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Abstract. A dipolarization in a Lie algebra g is two polarizations g± in g

at a common linear form on g satisfying g=g++g− . We study dipolarizations
in semisimple Lie algebras, especially, the relation between dipolarizations
and gradations. As an application, we give a relation between semisimple
homogeneous parak ähler manifolds and hyperbolic semisimple orbits. For
g real semisimple, we determine the characteristic elements, from which
dipolarizations can be constructed.
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Introduction

Let g be a Lie algebra over F (= R or C), and g± two subalgebras of g and let f be
a linear form on g. Then the triple {g±, f} is called a dipolarization in g, if g± are
totally isotropic subspaces with respect to df and g = g+ +g− and further g+∩g−

coincides with the centralizer gf of f in g (cf. Definition 1.2). A dipolarization,
or more generally, a weak dipolarization was introduced by Kaneyuki [8]. If g is
semisimple, weak dipolarizations reduce to dipolarizations. A significant property
is that there is a one-to-one correspondence between weak dipolarizations and
infinitesimal classes of homogeneous parakähler manifolds ([8]). A homogeneous
parakähler manifold is, by definition, a homogeneous symplectic manifold (of a
Lie group G) which admits a pair of invariant Lagrangean foliations. Note that
a parahermitian symmetric space is a symmetric coset space with homogeneous
parakähler structure.

A fundamental problem on homogeneous parakähler manifolds is the clas-
sification and construction of such manifolds. In this paper, we settle this problem
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in some sense, for the case where g is semisimple (cf. Theorems 3.7 and 3.8). Let
us go back to dipolarizations. Lemma 1.3 says that {g±, f} is a dipolarization if
and only if g± are two polarizations at f and g = g+ + g− is valid. This reduces
the study of dipolarizations to that of polarizations. Dipolarizations in solvable
Lie algebras were studied in [2], [11] and [3], and weak dipolarizations in compact
Lie algebras were studied in [7].

In this paper, we are concerned with dipolarizations in real or complex
semisimple Lie algebras. Let {g±, f} be a dipolarization in a semisimple Lie
algebra g. Then it follows from Ozeki-Wakimoto [12] that g± are parabolic
subalgebras. The Killing dual Z of f , called the characteristic element of {g±, f},
is a semisimple element of g, and further the centralizer c(Z) in g is a Levi
subalgebra of g± (Proposition 2.3). Our main concerns are:

Problem A. Are the parabolic subalgebras g± opposite to each other?

Problem B. Which semisimple element can be the characteristic element of a
dipolarization?

Problem A is related to the classification of dipolarizations in semisimple
Lie algebras. In Section 2, we consider the above problems for the case where
g is complex semisimple. Problem A is settled affirmatively (Theorem 2.8), and
any semisimple element is the characteristic element of a dipolarization (Theorem
2.5). In the case where g is real semisimple, the situation is more complicated.
Let h be a Cartan subalgebra containing Z . Let ∆̃ be the root system of the
complexification of g with respect to that of h, and ∆̃0(Z) be the totality of roots
which vanish on Z . Then one can prove that every imaginary root lies in ∆̃0(Z)
(Proposition 3.1). By using this, we have that Z can be imbedded in an Iwasawa
(= maximally split) Cartan subalgebra (Lemma 3.3). These two things simplify
the subsequent considerations.

The first main result is that any dipolarization {g±, f} comes from a grada-
tion of g, that is, there exists a gradation g =

∑ν
k=−ν gk such that g± =

∑ν
k=0 g±k

(Theorem 3.6). This settles Problem A affirmatively for g real semisimple. As
an application, we have a characterization of semisimple homogeneous parakähler
manifolds: Let G be a connected semisimple Lie group. Then a coset space G/H
is a homogeneous parakähler manifold if and only if it is a G-equivariant covering
manifold of a hyperbolic semisimple AdG-orbit (Theorem 3.7). This can be also
viewed as a geometric characterization of hyperbolic semisimple orbits.

Problem B is settled in Section 4. For g real semisimple, we give two kinds
of characterizations for a semisimple element Z to be the characteristic element
of a dipolarization, in terms of ∆̃0(Z) (Proposition 4.1, Theorem 4.3). For g
real simple, we give more explicit determination of the characteristic elements of
dipolarizations, and indicate in which case non-hyperbolic characteristic elements
occur (Propositions 4.5 – 4.14). On the other hand, there are real simple Lie alge-
bras admitting only dipolarizations whose characteristic elements are hyperbolic
semisimple elements (Theorem 4.4).

The third author expresses his sincere thanks to Nankai University, Tianjin,
China for providing him an opportunity to visit there and to work with the first
two authors.
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Notation:

g denotes the complexification of a Lie algebra g or a vector space g. c(E)
denotes the centralizer of an element E in a Lie algebra. ∆̃0(E) denotes the
totality of roots which vanish on an element E . ∆0(E) denotes the totality of
restricted roots which vanish on E , unless otherwise stated.

1. Polarizations and dipolarizations

Definition 1.1. [e.g. Dixmier [4]] Let g be a Lie algebra over F (= R or C).
Then a pair {m, f} is called a polarization in g, if the following conditions are
satisfied:

P0) m is a subalgebra (over F) of g and f is a F-linear form on g.
P1) m is totally isotropic with respect to f , that is, f([m,m]) = 0.
P2) m is maximal among subspaces of g which satisfy P1).

Definition 1.2. [cf. [8]] Let g be a Lie algebra over F. Then a triple {g±, f}
is called a dipolarization (over F) in g, if the following conditions are satisfied:

DP0) g+ and g− are two subalgebras of g and f is an F-linear form on g.
DP1) f([g+, g+]) = f([g−, g−]) = 0.
DP2) f([X, g]) = 0 if and only if X ∈ g+ ∩ g− .
DP3) g = g+ + g−

The following lemma shows how dipolarizations and polarizations are re-
lated.

Lemma 1.3. Let g be a Lie algebra over F. Then {g±, f} is a dipolarization
in g if and only if

ND1) {g+, f} and {g−, f} are two polarizations in g, and
ND2) g = g+ + g− .

Proof. Suppose first that (ND1) and (ND2) are valid. Consider the centralizer
gf of f in g, that is,

gf = {X ∈ g : f([X, g]) = 0}. (1)

To prove the “if”part, we only have to show (DP2), which is equivalent to the
equality

gf = g+ ∩ g−. (2)

The inclusion ⊃ in (2) follows easily from (ND2) and (ND1). To prove the converse
inclusion, consider the two subspaces m± = g± + gf of g. Then, by (ND1) and
(1), we have

f([m+,m+]) = f([g+ + gf , g+ + gf ]) = f([g+, g+]) + f([g+, gf ]) + f([gf , gf ]) = 0,

which implies that m+ is a totally isotropic subspace of g containing g+ . By
the maximality of g+ ((ND1) and (P2)), we have m+ = g+ and hence gf ⊂ g+ .
Similarly we have gf ⊂ g− . We have thus proved (2). The “only if” part was
already proved in [7].
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Definition 1.4. Let {g±i , fi} (i = 1, 2) be two dipolarizations in a Lie algebra
g. We say that {g±1 , f1} and {g±2 , f2} are weakly isomorphic, if there exists an
automorphism ϕ of the Lie algebra g such that ϕ(g+

1 ) = g+
2 and ϕ(g−1 ) = g−2 . We

say that the two dipolarizations are isomorphic, if they are weakly isomorphic and
further f1 = f2 ◦ ϕ is valid.

Definition 1.5. Let g be a semisimple Lie algebra over F (= R or C), and let
{g±, f} be a dipolarization in g. Let Z ∈ g be a unique element defined by

(Z,X) = f(X), X ∈ g, (3)

where ( , ) is the Killing form of g. Z is called the characteristic element of the
dipolarization {g±, f}.

In view of the above definition, we often say a dipolarization {g±, Z}
instead of {g±, f}. In the same way one can define the characteristic element
of a polarization in g. We have easily

Lemma 1.6. Let g be a semisimple Lie algebra, and let Z be the characteristic
element of a dipolarization {g±, f}. Then gf coincides with the centralizer c(Z)
of Z in g.

2. Dipolarizations in complex semisimple Lie algebras

First we need

Proposition 2.1. Ozeki-Wakimoto [12, Th. 2.2] Let g be a semisimple Lie al-
gebra over C. Let {m, Z} be a polarization in g with characteristic element Z .
Then m is a parabolic subalgebra of g, and [Z,m] is the nilradical of m.

Let g be a Lie algebra over R and {g±, f} be a dipolarization in g. Let
g+ and g− be the complexifications of g+ and g− , respectively, and let f be the
C-linear extension of f to the complexification g of g.

Lemma 2.2. {g±, f} is a dipolarization in g .

Proof. We only have to verify (DP2) for {g±, f}. Let X = X1 + iX2 ∈
g, X1, X2 ∈ g. Suppose that f([X, Y ]) = 0 for an arbitrary element Y =
Y1 + iY2 ∈ g, Y1, Y2 ∈ g. Then we have that f([X1, Y1]) − f([X2, Y2]) = 0 and
f([X1, Y2]) + f([X2, Y1]) = 0. Putting Y2 = 0, we get f([X1, g]) = f([X2, g]) = 0,
which implies that X1, X2 ∈ gf = g+ ∩ g− . Therefore X = X1 + iX2 ∈ g+ ∩ g− =
g+ ∩ g− , or equivalently, gf ⊂ g+ ∩ g− . Similarly we have the converse inclusion.

By Proposition 2.1, Lemmas 2.2 and 1.3, g± are parabolic subalgebras of
g. Note that the characteristic element of {g±, f} is the same as that of {g±, f}.

Proposition 2.3. Let g be a semisimple Lie algebra over F (= R or C). Let
{g±, f} be a dipolarization in g. Then the characteristic element Z of {g±, f}
is semisimple, and further, the centralizer c(Z) in g is a Levi subalgebra of the
parabolic subalgebras g+ and g− .
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Proof. Without loss of generality, one can assume F = C. By Lemma 1.3 and
Proposition 2.1, g± are parabolic subalgebras of g. Choose two Borel subalgebras
b± ⊂ g such that b+ ⊂ g+ and b− ⊂ g− . The intersection b+ ∩ b− contains a
Cartan subalgebra h of g (cf. Dixmier [4, Prop. 1.10.18]). Therefore it follows
from the equality g+ ∩ g− = c(Z) (cf. (2)) that h is contained in c(Z). The
maximality of h implies that the abelian subalgebra h′ = h + CZ coincides with
h. Consequently Z is contained in h and hence semisimple. As a centralizer of a
semisimple element, c(Z) is reductive.

By semisimplicity of Z , the sum c(Z) + [Z, g+] is a direct sum. Since
dim g+ = dim c(Z) + dim[Z, g+], we have g+ = c(Z)⊕ [Z, g+], which implies that
c(Z) is a Levi subalgebra of g+ . As for g− , we can proceed in the same way.

Now let g be a semisimple Lie algebra over C. We denote the Killing form
of g by ( , ). Let Z ∈ g be a non-zero semisimple element. Choose a Cartan
subalgebra h of g containing Z and let ∆̃ = ∆(g, h), the root system of g with
respect to h. Put

∆̃0(Z) = {α ∈ ∆̃ : α(Z) = 0} (4)

Then we have

Lemma 2.4. There exists a fundamental system Π̃ of ∆̃ such that Π̃0 :=
Π̃ ∩ ∆̃0(Z) is a fundamental system of ∆̃0(Z).

Proof. We write h as
h = h+ + h−, (5)

where h+ and h− are the toroidal part and the vector part of h, respectively.
Then Z can be written as

Z = Z+ + Z−, (6)

where Z+ ∈ h+ and Z− ∈ h− are the elliptic component and the hyperbolic
component of Z , respectively. Furthermore, in our case we have that h− = ih+

and h− is the real part of h. The root system ∆̃ is naturally identified with a
subset of h− . Also we have

α ∈ ∆̃0(Z) ⇐⇒ α(Z−) = α(iZ+) = 0. (7)

Let us first consider the case (a) where Z− and iZ+ are linearly independent
over R. Choose the linear order in ∆̃ defined by a basis of h− of the form
{Z−, iZ+, · · ·}. Let Π̃ = {α1, · · · , αl} be the fundamental system of ∆̃ with respect
to this order. Then Π̃ is viewed as a basis of h− and we have the partition

Π̃ = Π̃0

∐
Π̃′1
∐

Π̃′′1, (8)

where Π̃0 = Π̃ ∩ ∆̃0(Z) and

Π̃′1 = {αk ∈ Π̃− Π̃0 : (αk, Z
−) > 0},

Π̃′′1 = {αk ∈ Π̃− Π̃0 : (αk, Z
−) = 0, (αk, iZ

+) > 0}. (9)

By using (7) – (9) , we have that a root α ∈ ∆̃0(Z) is expressed as a linear
combination of simple roots in Π̃0 . Next let us consider the case (b) where Z−
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and iZ+ are linearly dependent. This case breaks up further into the two cases;
(1) Z− 6= 0, (2) Z− = 0 and Z+ 6= 0. For the case (1), choose a basis {Z−, · · ·}
of h− . Then (8) reduces to the partition Π̃ = Π̃0

∐
Π̃′1 . For the case (2), choose a

basis {iZ+, · · ·} of h− . Then (8) reduces to the partition Π̃ = Π̃0
∐

Π̃′′1 . Therefore
we obtain the lemma also for the case (b).

Theorem 2.5. Let g be a semisimple Lie algebra over C, and let Z be a
nonzero element of g. Then Z is the characteristic element of a dipolarization in
g if and only if Z is semisimple.

Proof. The “only if” part is just Proposition 2.3. Suppose that Z is semi-
simple. Let h be a Cartan subalgebra of g containing Z . Choose a fundamental
system Π̃ of ∆̃ given in Lemma 2.4. Then we have a partition Π̃ = Π̃0

∐
Π̃1 , where

Π̃1 = Π̃ − Π̃0 . To this partition there corresponds a gradation g =
∑ν
k=−ν gk (cf.

[9]). Let Z∗ ∈ h− be the characteristic element of this gradation. Then it follows
from the choice of Z∗ (cf. [9], see also (17)) that

∆̃0(Z∗) = ∆̃0(Z), (10)

which implies that the centralizers c(Z) and c(Z∗) in g coincides: c(Z) = c(Z∗) =
g0 . Let g+ =

∑
k≥0 gk and g− =

∑
k≤0 gk , and let f be the linear form on g which

is the dual of Z with respect to the Killing form of g (cf. (3)). Taking account of
the equality c(Z) = c(Z∗), we have, by the same way as in the proof of Theorem
4.2 [8], that {g±, f} is a dipolarization in g whose characteristic element is Z .

Remark 2.6. Let f ∗ be the Killing dual of the above Z∗ . Then {g±, f ∗} is
also a dipolarization in g. Let G be a connected Lie group with Lie(G) = g,
and let G0 be the connected Lie subgroup of G with Lie(G0) = c(Z) = c(Z∗).
Then the coset space G/G0 has two homogeneous symplectic structures induced
respectively by f and f ∗ . These two symplectic structures have the common
Lagrangean foliations corresponding to g± .

Definition 2.7. Let g be a semisimple Lie algebra over R or C, and let {g±, f}
be a dipolarization in g. We say that {g±, f} comes from a gradation of g, if there
exists a gradation g =

∑
k gk such that g+ =

∑
k≥0 gk and g− =

∑
k≤0 gk .

Theorem 2.8. Let g be a semisimple Lie algebra over C. Then any dipolar-
ization {g±, f} in g comes from a gradation of g.

Proof. Let Z be the characteristic element of {g±, f}. Then we have g+∩g− =
c(Z). By Theorem 2.5, Z is semisimple. Choose a Cartan subalgebra h of g
containing Z , and consider the root system ∆̃ = ∆(g, h) as before. Since g+ is a
parabolic subalgebra (Proposition 2.1), There is a linear order in ∆̃ such that g+

is written as
g+ = c(Z) +

∑

α∈∆̃
+−∆̃0(Z)

gα, (11)
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where ∆̃+ denotes the totality of positive roots in ∆̃. Since g− contains h and
since g = g+ + g− by (DP3), for any root α ∈ ∆̃ the root space gα lies either in
g+ or in g− . On the other hand g− is a parabolic subalgebra with Levi subalgebra
c(Z). Therefore we have

g− ⊃ c(Z) +
∑

α∈∆̃
−−∆̃0(Z)

gα, (12)

where ∆̃− denotes the totality of negative roots in ∆̃. Let Π̃ be the fundamental
system of ∆̃ corresponding to ∆̃+ . Then Π̃0 := Π̃ ∩ ∆̃0(Z) is a fundamental
system of ∆̃0(Z). We have a partition Π̃ = Π̃0

∐
Π̃1 , where Π̃1 := Π̃ − Π̃0 .

To this partition there corresponds a gradation g =
∑
k gk . Let Z∗ be the

characteristic element of this gradation. Then, as in the proof of Theorem 2.5,
we have c(Z) = c(Z∗) = g0 . Any root α ∈ ∆̃ takes an integer value on Z∗ . We
have that α ∈ ∆̃+ − ∆̃0(Z) (resp. ∆̃− − ∆̃0(Z)) if and only if (α, Z∗) > 0 (resp.
< 0). this means that g+ =

∑
k≥0 gk and g− =

∑
k≤0 gk .

Remark 2.9. Let g be a semisimple Lie algebra over C. Theorem 2.5 means
that there is an epimorphism of the set of isomorphism classes of dipolarization
in g onto the set of semisimple orbits in g. In fact, this epimorphism is given by
assigning the characteristic element to a dipolarization.

3. Dipolarizations in real semisimple Lie algebras

Let g be a semisimple Lie algebra over R and Z ∈ g be a semisimple element. Let
h be a Cartan subalgebra of g containing Z . Let g and h be the complexifications
of g and h, respectively. Let ∆̃ = ∆(g, h), the root system of g with respect to
h, and let ∆̃I be the set of imaginary roots in ∆̃ with respect to h (cf. Hirai
[6]). Contrary to the complex case, not every semisimple element of g is the
characteristic element of a dipolarization in g.

Proposition 3.1. Let g, Z and ∆̃ be as above. Suppose that Z is the charac-
teristic element of a dipolarization in g. Then ∆̃I ⊂ ∆̃0(Z) (cf. (4)).

Proof. Let {g±, f} be a dipolarization in g with Z as its characteristic element,
and let us consider the complexified one {g±, f} given in Lemma 2.2. Since h is
contained in c(Z) = g+ ∩ g− , the complexification h is contained in g+ ∩ g− . Now
let α ∈ ∆̃I . By (DP3) for g± , the root space gα in g is contained in g+ or in g− .
Suppose that gα ⊂ g+ . Let σ be the conjugation of g with respect to g. Then
we have σ(α) = −α . Noting that g+ is stable under σ , we obtain

g−α = gσ(α) = σ(gα) ⊂ g+. (13)

On the other hand

f([gα, g−α]) = (Z, [gα, g−α]) = ([Z, gα], g−α]) = α(Z)(gα, g−α). (14)

The first member of (14) is equal to zero, by (13) and (DP1), which implies that
α(Z) = 0, and hence α ∈ ∆̃0(Z).

As a corollary, we have Theorem 1 in Hou-Deng-Kaneyuki [7].
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Corollary 3.2. A compact semisimple Lie algebra g never admits nontrivial
dipolarizations.

Proof. Let {g±, f} be a dipolarization in g with characteristic element Z .
Since g is compact, ∆̃I = ∆̃ is valid. Therefore ∆̃0(Z) = ∆̃ by Proposition 3.1.
This implies that c(Z) = g± = g and hence Z = 0, i.e., f = 0.

Let g be a semisimple Lie algebra over R. A Cartan subalgebra h of g

is said to be an Iwasawa Cartan subalgebra, if the vector part of h has maximal
possible dimension.

Lemma 3.3. Let g be as above and Z be the characteristic element of a dipo-
larization in g. Then Z is imbedded in an Iwasawa Cartan subalgebra h of g.

Proof. Choose a Cartan subalgebra h′ of g containing Z (cf. Proposition 2.3).
Let τ be a Cartan involution of g leaving h′ stable, and let g = k + p be the
Cartan decomposition by τ . By Sugiura [13], there exist complete representatives
h1, · · · , hs of conjugate classes of Cartan subalgebras of g such that they are τ -
stable and that (1) h+

i ⊂ h+
1 (1 ≤ i ≤ s), (2) h−i ⊂ h−s (1 ≤ i ≤ s) and (3)

dim h−i ≤ dim h−i+1 (1 ≤ i ≤ s − 1) ; here h+
j and h−j are the toroidal part and

the vector part of hj , respectively. Since h′ is conjugate to one of the above
representatives under Ad g, one can assume that h′ = hk (1 ≤ k ≤ s). Let i0 be
the greatest possible integer among 1 ≤ i ≤ s such that hi 3 Z . Put h := hi0 and
let ∆̃ = ∆(g, h). Then the set ∆̃I of imaginary roots in ∆̃ breaks up into two parts
: ∆̃I = ∆̃I,k

∐
∆̃I,p , where ∆̃I,k (resp. ∆̃I,p ) is the totality of roots α ∈ ∆̃I whose

root spaces gα in g are contained in the complexification k (resp. p). Suppose
now that ∆̃I,p is not empty. Then, by a result of [12], any root α ∈ ∆̃I,p takes a

nonzero value on Z . But this contradicts Proposition 3.1. Therefore ∆̃I,p must
be empty, and hence h is an Iwasawa Cartan subalgebra (cf. Araki [1]).

Let {g±, Z} be a dipolarization in g with characteristic element Z , and
let h be an Iwasawa Cartan subalgebra of g containing Z . In the following, in
view of Lemma 3.3, we will use the conventional notation ∆̃• instead of ∆̃I . The
complexification c(Z) of the centralizer c(Z) in g can be written as

c(Z) = h +
∑

α∈∆̃0(Z)

gα. (15)

Let σ be the conjugation of g with respect to g. Then ∆̃0(Z) is σ -stable and
contains ∆̃• . Let $ be the orthogonal projection of hR := ih+ + h− onto h−

with respect to the Killing form of g, and let ∆ = $(∆̃ − ∆̃•). Then ∆ is the
root system of g with respect to h− (restricted root system). Now let ∆0(Z) :=
$(∆̃0(Z) − ∆̃•). Note that ∆0(Z) is not equal to the set {γ ∈ ∆ : γ(Z) = 0},
unless Z is hyperbolic.

Lemma 3.4.
c(Z) = c(h−) +

∑

γ∈∆0(Z)

gγ ,

where c(h−) denotes the centralizer of h− in g.
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Proof. The complexification of the right-hand side is equal to (cf. Proposition
3.1 and (15))

c(h−) +
∑

γ∈∆0(Z)

gγ =


h +

∑

α∈∆̃•

gα


+

∑

α∈∆̃0(Z)−∆̃•

gα = h +
∑

α∈∆̃0(Z)

gα = c(Z),

which implies the lemma.

Since g+ is a parabolic subalgebra of g with c(Z) as a Levi subalgebra,
there exists a linear order in h− such that g+ can be written as

g+ = c(Z) +
∑

γ∈∆+−∆0(Z)

gγ = c(h−) +
∑

γ∈∆+∪∆0(Z)

gγ , (16)

where ∆+ is the set of positive roots in ∆ with respect to that order. Let Π be the
corresponding fundamental system for ∆. Choose a σ -order in ∆̃ which induces
the original order on h− . Let Π̃ be the corresponding σ -fundamental system of
∆̃, and let Π̃• = Π̃ ∩ ∆̃• . Then we have Π = $(Π̃− Π̃•). Furthermore, if we put
Π̃0(Z) = Π̃ ∩ ∆̃0(Z), then we have Π̃• ⊂ Π̃0(Z) by Proposition 3.1. Now let us
consider the subset of ∆0(Z) : Π0(Z) := $(Π̃0(Z)− Π̃•).

Lemma 3.5. Π0(Z) is a fundamental system for ∆0(Z). In particular,
Π0(Z) = Π ∩∆0(Z) holds.

Proof. Π̃0(Z) is clearly a fundamental system of ∆̃0(Z), from which the lemma
follows.

Theorem 3.6. Let g be a semisimple Lie algebra over R. Then any dipolar-
ization {g±, f} in g comes from a gradation of g.

Proof. Let Z be the characteristic element of the dipolarization {g±, f}. Then
all the previous arguments are valid. We retain the notation before. Put Π0 =
Π0(Z) and Π1 = Π − Π0 . Let Π = {γ1, · · · , γr}. We define an element Z∗ ∈ h−

by {
(γi, Z

∗) = 0, γi ∈ Π0,
(γj, Z

∗) = 1, γj ∈ Π1.
(17)

Let ∆0(Z∗) denote the totality of the roots in ∆ which vanish on Z∗ . Then we
have

∆0(Z∗) = ∆0(Z). (18)

This implies that c(Z∗) = c(Z). Since Π is compatible with the positive system
∆+ , we can conclude that γ ∈ ∆+ −∆0(Z) if and only if (γ, Z∗) > 0. Now let us
consider the gradation g =

∑
k gk whose characteristic element is Z∗ . Then (16),

(18) and the above argument show that g+ =
∑
k≥0 gk . On the other hand, we

know that g± ⊃ c(Z) ⊃ h ⊃ h− 3 Z∗ . Hence g− is spanned by c(h−) and the
root spaces belonging to certain roots in ∆. By (DP3), the root space gγ for any
root γ ∈ ∆ is contained either in g+ or in g− . Therefore, if we denote by ∆− the
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set of negative roots in ∆, then a root in ∆− −∆0(Z) must be a root belonging
to g− . Consequently we have the inclusion g− ⊃ c(Z) +

∑
γ∈∆−−∆0(Z) gγ . Since

g+ and g− are equidimensional by a property of dipolarizations ([8]), (16) implies
that the above inclusion must be an equality. Now the equality g− =

∑
k≤0 gk is

an immediate consequence from this and g+ =
∑
k≥0 gk .

The above theorem and its proof tell us that any dipolarization in g can be
reconstructed by its characteristic element.

The gradation of g constructed in Theorem 3.6 is called the gradation
associated to the dipolarization (or simply the associated gradation). We give a
necessary and sufficient condition for a coset space G/H of a semisimple Lie group
G to be a homogeneous parakähler manifold.

Theorem 3.7. Let G be a connected semisimple Lie group and H be a closed
subgroup of G. Then the coset space M = G/H is a homogeneous parakähler
manifold if and only if H is an open subgroup of a Levi subgroup of a parabolic
subgroup of G.

Proof. Let g = Lie(G). Suppose first that M is a homogeneous parakähler
manifold. Then, by [8], there exists a dipolarization {g±, Z} in g such that
Lie(H) = c(Z) = g+ ∩ g− . Let g =

∑ν
k=−ν gk be the associated gradation

of {g±, Z} and let Z∗ ∈ g be its characteristic element. Then we have that
Lie(H) = g0, g

+ =
∑ν
k=0 gk and g− =

∑ν
k=0 g−k . Let N(g±) be the respective

normalizers of g± in G, which are the parabolic subgroups of G corresponding to
g± . It follows from a result of [10, Prop. 7.83] that

N(g+) = C(Z∗) exp

(
ν∑

k=1

gk

)
,

N(g−) = C(Z∗) exp

(
ν∑

k=1

g−k

)
,

(19)

where C(Z∗) denotes the centralizer of Z∗ in G. The G-invariant Lagrangean
distributions on M are induced by the subalgebras g± . The G-invariance is
equivalent to the condition

(AdgH) g± ⊂ g±. (20)

Consequently we have H ⊂ N(g+) ∩ N(g−) = C(Z∗). Therefore H is an open
subgroup of the Levi subgroup C(Z∗) of N(g±).

Conversely suppose that H is an open subgroup of a Levi subgroup L
of a parabolic subgroup G+ of G. Let g+ = Lie(G+). Then, as a property
of parabolic subgroups, G+ coincides with the normalizer N(g+) in G. Let
l = Lie(L). One can choose a gradation g =

∑ν
k=−ν gk , whose characteristic

element is denoted by Z∗ , such that l = g0 = c(Z∗) and g+ =
∑ν
k=0 gk . It follows

that N(g+) = C(Z∗) exp (
∑ν
k=1 gk) and L = C(Z∗). Let g− :=

∑ν
k=0 g−k and let

f ∗ be the Killing dual of Z∗ . Then {g±, f ∗} is a dipolarization in g satisfying
Lie(H) = g+ ∩ g− (cf. [8]). The inclusion N(g±) ⊃ C(Z∗) = L ⊃ H implies (20).
The equality (AdgH)Z∗ = Z∗ implies that f ∗ is AdgH -invariant. Therefore, by
[8], M is a homogeneous parakähler manifold.
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Theorem 3.8. Let G be a connected semisimple Lie group and H be a closed
subgroup of G. Then the coset space M = G/H is a homogeneous parakähler man-
ifold if and only if M is a G-equivariant covering space of a hyperbolic semisimple
AdG-orbit in g = Lie(G).

Proof. Suppose that M is homogeneous parakähler. Then, from Theorem 3.7
and its proof it follows that M is a G-equivariant covering space of G/C(Z∗) =
(AdG)Z∗ , where Z∗ is a hyperbolic semisimple element.

To prove the converse, let O be a hyperbolic semisimple AdG-orbit in g

covered G-equivariantly by M . Let π be the natural projection of M onto O ,
and let Z ′ be the image of the origin of M under π . Z ′ is a hyperbolic semisimple
element in g, and O = G ·Z ′ = G/C(Z ′). Let g+ be the sum of the eigenspaces of
adZ ′ in g corresponding to nonnegative eigenvalues. g+ is a parabolic subalgebra
of g and c(Z ′) is a Levi subalgebra of g+ . Hence C(Z ′) is a Levi subgroup of the
parabolic subgroup N(g+). By the G-equivariancy of π , we have that H is an
open subgroup of C(Z ′). Thus Theorem 3.7 implies that G/H is a homogeneous
parakähler manifold.

Remark 3.9. Let g be a semisimple Lie algebra over R, {g±, Z} a dipolariza-
tion in g with characteristic element Z , and let g =

∑ν
k=−ν gk be the associated

gradation. Then Z lies in the center z(g0) of g0 (cf. (18)). Let z(g0)+ and z(g0)−

denote the elliptic component and the hyperbolic component of z(g0) respectively.
Then we have Z± ∈ z(g0)± (cf. (6)). Suppose z(g0)+ = (0), which is the case
for most real simple graded Lie algebras. In this case, Z itself is a hyperbolic
semisimple element (see Theorem 4.4 below).

4. Characterization and determination of characteristic elements

Let g be a semisimple Lie algebra over R. By Lemma 3.3, the characteristic
element of a dipolarization belongs to an Iwasawa Cartan subalgebra h = h+⊕h− .
In this section, we study a necessary and sufficient condition for an element Z ∈ h
to be the characteristic element of a dipolarization.

4.1. General criterion

By the results in §§1. – 3., we know the following.

Proposition 4.1. Let Z be an element of Iwasawa Cartan subalgebra h. Then
the following conditions are mutually equivalent.

(1) Z ∈ h is the characteristic element of a dipolarization.
(2) There exists Z∗ ∈ h− such that c(Z∗) = c(Z).
(3) There exists Z∗ ∈ h− such that ∆0(Z∗) = ∆0(Z) (cf. Lemma 3.4).
(4) There exists Z∗ ∈ h− such that ∆̃0(Z∗) = ∆̃0(Z).

Proof. For the equivalence of (1), (2) and (3), see the proof of Theorem 3.6
(cf. (18)). On the other hand, c(Z) determines ∆̃0(Z), and vice versa (cf. (15)).
Therefore the equivalence of (2) and (4) follows.
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We denote the set of all subsets of ∆̃ = ∆(g, h) by Sub(∆̃). Similarly,
Sub(h−) denotes the set of all linear subspaces of h− over R. Let us consider the
following operations I and V on them. For a ∈ Sub(h−), put

I(a) = {α ∈ ∆̃ : α(X) = 0 (∀X ∈ a)} = {α ∈ ∆̃ : α|a = 0}.

Similarly, for Σ ∈ Sub(∆̃), we put

V (Σ) = {X ∈ h− : α(X) = 0 (∀α ∈ Σ)} =
⋂

α∈Σ

(
Hα ∩ h−

)
,

where Hα is the hyperplane corresponding to a root α . Clearly, V ◦ I ◦ V = V
and I ◦ V ◦ I = I hold. Note that ∆̃0(Z) = I(RZ).

Definition 4.2. A subset Σ ⊂ ∆̃ is called primitive if I(V (Σ)) = Σ holds.

It is easy to see that, if Σ ⊂ ∆̃ is primitive, then Σ contains the set of
imaginary roots ∆̃I .

Theorem 4.3. Let h be an Iwasawa Cartan subalgebra of g. Then an element
Z ∈ h is the characteristic element of a dipolarization if and only if ∆̃0(Z) is
primitive.

Proof. Let us prove that the condition is necessary. Assume that Z is the
characteristic element of a dipolarization. Then, there exists Z∗ ∈ h− which
satisfies ∆̃0(Z∗) = ∆̃0(Z). If we put Σ = ∆̃0(Z) = ∆̃0(Z∗), Z∗ belongs to V (Σ)
by definition. Therefore we have

∆̃0(Z∗) = I(RZ∗) ⊃ I(V (Σ)) ⊃ Σ = ∆̃0(Z).

Hence we conclude that the inclusions above are all equalities, and that Σ = ∆̃0(Z)
is primitive.

Conversely, suppose that Σ = ∆̃0(Z) is primitive. If α ∈ ∆̃ − Σ, α is
not identically zero on V (Σ) by the primitivity of Σ. Therefore Hα ∩ V (Σ) is a
hyperplane in V (Σ). Now it is clear that the set

V (Σ)−
⋂

α∈∆̃−Σ

Hα

is not empty, and we can choose Z∗ ∈ h− from it. We conclude that ∆̃0(Z∗) =
∆̃0(Z) by the choice of Z∗ , or equivalently, Z is the characteristic element of a
dipolarization by Proposition 4.1.

For almost all cases, characteristic elements are hyperbolic. In fact, for real
simple Lie algebras, we have the following theorem.

Theorem 4.4. Let g be a real simple Lie algebra. If the Satake diagram of g
does not have any arrow, then the characteristic element of a dipolarization of g
is hyperbolic.
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Proof. If the Satake diagram does not contain any arrow, the set of imaginary
simple roots becomes a basis of (h+)∗ . So the toroidal part of a characteristic
element Z must vanish, because ∆̃0(Z) contains all the imaginary roots. This
means that Z is hyperbolic.

Contrary to the theorem above, there are real simple Lie algebras which have
non-hyperbolic characteristic elements. We will consider these cases explicitly in
the following subsections.

4.2. Classical cases

In this subsection, we assume that g is a real simple Lie algebra of classical type,
and denote an Iwasawa Cartan subalgebra by h. By Theorem 4.4, we have only
to treat g whose Satake diagram has arrows. Namely, g is one of type AIII, AIV,
DI (with only white vertices, and its restricted root system is of type B), or DIII
(with odd rank) in Cartan’s notation (see, e.g., [5, Ch. X, Table VI]).

Case DI. In this case, g ' so(l, l + 2) (l ≥ 3). In the notation of [5, Ch.
X, Table VI], the root system ∆̃ = ∆(g, h) has a fundamental system Π̃ =
{α1, α2, · · · , αl+1} (l ≥ 3). The roots α1, · · · , αl−1 are real. The roots αl, αl+1

are complex and are jointed by an arrow.

Proposition 4.5. Take Z ∈ h. Up to conjugation by the little Weyl group
W (∆), we can assume:

αi(Z) ≥ 0 (1 ≤ i ≤ l − 1), (αl + αl+1)(Z) ≥ 0.

Then Z is the characteristic element of a dipolarization if and only if the following
condition (1) or (2) holds.

(1) (αl +αl+1)(Z) 6= 0 or αl−1(Z) 6= 0. In this case, Z is possibly non-hyperbolic.
(2) αi(Z) = 0 (l − 1 ≤ i ≤ l + 1). In this case, Z is necessarily hyperbolic.

Remark 4.6. Z is non-hyperbolic if and only if (αl − αl+1)(Z) 6= 0 holds.
Therefore, the above proposition tells us that a non-hyperbolic element Z is not
a characteristic element if and only if (αl + αl+1)(Z) = αl−1(Z) = 0.

Proof. Since {α1, · · · , αl−1, (αl + αl+1)/2} is a simple system of the restricted
roots, we can assume the values of those roots at Z are all positive after some
conjugation by the little Weyl group W (∆).

First, let us suppose that Z is the characteristic element of a dipolarization.
Then there exists a hyperbolic element Z∗ such that ∆̃0(Z) = ∆̃0(Z∗). Assume
that (αl + αl+1)(Z) = αl−1(Z) = 0. Since αl + αl+1 + αl−1 is a positive root and
(αl + αl+1 + αl−1)(Z) = 0, we have that αl−1, αl−1 + αl + αl+1 ∈ ∆̃0(Z∗). This
means that

(αl + αl+1)(Z∗) = (αl−1 + αl + αl+1)(Z∗)− αl−1(Z∗) = 0.

On the other hand, we have (αl − αl+1)(Z∗) = 0 because Z∗ is hyperbolic. Now
we conclude that αi ∈ ∆̃0(Z∗) = ∆̃0(Z) for l − 1 ≤ i ≤ l + 1.
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Conversely, let us suppose that the condition (1) or (2) holds. If (2) holds,
then Z is hyperbolic. Therefore it is a characteristic element by Proposition 4.1,
and we are done.

Next, we suppose (1). We divide the case into two: (a) (αl +αl+1)(Z) > 0;
or (b) (αl+αl+1)(Z) = 0 and αl−1(Z) > 0. We discuss these two cases separately.

Case (a). Since (αl + αl+1)(Z) > 0, ∆̃0(Z) does not contain any complex
root. Therefore, if we put Z = Z+ + Z− ∈ h+ + h− (cf. (6)), we have ∆̃0(Z) =
∆̃0(Z−). This means that Z is the characteristic element of a dipolarization.

Case (b). We can choose Z∗ ∈ h− such that

αi(Z) = αi(Z
∗) (1 ≤ i ≤ l − 1), (αl + αl+1)(Z∗) > 0.

A positive root β can be expressed as a sum of simple roots: β =
∑
imiαi . If

ml = ml+1 = 0, then it is easy to see that β ∈ ∆̃0(Z) if and only if β ∈ ∆̃0(Z∗). On
the other hand, we claim that if ml 6= 0 or ml+1 6= 0, then both ∆̃0(Z) and ∆̃0(Z∗)
do not contain β . In fact, since αl(Z

∗) = αl+1(Z∗) > 0, β(Z∗) > 0. This means
that β 6∈ ∆̃0(Z∗). We can assume that αl(Z) = −αl+1(Z) is nonzero. Otherwise Z
is hyperbolic and hence it is a characteristic element. Since αl+1 = σ(αl) (complex
conjugation) and (αl + αl+1)(Z) = 0, the value αl(Z) = −αl+1(Z) 6= 0 is purely
imaginary. Suppose first that β = αl or αl+1 . Then we have β(Z) 6= 0 by the
assumption, and consequently β 6∈ ∆̃0(Z). So let us assume that β 6= αl, αl+1 .
Then, since ml 6= 0 or ml+1 6= 0, it is easy to see that ml−1 6= 0 by the property
of the root system Dl+1 . This implies that the real part of β(Z) is positive:

<β(Z) =
l−1∑

i=1

miαi(Z) ≥ ml−1αl−1(Z) > 0.

Hence β 6∈ ∆̃0(Z). For negative roots, we can proceed in the same way. We
have shown that ∆̃0(Z) and ∆̃0(Z∗) consists only of real roots. Now we conclude
that ∆̃0(Z) = ∆̃0(Z∗) for the hyperbolic element Z∗ , which means that Z is a
characteristic element.

Case DIII. In this case g ' u∗2l+1(H) (= so∗(4l + 2)), with rank r = 2l + 1 ≥ 5.

In the notation of [5, Ch. X, Table VI], the root system ∆̃ = ∆(g, h) has a
fundamental system Π̃ = {α1, α2, · · · , αr}. The roots α2k−1 (1 ≤ k ≤ l) are
imaginary (black vertices) and α2k (1 ≤ k ≤ l − 1) are real (white vertices). The
roots αr−1, αr are complex and are jointed by an arrow. (Remark. In [5, Ch. X,
Table VI], there is a misprint in the diagram of DIII. The black vertex labeled
αr−1 should be read as αr−2 .)

Proposition 4.7. Take Z ∈ h and let us suppose that Z is killed by imaginary
roots (cf. Proposition 3.1). Up to conjugation by the little Weyl group W (∆), we
can assume:

α2k−1(Z) = 0 (1 ≤ k ≤ l), α2k(Z) ≥ 0 (1 ≤ k ≤ l−1), (αr+αr−1)(Z) ≥ 0.

Then Z is the characteristic element of a dipolarization if and only if the following
condition (1) or (2) holds.

(1) (αr−1 +αr)(Z) 6= 0 or αr−3(Z) 6= 0. In this case, Z is possibly non-hyperbolic.
(2) αr−1(Z) = αr(Z) = 0. In this case, Z is necessarily hyperbolic.
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Remark 4.8. Z is non-hyperbolic if and only if (αr−1 − αr)(Z) 6= 0 holds.
Therefore, the above proposition tells us that a non-hyperbolic element Z is not
a characteristic element if and only if (αr−1 + αr)(Z) = αr−3(Z) = 0.

Proof. We omit the proof, since it is similar to that of Proposition 4.5.

Cases AIII and AIV. In this case, g = su(p, q). We divide this case into two
parts: (a) g = su(p, p) (p ≥ 2); and (b) g = su(p, q) (1 ≤ p < q).

In the case (a), we put p = q = l ≥ 2. Then g = su(l, l), and its restricted
root system is of type C. The Satake diagram has only white vertices. Take a
fundamental system of roots Π̃ = {αi, αi, αl : 1 ≤ i ≤ l− 1} as in [5, Ch. X, Table
VI], where αi, αi (1 ≤ i ≤ l − 1) are complex roots and αl is real.

Proposition 4.9. Let g = su(p, p) (p = l ≥ 2) and let Z ∈ h. Up to
conjugation by the little Weyl group W (∆), we can assume:

(αi + αi)(Z) ≥ 0 (1 ≤ i ≤ l − 1), αl(Z) ≥ 0.

Let 0 ≤ j0 ≤ l−1 be the smallest possible integer satisfying the following property:

(αi + αi)(Z) = 0 (j0 < i ≤ l − 1).

Then Z is the characteristic element of a dipolarization if and only if the following
condition (1) or (2) holds.

(1) αl(Z) 6= 0.
(2) αi(Z) = αi(Z) = 0 for all i satisfying j0 < i ≤ l − 1.

Remark 4.10. Z is hyperbolic if and only if (αi−αi)(Z) = 0 for 1 ≤ i ≤ l−1.

Proof. Let us suppose that Z is the characteristic element of a dipolarization.
Then there exists a hyperbolic Z∗ such that ∆̃0(Z) = ∆̃0(Z∗). Assume that the
condition (1) does not hold, i.e., αl(Z) = 0. Clearly we have αl(Z

∗) = 0 also. If, in
addition, (αl−1 +αl−1)(Z) = 0, then we have αl−1 +αl +αl−1 ∈ ∆̃0(Z) = ∆̃0(Z∗).
This means

(αl−1 + αl−1)(Z∗) = (αl−1 + αl + αl−1)(Z∗)− αl(Z∗) = 0.

Since Z∗ is hyperbolic, (αl−1 − αl−1)(Z∗) = 0. Therefore we have αl−1, αl−1 ∈
∆̃0(Z∗) = ∆̃0(Z), which means αl−1(Z) = αl−1(Z) = 0. We can argue exactly in
the same way to go down inductively from l − 1 to the first nonzero position j0 .
So we conclude that the condition (2) holds.

Let us prove the converse implication. First, we suppose that αl(Z) > 0.
In this case, ∆̃0(Z) breaks up into a disjoint union: ∆̃0(Z) = ∆̃0(Z)[

∐
∆̃0(Z)] ,

where ∆̃0(Z)[ = ∆̃0(Z) ∩∑l−1
i=1 Zαi and ∆̃0(Z)] is complex conjugate to ∆̃0(Z)[ .

Using the arguments for complex Lie algebra sl(l,C), we conclude that
there exists a hyperbolic element Z ′ ∈ h− such that ∆̃0(Z)[ = ∆̃0(Z ′)∩∑l−1

i=1 Zαi .
Note that ∆̃0(Z ′) contains the complex conjugation ∆̃0(Z)] also. Choose E ∈ h−

such that αl(E) = 1, αi(E) = 0 (1 ≤ i ≤ l − 1). In the real affine line Z ′ + RE ,
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we can choose Z∗ such that β(Z∗) 6= 0 for any root β which has nonzero αl -
component. This is obvious because there are only finitely many roots. By the
above construction, it is easy to see that

∆̃0(Z∗) = ∆̃0(Z)[
∐

∆̃0(Z)] = ∆̃0(Z).

This means that Z is a characteristic element.

Second, let us assume αl(Z) = 0. Then by condition (2), we see that
αi, αi ∈ ∆̃0(Z) for j0 < i ≤ l . Since the real part of αj0(Z) is positive by
the assumption, we can use αj0 instead of αl in the first part. Let ∆̃j0 be a
root subsystem spanned by {αi, αi (j0 < i ≤ l − 1), αl}, and put ∆̃0(Z)[ =
∆̃0(Z) ∩ ∑j0−1

i=1 Zαi . We denote the complex conjugate of ∆̃0(Z)[ by ∆̃0(Z)] as
before. Then we have the following decomposition of ∆̃0(Z):

∆̃0(Z) = ∆̃0(Z)[
∐

∆̃j0
∐

∆̃0(Z)].

By the similar arguments as those in the first part, we can choose Z∗ such that
∆̃0(Z) = ∆̃0(Z∗) holds. We omit the details.

In the case (b), we put p = l ≥ 1, q − p − 1 = l′ ≥ 0. In this case,
g ' su(l, l + l′ + 1) is of type AIII or AIV in Helgason’s notation. Take a
fundamental system of roots Π̃ = {αi, αi, βj : 1 ≤ i ≤ l, 1 ≤ j ≤ l′} as in [5, Ch.
X, Table VI], where αi, αi (1 ≤ i ≤ l) are complex roots and βj (1 ≤ j ≤ l′) are
imaginary ones.

Proposition 4.11. Let g = su(p, q) (1 ≤ p < q) and let us use the above
notation. Let Z be an element of h killed by imaginary roots (cf. Proposition
3.1). Up to conjugation by the little Weyl group W (∆), we can assume:

(αi + αi)(Z) ≥ 0 (1 ≤ i ≤ l), βj(Z) = 0 (1 ≤ j ≤ l′).

Let 0 ≤ j0 ≤ l be the smallest possible integer satisfying the following property:

(αi + αi)(Z) = 0 (j0 < i ≤ l).

Then Z is the characteristic element of a dipolarization if and only if

αi(Z) = αi(Z) = 0 (j0 < i ≤ l).

Proof. We omit the proof because it is almost the same as the second part of
Proposition 4.9.

4.3. Exceptional cases

In exceptional cases, we have only to consider the types EII and EIII in Cartan’s
notation. The other types have no arrows in their Satake diagrams (cf. Theorem
4.4). The both types have the same complexification E6 . We denote a real simple
Lie algebra by g and one of its Iwasawa Cartan subalgebras by h.

Case EII. In this case, g = e6(2) . Choose a fundamental system Π̃ =
{α1, α2, · · · , α6} of roots as in [5, Ch. X, Table VI], where α2, α4 are real roots and
α1 = α6, α3 = α5 . The restricted root system is of type F4 .
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Proposition 4.12. Let Z ∈ h. Up to conjugation by the little Weyl group
W (∆), we can assume:

α2(Z) ≥ 0, α4(Z) ≥ 0, (α1 + α6)(Z) ≥ 0, (α3 + α5)(Z) ≥ 0.

Then Z is the characteristic element of a dipolarization if and only if one of the
following conditions (1) – (3) holds.

(1) (α3 + α5)(Z) 6= 0 or α4(Z) 6= 0. In this case, Z is possibly non-hyperbolic.
(2) (α1 + α6)(Z) 6= 0 and αi(Z) = 0 (i = 3, 4, 5). In this case, Z is possibly
non-hyperbolic.
(3) αi(Z) = 0 (i = 1, 3, 4, 5, 6). In this case, Z is necessarily hyperbolic.

Remark 4.13. Z is hyperbolic if and only if (α1−α6)(Z) = (α3−α5)(Z) = 0
holds.

Proof. We suppose that Z is the characteristic element of a dipolarization.
Suppose that the condition (1) does not hold. Then we have (α3 + α5)(Z) =
α4(Z) = 0, hence (α3 +α5) +α4 ∈ ∆̃0(Z). We can prove αi(Z) = 0 (i = 3, 4, 5) in
the same way as in the proof of Proposition 4.5. If (α1 + α6)(Z) = 0 in addition,
we have (α1 + α6) + (α3 + α5) + α4 ∈ ∆̃0(Z). Using this, we can prove that (3)
holds.

The converse implication is proved by explicit and tiresome calculations.
Here we indicate a rough sketch. Note that if α4(Z) > 0, then ∆̃0(Z) is contained
in the root subsystem generated by {αi : i 6= 4} which is of type 2A2 + A1 . The
subsystem 2A2 corresponds to a complex Lie algebra isomorphic to sl(3,C), and
we can reduce the argument to the classical case sl(3,C) + sl(2,R). Next, we
consider a degenerate case where α4(Z) = 0 and (α3 + α5)(Z) is positive. In this
case, ∆̃0(Z) is contained in the subsystem of ∆̃ generated by {α1, α2, α4, α6}.
Therefore the argument reduces to the case 2A1 + A2 , which is isomorphic to
sl(2,C) + sl(3,R). The last case is: αi(Z) = 0 (i = 3, 4, 5) and (α1 + α6)(Z) is
positive. This reduces to the case DI of rank 4 considered above. We omit the
details.

Case EIII. In this case, g = e6(−14) . Again choose a fundamental system Π̃ = {α1,
α2, · · · , α6} of roots as in [5, Ch. X, Table VI], where α2 is a real root; α3, α4, α5

are imaginary; and α1 = α6 . The restricted root system is of type BC2 .

Proposition 4.14. Let Z be an element of h killed by imaginary roots (cf.
Proposition 3.1). Up to conjugation by the little Weyl group W (∆), we can
assume:

αi(Z) = 0 (i = 3, 4, 5), α2(Z) ≥ 0, (α1 + α6)(Z) ≥ 0.

Then Z is the characteristic element of a dipolarization if and only if the following
condition (1) or (2) holds.

(1) (α1 + α6)(Z) 6= 0. In this case, Z is possibly non-hyperbolic.
(2) α1(Z) = α6(Z) = 0. In this case, Z is necessarily hyperbolic.

Remark 4.15. Z is hyperbolic if and only if (α1 − α6)(Z) = 0.

Proof. We omit the proof.
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