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Abstract. Harmonic functions satisfy the mean value property with re-

spect to all integrable radial weights: if f is harmonic then h∗f=f
∫
h for

any such weight h . But need a function f that satisfies this relation with
a given (non-negative) h be harmonic? By a classical result of Furstenberg

the answer is positive for every bounded f on a Riemannian symmetric
space, but if the boundedness condition is relaxed then the answer turns

out to depend on the weight h .

In this paper various types of weights are investigated on Euclidean

and hyperbolic spaces as well as on homogeneous and semi-homogeneous
trees. If h decays faster than exponentially then the mean value property

h∗f=f
∫
h does not imply harmonicity of f . For weights decaying slower

than exponentially, at least a weak converse mean value property holds:

the eigenfunctions of the Laplace operator which satisfy h∗f=f
∫
h are

harmonic. The critical case is that of exponential decay. In this class we
exhibit weights that characterize harmonicity and others that do not.
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1. Introduction

A harmonic function f on (a domain of) Rn satisfies the mean value property
(MVP): the average of f on every ball or sphere equals the value at the center.
Conversely, if the MVP holds for every ball or sphere then the function is
harmonic. If f satisfies the MVP for only one sphere centered at each point then
f need not be harmonic unless some kind of boundedness of f (e.g., positivity)
and some regularity of the radius function are also assumed [2], [4], [5], [16], [25],
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[24], [35], [36]. The situation is similar on hyperbolic spaces (which are, together
with Rn , the main examples of non-compact harmonic spaces) as well as on
homogeneous and semi-homogeneous trees (which can be regarded as discrete
analogues of hyperbolic spaces); there are also similarities with non-homogeneous
trees [33]. Harmonic functions on trees have been studied intensely in the recent
literature, both for their intrinsic interest (e.g., Poisson and Martin boundaries,
asymptotic behavior: see [23], [8], [33], and references therein) and for their
applications to Hardy spaces [31] and to unitary representations of free groups
[9], [20], although we will not pursue these applications in the present paper. In
general, trees can also be a good testing ground for theorems that often extend,
even with similar proofs, to hyperbolic spaces or manifolds with non-positive
curvature. Besides the present paper, this principle has yielded several results in
the past (cf., e.g., [11] or [7]).

(The reader is referred to §2 below, especially Remark 2.1 and Defini-
tion 2.2, for the notation and terminology used in the remainder of this intro-
duction.)

On Rn , the characteristic function h of a ball does not characterize
harmonicity, by a well-known result of Delsarte [18]: at least two different balls
are necessary (for a related question on homogeneous trees see [15]). But if f
is assumed positive or bounded there are positive results in a number of cases
[13], [34]: condition (∗) implies harmonicity for bounded f in Rn [12] and
all non-compact Riemannian symmetric spaces [22], [6]. Thus (∗) does imply
harmonicity if suitable boundedness assumptions are made on f , but does not
in the general case. It is proved in [30], inspired by [1], that a specific weight h
of exponential decay on Rn and hyperbolic spaces does or does not characterize
harmonicity depending on whether the dimension of the space is small or large.
This result does not contradict the one recalled above, because (∗) makes sense
only if f ∈ L1

h , a restriction on the growth of f . The effect of such restriction
depends on the dimension, whence the converse to the MVP also does.

The above seems to suggest the following general principle: a non-
negative radial weight h which decreases at infinity fast enough (faster than any
exponential) does not characterize harmonicity; one, however, which decreases
slowly enough (slower than any exponential) does. For intermediate rates of
decay (exponential decay), the behavior depends on the exact nature of h .
(Exponential decay is understood with respect to the distance from o in the
ambient space; note that on hyperbolic spaces and trees the volume of spheres
grows exponentially.) The purpose of this paper is to prove some instances of this
principle for Rn , hyperbolic spaces and (homogeneous and semi-homogeneous)
trees. The analysis turns out to be not only easier but also more effective in this
last environment, for which we shall prove suitable spectral synthesis results.

We show in Theorem 4.5 for trees and in Theorem 7.5 for hyperbolic
spaces and Rn that any weight h which satisfies h(r) ≤ Ce−A|r|

1+α

for some
positive constants C,A, α does not (with a trivial exception) characterize har-
monicity. On the other hand, if h is non-negative and decays slower than any
exponential then it characterizes harmonicity in the weak sense (Theorem 4.4
and Theorem 7.4).

In the remainder of the paper exponentially decaying weights are con-
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sidered. We construct examples with arbitrarily fast (exponential) decay which
nevertheless characterize harmonicity, and others with arbitrarily slow (exponen-
tial) decay which do not (some of these were already known for Rn and hyperbolic
spaces). Our results are more complete for trees—all results here were in fact
obtained on trees first, thereby providing inspiration for the continuous setup.
This is reflected in the structure of the paper: throughout §6 we present the
results for trees, and in the remainder we prove some of their counterparts on
hyperbolic spaces and Rn . Notation, e.g., as concerns the parameters for spher-
ical transforms (cf. Remark 7.3), is so chosen as to stress the similarities among
the various settings.

In view of [30] one might expect that pure exponential weights on trees
would characterize harmonicity only if the homogeneity degree of the tree is suffi-
ciently low, but instead it turns out that they always do (Theorem 3.2). The idea
of the proof is quite general, as it only uses the fact that the exponential function
is the resolvent of the discrete Laplacian ∆. The same approach applies (Theo-
rem 3.3) in a variety of discrete homogeneous spaces (whose groups of isometries
are free groups and free products), and to Laplacians which are not necessarily
isotropic. Of particular interest are semi-homogeneous trees, studied in detail
in §6. Their interest is due to the fact that, together with homogeneous trees,
they arise (for suitable degrees) as the Bruhat-Tits buildings associated to rank-1
linear algebraic reductive groups on non-Archimedean local fields. The group of
automorphisms of a semi-homogeneous tree is not transitive, therefore convolu-
tion is somewhat clumsy, and we replace it by semi-convolution, the summation
against an automorphism-invariant kernel. In extending Theorem 3.2 we prove
that a slightly more general (even in the homogeneous case) exponential-type
invariant kernel characterizes harmonicity. It appears worth remarking (cf. Re-
mark 6.6) that the expression of this kernel resembles closely that of Theorem 5.5
(described below), both having an oscillatory behavior, but the latter does not
characterize harmonicity.

In §5 we consider the closed convex cone generated by positive exponen-
tials on homogeneous trees (that is, the set of their integral averages with respect
to a positive measure). Every h in this cone characterizes harmonicity in the
weak sense; moreover, if h is actually a finite linear combination of positive expo-
nentials with positive coefficients then it characterizes harmonicity in the strong
sense (Theorem 5.4). Then we provide examples of linear combinations of ex-
ponentials which do not characterize harmonicity (Theorem 5.5); unfortunately
this does not seem to provide inspiration for a continuous analogue.

In §§7,8,9 attention is focused on the continuous setting. Here it is
natural to replace exponential weights with the resolvent of ∆ at an eigenvalue
for which it is positive and summable. On Rn this leads to considering the
MVP with respect to a class of exponentially decaying functions related to Bessel
functions of the second kind, while on hyperbolic spaces we have MVPs related to
spherical functions. The positive result of §3 again holds here, with essentially the
same proof (except for minor technical details): this MVP characterizes harmonic
functions also in the continuous setup. The weight h can be chosen here with an
arbitrarily fast exponential rate of decay at infinity. On the other hand, on Rn ,
if n ≥ 9, the radial exponential a|x| does not characterize harmonicity for any
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0 < a < 1, by a straightforward adaptation of the proof of [30, Proposition 2.1].
Consequently the feature of an exponentially decaying weight which determines
whether or not it characterizes harmonicity is not its rate of decrease.

The continuous picture is not so complete as the discrete one when we
consider MVPs with respect to convex combinations of resolvents. Following the
approach for trees, we prove that such weights characterize harmonicity in the
weak sense, but it is not clear whether they do in the strong sense. This question
occurs often in this paper, because, in order to pass from weak to strong, some
spectral synthesis result is needed. So far, in the continuous case such a result
has only been proved on hyperbolic spaces for one specific weight [30]. Some
considerations suggesting that spectral synthesis should hold more generally are
presented in §10.

Remark 1.1. Harmonicity on higher-rank symmetric spaces or buildings can-
not be expected to be characterized by any single weight h , unless f is assumed
to be bounded. Indeed in those cases the spherical Fourier transform ĥ of h
is an analytic function of several variables. The origin is among the points at
which it attains the value

∫
h (the corresponding eigenfunction of ∆ is a con-

stant, therefore in L1
h ), and there are others arbitrarily close. The eigenfunctions

corresponding to these are counterexamples in L1
h (cf. [3]).

We wish to thank Alessandra Gallinari for her help with some exten-
sive preliminary computations, and John M. Horváth for useful comments and
suggestions.

2. Basic notation and terminology

A tree is a connected graph without loops. A tree is homogeneous if each vertex
has the same degree (number of neighbors) q+1. Each such tree is a homogeneous
space of a free group or a certain free product, in either case contained in the
full automorphism group of the tree itself. In the rest of the paper we shall not
make explicit reference to the group structure.

On a tree assume fixed a reference vertex o . Let d be the natural integer-
valued distance, and set |x| = d(o, x) for every vertex x . By a function on a tree
we mean a function on the set of its vertices. A function h is radial if h(x) only
depends on |x| ; if so, by abuse of notation we write h(|x| ) = h(x). The basic
instance is the normalized equidistributed measure µn on the sphere of radius
n ≥ 0 around o . In particular µ0 = δo , where δx denotes the Dirac delta at x ,
i.e., the characteristic function of {x} .

If f, g are functions, set 〈f, g〉 =
∑
fḡ , summation being performed over

the whole tree. With regard to asymptotics for |x| → ∞ , write f � g or f ≺ g
if f = O(|g| ) or f = o(|g| ), respectively, and f ∼ g if f � g � f .

Let ∆ denote the isotropic Laplacian M1− id on a tree, where id is the
identity and M1 is the equidistributed nearest-neighbor transition operator. A
function is harmonic if it is annihilated by ∆—equivalently, the value at each
point is the average of values at its neighbors. Harmonic functions enjoy the
MVP for balls or spheres, as in Rn .
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Let wn be the number of vertices of the sphere {|x| = n} . If the tree is
homogeneous then

wn =

{
1 if n = 0,

(q + 1)qn−1 if n > 0,

and, since the operator M1 is the convolution with µ1 , then ∆ is the convolution
with µ1 − δo , so a function f is harmonic if and only if µ1 ∗ f = f .

Several of the above conventions and considerations extend to hyperbolic
spaces and Rn . On each of these spaces fix a reference point o (the origin in Rn ).
If d is the distance in the space, set |x| = d(o, x) for every point x . A function
(or measure) h is radial if h(x) only depends on |x| , and write h(|x| ) = h(x)
in this case. One example is the normalized equidistributed measure µr on
the sphere of radius r ≥ 0 around o . Note that µ0 = δo , where δx denotes
the Dirac delta at x (not a function, in these settings). For f, g functions, set
〈f, g〉 =

∫
fḡ , integration being performed over the whole space with respect to

the standard isometry-invariant measure. For |x| → ∞ , write f � g or f ≺ g if
f = O(|g| ) or f = o(|g| ), respectively, and f ∼ g if f � g � f . With ∆ denote
the Laplace operator on Rn , and the Laplace-Beltrami operator on a hyperbolic
space. Also in the latter setting harmonic functions enjoy the MVP for balls or
spheres.

Remark 2.1. Assume the ambient space is homogeneous (semi-homogeneous
trees will be dealt with separately in §6), so that its automorphism group induces
a convolution product. If f is harmonic and h a summable radial weight
(function or measure) then the MVP on spheres and a straightforward integration
in polar coordinates yield the MVP with respect to h , namely

(∗)

h ∗ f = f
∑

h on homogeneous trees,

h ∗ f = f

∫
h on Rn or hyperbolic spaces,

provided that, for each x , the left-hand side of the equality exists, i.e., the
function y 7→ h(d(x, y))f(y) is summable; with a slight abuse of notation we
write f ∈ L1

h in this case. The MVP on spheres thus reads µr ∗ f = f for all
r ≥ 0.

Conversely, fixing an h as above, we may ask whether (∗) implies that
f is harmonic. We shall frequently make the further assumption that h ≥ 0,
although several of the results also hold without it.

Definition 2.2. We shall say that the summable weight h characterizes
harmonicity (in the strong sense) if every f ∈ L1

h that satisfies (∗) is harmonic,
and that it characterizes harmonicity in the weak sense if every f ∈ L1

h that
satisfies (∗) and is an eigenfunction of ∆ is harmonic.

These two notions clearly coincide whenever L1
h has spectral synthesis,

in the sense that every closed translation-invariant subspace is generated by the
eigenfunctions of ∆ contained in it.
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Remark 2.3. The weight δo does not characterize harmonicity, since (∗) holds
for every f . But if h characterizes harmonicity (in the strong or weak sense),
then so does h̃ = c0δo + c1h for all constants c0, c1 , if c1 6= 0, because condi-
tion (∗) for h immediately follows from condition (∗) for h̃ . Thus the set of
weights that characterize harmonicity is not a linear space.

3. Exponential weights on homogeneous trees

The natural definition of a radial exponential weight on a homogeneous tree is
ha(x) = a|x| (i.e., ha =

∑∞
n=0 wna

nµn ) for a real, where we stipulate that t0 = 1
for any real t . Observe that h0 = δo , and that ha is summable for |a| < 1/q .

Lemma 3.1. For 0 6= |a| < 1/q we have

(3.1) µ1 ∗ ha = (λa + 1)ha + cδo,

where

(3.2) λa =
qa+ 1/a

q + 1
− 1

and c = −λa
∑
ha . Up to a constant factor, ha is thus the resolvent of µ1 at

the eigenvalue λa + 1 (or, equivalently, of ∆ at λa ) for the convolution product.
Furthermore ∑

ha =
a+ 1

1− qa .

Proof. We have

µ1 ∗ ha(x) =
1

q + 1

∑

d(y,x)=1

a|y| =

{
a if x = o,

(λa + 1)a|x| if x 6= o,

whence (3.1) holds for some constant c . Applying to both sides of (3.1) the
convolution homomorphism L1 → C given by g 7→ ∑

g we obtain
∑
ha =

(λa + 1)
∑
ha + c . Finally

∑
ha =

∞∑

n=0

wna
n =

q + 1

q

∞∑

n=0

(qa)n − 1

q
=

a+ 1

1− qa .

For our first result we do not need any spherical transform calculus.

Theorem 3.2. On a homogeneous tree of degree q+ 1 , for 0 6= |a| < 1/q the
weight h = ha characterizes harmonicity.

Proof. If f ∈ L1
ha

satisfies (∗) with h = ha , then

µ1 ∗ f
∑

ha = µ1 ∗ (ha ∗ f) = (µ1 ∗ ha) ∗ f = ((λa + 1)ha + cδo) ∗ f

=

(
(λa + 1)

∑
ha + c

)
f = f

∑
ha

(associativity holds because µ1 is finitely supported and f ∈ L1
ha

).
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The above argument has a wider range of application—e.g., to other dis-
crete setups—in that it only requires general properties of convolution operators.
The general statement is as follows. (For convenience, λ will denote the eigen-
value with respect to µ , instead of to the associated Laplacian µ − δe

∑
µ as

above.)

Theorem 3.3. Let µ be a finitely supported function on a discrete group G ,
and assume that its resolvent (for the convolution product) Rµ,λ at some eigen-
value λ exists and is summable. Then h = Rµ,λ characterizes µ-harmonicity,
that is, h ∗ f = f

∑
h implies µ ∗ f = f

∑
µ .

Proof. As before, we have
∑
µ ·∑Rµ,λ = λ

∑
Rµ,λ+1, whence

∑
Rµ,λ 6= 0.

The remainder of the argument is the same.

Note that Remark 2.3 also holds in this setting, where the Dirac delta is
at the identity e of G . Assume µ is non-negative. The summability condition
for the resolvent is fulfilled if the eigenvalue is greater than

∑
µ (as is the case

for λa+1 in Theorem 3.2) and if G is a free group or a free product of two finite
groups and µ is supported on words of distance 1 from e (cf. [20], [21], [10]),
or if G is the free product of finitely many copies of the same finite group, and
µ is equidistributed on the set of words of block length 1 (that is, on the union
of the factor groups, see [28]). Therefore, the theorem applies to homogeneous
or semi-homogeneous trees with a (not necessarily radial) “Laplace operator” µ
supported on words of length 0 or 1, or to symmetric graphs (in the terminology
of [28]) which arise as Cayley graphs of free products of two finite groups, or
of several copies of the same finite group, with µ equidistributed on the factor
groups; the latter case will be considered in detail in a forthcoming paper. In §§8,9
we shall show how the same argument can be adapted to Euclidean spaces and
rank-1 symmetric spaces.

4. Decay of weights and their spherical transforms
on homogeneous trees

A crucial role in the sequel will be played by spherical functions, so we briefly
recall their asymptotics. Our main source for background is [20, Chapter 3], to
which the reader is referred for further details. Consider a homogeneous tree
of degree q + 1. If µ is a finitely supported radial function then there exists a
polynomial P such that µ = P (µ1 − δo) (powers with respect to convolution
are intended here, the unit constant being consequently δo ). In fact for each n
there exists a polynomial Pn of degree n such that µn = Pn(µ1−δo), recursively
given by

Pn(t) =





1 if n = 0,

t+ 1 if n = 1,
q + 1

q
(t+ 1)Pn−1(t)− 1

q
Pn−2(t) if n > 1

(the recurrence relation also holds for n = 1 if we set P−1 = P1 ). Replacing t
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with µ1 − δo we obtain

(4.1) µn ∗ µ1 =




µ1 for n = 0,
qµn+1 + µn−1

q + 1
for n > 0.

For λ ∈ C denote by φλ (a spherical function) the unique radial eigen-
function of ∆ of eigenvalue λ (i.e., µ1 ∗ φλ = (λ+ 1)φλ ) such that φλ(o) = 1.
Recalling §2, for each n one has

φλ(n) =
∑

|y|=n
φλ(y)/wn =

∑

y

µn(y)φλ(y) = µn ∗ φλ(o)

= Pn(µ1 − δo) ∗ φλ(o) = Pn(λ)φλ(o) = Pn(λ).

Spherical functions are indexed in [20] by the parameter z that satisfies λ =
λq−z = γ(z)− 1, where

(4.2) γ(z) =
qz + q1−z

q + 1
=

2
√
q

q + 1
cosh((z − 1/2) log q).

(Each of λ , z will be used frequently in the sequel, but λ , the eigenvalue of ∆,
appears to be a better choice since γ is not one-to-one.) By [20, Theorem 3.3.3]
the spectral radius of µ1 in L2 is ρ = 2

√
q/(q+1). In the parameter z , from [20,

Theorem 3.2.2] we have a closed expression for Pn(λ) which turns out to be a
linear combination of the exponentials hq−z , hqz−1 , namely

(4.3) φλ(n) =





c(z)q−nz + c(1− z)qn(z−1) if γ(z) 6= ±ρ,

(±1)n
(

1 + n
q − 1

q + 1

)
q−n/2 if γ(z) = ±ρ,

where c(z) = (q1−z − qz−1)/(q + 1)(q−z − qz−1). The asymptotic behavior for
fixed λ as n→∞ (see also [14, Theorem 3]) is

(4.4) φλ(n) �
{
nq−n/2 if Re z = 1/2,

q−nmin{Re z,1−Re z} = q−n(1/2−|Re z−1/2|) if Re z 6= 1/2,

uniformly on {z ∈ C : |Re z − 1/2| ≥ c} for each c > 0. For real values of the
parameter λ we obtain
(4.5)

|Pn(λ)| �





nq−n/2 if |λ+ 1| ≤ ρ,
(

(q + 1) |λ+ 1| +
√

(q + 1)2 |λ+ 1| 2 − 4q

2q

)n
if |λ+ 1| > ρ.

The above inequalities are the so-called majorization principle [20, §3.5]. In par-
ticular, the following asymptotic monotonicity properties hold for real λ, λ′, λ′′ :

(4.6) |λ+ 1| < ρ < |λ′ + 1| < |λ′′ + 1|
implies Pn(λ) ≺ Pn(ρ− 1) ≺ Pn(λ′) ≺ Pn(λ′′).
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The majorization principle generalizes to non-real eigenvalues. The value
of λ is not real unless either Im z is an integer multiple of π/ log q or Re z = 1/2;
in general

|Pn(γ(z)− 1)| ≤ |Pn(γ(Re z)− 1)| .
(This follows immediately [20, Remark 3.2.4] from the integral expression

φλ(x) =

∫

Ω

K(x, ω)z dω,

where dω is the measure on the Poisson boundary Ω of the tree with respect
to o , and K is the corresponding Poisson kernel.) Since the map γ is onto C ,
this gives an asymptotic estimate of Pn(λ) for every complex λ . The inequality
means that for every ζ ∈ R the values of λ on the ellipse ∂Eζ , boundary of

(4.7) Eζ = {λ ∈ C : (Reλ+ 1)2 + (Imλ)2 coth2((ζ − 1/2) log q) ≤ γ(ζ)2}
(cf. [20, Proposition 3.3.1]) satisfy |Pn(λ)| ≤ |Pn(γ(ζ)− 1)| . Observe that the
greater of the two real points of ∂Eζ is γ(ζ)− 1.

If h is a function on the tree write ĥ(λ) = 〈h, φ̄λ〉 whenever the right-

hand side is defined. For h ∈ L1 the value ĥ(γ(z) − 1) coincides with the

spherical transform of h at z in [20, Chapter 3]. The map h 7→ ĥ is an injective
homomorphism of the commutative Banach convolution algebra of radial L1

functions on the tree into the algebra of analytic functions, and takes µ1− δo to
the identity, because

µ̂1(λ) = 〈µ1, φλ〉 = µ1 ∗ φλ(o) = (λ+ 1)φλ(o) = λ+ 1.

Note that if h is a summable radial weight then ĥ(0) is the constant
∑
h of (∗).

Definition 4.1. Let h be a summable function on a homogeneous tree, and
set h(n) = 〈h, µn〉 for all n (this extends the common abuse of notation for
radial functions). We say that, for n→∞ , the function h decays:

(1) faster than exponentially if |h(n)| ≺ an for every a > 0;

(2) exponentially (like an ) if 0 < a < 1/q is such that bn ≺ |h(n)| ≺ cn

whenever 0 < b < a < c ;

(3) slower than exponentially if an ≺ |h(n)| whenever 0 < a < 1/q .

Remark 4.2. The requirement that a summable function decay slower than
exponentially is rather restrictive, since the measure of the spherical surface of
radius n grows as the reciprocal qn of the ‘critical’ decay.

As customary for Fourier transforms, a function will be said to be analytic
in a subset of C if it is analytic in its interior and continuous up to the boundary.

Proposition 4.3. Let h be a summable function on a homogeneous tree.
Then:

(1) if h decays faster than exponentially then ĥ is entire;

(2) if h decays exponentially like an then ĥ is analytic on its domain E1/qa

of (4.7);

(3) if h decays slower than exponentially then ĥ is analytic on E1 .
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Theorem 4.4. A non-negative summable radial weight h on a homogeneous
tree that decays slower than exponentially (in the sense of Definition 4.1) char-
acterizes harmonicity in the weak sense.

Proof. By Proposition 4.3(3), the spherical transform ĥ is defined only in

E1 , and ĥ(λ) =
∑∞
n=0 h(n)wnPn(λ). If (∗) holds for some non-zero f ∈ L1

h

such that ∆f = λf for some λ , then: first, translating if necessary, we can
assume that f(o) 6= 0; then, radializing and normalizing at o , we may assume
that f = φλ (because the radializing operator M given by Mf(x) = 〈f, µ|x|〉
satisfies h∗Mf = M(h∗f)). Then h∗φλ = ĥ(λ)φλ implies ĥ(λ) =

∑
h = ĥ(0).

But every λ ∈ ∂E1 can be written as γ(it)−1 (or, equivalently, γ(it+1)−1) for
some real t , hence |Pn(λ)| ≤ Pn(0) = 1 by the majorization principle. On the
other hand, by (4.3), for each λ ∈ ∂E1 the sequence |Pn(λ)| is not constantly
1 on E1 unless λ = 0. Observe that if Pn(λ) = 1 for every n then φλ , being

constant, is harmonic, so λ = 0. By the maximum principle |ĥ(λ)| < ĥ(0) in
E1 except at λ = 0.

For functions decaying sufficiently fast we have the following result.

Theorem 4.5. Let h be a radial weight on a homogeneous tree such that for
some positive constants A,α we have |h(n)| � e−An

1+α

for n → ∞ . Then h
does not characterize harmonicity, unless h = c0δo + c1µ1 with constants c0, c1 ,
and c1 6= 0 .

Proof. Since the change of parameter γ in (4.2) is periodic with imaginary

period (namely 2πi/ log q ), then so is the spherical transform ĥ(γ(z)−1), which
is therefore bounded on {z ∈ C : uz ≤ 1} , where uz = 1/2 + |Re z − 1/2| . On
the other hand, on {uz > 1} we have (replacing the constant A with A log q )
that

|ĥ(γ(z)− 1)| ≤ C
∞∑

n=0

wnq
−An1+α |Pn(γ(z)− 1)| ≤ C ′

∞∑

n=0

q−n(Anα−uz)

by estimates (4.4) and the fact that wn ∼ qn . Split the last sum as I1 + I2 ,
where I1 is the sum over the index set D1 = {n ∈ N : Anα > 2uz} , and I2 over
its complement D2 . On D1 one has Anα − uz ≥ uz ≥ 1, thus

I1 ≤ C ′
∑

n∈D1

q−n ≤ C ′
∞∑

n=0

q−n = Cq.

On D2 one has

I2 ≤ C ′
∑

n∈D2

qnuz ≤ C ′quz maxD2 maxD2 ≤ C ′′u1/α
z Qu

1+1/α
z ,

where C ′′ > 0 and Q > 1.

Since uz ≤ |z| + 1, then ĥ ◦ (γ − 1) is of finite order (in the variable

z ), and this is immediately seen to imply that ĥ itself is (in the variable λ). If

ĥ(λ) = ĥ(0) only at λ = 0, Hadamard’s product theorem [32, Theorem 1.13]
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yields ĥ(λ) − ĥ(0) = BλkeP (λ) for all λ ∈ C with some constant B 6= 0, some

k ≥ 1, and some polynomial P of degree not larger than the order of ĥ . If P
is not constant (i.e., if the support of h is infinite) then eP◦(γ−1) does not have

finite order, and neither does ĥ ◦ (γ − 1). Therefore P is constant, that is, h
has finite support. Hadamard’s product theorem is not really needed for this
case, since every finitely supported weight equals Q(µ1) for some polynomial Q .
Up to a constant factor and to addition of a multiple of δo (cf. Remark 2.3) we

may assume that ĥ(λ) = λk , that is, h = (µ1 − δo)k . This weight characterizes
harmonicity if and only if k = 1. Indeed f given by f(x) = (|x| (q2 − 1) +
2q1−|x|)/(q − 1)2 satisfies ∆f ≡ 1, whence it is not harmonic, but ∆kf ≡ 0 for
k ≥ 2. Note that, since the support of h is finite, every function belongs to L1

h .

Remark 4.6. The above argument fails if we only require h(n) ≤ e−An logn .

In this case ĥ(λ) is still of finite order, but ĥ(γ(z)− 1) in general is not, so one
cannot conclude that the polynomial P is constant.

Remark 4.7. The simplest examples of non-constant weights that do not
characterize harmonicity on a homogeneous tree are µ2

1 and µ1 ∗ µ2 = (qµ3 +
µ1)/(q + 1). For instance in the former case the eigenfunctions of µ1 with
eigenvalue −1 (that is, of ∆ with eigenvalue −2) are non-harmonic functions
which nevertheless fulfill (∗). The spherical function φ−2 is the alternating
function (−1)|x| , which is bounded. This shows that Furstenberg’s result quoted
in the introduction (that every weight characterizes harmonicity for bounded
functions) has no analogue on trees.

5. The convex cone generated by exponentials on homogeneous trees

In order to examine more general exponentially decaying radial weights than
ha(x) = a|x| let us first compute its spherical transform. We follow the notation
of §3; in particular λa is given by (3.2).

Lemma 5.1. For 0 6= |a| < 1/q , the spherical transform of the radial expo-
nential ha on a homogeneous tree is

(5.1) ĥa(λ) =
a− 1/a

(q + 1)(λ− λa)
.

Consequently

(5.2) ĥa(λ)− ĥa(0) = λ
a+ 1

(qa− 1)(λ− λa)
.

If λ ∈ R and |λ+ 1| < λ|a|+1 (i.e., for λ = γ(z)−1 , if |a| < q−z < 1/q|a| ) then

the series defining ĥa(λ) converges absolutely to the expression given in (5.1);
otherwise, it diverges.
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Proof. From Lemma 3.1 we get λĥa(λ) = λaĥa(λ) + c , with c = −λa(a +

1)/(1−qa) = (a−1/a)/(q+1). We can then solve for ĥa and infer (5.1), provided

λ 6= λa and the series defining ĥa(λ) converges.

Since a 7→ qa + 1/a is decreasing in (0, 1/q), we have λ|a| > 0. By
the monotonicity properties (4.6) and by (4.5), if |λ+ 1| < λ|a| + 1 (notice that
λ−a + 1 = −(λa + 1)) then asymptotically |Pn(λ)| < |Pn(λ|a|)| ∼ (q |a| )−n , and
the series

∑∞
n=0 wn |a| n |Pn(λ)| converges if and only if |λ+ 1| < λ|a| + 1.

Consider now the convex cone generated by ha for 0 < a < 1/q and
closed with respect to pointwise convergence.

Lemma 5.2. Let ν be a positive measure on (0, 1/q) such that the function
a 7→ ∑

ha = (a + 1)/(1 − qa) is integrable. Then the radial weight h =∫ 1/q

0
ha dν(a) is summable, and its spherical transform is

ĥ(λ) =

∫ 1/q

0

a− 1/a

(q + 1)(λ− λa)
dν(a).

The spherical function φλ is in L1
h if and only if |λ+ 1| < λa0

+ 1 , where
a0 = max supp ν .

Proof. The result follows from Lemma 5.1, because ha0
is the slowest decreas-

ing in the one-parameter family of functions ha for a ∈ supp ν , so it is the one
that determines summability against φλ ; indeed λa0

= min{λa : a ∈ supp ν} ,
since a 7→ qa + 1/a (hence a 7→ λa ) is decreasing in (0, 1/q). It may be worth
showing this directly, however. We have h(n)φλ(n) = wnPn(λ)

∫ a0

0
an dν(a), so

∑
|hφλ| =

∞∑

n=0

wn |Pn(λ)|
∫ a0

0

an dν(a) ≤ q + 1

q
ν([0, a0])

∞∑

n=0

(qa0)n |Pn(λ)| .

On the other hand, if 0 < a′ < a0 then
∞∑

n=0

wn |Pn(λ)|
∫ a0

0

an dν(a) ≥ C
∞∑

n=0

(qa′)n |Pn(λ)|

for some positive constant C , since
∫ a0

a′ dν(a) > 0.

Proposition 5.3. The radial weight h of Lemma 5.2 characterizes harmonic-
ity in the weak sense.

Proof. As in Theorem 4.4 we can assume f = φλ (which belongs to L1
h by

assumption). Then evaluating (∗) at o yields ĥ(λ) = ĥ(0). We have to prove
that λ = 0 is the only root of this equation satisfying |λ+ 1| < λa0

+1. Suppose
λ 6= 0 is another such root. From (5.2) we have

0 = ĥ(λ)− ĥ(0) = −λ
∫ 1/q

0

a+ 1

(1− qa)(λ− λa)
dν(a).

The imaginary part of the integrand is (a+ 1)(Imλ)/(1− qa) |λ− λa| 2 , whose
factors (except possibly Imλ) are all positive; therefore λ must be real. Hence
the integrand itself is real, and its only factor that can change sign is λ − λa ;
in fact it must do so, in order for the integral to vanish. Therefore for some
a ∈ supp ν this factor is positive, contradicting |λ+ 1| < λa0

+ 1 ≤ λa + 1.
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Proposition 5.3 shows that if h belongs to the convex cone generated by
exponentials then its ĥ(0)-eigenspace does not contain any eigenfunction of ∆
except harmonic functions. For finite convex combinations of exponentials we
can improve this by showing that the ĥ(0)-eigenspace of h and the kernel of ∆
coincide:

Theorem 5.4. On a homogeneous tree of degree q+ 1 , the radial weight h =∑k
j=1 cjhaj , where c1, . . . , ck are positive constants and 0 < a1, . . . , ak < 1/q ,

characterizes harmonicity.

Proof. Since

ĥ(λ)− ĥ(0) = λ
k∑

j=1

cj
aj + 1

(qaj − 1)(λ− λaj )
,

if P (λ) =
∏k
j=1(λ − λaj ) then P (λ)(ĥ(λ) − ĥ(0)) is a polynomial of degree

k in λ , with roots λ(1) = 0 and λ(2), . . . , λ(k) > 0 (cf. the end of the proof

of Proposition 5.3), thus it equals Cλ
∏k
j=2(λ−λ(j)) for some non-zero constant

C . Suppose f ∈ L1
h satisfies (∗). As before, we can assume it radial. We

have 0 = P (µ1 − δo) ∗ (h − δo
∑
h) ∗ f = C

∏k
j=2(µ1 − (λ(j) + 1)δo) ∗ ∆f .

If ∆f 6= 0, let k0 be the smallest integer (with 2 ≤ k0 ≤ k ) such that∏k0

j=2(µ1− (λ(j) +1)δo)∗∆f = 0. Then
∏k0−1
j=2 (µ1− (λ(j) +1)δo)∗∆f is a radial

eigenfunction of ∆ of non-zero eigenvalue λ(k0) , does not vanish identically, and
belongs to L1

h . Yet it satisfies (∗), a contradiction by Proposition 5.3.

Until now we have only produced exponentially decaying weights which
characterize harmonicity (in the weak or strong sense). We now exhibit a linear
combination with positive coefficients of two exponentials that does not.

Theorem 5.5. On a homogeneous tree of degree q + 1 , for 0 < a < 1/q and
0 < c ≤ 1 the non-negative radial weight h = ha + ch−a does not characterize
harmonicity.

Proof. From Lemma 5.1 we have

ĥ(λ)− ĥ(0) = −λ
(

1 + a

(1− qa)(λ− λa)
+ c

1− a
(1 + qa)(λ− λ−a)

)
.

This quantity (using the equality λ−a + 1 = −(λa + 1)) can be seen to vanish if
λ equals either λ(1) = 0 or

λ(2) = − (1 + a)(1 + qa)− c(1− a)(1− qa)

(1 + a)(1 + qa) + c(1− a)(1− qa)
(λa + 1)− 1.

For c > 0 the absolute value of the coefficient of λa + 1 is less than 1, that
is, |λ(2) + 1| < λa + 1. Thus φλ(2)

is in L1
ha

= L1
h−a , whence also in L1

h , and

satisfies (∗), but is not harmonic, because λ(2) + 1 < 0.

The same proof works for c > 1—although h is not positive—except
for c = (1 + a)2(1 + qa)2/(1− a)2(1− qa)2 (since in this case λ(2) = 0). Theo-
rem 5.5 shows that Theorem 5.4 does not generalize to negative exponentials.

As an immediate consequence of Theorem 5.5 we see that the property
of characterizing harmonicity is unstable under small perturbations of the weight
in the L1 norm:



242 Casadio Tarabusi, Cohen, Korányi, and Picardello

Corollary 5.6. For c→ 0+ the weights ha+ ch−a , which do not characterize
harmonicity, tend in L1 to ha , which, instead, does.

6. Exponential-type bi-weights on semi-homogeneous trees

On a tree, let ε be the parity function with respect to o , given by ε(x) = (−1)|x| .
A function f is alternating if it factors through ε . In this case, letting c± (or
c± ) equal f(o±), where o+ = o , and o− is a fixed neighbor of o , we have
f(x) = cε(x) , so we write cε instead of f . Obviously f is constant if c+ = c− .
Since ε is radial, we will write ε(n) = (−1)n ; thus ε(x) = ε(d(x, y))ε(y) for any
two vertices x, y .

If h is a summable radial weight on a homogeneous tree, we have set
h ∗ f(x) =

∑
y k(x, y)f(y) whenever the integrand is summable for each x (i.e.,

if f ∈ L1
h ), where the summation kernel k(x, y) = h(d(x, y)) is invariant under

the diagonal action of the group of automorphisms, i.e., k(g · x, g · y) = k(x, y)
for any two vertices x, y and any automorphism g . In fact, the group acts
transitively on the tree, and, for every x , the isotropy group acts transitively on
each sphere centered at x . Conversely, given such a kernel k the corresponding
radial weight is determined by h(n) = k(x, y) for any x, y such that d(x, y) = n .

A tree is semi-homogeneous if its degree q + 1 = qε + 1 is alternat-
ing. Summation against a kernel, automorphism-invariant in the sense explained
above, can substitute for convolution on a semi-homogeneous, but not homo-
geneous tree, as is typical in non-homogeneous settings. Since the group of
automorphisms in this case has exactly two orbits and the isotropy subgroups
are transitive on spheres, the kernel k is determined by a pair (called summable
radial bi-weight) hε = (h+, h−) of independent, summable weights on the tree—
namely: h+ , radial around o+ = o ; and h− , radial around a fixed neighbor o−
of o—via the relation k(x, y) = hε(x)(d(x, y)); conversely, k determines the bi-
weight hε through h±(n) = k(x, y) for any two vertices x, y such that ε(x) = ±1
and d(x, y) = n . The semi-convolution of the bi-weight hε with a function f is
given by

hε ∗′ f(x) =
∑

y

hε(x)(d(x, y))f(y),

if the integrand is summable for every x , which we shall indicate by f ∈ L1
hε .

If a tree is homogeneous, in particular it is also semi-homogeneous, hence semi-
convolution with a bi-weight hε makes sense. The corresponding summation
kernel k(x, y) is now invariant under parity-preserving automorphisms only.
The space L1

hε contains L1
h+ ∩ L1

h− . This convolution coincides with ordinary
convolution by h+ if and only if h+(n) = h−(n) for all n .

On a semi-homogeneous tree, using semi-convolution define the MVP
with respect to the bi-weight hε as

(∗′ ) hε ∗′ f(x) = f(x)
∑

hε(x) for all x ,

for f ∈ L1
hε . Note that the function x 7→ ∑

hε(x) is alternating (non-constant,
in general). Terminology of Definition 2.2 carries over in the obvious way.
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To prove the analogue of Remark 2.1 we need to show that harmonic
functions enjoy the (ordinary) MVP with respect to spheres of any radius. Let
w±n be the number of vertices at distance n from a vertex of parity ±1. Setting
q =
√
q+q− , it is easy to verify that

(6.1) w±n =

{
1 if n = 0,

(q± + 1)qn−1
√
q∓/q±ε(n) if n > 0.

Let µ±n be the normalized equidistributed measure on the sphere of radius n
centered at o± , and let Mn be the operator of semi-convolution with µεn , so that

Mnf(x) = (1/w
ε(x)
n )

∑
d(y,x)=n f(y). Now, f is harmonic if M1f = µε1 ∗′ f = f .

It turns out that for every odd n the operator Mn does not preserve the L1

norm of positive functions, that is, it is not an L1 -isometry when restricted to
the cone. Instead it is an isometry in this cone for the weighted L1 space with
alternating weight (qε + 1)/(q−ε + 1). As a generalization of relations (4.1), one
gets

Lemma 6.1. We have

(6.2) MnM1 =





M1 if n = 0,

qε(n)εMn+1 +Mn−1

qε(n)ε + 1
if n > 0.

Therefore if f is harmonic then Mnf = f for all n .

Proof. The procedure for (6.2) is similar to that followed for (3.1). If y is a
vertex at distance n from x , then the number of neighbors of y farther away
from x is

vn(x) =

{
qε(x) + 1 if n = 0,

qε(n)ε(x) if n > 0.

Thus for n > 0

MnM1f(x) =
1

w
ε(x)
n

∑

d(y,x)=n

1

qε(y) + 1

∑

d(z,y)=1

f(z)

=
1

(qε(n)ε(x) + 1)w
ε(x)
n

( ∑

d(z,x)=n+1

+vn−1(x)
∑

d(z,x)=n−1

)
f(z)

=
w
ε(x)
n+1Mn+1 + vn−1(x)w

ε(x)
n−1Mn−1

(qε(n)ε(x) + 1)w
ε(x)
n

f(x).

Now replace each factor w
ε(x)
m with its expression as given in (6.1).

The second statement holds for n = 0 with any f , and for n = 1 by
hypothesis. Proceed by induction on n , using (6.2).

Corollary 6.2. For any summable radial bi-weight hε , if f ∈ L1
hε is harmonic

then (∗′ ) holds.

Proof. Integrating in polar coordinates around x we have

hε ∗′ f(x) =

∞∑

n=0

hε(x)(n)
∑

d(y,x)=n

f(y) = f(x)

∞∑

n=0

hε(x)(n)wε(x)
n = f(x)

∑
hε(x),

the middle equality following from Lemma 6.1.
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Remark 6.3. Exactly as in Remark 2.3, the bi-weight δoε = (δo+
, δo−) does

not characterize harmonicity, and, if the bi-weight hε characterizes harmonicity
(in the strong or weak sense), then so does h̃ε = cε0δoε + cε1h

ε for all constants
c+0 , c

−
0 , c

+
1 , c
−
1 , with c+1 , c

−
1 6= 0.

A natural analogue of the exponential weight ha is the bi-weight hεa
given by h±a (n) = an . We shall consider one which is slightly more general,
given by

(6.3) h±a,b(n) = anb±ε(n)

for 0 6= |a| < 1/q (so h±a,b is summable) and b 6= 0; the corresponding summation

kernel is therefore k(x, y) = ad(x,y)bε(y) . Corresponding to Lemma 3.1 we have:

Lemma 6.4. The operator H of semi-convolution with hε = hεa,b satisfies the
relation

(6.4) M1
H∑
hε

= λε
H∑
hε

+ cε id,

with

λ± =
(q±a+ 1/a)

∑
h±

(q± + 1)
∑
h∓

.

and c± = 1− λ± . Explicitly

∑
h± =

(q∓a+ 1/a)b±1 + (q± + 1)b∓1

1/a− q2a
.

Proof. We have

M1
H∑
hε
f(x) =

1

qε(x) + 1

∑

d(y,x)=1

1∑
hε(y)

∑

z

ad(y,z)bε(z)f(z)

=
∑

z

bε(z)f(z)
∑
d(y,x)=1 a

d(y,z)

(qε(x) + 1)
∑
h−ε(x)

= λε(x)
H∑
hε
f(x) + c(x)f(x)

for some function c , because

∑
d(y,x)=1 a

d(y,z)

qε(x) + 1
=





a if z = x,

qε(x)a+ 1/a

qε(x) + 1
ad(x,z) if z 6= x.

To finish the proof of (6.4) we are only left to show that c is itself alternating:
applying the identity to a non-zero constant function we indeed obtain λε+c ≡ 1.

Finally

∑
h± =

∞∑

n=0

anb±ε(n)w±n =
∞∑

n=0

anb±ε(n)(q± + 1)qn−1
√
q∓/q±ε(n) − b±1/q±.

Splitting the series according to the parity of the index n , one has two geometric
series with ratio qa ; the remainder is an immediate algebraic verification.

We are now in a position to prove the generalization of Theorem 3.2.
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Theorem 6.5. On a semi-homogeneous tree, the bi-weight hε = hεa,b charac-
terizes harmonicity if 0 6= |a| < 1/q and b 6= 0 .

Proof. If f satisfies (∗′ ), then by (6.4)

M1f = M1
H∑
hε
f = λε

H∑
hε
f + cεf = (λε + cε)f = f.

Observe that, although
∑
hε appears in relation (6.4) and in the expres-

sion of the ‘bi-eigenvalue’ λε , its explicit value is never needed for the purpose
of proving Theorem 6.5.

Remark 6.6. On a homogeneous tree, the weight of Theorem 5.5 equals, up to
a multiplicative constant, the bi-weight h±(n) = anbε(n) for some b > 1. In spite
of the similarity with the expression (6.3) of hεa,b , the former does not characterize
harmonicity, whereas the latter does. The respective semi-convolution kernels
k(x, y) are ad(x,y)bε(d(x,y)) and ad(x,y)bε(x)ε(d(x,y)) = ad(x,y)bε(y) . Observe that
ad(x,y)bε(x) is equivalent to ad(x,y) in the sense of Remark 6.3.

7. Decay of weights in the continuous setting

Let us recall the asymptotics of spherical functions on hyperbolic spaces, i.e.,
rank-1 symmetric spaces of non-compact type. The picture is essentially identical
to that of trees given in §4, and well known; notation is as in [30] and references
therein. On a hyperbolic space H there are intrinsic polar coordinates as follows:
let K be the stabilizer subgroup of o in the connected component G of the
isometry group of H containing the identity e . Then H = G/K , and every
point of H can be uniquely written as kat · o , where k ∈ K and {at} is
a one-parameter group of transvections based at o . Therefore functions on
H can be lifted to K -invariant functions on G , and we shall do so whenever
appropriate without further notice. A quantity that occurs often is ρ = p/2 + q ,
where p, q are the multiplicities of short, respectively, long roots. If dk denotes
the normalized Haar measure on K then the intrinsic volume element on H
(with respect to which the scalar product of functions is defined—cf. §2) is
dv = (2 sinh r)p+q(2 cosh r)q dr dk . The K -invariant surface measure wr of the
spherical surface of radius r grows as e2ρr for r →∞ .

The radial component of the Laplace-Beltrami operator ∆ is

∂2/∂r2 + ((p+ q) coth r + q tanh r)∂/∂r.

The spherical function φλ is the bi-K -invariant (i.e., radial) eigenfunction of ∆
of eigenvalue λ such that φλ(e) = 1, and, using the parameter z that satisfies
γ̃(z) = λ , where γ̃(z) = z(z + 2ρ), is given by

(7.1) φλ(g) =

∫

K

P (g, k)z dk,
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where P (g, k) = er(g
−1k) is the Poisson kernel, and r(g−1k) stands for the value

of r such that g−1k = k′ar for some k′ ∈ K . As for trees, it follows that

(7.2) |φγ̃(z)| ≤ |φγ̃(Re z)| .

The spherical transform ĥ of a function h is defined on {λ ∈ C : φλ ∈ L1
h} as

ĥ(λ) = 〈h, φ̄λ〉 .
The asymptotic behavior of spherical functions is almost the same as on

trees (deeper analogies between these two setups are described in [9]; see also
[20]). With our choice of parameters, for r →∞ we have

|φλ(r)|
{ � e(|

√
λ+ρ2|−ρ)r(1 + r) if R 3 λ > −ρ2,

∼ e(|Re
√
λ+ρ2|−ρ)r otherwise.

As done on trees in Definition 4.1, we define the rate of decay on hyper-
bolic spaces (as well as Euclidean spaces).

Definition 7.1. Let h be a summable function on a hyperbolic space H , and
write h(r) = 〈h, µr〉 =

∫
K
h(kar · o) dk for all r ≥ 0. We say that, for r → ∞ ,

the function h decays:

(1) faster than exponentially if |h(r)| ≺ ar for every a > 0;

(2) exponentially (like ar ) if 0 < a < e−2ρ is such that br ≺ |h(r)| ≺ cr

whenever 0 < b < a < c ;

(3) slower than exponentially if ar ≺ |h(r)| whenever 0 < a < e−2ρ .

While, if h is a summable function on Rn , set h(r) = 〈h, µr〉 for all
r ≥ 0. We say that, for r →∞ , the function h decays:

(1) faster than exponentially if |h(r)| ≺ ar for every a > 0;

(2) exponentially (like ar ) if a > 0 is such that br ≺ |h(r)| ≺ cr whenever
0 < b < a < c ;

(3) slower than exponentially if ar ≺ |h(r)| for every a > 0.

As observed for trees in Remark 4.2, the requirement that a summable
function on a hyperbolic space decay slower than exponentially is rather restric-
tive, because the measure of the spherical surface of radius r grows itself as
e2ρr . For the domain of the spherical transform we have the following (with the
terminologic convention before Proposition 4.3 about analyticity on non-open
sets).

Proposition 7.2. Let h be a summable function on a hyperbolic space H ,
and set St = {λ ∈ C : |Re

√
λ+ ρ2| ≤ −ρ+ t} . Then:

(1) if h decays faster than exponentially then ĥ is entire;

(2) if h decays exponentially like ar then ĥ is analytic on its domain
S− log a ;

(3) if h decays slower than exponentially then ĥ is analytic on its domain
S2ρ .
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Remark 7.3. The parameter λ is chosen, for all the three ambient spaces, to
be the eigenvalue of ∆. Consequently, if h is a summable radial weight then the
constant

∫
h of (∗) equals ĥ(0) in any of these setups.

The results of Theorem 4.4 and Theorem 4.5 for slowly as well as for fast
decaying weights carry over to hyperbolic spaces and Euclidean spaces.

Theorem 7.4. A non-negative summable radial weight h on a hyperbolic
space, or on Rn , that decays slower than exponentially (in the sense of Proposi-
tion 7.2) characterizes harmonicity in the weak sense.

Proof. The proof for hyperbolic spaces is the same as for trees given in Theo-
rem 4.4. By the majorization principle (7.2), for λ ∈ S2ρ we have the inequality

|ĥ(λ)| ≤
∫
h = ĥ(0), which is strict in the interior of S2ρ by the maximum

principle, and is an equality for λ = 0. On the rest of ∂S2ρ the inequality is
also strict since |φλ(x)| < φ0(x) = 1 for x in a set of positive measure, because
of cancellations in the integral 〈h, φλ〉 due to the fact that the corresponding
exponent z in (7.1) has a non-zero imaginary part.

Finally, on Rn the statement is obvious: the Fourier transform ĥ(λ)

converges only for real λ , and |ĥ(λ)| <
∫
h = ĥ(0) for λ 6= 0, because h is a

non-atomic positive measure.

Theorem 7.5. Let h be a radial weight on a hyperbolic space, or on Rn , such
that for some positive constants A,α we have |h(r)| � e−Ar

1+α

for r → ∞ .
Assume in addition that

∫
h 6= 0 . Then h does not characterize harmonicity.

Proof. We first give the proof for Rn . It is enough to show that ĥ(λ) = ĥ(0)

for some λ 6= 0 in Cn . Note first that ĥ(λ)→ 0 as |λ| → ∞ in {|Imλ| < 1} . In
fact, given ε > 0 one can find R > 0 and φ ∈ C∞(Rn) with support {|x| ≤ R}
such that

∫

|x|>R
|h(x)| e|x| dx < ε/3,

∫

|x|≤R
|h(x)− φ(x)| dx < ε/3eR.

Now, by the Paley-Wiener theorem, when |λ| is sufficiently large and |Imλ| < 1
we have |φ̂(λ)| < ε/3. But also, if |Imλ| < 1 then

|ĥ(λ)− φ̂(λ)| =

∣∣∣∣
∫

|x|>R
h(x)eiλ·x dx+

∫

|x|≤R
(h(x)− φ(x))eiλ·x dx

∣∣∣∣

≤
∫

|x|>R
|h(x)| e|x| dx+

∫

|x|≤R
|h(x)− φ(x)| e|x| dx ≤ 2ε/3,

thus |ĥ(λ)| < ε .

Next we show that the entire function ĥ has finite order, that is, as

|λ| → ∞ we have |ĥ(λ)| � e|λ|B for some B . Indeed,

|ĥ(λ)| ≤ C
∫

Rn
e−|x|(A|x|

α−|Imλ|) dx.



248 Casadio Tarabusi, Cohen, Korányi, and Picardello

Split the integral as I1 +I2 , where I1 is the value of the integral over the domain
D1 = {x ∈ Rn : A |x| α > 2 |Imλ| } , and I2 over its complement D2 ; it is enough
to consider |Imλ| ≥ 1. On D1 one has A |x| α − |Imλ| ≥ |Imλ| ≥ 1, hence

I1 ≤
∫

D1

e−|x| dx ≤
∫

Rn
e−|x| dx = Cn.

On D2 one has

I2 ≤
∫

D2

e|x||Imλ| dx ≤ e(2/A)1/α|Imλ|1+1/α

VolD2

≤ Cn(2 |Imλ| /A)n/αe(2/A)1/α|Imλ|1+1/α

.

Thus ĥ , hence ĥ− ĥ(0), is of finite order. If ĥ(λ) = ĥ(0) only at λ = 0,
then, for any fixed unit vector v ∈ Rn , again Hadamard’s product theorem
yields ĥ(sv) − ĥ(0) = B′skeP (s) for all s ∈ C with some B′ 6= 0, some k ≥ 1,

and some polynomial P of degree not larger than the order of ĥ . It follows
that |ĥ(sv)− ĥ(0)| tends to 0 or ∞ as s → ∞ through real numbers. This
contradicts the Riemann-Lebesgue lemma, which implies that the limit must be
|ĥ(0)| .

An obvious modification of the proof for Rn works for hyperbolic spaces,
adapting the argument used in Theorem 4.5 for trees, the bounds of whose
spherical functions are essentially the same. The Riemann-Lebesgue lemma
needed here is [26, Exercise B.6 of the Introduction, with solution], with the
condition |Re

√
λ+ ρ2| < ρ (under which the spherical function φλ is bounded).

8. The resolvent of the Laplacian on Euclidean spaces

In order to find a positive radial weight h of exponential decay on Rn which
characterizes harmonicity, let us proceed as in §3, and look for a fundamental
solution Rζ of the equation ∆Rζ = ζRζ−δo . For r > 0 the equation ∆Rζ = ζRζ
in polar coordinates is the Bessel equation, hence for ζ > 0 a positive radial
fundamental solution exists, given by

(8.1) Rζ(x) = cn |x| 1−n/2Kn/2−1(
√
ζ |x| ),

where Kn/2−1 is the Bessel function of the second kind, and cn is a suitable
constant. For r = |x| → 0, the solution Rζ has the characteristic singularity
cr2−n if n is odd, and cr2−n + d log r if n is even, for c, d 6= 0 [17]. Positivity
follows from the integral representations of Kν [19, (7.12.21–23)].

Lemma 8.1. We have
∫
Rζ = 1/ζ .

Proof. Formally this is immediate: 0 = 〈Rζ ,∆1〉 = 〈∆Rζ , 1〉 = ζ〈Rζ , 1〉 −
〈δo, 1〉 = ζ

∫
Rζ − 1. To make this rigorous, denote by Br the ball of radius r

centered at o . Then, for 0 < r1 < r2 , Green’s identity yields

ζ

∫

Br2\Br1
Rζ =

∫

Br2\Br1
∆Rζ =

∫

∂Br2

∂Rζ
∂r
−
∫

∂Br1

∂Rζ
∂r

.
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On the right-hand side the first integral tends to 0 as r2 →∞ , because ∂Rζ/∂r
decays exponentially, while the second tends to −1 for r1 → 0, due to the
characteristic singularity of Rζ .

The argument of Theorem 3.2 applies to this continuous setup:

Theorem 8.2. On Rn , for ζ > 0 the resolvent h = Rζ of ∆ at the eigenvalue
ζ characterizes harmonicity.

Proof. The fact that f ∈ L1
h implies that f ∗ h(x) exists as a Lebesgue

integral for all x . Also, f ∗h is locally integrable. Hence for any φ ∈ D(Rn) the
function φ(x + y)f(x)h(y) is in L1(R2n), and [27, Condition (Γ)] is satisfied.
So by [27, Proposition 18] and (∗) we have in the distribution sense ∆f/ζ =
∆(h ∗ f) = ∆h ∗ f = (ζh− δo) ∗ f = ζh ∗ f − f = 0.

This shows that the resolvent of the Laplacian in Rn characterizes har-
monicity in much the same way as on trees. For the convex cone generated by
resolvents we can prove the analogue of Proposition 5.3.

Proposition 8.3. Let ν be a positive measure on (0,∞) such that the radial
weight h =

∫∞
0
Rζ dν(ζ) on Rn is finite and summable. Then h characterizes

harmonicity in the weak sense.

Proof. We follow the approach of [30, Proposition 2.1]. Let f be such that
(∗) and ∆f = λf hold, with λ ∈ C . As before, f may be assumed radial.
Radial eigenfunctions of ∆ with eigenvalue λ which are finite (and non-zero)
at the origin are multiples, for z = ±

√
λ/2πi , of a function jz (related to the

Bessel function of the first kind), given by

jz(x) =

∫

K

e2πz〈k·x,v〉 dk,

where dk is the normalized Haar measure on K = SO(n), v ∈ Rn is a fixed unit
vector, and 〈 · , · 〉 is here the standard scalar product in Rn . The asymptotic
behavior for |x| → ∞ is jz(x) ∼ |x|−(n+1)/2e2π|Im z||x| (see [30] for references).
On the other hand, if ζ0 = min supp ν we see, as for Lemma 5.2, that (8.1) implies

h(x) ∼ |x| (1−n)/2e−
√
ζ0|x| . Therefore the condition jz ∈ L1

h amounts to

(8.2) 2π |Im z| <
√
ζ0.

As in [30], h ∗ jz = ĥ(zv)jz , hence (∗) gives ĥ(zv) =
∫
h = ĥ(0).

Since ∆Rζ = ζRζ − δo , for every λ ∈ Rn the Fourier transform of Rζ
satisfies − |λ| 2R̂ζ(λ) = ζR̂ζ(λ)− 1, so that R̂ζ(λ) = 1/(ζ + |λ| 2). Therefore

0 = ĥ(zv)− ĥ(0) = −z2

∫ ∞

0

1

(ζ + z2)ζ
dν(ζ).

The imaginary part of the integrand is −(Im z2)/ζ |ζ + z2| 2 , whence z2 is real.

If z 6= 0 is a solution of the equation ĥ(zv) = ĥ(0) then the integral vanishes,
therefore at some ζ ∈ supp ν the integrand must be negative, so z2 < −ζ ≤
−ζ0 ≤ 0. Then |Im z| = |z| > √ζ0 , contradicting (8.2). So the only possible
solution is z = 0, corresponding to the function j0 , a constant, hence harmonic.
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9. The resolvent of the Laplacian on hyperbolic spaces

In this section we extend to hyperbolic spaces the results proved for Rn in the
previous section. With notation as in §7, the spherical function φλ (the radial
eigenfunction of ∆ with eigenvalue λ such that φλ(o) = 1) can be expressed as
a linear combination of Φ+

λ ,Φ
−
λ , where Φ±λ (r) is singular at r = 0, behaves as

e(±
√
λ+ρ2−ρ)r for r →∞ , and is real-valued if and only if R 3 λ > −ρ2 .

For ζ > 0 the resolvent Rζ of ∆ at the eigenvalue ζ (i.e., the Green ker-
nel of ∆− ζ id) is min{Φ+

ζ ,Φ
−
ζ } , cf. [29] (observe the analogy with trees, where,

as briefly outlined in §4, spherical functions decompose as linear combinations
of two exponentials, the smaller of which is the resolvent of ∆ which was used
in Theorem 3.2—see [20, Chapter 3] for more details). Hence for r →∞

Rζ(r) ∼ e−(ρ+
√
ζ+ρ2)r.

Lemma 9.1. We have
∫
HRζ = 1/ζ .

Proof. The argument is the same as for Lemma 8.1. The only difference is
that for r2 →∞ the volume of the sphere of radius r2 now grows exponentially,

namely as e2ρr2 , but this is compensated by (∂Rζ/∂r)(r2) ∼ e−(ρ+
√
ζ+ρ2)r2 ≺

e−2ρr2 . Hence in Green’s identity the integral over such sphere tends to 0.

As in §8, the relevant part of [27] works in this setting, so we can infer

Theorem 9.2. On a hyperbolic space, for ζ > 0 the resolvent h = Rζ of ∆
at the eigenvalue ζ characterizes harmonicity.

Also the analogue of Proposition 8.3 holds here.

Proposition 9.3. Let ν be a positive measure on (0,∞) such that the radial
weight h =

∫∞
0
Rζ dν(ζ) on a hyperbolic space is finite and summable. Then h

characterizes harmonicity in the weak sense.

Proof. We proceed as for Proposition 8.3. By Proposition 7.2(2), for given
ζ > 0 the spherical transform R̂ζ(λ) =

∫
Rζφλ is analytic in |Re

√
λ+ ρ2| <√

ζ + ρ2 , therefore ĥ(λ) is analytic in the strip

(9.1) |Re
√
λ+ ρ2| <

√
ζ0 + ρ2,

where ζ0 = min supp ν . In order that φλ be in L1
h , inequality (9.1) must hold.

Taking the spherical Fourier transform of the resolvent identity ∆Rζ =

ζRζ − δo we obtain R̂ζ(λ) = 1/(ζ − λ), so

0 = ĥ(λ)− ĥ(0) = λ

∫ ∞

0

1

(ζ − λ)ζ
dν(ζ)

(cf. Remark 7.3). Taking the imaginary part of the integrand, one sees that λ
is real. Unless λ itself vanishes, we get λ > ζ ≥ ζ0 ≥ 0 for some ζ ∈ supp ν ,
as long as ĥ(λ) = ĥ(0). This implies |Re

√
λ+ ρ2| =

√
λ+ ρ2 >

√
ζ0 + ρ2 ,

contradicting (9.1).
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10. A conjecture on the spectral resolution
of the Laplace-Beltrami operator

In the continuous setting (Rn and H) we have shown that the convolution
eigenspace Mh = {f ∈ L1

h : f satisfies (∗)} of an exponentially decaying weight
h in a large class does not contain any eigenfunction of ∆ except its kernel. We
have also shown that ∆(h ∗ f) = ∆h ∗ f . Then, under mild assumptions on f ,
convolution by h commutes with ∆: in fact ∆h ∗ f = h ∗∆f by integration by
parts, provided that f gradh and h grad f vanish at infinity. But in our classes it
is easy to see that gradh ∼ h , therefore it is enough to assume that hf vanishes
at infinity (because then so does h grad f , by integration by parts); in this case
Mh is an invariant subspace for ∆. In order to show that h characterizes
harmonicity, it would thus be sufficient to prove that Mh is a direct sum of
eigenspaces of ∆|Mh

.

In the discrete setting of trees, a similar result is required to prove that
weights in the closed convex cone generated by exponentials characterize har-
monicity. The statement for finite positive combinations was proved in Theo-
rem 5.4 by identifying the spectrum of ∆|Mh

with the set of roots of a suitable
polynomial. Here no vanishing at infinity is needed to ensure that Mh is invari-
ant for the Laplacian, because it is finitely supported and commutes with every
radial convolutor. A similar approach has been followed in [30] with a specific

weight h for which the equation ĥ =
∫
h has finitely many solutions, showing

that the spectrum of ∆|Mh
consists exactly of such solutions.

It seems reasonable to believe that Mh is indeed a direct sum of eigen-
spaces of ∆|Mh

in all the cases considered. For assume that we have a spectral
resolution ∆|Mh

=
∫
σ
λ dE(λ), with σ denoting the spectrum, and

∫
σ
dE(λ) =

id. If the radial eigenvector φλ of ∆|Mh
with eigenvalue λ is in L1

h , then

h ∗ φλ = ĥ(λ)φλ . This suggests that the operator H of convolution by h

satisfies H =
∫
σ
ĥ(λ) dE(λ). On the other hand, H on Mh equals ĥ(0) times

the identity, hence its spectral decomposition with respect to the operator-valued
measure E(λ) should be

∫
σ
ĥ(0) dE(λ). The support of E(λ) should thus be

the set {λ : ĥ(λ) = ĥ(0)} , discrete because ĥ is analytic.
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les marches aléatoires sur les groupes,” Bull. Soc. Math. France Mém.
54, Soc. Math. France, Paris, 1977, pp. 5–118.

[35] Veech, W. A., A zero-one law for a class of random walks and a converse
to Gauss’ mean value theorem, Ann. of Math. (2) 97 (1973), 189–216.

[36] —, A converse to the mean value theorem for harmonic functions, Amer.
J. Math. 97 (1975), 1007–1027.

Dipartimento di Matematica
“G. Castelnuovo”
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