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Homogeneous spaces of compact connected Lie groups

which admit nontrivial invariant algebras
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Abstract. In 1965 Wolf [10] and Gangolli [1] proved that compact semi-

simple groups are distinguished in the class of all compact connected Lie
groups by the following property: every uniformly closed function algebra

which is invariant with respect to left and right translations is also invari-

ant with respect to the complex conjugation. In this article we extend
this result to the class of homogeneous spaces of compact connected Lie

groups with connected stable subgroups: a homogeneous space admits only

self-conjugated invariant function algebras if and only if the isotropy repre-
sentation has no nonzero fixed vectors.

1. Introduction

Let M be a homogeneous space of a compact connected Lie group G acting on
M by left. Denote by H the stable subgroup of some point x0 ∈M , by NG(H)
the normalizer of H in G , and by N the group NG(H)/H . Let C(M) be the
commutative Banach algebra of all complex-valued continuous functions on M .
Then G acts on C(M) by the formula

(Lgf)(x) = f(g−1x), g ∈ G, x ∈M.

We shall say that A is an invariant algebra on M if A is an invariant under
this action of G uniformly closed subalgebra of C(M). A function algebra A
will be called self-conjugated if it contains the complex conjugated function f̄
for any f ∈ A . The Stone-Weierstrass theorem implies that any self-conjugated
uniformly closed function algebra on a compact Q may be identified with C(Q̃),
where Q̃ is the factor of Q by the equivalence x ∼ y ⇐⇒ f(x) = f(y) for all
f ∈ A . If A is an invariant algebra then the equivalence is invariant. Hence
the factor space is a homogeneous space M ′ of G and the factorization is a
continuous equivariant mapping π : M → M ′ such that A = C(M ′) ◦ π .
Therefore, self-conjugated algebras on M are in one-to-one correspondence with
closed subgroups of G which include H .
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The main result of this paper is

Theorem. Let G be a compact connected Lie group, H is its closed connected
subgroup. Then the following conditions are equivalent:

(1) every uniformly closed invariant algebra on M = G/H is self-conjugated;

(2) the group NG(H)/H is finite;

(3) the isotropy group of any point x0 ∈ M has no fixed nonzero vectors in
the tangent space Tx0

M .

Bi-invariant uniform algebras on a compact group G are G×G -invariant
algebras on G , where G × G acts on G by left anf right translations. The
condition that the group NG×G(G)/G is finite is equivalent to the condition
that the group G is semisimple. Hence the theorem generalizes results of Wolf
and Gangolli.

The case of invariant algebras on spheres is most investigated one among
homogeneous spaces which are not of the type G×G/G . de Leeuw and Mirkil [6]
showed that every invariant algebra on the real sphere Sn = SO(n+ 1)/ SO(n)
is self-conjugated. Nagel and Rudin [7] showed that there are invariant algebras
on the complex speres S2n−1 = U(n)/U(n − 1) which are not self-conjugated.
The other transitive actions on Sn which admit only self-conjugated invariant
algebras were described in [5]. In [11] Wolf proved that almost all compact
homogeneous symmetric spaces admit only self-conjugated invariant algebras.

The way of the proof of the theorem was suggested by Gichev [2].

2. Finitely generated invariant algebras

Definition. An invariant algebra A will be called finitely generated if A is
generated as a Banach algebra by a finite-dimensional invariant vector space
V ⊂ C(M).

Let A be a finitely generated invariant algebra on M , V be a generating
finite-dimensional invariant vector space.

The group G acts on the complex vector space V ∗ of all linear functionals
on V . This action extends to the action of the complexification GC of G in V ∗ .

Let δ be the evaluating functional for the point x0 on V : δ(f) = f(x0)
for all f ∈ V . Let Oδ,V be the G -orbit of the vector δ in V ∗ and OC

δ,V be
the GC -orbit of δ in V ∗ . Denote by Stab δ and StabC δ the stabilizers of δ
in G and GC respectively; note that H ⊆ Stab δ . We obtain a continuous
equivariant mapping M → Oδ,V . Since linear functions on V ∗ are in one-to-one
correspondence with functions in V , we may identify A with the uniform closure
of the algebra of all holomorphic polynomials on Oδ,V .

Lemma 1. Let A be an invariant algebra on M generated by a finite dimen-
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sional invariant subspace V . If OC

δ,V is closed and

(Stab δ)C = StabC δ

then A is self-conjugated.

Proof. Let B be the algebra of all holomorphic polynomials on OC

δ,V . Then

A is the uniform closure of B|M . Denote by # the involutive automorphism of
GC whose set of fixed points is the maximal compact subgroup G of GC . The
condition of the lemma implies that # induces an involution in OC

δ,V with Oδ,V
as the set of fixed points. For any holomorphic on OC

δ,V function f the function

f#(z) = f(z#) is also holomorphic. Hence the restriction to Oδ,V of the algebra
of all holomorphic on OC

δ,V functions is self-conjugated. By the Stone-Weierstrass
theorem, the uniform closure of the algebra of all holomorphic on OC

δ,V functions
restricted to Oδ,V is C(Oδ,V ).

Since OC

δ,V is closed, any holomorphic on OC

δ,V function can be extended
to an entire function by H.Cartan extension theorem (see, for example, [Chapter
VIII A, Theorem 18, 4]. Hence any holomorphic on OC

δ,V function can be approx-
imated by polynomials uniformly on compact sets (Taylor series), in particular
on Oδ,V . Therefore, polynomials are dense in C(Oδ,V ). This easily implies that
the restriction of the algebra of polynomials on Oδ,V is self-conjugated.

Lemma 2. If every finitely generated invariant subalgebra of an invariant al-
gebra A on M is self-conjugated then A is self-conjugated.

Proof. Let A0 be the subset of A consisting of functions which generate finite
dimensional invariant subspaces. If f ∈ A0 then f̄ ∈ A by the assumption of
the lemma. Clearly, f̄ ∈ A0 . Hence A0 is self-conjugated. It remains to note
that A0 is dense in A because G is compact.

3. Proof of the theorem

Lemma 3. The conditions (2) and (3) of the theorem are equivalent.

Proof. The Lie algebra of NG(H) coincides with the normalizer ng(h) of h in
g because H is connected. There is an AdH -invariant decomposition of ng(h):
ng(h) = h⊕ n . Since n is an ideal in ng(h) the Lie algebra n can be identified
with the set of all AdH -invariant vectors in the tangent space Tx0

M . Therefore
the group N is finite if and only if n = 0.

Lemma 4. If the group N is infinite then there exists an invariant algebra on
M which is not self-conjugated.

Proof. Suppose the group N is infinite. Since gHn = gnH for all g ∈ G and
n ∈ N , N acts on G/H by right translations. Hence there is an action of the
group U(1) = {eiϕ} commuting with the action of G .

For every integer m set

Sm = {f ∈ C(M)|ρ(eiϕ)f = eimϕf}.
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The spaces Sm are G -invariant since the actions of the groups G and U(1)
commute. Then the algebra

A =
∑

m∈Z+

Sm

of all functions extending on ϕ holomorphically to the unit disc is an invariant
algebra on M which is not self-conjugated.

Let NC be the factor of the normalizer of HC in GC by HC . Denote by
τ the antilinear involutive automorphism which distinguishes the compact real
form g of the Lie algebra gC .

Lemma 5. If N if finite then NC is finite.

Proof. Denote by g and h the Lie algebras of G and H respectively. Since
N is finite, the Lie algebra of NG(H) coincides with h . Let nC be the Lie
algebra of NGC(HC); nC coincides with the normalizer of hC in gC because HC

is connected. Since hC is τ -invariant nC is also τ -invariant. Hence nC = hC .
Therefore the identity component of NGC(HC) coincides with HC . The group
NC is finite because NGC(HC) is an algebraic group.

Lemma 6. Let V be a finite-dimensional complex vector space, GC ⊆ GL(V )
and the stabilizer of v ∈ V contains H . If the group N is finite then GC -orbit
of v is closed.

Proof. By the Luna criterion (see [Theorem 6.17, 9], it is sufficient to prove
that the orbit of normalizer of HC in GC is closed. This is an easy consequence
of Lemma 5.

Lemma 7. Let V be a finite-dimensional complex vector space, GC ⊆ GL(V )
and the stabilizer of v ∈ V contains H . If the group N is finite then the stabilizer
of v in GC is the complexification of the stabilizer of v in G .

Proof. By Lemma 6 GC -orbit of v is closed. Then the stabilizer StabC v of v
in GC is a complex reductive Lie group (see [Theorem 4.17, 9]). Hence StabC v
is the complexification of its maximal compact subgroup K1 . We may assume
that H ⊆ K1 .

Let K be a maximal compact subgroup of GC containing K1 . Denote
by k the Lie algebra of K . Then k is a real compact form of gC . Since N is finite
the center of g is contained in h . Let gC

0 , k0 and g0 be the semisimple parts of
gC , k and g respectively. Denote by µ the antilinear involutive automorphism
defining the compact real form k0 of the Lie algebra gC

0 .

Consider the automorphism θ = µτ0 where τ0 is the restriction of τ
to gC

0 . The standard proof of the fact that any two compact real forms of the
complex semisimple Lie algebra are conjugated shows that there is an element
z ∈ gC

0 , such that θ2 = exp(ad(4z)), exp(ad z)g0 = k0 , and adz commutes with
all linear transformations of gC

0 commuting with θ2 (for details see [8] or [3].

Since θ2|hC∩gC
0

= id , z is contained in the centralizer of hC ∩ gC
0 in gC

0 .

Hence vectors τz+z and i(τz−z) are elements of the centralizer of h∩g0 in g0 .
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By Lemma 3 z is contained in the center of hC . Since h includes the center of
g , exp(ad z)g = k . Then exp(− ad z)K ⊆ G because K is connected. Therefore

exp(− ad z)K1 ⊆ StabC v ∩G.

The group exp(− ad z)K1 is a maximal compact subgroup of StabC v . Thus
StabC v = (StabC v ∩G)C.

Proof of Theorem. The equivalence (2) ⇔ (3) is proved in Lemma 3. The
implication (1) ⇒ (2) follows from Lemma 4.

Suppose that the group N is finite. Lemmas 1, 6 and 7 imply that every
invariant finitely generated algebra on M is self-conjugated. By Lemma 2 every
invariant algebra on M is self-conjugated. Therefore (2) implies (1).

Corollary 1. Let G be a compact connected Lie group, H is its closed
connected subgroup. If the group NG(H)/H is finite then invariant function
algebras on M are in one-to-one correspondence with the closed subgroups of G
which include H .

The class of homogeneous spaces satisfying the condition of Corollary 1
is rather wide. It contains, for example, all compact homogeneous symmetric
spaces.

Corollary 2. Let V be a finite-dimensional complex vector space, G be a
compact connected Lie subgroup of GL(V ) . Suppose that H is a closed connected
subgroup of G such that the group NG(H)/H is finite. If H is contained in the
stabilizer of an element v ∈ V then G-orbit Gv of v is polynomially convex and
holomorphically convex.

Proof. Denote by P the algebra of all polynomials on V . Let A be the
uniform closure of the restriction of P to Gv . By the theorem A is self-
conjugated. Clearly, P separates the points of Gv . By the Stone-Weierstrass
theorem A = C(Gv). Hence the set of all multiplicative linear functionals on
C(Gv) coincides with Gv . Since every point x of the polynomially convex hull
of Gv defines the multiplicative linear functional on A (the evaluating functional
at x) Gv is polynomially convex. Since the holomorphically convex hull of Gv
is contained in the polynomially convex hull, Gv is holomorphically convex.
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