MΘ ⊂ G whose rank is the order of Θ (see [11]). In particular, the
group MΘ is of rank one if Θ is singleton. The Weyl group of MΘ is the subgroup
WΘ generated by the reflections with respect to the simple roots in Θ.

A conjugate Ad (g)H , g ∈ G, H ∈ a+ is said to be split-regular in g.
Similarly, a split-regular element in G is a exponential h = exp (H) with H ∈ g
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split-regular. A split-regular H ∈ g belongs to a unique Weyl chamber in g (a
conjugate of a+ ). If h0 ∈ A+ = exp a+ then h0 has a finite number of fixed points
in B , namely, the base point b0 (= P ) and its orbit under the subgroup M ∗ ⊂ K ,
the normalizer of a in K . The action of M ∗ in this orbit factors through M so
that the fixed points are given by wb0 , w ∈ W = M∗/M . The same way, the
fixed points in B of a split-regular h = gh0g

−1 with g ∈ G and h0 ∈ A+ , are
the points gwb0 . In what follows we say that gwb0 is the fixed point of type w
for h and denote it by φ (h, w). We note that φ (h, 1) is the only attractor for
the action of h in B , in the sense that it is a hyperbolic fixed point with an open
stable manifold. On the other hand, h has just one repeller, i.e., an attractor for
h−1 , which is φ (h, w0) where w0 is the principal involution of W , that is, the only
element of W which satisfies w0Σ = −Σ.

Any h ∈ A leaves invariant the fiber π−1
Θ πΘ (b0) for every Θ ⊂ Σ, and if

h is regular then its fixed points in this fiber are wb0 with w ∈ WΘ , that is, the
orbit of b0 under the subgroup WΘ . In particular, if Θ is singleton there are just
two fixed points for the action of h in this fiber, one of them being an attractor
and the other one a repeller.

Regarding still the notations, we shall say that a root α ∈ Π is indivisible if
α/2 is not a root. The set of indivisible roots is denoted by ∆ with a superscript
∆± to indicate the positive or negative ones.

We consider now a semigroup S ⊂ G with int S 6= Ø. In [9] the control
sets for the action of S on the flag manifolds were described by means of the Weyl
group W . For this description it is assumed that G has finite center. It is proved
that intS contains enough split-regular elements so that we have a mapping

w 7−→ D (w) (1)

which associates to w ∈ W a control set D (w) in such a way that the core D (w)0

is the set of the fixed points of type w for the split-regular elements in int S .
There is just one invariant control set D (1) whose core is the set of attractors
for the split-regular elements in intS . Similarly the repellers of the split-regular
elements in intS form the core of a unique minimal control set D (w0) where w0

is the principal involution of W .

The level sets of (1) are described by the subset

W (S) = {w ∈ W : D (w) = D (1)}.

This subset is a parabolic subgroup of W , and for w1, w2 ∈ W , D (w1) = D (w2)
if and only if w1w

−1
2 ∈ W (S) (see [9, Prop. 4.2]). Hence the control sets on

the maximal boundary B are in one-to-one correspondence with the cosets in
W (S) \W .

These facts also apply to the inverted semigroup S−1 = {g−1 : g ∈ S} and
we have a mapping

w 7−→ D− (w)

into the control sets of S−1 . The control set D− (w) contains the fixed points
of type w for the split-regular elements in intS−1 . Hence, if h ∈ intS is split-
regular then φ (h−1, w) ∈ D− (w)0 . If w0 is the principal involution of W then
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h−1 = w0h0w
−1
0 for some h0 in the same chamber as h. Therefore, the fixed point

of type w for h−1 is φ (h, w0w). Since this fixed point belongs to the core of
D (w0w) we have the following equality between the cores of these control sets.

Proposition 3.1. D− (w)0 = D (w0w)0 .

4. Order of the control sets

Recall the Bruhat-Chevalley order of the Weyl group [2, 4]: Keeping fixed a simple
system of roots, take for w ∈ W a reduced expression w = s1 · · · sn as a product
of reflections with respect to the simple roots. Then w1 ≤ w if and only if there
are integers 1 ≤ i1 < · · · < ij ≤ n such that w1 = si1 · · · sij is a reduced expression
for w1 .

In general the order on W depends on the choice of the simple system of
roots Σ, that is, on the set of generators of W . Note however that the order
obtained from −Σ coincides with the order coming from Σ because both simple
systems of roots define the same set of generators of W .

A useful elementary fact about the order in W is that w1 ≤ w if and
only if w−1

1 ≤ w−1 . This follows directly from the definition and the remark that
w−1 = sn · · · s1 is a reduced expression for w−1 if the decomposition w = s1 · · · sn
is reduced.

From [2, Thm. 3.13] we have that w ≤ w1 if and only if wb0 ∈ cl (Nw1b0)
where b0 is the base point in G/P .

We prove next that the order of the control sets in G/P for a semigroup
S ⊂ G with nonvoid interior is precisely the reverse of the Bruhat-Chevalley
ordering of the Weyl group. We have

Theorem 4.1. For u ∈ W let D (u) denote the control set in G/P given by
(1). Let w1, w2 ∈ W . Then the following statements are equivalent:

1. D (w1) ≤ D (w2) .

2. There exists w ∈ W such that w1 ≥ w and w ∈ W (S)w2 , that is, D (w) =
D (w2).

Proof. We choose the simple system of roots such that the corresponding Weyl
chamber A+ intersects intS . The ordering of the control sets will be provided by
the action of a split-regular h ∈ A+ ∩ intS . The h-fixed points in G/P are wb0 ,
w ∈ W . Recall that wb0 ∈ D (w)0 for all w ∈ W .

Suppose that w1 ≥ w and w2 ∈ W (S)w . Then wb0 ∈ cl (Nw1b0). Since
wb0 ∈ D (w)0 we have that Nw1b0 ∩ D(w)0 6= Ø. Hence there exists n ∈ N
such that nw1b0 ∈ D(w)0 . But h−knw1b0 → w1b0 as k → ∞, which ensures the
existence of an integer k > 0 such that h−knw1b0 ∈ D(w1)0 . Therefore there
exists g ∈ intS−1 and x ∈ D (w)0 such that gx ∈ D (w1)0 so that Proposition 2.1
implies that D (w1) ≤ D (w) = D (w2).

Conversely assume that D (w1) ≤ D (w2) and take a reduced expression

w1 = s1 · · · sn
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where si is the reflection with respect to the simple root αi , i = 1, . . . , n. Let
Pi = P{αi} be the parabolic subgroup defined by Θ = {αi} and denote by
πi : G/P → G/Pi the projection from the maximal flag manifold.

We have from Proposition 2.1 that

w1b0 w2b0.

If g ∈ intS is such that gw1b0 = w2b0 then each fibration πi is equivariant under
g so that g interchanges fibers. In particular, g maps the fiber of w1b0 onto the
fiber of w2b0 . We shall exploit these fibrations to show that b0 w2sik · · · si1b0 for
some integers 1 ≤ i1 < · · · < ik ≤ n.

Consider the reflection sn and the corresponding fibration πn : G/P →
G/Pn . The fixed points of h in the fiber of w1b0 are w1b0 itself and w1snb0 . To
see this note that w−1

1 maps the fiber of w1b0 onto the fiber of b0 . Also, w−1
1

interchanges the fixed points of h and those of h1 = w−1
1 hw1 . Since h1 is split-

regular its fixed points in the fiber of b0 are b0 itself and snb0 . Hence w1b0 and
w1snb0 are the fixed points of h in the fiber of w1b0 as claimed.

By the same reason w2b0 and w2snb0 are the h-fixed points in the fiber
through w2b0 .

Now, if g ∈ intS maps w1b0 into w2b0 then gw1snb0 belongs to the same
fiber as w2b0 . One of the two fixed points w2b0 or w2snb0 is the attractor for
the action of h inside this fiber. Therefore as k → ∞ we have that hkgw1snb0

converges either to w2b0 or to w2snb0 . This implies that D (w1sn) ≤ D (w2) or
D (w1sn) ≤ D (w2sn) and hence we have one of the two possibilities

w1snb0 w2b0 or w2snb0.

Now we can repeat this argument with w1snb0 in place of w1b0 and with the
fibration πn−1 : G/P → G/Pn−1 instead of πn . The fixed points in the πn−1 -
fiber of w1snb0 are w1snb0 itself and w1snsn−1b0 . Hence according to the above
possibilities we get that w1snsn−1b0 w2b0 or w2sn−1b0 if w1snb0 w2b0 . Otherwise,
we have w1snsn−1b0 w2snb0 or w2snsn−1b0 if w1snb0 w2snb0 . Hence at least one
of the following cases happens

w1snsn−1b0 w2b0 or w2snb0 or w2sn−1b0 or w2snsn−1b0.

Continuing this way we arrive, after n steps, that there are integers 1 ≤ i1 < · · · <
ik ≤ n such that

w1sn · · · s1b0 = b0 w2sik · · · si1b0.

This implies that w2sik · · · si1b0 belongs to the invariant control set D (1). There-
fore

w2sik · · · si1 ∈ W (S)

so that

w2 ∈ W (S)si1 · · · sik .
Since w1 ≥ si1 · · · sik the second condition in the statement is satisfied with
w = si1 · · · sik .



342 San Martin

We conclude this section with the following fact about the Bruhat-Chevalley
order, which will be needed later. Although this fact is known in the literature
(see [8], Example 3, p.119) we give here a proof via semigroups, as a consequence
of the above theorem.

Corollary 4.2. Let w0 be the principal involution of W , and take w1, w2 ∈ W .
Then w1 ≤ w2 if and only if w0w1 ≥ w0w2 .

Proof. Let S be a semigroup such that W (S) = {1}. The existence of such
a semigroup is implicit in the theory of [9]: If S is the compression semigroup of
some subset C contained in an open Bruhat cell N−b0 then W (S) = 1. By the
theorem w1 ≤ w2 if and only if D (w1) ≥ D (w2). On the other hand, we have from
Proposition 3.1 that D− (w0w1)0 = D (w1)0 and D− (w0w2)0 = D (w2)0 . Hence in
the order of the control sets for S−1 we have

D− (w0w1) ≤ D− (w0w2) .

Applying the theorem again we get w0w1 ≥ w0w2 .

5. Schubert cells

A Schubert cell in the maximal flag manifold B is the closure of an orbit of the
subgroup N or any of its conjugates. As is well known, the N -orbits on B , the so
called Bruhat cells, are Nwb0 with w running through the Weyl group W . The
purpose of this section is to provide a geometric description of the Schubert cells
in B in terms of smaller flag manifolds.

In the discussion to follow we keep fixed a simple system of roots Σ. For
a finite sequence (with possible repetitions) α1, . . . , αn of simple roots we let
s1, . . . , sn be the reflections with respect to these roots. Also, we denote by
Pi = P{αi} the parabolic subgroup defined by Θ = {αi}. The corresponding
flag manifold is denoted by Bi = G/Pi . Associated with Bi there is the canonical
fibration πi : B → Bi . For i = 1, . . . , n we let γi stand for the operation of
exhausting a subset of B with the fibers of πi , that is, if X ⊂ B then

γi (X) = π−1
i πi (X)

We recall that πi is equivariant under g ∈ G. This implies that γi is also
equivariant under g , i.e., gγi (X) = γi (gX) for any subset X ⊂ B .

In the sequel we shall prove that a Schubert cell is a subset of the type
γ1 · · ·γn (b) for some sequence of simple roots and b ∈ B .

For w ∈ W put Nw = wNw−1 and let nw = Ad (w) n be its Lie algebra.
Every Schubert cell is the image under some g ∈ G of cl (Nwb0) for a w ∈ W . So
we start by looking at these cells.

Let α ∈ Σ be a simple root such that −α ∈ w (∆+)∩∆− and consider the
parabolic subgroup Pα = P{α} . Denote by Bα the flag manifold G/Pα and let
π : B → Bα be the canonical fibration. Also, let N−α stand for the nilpotent group
generated by exp (g−α + g−2α). The orbit Pαb0 is the fiber π−1π (b0) while N−α b0
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is dense in this fiber. The fact that −α ∈ w (∆+)∩∆− implies that g−α + g−2α is
contained in nw . Hence N−α b0 ⊂ Nwb0 . Therefore we have that

γ (b0) ⊂ cl (Nwb0) . (2)

where for a subset X ⊂ B , γ (X) = π−1π (X). From this inclusion we get the
following statement which is the main step in the proof of Theorem 5.3 below.

Proposition 5.1. As above, take α ∈ Σ such that −α ∈ w (∆+) ∩∆− . Then

cl (Nwb0) = γ (cl (Nwsb0))

where s is the reflection with respect to the simple root α .

Proof. The fiber γ (b0) contains sb0 so that π (b0) = π (sb0). This implies that
the orbits Nwπ (b0) and Nwπ (sb0) in Bα coincide. Hence π (Nwb0) = π (Nwsb0)
because π is equivariant. Taking closures and using the fact that π is a continuous
and closed map we conclude that

π (cl (Nwb0)) = π (cl (Nwsb0)) . (3)

Therefore cl (Nwb0) ⊂ γ (cl (Nwsb0)).

In order to show the reverse inclusion, take x ∈ γ (cl (Nwsb0)). Then (3)
ensures that π (x) ∈ cl (Nwπ (b0)). Hence there exists a sequence nk ∈ Nw such
that nkπ (b0) → π (x). By trivializing the bundle π : B → Bα around π (x) it is
easy to see that there exists a sequence zk ∈ B such that π (zk) = nkπ (b0) and
zk → x. Let yk = n−1

k zk . Then π (yk) = π (b0) for all k so that we have from
the inclusion in (2) that yk ∈ cl (Nwb0) and hence zk = nkyk ∈ cl (Nwb0). Since
zk → x we have that x ∈ cl (Nwb0) concluding the proof.

From this proposition we can proceed by induction to get the desired
description of the Schubert cells. Take a reduced expression

w = s1 · · · sn
with si the reflection with respect to the simple, and hence indivisible root αi ∈ Σ.
It is well known (see e.g. [10, Thm. 4.15.10]) that the indivisible positive roots
that are mapped into negative roots by w are

sn · · · s2α1, . . . , snαn−1, αn.

Applying w to these roots we get that

w
(
∆+
)
∩∆− = {−α1,−s1α2, . . . ,−s1 · · · sn−1αn}.

For the inductive step it is needed the following lemma.

Lemma 5.2. Let w = s1 · · · sn be a reduced product of reflections with respect
to simple roots in Σ. For k = 1, . . . , n − 1 put tk = s1 · · · sk and consider the
simple system of roots Σk = tkΣ. Denote by ∆±k the positive (respectively negative)
indivisible roots defined by Σk .

Then tksk+1t
−1
k is the reflection with respect to the simple root tkαk+1 ∈ Σk

and −tkαk+1 ∈ w (∆+) ∩∆−k .
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Proof. For a root β denote by rβ the reflection it defines. Then ruβ = urβu
−1

for any u ∈ W . Hence tksk+1t
−1
k is the reflection with respect to the simple root

tkαk+1 ∈ Σk . We have that −tkαk+1 ∈ ∆−k and if k = n− 1 then −tkαk+1 = wαn
so that −tkαk+1 ∈ w (∆+). On the other hand, if k < n− 1 then

w−1 (−tkαk+1) = sn · · · sk+2αk+1

and, as mentioned above, this is one of the positive roots in ∆+ which is mapped
into ∆− . Therefore −tkαk+1 ∈ w (∆+) ∩∆−k as required.

With this background at hand we can give a geometric description of the
Schubert cell cl (Nwb0).

Theorem 5.3. Let w = s1 · · · sn be a reduced expression as a product of re-
flections with respect to the simple roots in Σ. Then for any k = 1, . . . , n, we
have

cl (Nwb0) = γ1 · · ·γk (cl (Nws1 · · · skb0)) . (4)

In particular cl (Nwb0) = γ1 · · ·γn (bw) where bw = wb0 is the only Nw -fixed point
in B .

Proof. By induction on k . For k = 1, (4) reduces to the formula in Proposition
5.1 with s = s1 and α = α1 .

Suppose then that (4) holds for 1 < k ≤ n − 1. Let tk = s1 · · · sk
and put Σk = tkΣ, ∆±k = tk∆

± . Then tkαk+1 ∈ Σk and the above lemma
ensures that −tkαk+1 ∈ w (∆+) ∩ ∆−k . This implies that if uk = t−1

k w then
−αk+1 ∈ uk (∆+) ∩∆− . Hence we can apply Proposition 5.1 with α = αk+1 and
uk in place of w . In this case s = sk+1 and γ = γk+1 so we have

cl (Nukb0) = γk+1 cl (Nuksk+1b0) . (5)

Applying tk to the left hand side gives

tk cl (Nukb0) = tk cl
(
Nukt−1

k tkb0

)
= cl (Nwtkb0) .

On the other hand, the image under tk of the right hand side of (5) is

tkγk+1 cl (Nuksk+1b0) = γk+1 cl (Nwtksk+1b0) = γk+1 cl (Nwtk+1b0) .

Therefore cl (Nwtkb0) = γk+1 cl (Nwtk+1b0) and

γ1 · · ·γk cl (Nwtkb0) = γ1 · · ·γkγk+1 cl (Nwtk+1b0)

completing the induction step.

Remark: The above description of a Schubert cell is comparable to the clas-
sical result known as Bott-Samelson desingularization which states that the cell
cl (Nwb0) is the image of the map φ : P1 × · · · × Pn → B defined by

φ (g1, . . . , gn) = g1 · · ·gnb0
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(see [1, 6, 7]). Here w = s1 · · · sn and Pi is as above the parabolic subgroup
associated with si . In the light of this result Theorem 4.1 provides an indirect
proof that successive applications of the parabolic subgroups Pi yields successive
exhaustions of the corresponding fibers.

The other Schubert cells are easily obtained from cl (Nwb0). In the sequel
we are particularly interested in the cells cl (N−wb0), w ∈ W , where N− is the
group opposed to N . For these cells we have

Corollary 5.4. Let w0 be the principal involution and suppose that w0w =
sn · · · s1 is a reduced expression. Then

cl
(
N−wb0

)
= γ1 · · ·γn (w0b0)

where γi = π−1
i πi comes from the reflection si .

Proof. Since N− = w0Nw
−1
0 we have that N−wb0 = wNw−1w0b0 so that

cl
(
N−wb0

)
= wγ1 · · ·γn

(
w−1w0b0

)

and the corollary follows from the equivariance of γi .

6. Domain of Attraction of a Control Set

In this section we apply the previous results about the Schubert cells and the order
of control sets to show that the domain of attraction of a control set is a union of
Schubert cells.

For this we need the following consequences of Theorem 4.1: From Borel
and Tits [2, Thm. 3.13] we know that a Schubert cell is given by

cl (Nwb0) =
⋃

w1≤w
Nw1b0. (6)

In this formula N and b0 are linked by the fact that b0 is the only N -fixed point.
If we take N− instead of N then N− = w0Nw

−1
0 where w0 is the principal

involution of W . This subgroup is linked to b− = w0b0 . For N− and b− formula
(6) reads

cl
(
N−wb−

)
=
⋃

w1≤w
N−w1b

− (7)

(recall that the orders in W defined by Σ and −Σ coincide). We need now a
formula similar to (7) where in the left hand side b− is replaced by b0 .

Proposition 6.1. The Schubert cell cl (N−wb0) is given by

cl
(
N−wb0

)
=
⋃

s≥w
N−sb0.
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Proof. We have

cl
(
N−wb0

)
= cl

(
N− (ww0)w0b0

)
= cl

(
N− (ww0) b−

)
.

Applying the Borel-Tits formula (7) to the right hand side of this equality we get

cl
(
N−wb0

)
=

⋃

w1≤ww0

N−w1b
− =

⋃

w1≤ww0

N− (w1w0) b0.

So that by putting s = w1w0 we have

cl
(
N−wb0

)
=
⋃
{N−sb0 : sw0 ≤ ww0}.

Now sw0 ≤ ww0 if and only if w0s
−1 ≤ w0w

−1 and by Corollary 4.2 this happens
if and only if s−1 ≥ w−1 . So that the above union runs through s such that s ≥ w
as claimed.

As a consequence of this result we can prove that certain Schubert cells are
contained in the domain of attraction of a control set. This fact will be needed
below in the proof of the main result of this section.

Proposition 6.2. If A+ ∩ intS 6= Ø then cl (N−wb0) ⊂ A (D (w)) for every
w ∈ W .

Proof. From the above proposition we have

cl
(
N−wb0

)
=
⋃

s≥w
N−sb0.

In this formula each sb0 belongs A (D (w)). In fact, sb0 ∈ D (s)0 . But if s ≥ w
then D (s) ≤ D (w) so that D (s) ⊂ A (D (w)). On the other hand, if n ∈ N−
and h ∈ A+∩ int S then hknsb0 → sb0 , as k →∞, and since sb0 is in the core of a
control set this implies that nsb0 sb0 . Hence nsb0 wb0 so that nsb0 ∈ A (D (w)).

We can now prove our main result about domains of attraction.

Theorem 6.3. Let C∗ = D (w0) be the minimal control set. Then for all
w ∈ W the domain of attraction A (D (w)) of D (w) is given by

A (D (w)) = γ1 · · ·γn (C∗) . (8)

Here the sequence γ1, . . . , γn comes from a reduced expression

w0w = sn · · · s1

where w0 is the principal involution of W .
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Proof. The inclusion γ1 · · ·γn (C∗) ⊂ A (D (w)) is a consequence of the pre-
vious characterization of the Schubert cells and the above proposition. In fact,
it is easily checked by induction that γ1 · · ·γn (C∗) =

⋃
b∈C∗ γ1 · · ·γn (b) so it is

required to show that

γ1 · · ·γn (b) ⊂ A (D (w)) (9)

for all b ∈ C∗ . Actually it is enough to prove this for b ∈ C∗0 because if b ∈ C∗
then there exists g ∈ S such that gb ∈ C∗0 . Since gγ1 · · ·γn (b) = γ1 · · ·γn (gb) we
have (9) from the inclusion for gb. Now, if b ∈ C∗0 then there exists a split-regular
h ∈ intS such that b is the repeller of h in B . So that if we take our basic objects
such that h ∈ A+ then from Corollary 5.4 we have that the left hand side of (9)
is the Schubert cell cl (N−wb0), which is contained in A (D (w)) by the above
proposition.

The proof that A (D (w)) is contained in the right hand side of (8) is by
induction on n, the length ` (w0w) of w0w . If n = 0 then w0w = 1, w = w0 and
D (w) = C∗ . So that (8) holds because A (C∗) = C∗ .

If ` (w0w) = n, let w0w = sn · · · s2s1 be a reduced expression and define

w1 = w0sn · · · s2.

Then ` (w0w1) = ` (w0w)− 1 so we have by the induction hypothesis that

A (D (w1)) = γ2 · · ·γn (C∗) . (10)

Let π1 : B → B1 be the projection corresponding to s1 . By construction
we have that π1 (b0) = π1 (s1b0). Applying w1 to this equality we get that
π1 (w1b0) = π1 (wb0). This implies that there exists a control set, say E , in B1

such that
π1 (D (w)0) = π1 (D (w1)0) = E0

(see [9, Prop. 5.1]). Now, take y ∈ A (D (w)) and g ∈ S such that gy ∈ D (w)0 .
Then gπ1 (y) ∈ E0 and since π−1

1 π1 (gy) intersects D (w1)0 and g interchanges
fibers, there exists z in the same fiber as y such that gz ∈ D (w1)0 . By definition
z ∈ A (D (w1)) so (10) implies that

z ∈ γ2 · · ·γn (C∗) .

Hence π1 (y) = π1 (z) ∈ π1γ2 · · ·γn (C∗), that is,

y ∈ γ1γ2 · · ·γn (C∗)

concluding the proof.

7. The other flag manifolds

As before we denote by BΘ the flag manifold defined by Θ ⊂ Σ and by πΘ : B →
BΘ the natural projection from the maximal flag manifold B . If D ⊂ B is a
control set then πΘ (D0) is the core of a control set in BΘ and reciprocally if E is
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a control set in BΘ then there exists w ∈ W such that πΘ (D (w)0) = E0 (see [9,
Prop. 5.1]). This gives a well defined map

w 7−→ E (w) (11)

onto the control sets in BΘ . Since we have further that for w1, w2 ∈ W ,
πΘ (D (w1)0) = πΘ (D (w2)0) if and only if there exists w ∈ W (S)w2 such that
πΘ (wb0) = πΘ (w2b0) this map factors through W (S) \W/WΘ establishing a one-
to-one correspondence between these double cosets and the control sets in BΘ .
From this correspondence we can detect the order and domains of attraction of
the control sets in BΘ .

The Bruhat-Chevalley order in W induces an order in W/WΘ by putting
w1WΘ ≤ w2WΘ if one of the following equivalent conditions hold:

1. There exists a ∈ w1WΘ such that a ≤ w2 .

2. There exists b ∈ w2WΘ such that w1 ≤ b.

3. There are a ∈ w1WΘ and b ∈ w2WΘ such that a ≤ b.

It is not hard to check, either from the definition of the order or from
its relation with the order of the control sets, that these are indeed equivalent
conditions. Actually, it can be shown that in each coset wWΘ there is just one
element of minimal length, whose order provide the order between the cosets. In
[5] the elements of minimal length in the cosets were written down explicitly for
the classical diagrams.

Clearly a similar order is defined in the quotient WΘ\W . Since W (S) is a
parabolic subgroup of W we have in particular that W (S) \W is ordered. Note
that by Theorem 4.1 the control sets in B are ordered according to this order
in W (S) \W . We can now factor this order once again and get the order of the
control sets in BΘ .

Proposition 7.1. For u ∈ W let E (u) be the control set in BΘ as given
by (11). Take w1, w2 ∈ W . Then E (w1) ≤ E (w2) if and only if there exists
w ∈ w2WΘ such that D (w1) ≤ D (w).

Proof. If w is as in the statement then there are g ∈ intS , x ∈ D (w1)0 and
y ∈ D (w)0 such that gx = y . By the definition in (11) it follows that πΘ (x) ∈
E (w1)0 , πΘ (y) ∈ E (w)0 and E (w2) = E (w). Therefore gπΘ (x) ∈ E (w2)0

showing that E (w1) ≤ E (w2).

For the converse fix a split-regular h ∈ intS and let b0 be its attractor.
Then ub0 ∈ D (u) for all u ∈ W . Hence for i = 1, 2, πΘ (wib0) belongs to E (wi)0 .
Therefore there exists g ∈ intS which maps the fiber through w1b0 onto the fiber
through w2b0 . Since h has an attractor in the latter fiber, it follows that there
exists w ∈ w2WΘ such that D (w1) ≤ D (w) concluding the proof.
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Corollary 7.2. For w1, w2 ∈ W the following assertions are equivalent

1. E (w1) ≤ E (w2).

2. There exists w ≤ w1 such that w ∈ W (S)w2WΘ , that is, E (w) = E (w2) .

Proof. From the above proposition we have that E (w1) ≤ E (w2) if and only if
there is w3 ∈ w2WΘ such that D (w1) ≤ D (w3). On the other hand, by Theorem
4.1 this inequality holds if and only if there is w ∈ W (S)w3 such that w1 ≥ w .
These two equivalences together imply the corollary.

This corollary implies at once that the order in W factors through the
double coset W (S) \W/WΘ in such a way that the bijection with the control sets
is order reversing.

We turn now to the domains of attraction of the control sets in BΘ . These
are projections of the domains of attraction of the control sets in B . In fact,

Proposition 7.3. As above let E (w) be a control set in BΘ . Then

A (E (w)) = πΘ (A (D (w))) .

Proof. If x ∈ A (D (w)) then there exists g ∈ intS such that gx ∈ D (w)0 .
Since πΘ (D (w)0) = E (w)0 , equivariance of πΘ implies that gπΘ (x) ∈ E (w)0 so
that πΘ (x) ∈ A (E (w)) showing that πΘ (A (D (w))) ⊂ A (E (w)).

For the other inclusion take y ∈ A (E (w)). Then there exists g ∈ intS
such that gy = πΘ (wb0) because πΘ (wb0) ∈ E (w)0 . Hence g maps the fiber
π−1

Θ (y) onto the fiber through wb0 . Therefore there exists x ∈ π−1
Θ (y) such

that gx = wb0 . We have that x ∈ A (D (w)) and πΘ (x) = y showing that
A (E (w)) ⊂ πΘ (A (D (w))).

As a consequence of this proposition we have that the domains of attraction
of the control sets in BΘ are also unions of Schubert cells. In fact, the Schubert
cells in BΘ are projections of the Schubert cells in B . Therefore we have from
Theorem 6.3 that

A (E (w)) = πΘγ1 · · ·γn (C∗)

is the union of the Schubert cells in BΘ determined by the split-regular elements
in intS .
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