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Abstract. In this work we prove a theorem which shows that under some

mild restrictions on a solvmanifold G/Γ the existence of a Kähler structure

on it forces G to be metabelian and, hence this result is only ‘one-step’
removed from the original Benson-Gordon conjecture. Applications and ex-

amples are discussed. The proof develops the ‘hamiltonian’ idea of D. Mc-
Duff which appeared in her proof of the same conjecture for nilmanifolds

[22] as well as ideas of G. Lupton and J. Oprea contained in [20].

1. Introduction

In [4] the authors formulated the following conjecture.

Conjecture. Any compact quotient of a simply connected completely solvable
Lie group by a lattice admits a Kähler structure if and only if it is diffeomorphic
to a complex torus.

Note that the authors of [4] call these manifolds solvmanifolds. In the
sequel we will also follow this terminology although in general the class of compact
homogeneous spaces G/H of simply connected solvable Lie groups is larger
[31]. For example, the latter quotients may be not parallelizable (cf. [1]) while
quotients by lattices are obviously parallelizable (cf. also [28]). Recall that a Lie
group G is called completely solvable if its Lie algebra g satisfies the property
that each operator ad V : g→ g , V ∈ g has only real eigenvalues.

The conjecture of Benson and Gordon was a result of their analysis of
the existence problem for Kähler structures on compact nil- and solvmanifolds
(see [4], [5], [28]). The conjecture is true for nilmanifolds and has many proofs.
There are several proofs based on rational homotopy theory [17], [19], [28] and a
nice geometric proof given by McDuff [22]. Also, this fact was known to Hano
[16]. The ideas of rational homotopy theory led various authors to partial results
giving evidence for the conjecture [15], [28], [24], [27], [13]. The strongest results
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were the proof of the conjecture in dimension 4 [24] and the result of [4] about the
algebraic structure of the group G provided that G/Γ admits Kähler structures.

Theorem of Benson and Gordon. If G is completely solvable and G/Γ is a
solvmanifold that admits a Kähler structure, then

1) there is an abelian complement a in g of the derived algebra n = [g, g] ;

2) a and n are even dimensional;

3) the center of g intersects n trivially;

4) the Kähler form is cohomologous to a left invariant symplectic form
ω = ω0 + ω1 , where n = Ker(ω0) and a = Ker(ω1) ;

5) both ω0 and ω1 are closed but non exact in g (and also in n and a);

6) the adjoint action of a on n is by infinitesimal symplectic automorphisms
of (n, ω) .

Thus G is a semidirect product G = A ×ϕ N , where A is a connected abelian
subgroup and N is the nilpotent commutator subgroup. Moreover, N admits a
left invariant symplectic structure, and the action of A on N is by symplectic
automorphisms.

Note that these results are in the framework of a general problem of
constructing symplectic manifolds with no Kähler structures [28, 10, 13, 14].
Using solvmanifolds, several authors constructed such examples (cf. [15, 26, 27,
28]). Note also that we don’t assume that complex structure, or Kähler form
are G -invariant, since any kind of invariance of the structure forces G/Γ to
be a torus and this fact is known even for larger classes of spaces, e.g. for
complex homogeneous symplectic manifolds [13] or for any compact complex
homogeneous manifold admitting a Kähler structure (which may be not invariant,
this is the Borel–Remmert theorem [6]). In this framework, we can mention also
a ‘Hamiltonian’ approach to the problem [13, 18, 20] as well as Dorfmeister’s
and Guan’s results on pseudo-Kählerian homogeneous compact manifolds [8].
Compact solvmanifolds appeared naturally in various works related to topological
obstructions to the existence of complex structures on manifolds (see, e.g. [10,
30]).

The purpose of this note is twofold. First, we prove a theorem which
shows that under rather mild restrictions on G/Γ the theorem of Benson and
Gordon [4] can be essentially strengthened: our result appears to be only ‘one-
step’ removed from the original conjecture. Indeed, while the conjecture forces
the group G to be abelian, we are able to show that the existence of a Kähler
structure implies that G must be metabelian:

G = Rs ×ϕ Rt

(i.e. a semidirect product of two abelian Lie groups). This result allows for
eliminating many Lie groups G when attacking the conjecture. For example, it
follows that in dimension 6 Kähler structures may exist only on solvmanifolds of
the form (R2 ×ϕ R4)/Γ (it is worth comparing with [15], where the authors ex-
plicitly construct symplectic non-Kählerian solvmanifold of the type mentioned
above). The second explicit aim of this note is the developing of the ‘hamilto-
nian’ approach to the problem inspired by the proof of D. McDuff [22] in the
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nilmanifold case as well as the papers of D. Guan [13], A.T. Huckleberry [18]
and G. Lupton–J. Oprea [20]. The proof of our theorem is, in fact, an extension
of the ‘hamiltonian’ technique of McDuff to the solvmanifold case. It is based
on an interesting observation that the non-Lefschetz condition ‘propagates’ from
the fibers of the Mostow bundle to the total space of it. This observation seems
to be of much more general nature, but the authors have no definit results in
this direction and further analysis looks promising. However, the extension of
the McDuff technique to the solvmanifold case requires more refined techniques
of working with solvable Lie groups and solvmanifolds (cf. Section 3). In is quite
natural, since the problem of existence of lattices in solvable Lie groups is much
more delicate then the corresponding problem for nilpotent Lie groups.

Our proof is not directly related to rational homotopy theory, however,
the result itself deserves thinking over from the homotopic point of view, since
solvmanifolds are ‘one-step’ removed from nilpotent spaces and a version of the
minimal model theory can be still developed (this attempt was discussed in [28],
see also [15]).

We complete this section with several conventions, notations and facts
which will be used in the sequel. First, note that understanding of this paper
requires some information about lattices in Lie groups (it is collected, e.g. in
Raghunathan’s book [25]).

By definition, a finitely graded commutative algebra

H = ⊕2n
k=0H

k

is called Lefschetz, or satisfies the hard Lefschetz condition if there exists an
element ω ∈ H2 such that all linear maps Lωs : Hn−s → Hn+s, Lωs(θ) = ωsθ
are isomorphisms of vector spaces Hn−s and Hn+s . It is known that the hard
Lefschetz condition holds for the de Rham cohomology algebra of any compact
Kähler manifold [11] and therefore the violation of this condition eliminates
Kähler structures on the given manifold (this fact is used by many authors as a
tool of constructing symplectic manifolds with no Kähler structure).

If G/Γ is a compact solvmanifold, the nilradical Ñ of G satisfies the

property that ÑΓ is a closed subgroup in G and the latter fact allows for
constructing the following bundle which is called in the sequel the Mostow bundle:

ÑΓ/Γ→ G/Γ→ G/ÑΓ

(see [21]).

Two groups Γ and Γ′ are called commensurable if the indices [Γ : Γ∩Γ′]
and [Γ′ : Γ ∩ Γ′] are finite.

In Section 3 we need the structure of a Q -defined algebraic group on
the simply connected nilpotent Lie group N containing a lattice. The ‘digest’
of algebraic groups in our context can be also found in [25] and [31]. As far as
topological notions are concerned, we need, in fact, only the Poincaré duality [7].
Symplectic structures and hamiltonian symplectic actions are described, e.g. in
[2, 20].
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The first example of symplectic non-Kählerian compact manifold was
constructed by Thurston [29] and this manifold was also considered by Kodaira.
This manifold is defined as a nilmanifold of the form N3/Γ3 × R/Z where N3

is the 3-dimensional Heisenberg group and Γ3 is the group of all unitriangular
3 × 3-matrices with integer entries. In the sequel we will call this manifold
the Kodaira–Thurston manifold . We will show in Section 3 that the Kodaira–
Thurston manifold is ‘strongly non-Kählerian’, i.e. it cannot even be a fiber of
the Mostow bundle with Kählerian total space.

Now, it is important to discuss one subtle difference between the results
of this paper and [18]. The author is grateful to the referee for pointing out the
necessity of expressing this difference explicitly. It was proved in [18] that any
homogeneous space G/Γ determined by a discrete co-compact subgroup Γ and
endowed with a G-ivariant symplectic form is a torus (see Section 3). However,
the spaces considered in this article do not satisfy this property, although a
“close” property is satisfied: each such manifold admits a symplectic form, whose
pullback to G is G -invariant. To stress this, we use the McDuff terminology [22]
and introduce the following definition:

Definition 1. Let G/Γ be a homogeneous space. A differential form ω on
G/Γ is homogeneous, if it lifts to a left-invariant symplectic form on G .

2. Propagation of the non-Lefschetz condition

In the sequel we will need several facts concerning nilpotent torsionfree finitely
generated groups (these and only these groups are lattices in nilpotent Lie
groups). First recall that there exists a refinement of the upper central series
for any nilpotent group Γ with no torsion and with finite number of generators:

Γ ⊃ Z2Γ ⊃ Z3Γ ⊃ ... ⊃ ZnΓ ⊃ {1}

with each ZiΓ/Zi+1Γ ∼= Z . The length of this series is invariant and is called
the rank of Γ. So, for Γ above, rank(Γ) = n . Note that we write the indices
of the refined series in a non-standard way (the usual one for the upper central
series is {1} ⊂ Z1Γ ⊂ Z2Γ ⊂ ...). This description implies that any u ∈ Γ has a
decomposition u = ux1

1 · · · uxnn , where

〈un〉 = ZnΓ, ..., 〈ui〉 = ZiΓ/Zi+1Γ. (1)

Of course, u1, ..., un are generators of Γ and this set is called the Malcev basis
for Γ. Using this basis, the multiplication in Γ takes the form

ux1
1 · · · uxnn uy1

1 · · · uynn = u
ρ1(x,y)
1 · · · uρn(x,y)

n

where

ρi(x, y) = xi + yi + τ(x1, ..., xi−1, y1, ..., yi−1)
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In the sequel we will use the following observation expressed by the formula
below:

ZnΓ ⊂ Z(Γ) ⊂ [Γ,Γ], ZnΓ = 〈un〉 ∼= Z. (2)

Recall once more that, by the Benson–Gordon theorem, if G/Γ is a completely
solvable solvmanifold such that its cohomology algebra satisfies the hard Lefschetz
condition, then G is necessarily a semidirect product

G = A×ϕ N

where A is abelian and N is a commutator subgroup.

Using this notation, we can formulate the main result.

Theorem 1. Let S = G/Γ be a compact completely solvable solvmanifold and
let N denote the commutator subgroup N = [G,G] . Assume that the following
conditions hold:

1) Γ ∩N is a lattice in N ,

2) the refined upper central series for the nilpotent group ΓN = Γ ∩ N is
characteristic (i.e. is preserved by all automorphisms of ΓN ).

Then, if S is a manifold of Lefschetz type (in particular, if S carries
Kähler structures), the group G is necessarily a semidirect product of two abelian
groups:

G = Rk ×ϕ Rs

that is, a metabelian Lie group.

Remark 1. Note that the refined upper central series is characteristic for
example, for all ΓN for which the standard upper central series coincides with
the refined upper central series, since the standard series is characteristic (it is
well known). For instance, it holds for ΓN = Un(Z), where Un(Z) denotes the
group of all upper unitriangular matrices with integral entries.

Corollary 1. Theorem 1 is valid under the following weaker assumption:
there exists a non-trivial element z ∈ [ΓN ,ΓN ] such that ϕ(a)(z) = z for all
a ∈ ΓA = A ∩ Γ . In particular, it is valid if dimZ(N) = 1 .

Proof. Since S is completely solvable, we can always assume that it is
equipped with a homogeneous symplectic form, say, ω (it follows from the
Nomizu–Hattori theorem, see [28, 15], or the invariance argument at the end
of the proof of Proposition 4 in [22], which is valid not only for nilmanifolds, but
for completely solvable solvmanifolds). Moreover,

ω = ω0 + ω1

with both ω0 and ω1 closed and ω1 representing a homogeneous symplectic form
on the nilmanifold N/N ∩ Γ. Note that symplecticness of ω1 as a homogeneous
differential form on N/(N ∩Γ) follows from (5) of the Benson–Gordon Theorem,
which was cited in the Introduction. It was mentioned there that ω1 is closed and
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non-exact not only as an element of the Chevalley–Eilenberg complex (Λg∗, δ),
but also as an element in the Chevalley–Eilenberg complex of n . Note that by
our assumption N ∩ Γ is a lattice in N . Now, one can easily notice that the
structure of a semidirect product on G is inherited by Γ:

Γ = ΓA ×ϕ ΓN .

Indeed, the restriction of the natural projection G→ G/N onto Γ has the kernel
ΓN while the image can be identified with ΓN/Γ = Γ/(Γ∩N), which yields the
exact sequence

{1} → ΓN → Γ→ Γ/(N ∩ Γ)→ {1}
which is splittable because the initial sequence is.

The conditions of Theorem 1 allow for considering the following analogue
of the Mostow bundle

F → S → T,

where F denotes the fiber of the commutator fibration, that is, F = NΓ/Γ ∼=
N/(N ∩ Γ), while T = G/NΓ is the base.

Indeed, it is not very difficult to prove (and it is done in [31]) that N ∩Γ
is a lattice if and only if NΓ is closed in G (see [31, Theorem 4.5]). Note that in
this work subgroups H ⊂ G such that HΓ are closed in G are called Γ-closed.

We claim, that under the assumptions of Theorem 1 there exists a free
S1 -action on S . We begin with the proof of the latter assertion. Note that, since
N/(N ∩ Γ) is a compact nilmanifold, we have the following two possibilities:

1) N is abelian and, therefore, G is of the prescribed form;

2) N is non-abelian and, by the well-known result of McDuff [22], there
exists a free circle action on F , which is symplectic with respect to the
homogeneous symplectic form ω1 .

Recall this construction. It is proved, first, that Z(N) has a lattice
which can be taken as a center of Γ ∩N . In the sequel we will denote the latter
intersection by ΓN = N ∩ Γ, so we claim that

Z(ΓN ) ⊂ Z(N)

and that, in fact, Z(ΓN ) is a discrete and co-compact subgroup in Z(N). This
assertion is proved by the following argument (cf. [31]). Following Malcev
introduce the natural structure of a Q -defined algebraic group on N uniquely
determined by ΓN . Then, ΓN is commensurable with the subgroup of Z -points
N(Z). But the center Z(N) is also a Q -defined algebraic subgroup in N , which
implies that Z(N)(Z) is a lattice in Z(N) by the Malcev theorem. Again,
since Z(ΓN ) is commensurable with Z(N)(Z), we get the required assertion
(the relation of commensurability inherits the property of being a lattice, [31]).

Now, since Z(ΓN ) is a lattice in the abelian Lie group Z(N), we get an
isomorphism

Z(N)/Z(ΓN ) ∼= S1 × ...× S1

which allows us to generate an S1 -action on N/ΓN as follows. Since exp :
z(n) → Z(N) is a diffeomorphism, one can find Xγ = exp−1(γ), Xγ ∈ z(n) for
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any γ ∈ Z(ΓN ). Let π : Z(N) → Z(N)/Z(ΓN ) be the natural projection and
denote by

[exp tXγ ] = π(exp tXγ) ⊂ S1 × ...× S1, t ∈ R.
We claim, first, that the equality

[exp tXγ ] · nΓN = exp tXγ · nΓ

correctly defines an S1 -action on F (this is the action defined by D. McDuff in
[22] in the nilmanifold case). Indeed, if we take exp tXγ ·γ′ , γ′ ∈ Z(ΓN ) ⊂ Z(N),
we will obviously get

exp tXγ · γ′ · nΓN = exp tXγ · nΓN ,

since γ′ ∈ Z(N).

Now, we claim that this action can be naturally extended to the whole
S , of course, under the assumptions of Theorem 1. Namely, recall that Γ =
ΓA×ϕΓN and the multiplication in the semidirect product is given by the action
of automorphisms of the form ϕ(aγ) ∈ Aut(ΓN ):

(aγ, nγ) · (a′γ , n′γ) = (aγ · a′γ , nγϕ(aγ)(n′γ))

In particular, if we take (e, un) ∈ Zn(ΓN ), we will obtain z = (e, un) ∈ Z(ΓN ).
Now, consider the following two possibilities:

1) ϕ(aγ)(un) = un for all aγ ∈ ΓA ,

2) ϕ(aγ)(un) = u−1
n for some aγ .

Note that no other possibility may occur, since Zn(ΓN ) ∼= Z and the infi-
nite cyclic group has only two automorphisms. Here we use also the assumption
of the Theorem that the refined upper series is characteristic, which means that
Zn(ΓN ) is preserved by any automorphism.

Consider the first possibility. Obviously, the multiplication rule in the
semidirect product shows that

z = (e, un) ∈ Z(Γ) (3)

Indeed,
(e, un) · (a, n) = (a, un · n)

(a, n) · (e, un) = (a, n · ϕ(a)(·un)) = (a, n · un) = (a, un · n).

Thus, the element z lies simultaneously in the centers of both ΓN and Γ. Note,
however, that the McDuff construction requires only the existence of a nontrivial
element in the center of the lattice. Therefore, applying the McDuff construction
to the case G/Γ we can generate the free S1 -action on S by z which extends the
given S1 -action on F . Finally, we get a free and obviously symplectic (because
of homogeneity of ω0 + ω1 ) S1 -action on S .

Let ξ be the fundamental vector field corresponding to this action. Now,
use the homology and cohomology sequences corresponding to this bundle:

H∗(F )→ H∗(S)→ H∗(T )
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H∗(T )→ H∗(S)→ H∗(F )

In the sequel, we denote the embedding of F to S by j and the projection of S
onto T by p and the corresponding maps on the cohomology and homology level
by j∗, p∗ (respectively, j∗, p∗ ). Note that F is a submanifold in S and that the
initial S1 -action induces the fundamental vector field ξF on F . Recall from [22]
that since ξF is a fundamental vector field of an S1 -action, the homology class
[ξF ] ∈ H1(F ) is well-defined. Now, use the non-commutativity of N . Recall
from formula (2) that in this case we can choose the generating element z lying
in the commutator subgroup [ΓN ,ΓN ] which obviously implies

[ξF ] = 0

(since H1(F ) = ΓN/[ΓN ,ΓN ] , this is the argument of McDuff applied to F ).
Since

j∗[ξ
F ] = [ξ], [ξ] ∈ H1(S)

we get [ξ] = 0. Note that [ξ] is Poincaré dual to the cohomology class [i(ξ)ωn] ∈
H2n−1(S). Since, by assumption, H∗(S) is a Lefschetz algebra

[i(ξ)ωn] = 0 if and only if [i(ξ)ω] = 0.

Note that
j∗(i(ξ)ω) = i(ξF )j∗ω = i(ξF )ω1.

We get
j∗[i(ξ)ω] = [i(ξF )ω1] = 0

since we have already shown that [i(ξ)ωn] = 0. Finally, we see that if N is
non-abelian, F = N/(N ∩ Γ) admits an S1 -action which satisfies the following
conditions

1) i(ξF )ω1 is exact (or the action of S1 is hamiltonian),

2) ξF has no zeros.

Since these two conditions are incompatible (it is well known, cf. [22,
Prop. 3], or [23]), we obtain a contradiction which follows from our assumption
of the non-commutativity of N .

Thus, it remains to consider the second possibility of the ϕ(aγ)-action
on the infinite cyclic group Zn(ΓN ) = 〈un〉 . Here, however, we can easily reduce
the proof to the previous case as follows. Since there are only two automorphisms
of infinite cyclic group, the subgroup

Γ′ = Γ′A ×ϕ ΓN = {(a, n)| ϕ(a)(un) = un}

has index 2 in Γ. Hence, we obtain the double covering G/Γ′ → G/Γ such that
G/Γ′ satisfies the condition (1) which we have already settled. But the Lefschetz
condition is cohomological (over the reals) and does not change up to a finite
covering.
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Proof of Corollary 1

The possibility of weakening assumption (ii) is obvious, since the equality
ϕ(a)(z) = z is the only condition which is required for accomplishing the proof.
Note that if dimZ(N) = 1, we get ϕ(a)(Z(ΓN)) ⊂ Z(ΓN ), but Z(ΓN ) ∼= Z and
we accomplish the argument repeating the proof of the Theorem.

3. Discussion of examples

Thus, the non-Lefschetz condition ‘propagates’ to the total space of the Mostow
fibration under an additional assumption ϕ(a)(z) = z for at least one z ∈ Z(ΓN )
and in the latter case it forces G/Γ to be of very particular type. The purpose of
this section is to discuss the question whether this condition is very restrictive or
not. Note, first, that in general this condition need not be satisfied, as Example
1 in [4] shows. However, one can also notice that this example is of the form
G/Γ with G = R2×ϕR2 and this means that there are no additional restrictions
regarding the action of ϕ(a) on R2 except the obvious one ϕ(a) ∈ SL2(Z). As
one may expect this additional conditions appear when the class of nilpotency
grows.

Example 1. Kodaira–Thurston manifold and 6-dimensional solvman-
ifolds

Proposition 1. Let G/Γ be any solvmanifold such that G = A ×ϕ N and
Γ = ΓA ×ϕ ΓN . Assume that:

1) N = [G,G]

2) N contains a 3-dimensional Heisenberg group N3 such that ϕ(a)(N3) ⊂
N3 ,

3) dim(N3 ∩ Z(N)) = 1 ,

4) N3 ∩ Γ is a lattice in N3

Then there exists an element z ∈ Z(ΓN ) such that ϕ(a)(z) = z for all
a ∈ ΓA .

Corollary 2.

1) The Kodaira–Thurston manifold cannot be a fiber of the Mostow fibration
of any Kähler compact solvmanifold of completely solvable Lie group.

2) The assertion of the Theorem is valid for any 4- and 6-dimensional
solvmanifold.

Proof. Since ϕ(a)(ΓN ) ⊂ ΓN , and ϕ(a)(N3) ⊂ N3 we get

ϕ(a)(N3 ∩ Γ) = ϕ(a)(N3 ∩ ΓN ) ⊂ N3 ∩ ΓN

which means that ϕ(a) is an automorphism of the lattice ΓN ∩N3 . Since

ϕ(a)(Z(ΓN )) ⊂ Z(ΓN )

we see that ϕ(a) preserves an infinite cyclic group N3 ∩ Z(ΓN ) ∼= Z and the
proof follows.
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Proof of Corollary 2

Note, first, that the Kodaira–Thurston manifold is a nilmanifold of the
form

(N3 × R)/(Γ3 × Z)

where Γ3 is a group of upper triangular unipotent matrices with integral entries.
Note that any automorphism ϕ(a) lifted from the automorphism of Γ3 × Z
preserves N3 (it can be verified on the Lie algebra level using the standard
base of n3 , say, e1, e2, e3 with [e1, e2] = e3 ). Since ϕ(a) was lifted from an
automorphism of the lattice Γ = Γ3 × Z , we get ϕ(a)(Γ3) = ϕ(a)(N3 ∩ Γ) ⊂
Γ ∩ N3 = Γ3 . The latter implies that ϕ(a) preserves the center of the latter
group which is also an infinite cyclic group. The proof of (1) is completed.

To prove the second part of the corollary it is enough to notice that
four-dimensional real Lie algebras are exhausted by the list below [3]:

abelian, n3 × R, n4

where

n4 = 〈x1, x2, x3, x4〉

[x1, x2] = x3, [x1, x3] = x4, [x1, x4] = 0.

Now, one can see that in the first case the proof follows from the first part of
the corollary and in the second case it follows directly from Theorem 1, since
dim z(n4) = 1. Indeed, if dimG/Γ = 4 we get even a stronger result [24] and
in the 6-dimensional case we have only one possibly non-toral decomposition for
dimensions, namely, 2 + 4. From the table below we see that either the fiber is
the Kodaira–Thurston manifold, or it has the form N4/Γ4 where N4 corresponds
to n4 defined above. Both cases, however, are eliminated by the hard Lefschetz
condition.

Example 2. Unipotent groups of Chevalley type

Proposition 2.

1) Assume that N = [G,G] satisfies the following property: the group
Aut(N) is solvable. Then the manifold G/Γ cannot carry Kähler struc-
tures.

2) In particular, let N = [G,G] satisfy the property that the subgroup of Q-
points NQ of N considered as a Q-defined algebraic group is a unipotent
group of Chevalley type but not of the type A2 . Then G/Γ cannot carry
Kähler structures.

Proof. Recall the known criterion for the existence of lattices in simply
connected nilpotent Lie groups. By definition, a Q-structure on a Lie algebra
n is a basis in n , say, e1, ..., en such that all structure constants ckij of n are
rational. Recall [25, Theorem 2.12] that N contains a lattice if and only if n
admits a Q-structure. Note that the exact meaning of this is described as follows.
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Let there be given a Q -structure determined by the basis e1, ..., en and let nQ
denote the vector space (and Lie algebra) spanned by e1, ..., en over Q :

nQ = 〈e1, ..., en〉Q ⊂ n.

Take the lattice L = Ze1 ⊕ ... ⊕ Zen in the real vector space n . Then, by
[25, Theorem 2.12] Γ = 〈exp(L)〉 ⊂ N is a lattice in N (here 〈...〉 denotes the
subgroup generated by exp(L)). Conversely, if Γ ⊂ N is a lattice in N , one
obtains that a Z -submodule L = 〈exp−1(Γ)〉 generated by the set exp−1(Γ) in
n is a lattice in the real vector space n and for each basis e′1, ..., e

′
n such that

e′i ∈ L, i = 1, ..., n the corresponding structure constants ′ckij are rational.

Now, let ϕ : Γ→ Γ be any automorphism. From the construction above
we see that ϕ∗ : n→ n preserves exp−1(Γ) and, therefore,

ϕ∗(L) ⊂ L.

Let
nLQ = 〈L〉Q = 〈e′1, ..., e′n〉Q ⊂ n

be the Lie subalgebra defined over the rationals in the same way as nQ . We see

that ϕ∗(nLQ) ⊂ nLQ , which follows from the previous two formulas. Let AutQ(n)

be the group of all automorphisms of n preserving nLQ . By the assumptions
of the proposition the latter group is also solvable and, hence, there exists a
basis, say, e′′1 , ..., e

′′
n such that all automorphisms in AutQ(n) are triangular.

Since nLQ is a Q -defined Lie algebra over the rationals, we can choose without

loss of generality e′′n ∈ z(nLQ) ∩ [nLQ, n
L
Q] (since the center and the commutator

subalgebra are characteristic, the same is valid for their intersection). However,
since all matrices are triangular, e′′n must be preserved (up to a scalar α ∈ Q).
However, because of the first part of the criterion, there exists a (possibly new)
lattice

Γ′ = 〈exp(Ze′′1 ⊕ ...⊕ Ze′′n)〉
in N . Of course, Γ′ is commensurable with Γ and satisfies the property
exp(e′′n) ∈ Γ′ ∩ Z(N) = Z(Γ′). Thus, without loss of generality, we can
change N/Γ by N/Γ′ . However, the lattice Γ′ possesses an element in the
center (z = exp(e′′n)) which is preserved under the action of any automorphism
ϕ(a), a ∈ Γ′A (as in the Corollary). Again, one should only notice that since z
lies in an infinite cyclic group ϕ(a)(z) = z , or ϕ(a)(z) = z−1 .

Note that this argument does not work for abelian fibers: the corre-
sponding group of automorphisms becomes too big and it may be not possible
to choose them all triangular.

Now, it is known [9] that any unipotent group of Chevalley type which
is not contained in the simple algebraic group A2 has solvable group of algebraic
automorphisms. However, AutQ(N) consists of algebraic automorphisms (it is
obvious, since the structure of an algebraic group on N is given by the exponen-
tial mapping such that exp becomes an isomorphism of algebraic varieties (cf.
[31, p. 45]). The proof is completed.
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Remark 2. We end this article with the remark due to the referee and [18].
This remark shows what is the difficulty in developing a “hamiltonian” approach
to the problem. The following proposition is contained in [18] and is well known.

Proposition 3. Let G/Γ be a homogeneous space determined by a discrete
co-compact subgroup Γ . If G/Γ admits a G-ivariant symplectic form, G must
be abelian.

Proof. It is known [12, p. 183] that the commutator subgroup [G,G] acts
on G/Γ in a hamiltonia way: iXξω = dfξ for a function fξ on G/Γ and a
fundamental vector field Xξ on G/Γ determined by a vector ξ ∈ [g, g] . Since
G/Γ is compact, the critical set Cξ = {x ∈ G/Γ|dfξ = 0} is not empty. But
then for any x ∈ Cξ one obtains Xξ(x) = 0 and since Γ is discrete, Xξ = 0
everywhere. Hence, ξ = 0 and [g, g] = 0 as required.

Thus, we stress once more that our symplectic forms are not invariant
in the sense of Proposition 3. On the other hand, it seems that this simple
observation combined with the homotopic considerations of [20] may shed some
new light on the problems discussed in this article.
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