Adjoint vector fields on the tangent space of semisimple symmetric spaces

T. Levasseur and R. Ushirobira

Communicated by F. Knop

Abstract. Let \mathfrak{g} be a semisimple complex Lie algebra and $\vartheta \in \operatorname{Aut} \mathfrak{g}$ be an involution. If $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ is the decomposition associated to ϑ , define a Lie subalgebra of $\operatorname{End} \mathfrak{p}$ by $\tilde{\mathfrak{k}} = \{ X : \forall f \in S(\mathfrak{p}^*)^{\mathfrak{k}}, X.f = 0 \}$. We prove that $\operatorname{ad}_{\mathfrak{p}}(\mathfrak{k}) = \tilde{\mathfrak{k}}$ if, and only if, each irreducible factor of rank one of the symmetric pair $(\mathfrak{g}, \mathfrak{k})$ is isomorphic to $(\mathfrak{so}(q+1), \mathfrak{so}(q))$.

0. Introduction

Let \mathfrak{g} be a semisimple complex Lie algebra with adjoint group G. Let $\vartheta \in \operatorname{Aut}(\mathfrak{g})$ be an involution and set $\mathfrak{k} = \operatorname{Ker}(\vartheta - I)$, $\mathfrak{p} = \operatorname{Ker}(\vartheta + I)$, hence $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. The pair $(\mathfrak{g}, \vartheta)$, or $(\mathfrak{g}, \mathfrak{k})$, will be called a (semisimple) symmetric pair. Let $\Theta(\mathfrak{p})$ be the Lie algebra of (algebraic) vector fields on \mathfrak{p} . Thus $\Theta(\mathfrak{p})$ identifies with $\operatorname{Der}_{\mathbb{C}} \mathcal{O}(\mathfrak{p})$, where $\mathcal{O}(\mathfrak{p}) = S(\mathfrak{p}^*)$. There exists a Lie algebra homomorphism $\tau : \mathfrak{gl}(\mathfrak{p}) \to \Theta(\mathfrak{p})$ defined by $(\tau(X).f)(v) = \frac{d}{dt}_{|t=0}f(e^{-tX}.v)$ for $v \in \mathfrak{p}$, $f \in \mathcal{O}(\mathfrak{p})$ and $X \in \mathfrak{gl}(\mathfrak{p})$. This applies in particular to ad(X), $X \in \mathfrak{k}$, and we still set $\tau(X) = \tau(\operatorname{ad}(X))$.

Let K be the connected algebraic subgroup of G such that $\text{Lie}(K) = \mathfrak{k}$. Recall, cf. [7], that

$$\mathcal{O}(\mathfrak{p})^K = \{ f \in \mathcal{O}(\mathfrak{p}) : \tau(\mathfrak{k}) \cdot f = 0 \} = \mathbb{C}[u_1, \dots, u_p]$$

is a polynomial ring. Here, p is the rank of $(\mathfrak{g}, \vartheta)$, i.e. the dimension of a Cartan subspace $\mathfrak{a} \subset \mathfrak{p}$ for $(\mathfrak{g}, \vartheta)$. One defines a Lie subalgebra of $\mathfrak{gl}(\mathfrak{p})$, containing $\mathrm{ad}(\mathfrak{k})$, by setting

$$\tilde{\mathfrak{k}} = \big\{ \mathfrak{X} \in \mathfrak{gl}(\mathfrak{p}) : \tau(\mathfrak{X}).f = 0 \text{ for all } f \in \mathcal{O}(\mathfrak{p})^K \big\}.$$

The Lie algebra $\tilde{\mathfrak{k}}$ has been considered by various authors (see, e.g., [8, 10]), in relation with the description of spherical hyperfunctions, or eigendistributions, on \mathfrak{p} . Observe that if $\mathfrak{s} \subset \mathfrak{k}$ is an ideal of \mathfrak{g} , we have $\operatorname{ad}(\mathfrak{s}) = 0$ and $\operatorname{ad}(\mathfrak{k}) = \operatorname{ad}(\mathfrak{k}/\mathfrak{s})$. We will therefore assume that \mathfrak{k} does not contain a nonzero ideal of \mathfrak{g} . Then $(\mathfrak{g}, \mathfrak{k})$ decomposes as a direct product $\prod_{i=1}^{t} (\mathfrak{g}^{i}, \mathfrak{k}^{i})$ where each factor $(\mathfrak{g}^{i}, \mathfrak{k}^{i})$ is irreducible, see [4, VIII.5].

ISSN 0949–5932 / \$2.50 © Heldermann Verlag

When p = 1, the invariant u_1 is (up to a non-zero scalar) the nondegenerate quadratic form on \mathfrak{p} induced by the Killing form B of \mathfrak{g} . Then, $\tilde{\mathfrak{t}} = \mathfrak{so}(\mathfrak{p}, u_1)$ and $\tilde{\mathfrak{t}} \supseteq \mathrm{ad}(\mathfrak{k})$, unless $(\mathfrak{g}, \mathfrak{k}) \cong (\mathfrak{so}(q+1, \mathbb{C}), \mathfrak{so}(q, \mathbb{C}))$. The main result of this note is the following theorem, which does not seem to have been noticed before.

Theorem. (Main Theorem) Let $(\mathfrak{g}, \vartheta)$ be as above. Then $\operatorname{ad}(\mathfrak{k}) = \widetilde{\mathfrak{k}}$ if, and only if, each irreducible factor of rank one of $(\mathfrak{g}, \mathfrak{k})$ is isomorphic to $(\mathfrak{so}(q+1, \mathbb{C}), \mathfrak{so}(q, \mathbb{C}))$.

The proof of the theorem goes as follows. Let \widetilde{K} be the connected algebraic subgroup of $\operatorname{GL}(\mathfrak{p})$ such that $\operatorname{Lie}(\widetilde{K}) = \widetilde{\mathfrak{k}}$, we first prove that the representation $(\widetilde{K}:\mathfrak{p})$ is polar (see [1, 2]). Now, using the results of [1] one can suppose that there exists a semisimple symmetric pair $(\widetilde{\mathfrak{g}}, \widetilde{\vartheta})$ with associated decomposition $\widetilde{\mathfrak{g}} = \widetilde{\mathfrak{k}} \oplus \mathfrak{p}$ and Cartan subspace \mathfrak{a} . Then, a case by case examination of the restricted root systems $\Sigma(\mathfrak{g},\mathfrak{a})$ and $\Sigma(\widetilde{\mathfrak{g}},\mathfrak{a})$ enables us to conclude the proof.

Our interest in this theorem originates in the more general problem of describing the $\mathcal{O}(\mathfrak{p})$ -module of vector fields on \mathfrak{p} which annihilate $\mathcal{O}(\mathfrak{p})^K$. Set

$$\mathcal{E} = \left\{ d \in \Theta(\mathbf{p}) : d.f = 0 \text{ for all } f \in \mathcal{O}(\mathbf{p})^K \right\}.$$

Then, $E = \mathcal{O}(\mathfrak{p})\tau(\mathfrak{k}) \subset \widetilde{E} = \mathcal{O}(\mathfrak{p})\tau(\widetilde{\mathfrak{k}}) \subset \mathcal{E}$ and we conjecture that $\mathcal{E} = \mathcal{O}(\mathfrak{p})\tau(\widetilde{\mathfrak{k}})$. The equality $\mathcal{E} = \mathcal{O}(\mathfrak{p})\tau(\mathfrak{k})$ was established by J. Dixmier [3] in the diagonal case, that is to say when $\mathfrak{g} = \mathfrak{g}_1 \times \mathfrak{g}_1$, \mathfrak{g}_1 semisimple, $\vartheta(x, y) = (y, x)$. It is not difficult to prove that the same conclusion holds when $(\mathfrak{g}, \mathfrak{k})$ has maximal rank, i.e. $p = \operatorname{rk} \mathfrak{g}$ (this is also a very particular case of the results in [13]). Furthermore, the modules E, \widetilde{E} and \mathcal{E} are graded $\mathcal{O}(\mathfrak{p})$ -submodules of $\Theta(\mathfrak{p})$ whose degree zero parts are given by $E_0 = \tau(\mathfrak{k}), \ \widetilde{E}_0 = \mathcal{E}_0 = \tau(\widetilde{\mathfrak{k}})$. Therefore, the Main Theorem indicates in which case one has $E \subsetneq \widetilde{E} = \mathcal{O}(\mathfrak{p})\mathcal{E}_0$.

1. Generalities

We retain the notation of the introduction. Furthermore, we set $n = \dim \mathfrak{p}$, $\operatorname{ad}(x).y = [x, y]$ and $g.x = \operatorname{Ad}(g).x$ for $x, y \in \mathfrak{g}, g \in G$. If $V \subset \mathfrak{g}$, we denote by V^x the subset of elements of V which commute with x.

By [7], $\dim \mathfrak{p} - \dim \mathfrak{k} = \dim \mathfrak{p}^v - \dim \mathfrak{k}^v$ for all $v \in \mathfrak{p}$. Define the set of regular elements in \mathfrak{p} by

$$\mathfrak{p}^{\mathrm{reg}} = \{ v \in \mathfrak{p} : \dim K \cdot v = n - p \} = \{ v \in \mathfrak{p} : \dim \mathfrak{p}^v = p \}.$$

Then, cf. [7], one has $p = \min_{v \in \mathfrak{p}} \dim \mathfrak{p}^v = \dim \mathfrak{a}$ and $\max_{v \in \mathfrak{p}} \dim K.v = \dim \mathfrak{p} - p$. One can write $\mathfrak{a} = \mathfrak{p}^x$ for a generic element x, i.e. $x \in \mathfrak{p}^{\text{reg}}$ and x semisimple in \mathfrak{g} .

Recall (see [4, Proposition X.1.4] and [5, Lemma III.4.1]) that the symmetric pair $(\mathfrak{g}, \vartheta)$ is the complexification of a real symmetric pair $(\mathfrak{g}_0, \vartheta_0)$ where $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{p}_0$ is a Cartan decomposition of the real form \mathfrak{g}_0 of \mathfrak{g} . Thus \mathfrak{k}_0 is a compactly embedded subalgebra of \mathfrak{g}_0 and the restriction of B to \mathfrak{p}_0 is a \mathfrak{k}_0 -invariant scalar product. We then have $\mathfrak{k} = \mathfrak{k}_0 \otimes_{\mathbb{R}} \mathbb{C}$, $\mathfrak{p} = \mathfrak{p}_0 \otimes_{\mathbb{R}} \mathbb{C}$, $\vartheta = \vartheta_0 \otimes_{\mathbb{R}} 1$ and

$$S(\mathfrak{p}_0^*)^{\mathfrak{k}_0} \otimes_{\mathbb{R}} \mathbb{C} = S(\mathfrak{p}^*)^{\mathfrak{k}} = \mathcal{O}(\mathfrak{p})^K = \mathbb{C}[u_1, \dots, u_p].$$

It follows that $S(\mathfrak{p}_0^*)^{\mathfrak{e}_0}$ is a polynomial ring in p variables and that we may choose the generators u_1, \ldots, u_p in $S(\mathfrak{p}_0^*)$, the first invariant u_1 being the nondegenerate quadratic form on \mathfrak{p}_0 induced by the restriction of B. We have $\mathfrak{gl}(\mathfrak{p}) = \mathfrak{gl}(\mathfrak{p}_0) \otimes_{\mathbb{R}} \mathbb{C} = \mathfrak{gl}(\mathfrak{p}_0) \oplus i\mathfrak{gl}(\mathfrak{p}_0)$ and, if $\mathbf{X} \in \mathfrak{gl}(\mathfrak{p}_0)$, the vector field $\tau(\mathbf{X})$ is a derivation of the polynomial ring $S(\mathfrak{p}_0^*)$. Notice that $\mathfrak{s}_0 = \{\mathbf{X} \in \mathfrak{gl}(\mathfrak{p}_0) : \tau(\mathbf{X}) : u_1 = 0\}$ is the orthogonal Lie algebra $\mathfrak{so}(\mathfrak{p}_0, u_1) \cong \mathfrak{so}(n, \mathbb{R})$.

Define [8, §4] a closed subgroup of $GL(\mathfrak{p}_0)$ by

$$K'_0 = \{g \in \operatorname{GL}(\mathfrak{p}_0) : g.u_j = u_j \text{ for all } j = 1, \dots, p\}.$$

Since $K'_0 \subset SO(\mathfrak{p}_0, u_1)$, K'_0 is a compact Lie group. Denote by \widetilde{K}_0 its identity component and set $\mathfrak{t}_0 = \operatorname{Lie}(K'_0) = \operatorname{Lie}(\widetilde{K}_0)$. We have

$$\widetilde{\mathfrak{k}}_0 = \left\{ \mathtt{X} \in \mathfrak{gl}(\mathfrak{p}_0) : \tau(\mathtt{X}). f = 0 \text{ for all } f \in S(\mathfrak{p}_0^*)^{\mathfrak{k}_0} \right\}$$

and $\operatorname{ad}(\mathfrak{k}_0) \subset \widetilde{\mathfrak{k}}_0 \subset \mathfrak{s}_0$. Let $\widetilde{K} = (\widetilde{K}_0)_{\mathbb{C}} \subset \operatorname{GL}(\mathfrak{p})$ be the complexification of \widetilde{K}_0 (see [11, Chap. 5, Theorem 12]). Then, \widetilde{K} is a reductive algebraic group and is the unique connected reductive subgroup of $\operatorname{GL}(\mathfrak{p})$ such that $\operatorname{Lie}(\widetilde{K}) = \widetilde{\mathfrak{k}}_0 \otimes_{\mathbb{R}} \mathbb{C}$. One verifies easily that $\widetilde{\mathfrak{k}} = \widetilde{\mathfrak{k}}_0 \otimes_{\mathbb{R}} \mathbb{C}$. It will be convenient to denote the \widetilde{K}_0 -module \mathfrak{p}_0 by $\widetilde{\mathfrak{p}}_0$.

Recall that the pair $(\mathfrak{g}, \mathfrak{k})$ is said to be irreducible if $(\mathfrak{g}_0, \mathfrak{k}_0)$ is irreducible in the following sense [5, VIII.5]: \mathfrak{k}_0 does not contain a nonzero ideal of \mathfrak{g}_0 and the K_0 -module \mathfrak{p}_0 is simple. Decompose $(\mathfrak{g}_0, \mathfrak{k}_0)$ as a finite direct sum of irreducible symmetric pairs $(\mathfrak{g}_0^i, \mathfrak{k}_0^i)$, $1 \leq i \leq t$. We can then define, in a similar way, $\widetilde{\mathfrak{k}}_0^i \subset \mathfrak{gl}(\mathfrak{p}_0^i)$, $\widetilde{K}^i \subset \operatorname{GL}(\mathfrak{p}^i)$ etc., for each $i = 1, \ldots, t$.

Lemma 1.1. We have $\tilde{\mathfrak{k}}_0 = \tilde{\mathfrak{k}}_0^1 \times \cdots \times \tilde{\mathfrak{k}}_0^t$ and $\tilde{K}_0 = \tilde{K}_0^1 \times \cdots \times \tilde{K}_0^t$.

Proof. We write the proof for t = 2, the general case being similar. Let $\{e_i, x_i = e_i^*\}_i$ and $\{f_i, y_i = f_i^*\}_i$ be orthonormal coordinate systems (w.r.t. the Killing forms) on \mathfrak{p}_0^1 and \mathfrak{p}_0^2 . Thus, $S(\mathfrak{p}_0^*)^{\mathfrak{k}_0} = S((\mathfrak{p}_0^1)^*)^{\mathfrak{k}_0^1} \otimes_{\mathbb{R}} S((\mathfrak{p}_0^2)^*)^{\mathfrak{k}_0^2}$. Let $X \in \operatorname{End} \mathfrak{p}_0$ and write $X = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ with $A = [a_{ij}] \in \operatorname{End} \mathfrak{p}_0^1$, $B = [b_{ij}] \in \operatorname{L}(\mathfrak{p}_0^2, \mathfrak{p}_0^1)$, $C = [c_{ij}] \in \operatorname{L}(\mathfrak{p}_0^1, \mathfrak{p}_0^2)$, $D = [d_{ij}] \in \operatorname{End} \mathfrak{p}_0^2$. Then,

$$\tau(\mathbf{X}) = \sum_{s} (\mathbf{A}_{s}(x) + \mathbf{B}_{s}(y)) \frac{\partial}{\partial x_{s}} + \sum_{q} (\mathbf{C}_{q}(x) + \mathbf{D}_{q}(y)) \frac{\partial}{\partial y_{q}}$$

where $\mathbf{A}_s(x) = -\sum_u a_{su}x_u$, $\mathbf{B}_s(y) = -\sum_u b_{su}y_u$, $\mathbf{C}_q(x) = -\sum_u c_{qu}x_u$, $\mathbf{D}_q(y) = -\sum_u d_{qu}y_u$. Suppose that $\mathbf{X} \in \tilde{\mathbf{t}}_0$ and let $f(x) \in S((\mathbf{p}_0^1)^*)^{\mathbf{t}_0^1}$. Then, from $\tau(\mathbf{X}).f = 0$ we deduce that

$$\sum_{s} \mathsf{A}_{s}(x) \frac{\partial f(x)}{\partial x_{s}} = -\sum_{s} \mathsf{B}_{s}(y) \frac{\partial f(x)}{\partial x_{s}},$$

which forces $\sum_{s} \mathbf{A}_{s}(x) \frac{\partial f(x)}{\partial x_{s}} = \sum_{s} \mathbf{B}_{s}(y) \frac{\partial f(x)}{\partial x_{s}} = 0$. Similarly,

$$\sum_{s} C_{s}(x) \frac{\partial g(y)}{\partial y_{s}} = \sum_{s} D_{s}(y) \frac{\partial g(y)}{\partial y_{s}} = 0$$

for all $g(y) \in S((\mathfrak{p}_0^2)^*)^{\mathfrak{k}_0^2}$. Now, taking $f(x) = \sum_s x_s^2$ we obtain $\sum_s B_s(y)x_s = 0$ and therefore $B_s(y) = 0$. Hence B = 0 and, similarly, C = 0 (use $g(y) = \sum_q y_q^2$). This proves that $X = A \times D$ with $A \in \tilde{\mathfrak{k}}_0^1$, $D \in \tilde{\mathfrak{k}}_0^2$. The second assertion follows easily. **Remark 1.2.** The previous lemma shows that $\operatorname{ad}(\mathfrak{k}_0) = \widetilde{\mathfrak{k}}_0$ if and only if $\operatorname{ad}(\mathfrak{k}_0^i) = \widetilde{\mathfrak{k}}_0^i$ for all *i*. Therefore, to prove the theorem of the introduction, we may assume that the symmetric pair $(\mathfrak{g}, \mathfrak{k})$ is irreducible.

Lemma 1.3. Suppose that $(\mathfrak{g}, \mathfrak{k})$ is irreducible and p = 1. Then, $\operatorname{ad}(\mathfrak{k}_0) = \mathfrak{k}_0$ if and only if $(\mathfrak{g}, \mathfrak{k})$ is isomorphic to $(\mathfrak{so}(n+1, \mathbb{C}), \mathfrak{so}(n, \mathbb{C}))$.

Proof. Note that $\mathfrak{k}_0 \cong \mathrm{ad}(\mathfrak{k}_0) \subset \mathfrak{k}_0 = \mathfrak{s}_0$ with $\mathfrak{s}_0 \otimes_{\mathbb{R}} \mathbb{C} \cong \mathfrak{so}(n, \mathbb{C})$. Assume that $(\mathfrak{g}, \mathfrak{k}) \cong (\mathfrak{so}(n+1, \mathbb{C}), \mathfrak{so}(n, \mathbb{C}))$; then, $\dim \mathfrak{k}_0 = \dim_{\mathbb{C}} \mathfrak{k} = \dim \mathfrak{s}_0$ and therefore $\mathrm{ad}(\mathfrak{k}_0) = \mathfrak{s}_0$. Conversely, if $\mathrm{ad}(\mathfrak{k}_0) = \mathfrak{s}_0$, we obtain that $\mathfrak{k} \cong \mathfrak{so}(n, \mathbb{C})$ acting naturally on $\mathfrak{p} \cong \mathbb{C}^n$. It follows that $(\mathfrak{g}, \mathfrak{k}) \cong (\mathfrak{so}(n+1, \mathbb{C}), \mathfrak{so}(n, \mathbb{C}))$.

Recall (for completeness) the following lemma, cf. [8, Corollary 4.4] for a proof in the analytic case.

Lemma 1.4. Let $V \subset \mathfrak{p}$ be an affine open subset and $f \in \mathcal{O}(V)$, then

$$\{\forall \, \mathtt{X} \in \widehat{\mathfrak{k}}, \ \tau(\mathtt{X}).f = 0\} \iff \{\forall \, \mathtt{X} \in \mathfrak{k}, \ \tau(\mathtt{X}).f = 0\}.$$

In particular, $\mathcal{O}(\mathfrak{p})^K = \mathcal{O}(\mathfrak{p})^{\widetilde{K}}$ and $S(\mathfrak{p}_0^*)^{K_0} = S(\mathfrak{p}_0^*)^{\widetilde{K}_0}$.

Proof. Let $\mathbf{X} \in \tilde{\mathbf{t}}$ and let $f \in \mathcal{O}(V)$ be such that $\tau(\mathbf{t}).f = 0$. By [9, Lemma 4.9] (or the proof of [8, Lemma 4.3]), there exists $0 \neq \psi \in \mathcal{O}(\mathbf{p})$ such that $\psi\tau(\mathbf{X}) \in \mathcal{O}(\mathbf{p})\tau(\mathbf{t})$. Hence $(\psi\tau(\mathbf{X})).f = 0$, forcing $\tau(\mathbf{X}).f = 0$. The converse is obvious and the last assertions follow easily by taking $V = \mathbf{p}$.

Corollary 1.5. Let $v \in \mathfrak{p}_0$. Then $K_0 \cdot v = \widetilde{K}_0 \cdot v$.

Proof. By Lemma 1.4, the invariant functions u_j separate both the K_0 -orbits and the \widetilde{K}_0 -orbits, see e.g. [12, (0.4)]. We clearly have $K_0.v \subset \widetilde{K}_0.v$. Suppose that $y \in \widetilde{K}_0.v \setminus K_0.v$. Since $K_0.y \neq K_0.v$, we get that $u_j(y) \neq u_j(v)$ for some j. But this yields $\widetilde{K}_0.v \neq \widetilde{K}_0.y$ and a contradiction.

Let (L : E) be a finite dimensional representation of a compact group L. Fix an L-invariant scalar product B on E and set $\mathfrak{l} = \operatorname{Lie}(L)$. Recall [1] that $v \in E$ is said to be L-regular if dim L.v is maximal. The representation (L : E) is called *polar* if, whenever $v, v' \in E$ are regular, there exists $k \in L$ such that $\mathfrak{a}_v = k.\mathfrak{a}_{v'}$, where \mathfrak{a}_v is the orthogonal of $\mathfrak{l}.v$ with respect to B. A subspace of the form \mathfrak{a}_v, v regular, is called a Cartan subspace for (L : E) and we define the rank of (L : E) to be $\operatorname{rk}(L : E) = \dim \mathfrak{a}_v$. We then have $\max_{v \in E} \dim L.v = \dim E - \operatorname{rk}(L : E)$.

The representation $(K_0 : \mathfrak{p}_0)$ is known to be polar and is called a symmetric space representation, see [1]. In this case a Cartan subspace is provided by a maximal abelian Lie subalgebra \mathfrak{a}_0 contained in \mathfrak{p}_0 ; then, $\mathfrak{a} = \mathfrak{a}_0 \otimes_{\mathbb{R}} \mathbb{C}$ is a Cartan subspace for $(\mathfrak{g}, \vartheta)$.

Proposition 1.6. The representation $(\widetilde{K}_0 : \widetilde{\mathfrak{p}}_0)$ is polar.

Proof. By Corollary 1.5, $v_0 \in \mathfrak{p}$ is K_0 -regular if and only if it is \widetilde{K}_0 -regular and we have $\mathfrak{k}_0.v_0 = \widetilde{\mathfrak{k}}_0.v_0$. Set $\mathfrak{a}_0 = \mathfrak{a}_{v_0} = (\mathfrak{k}_0.v_0)^{\perp}$. Let $v \in \mathfrak{p}_0$ be regular, we then have $\mathfrak{a}_0 = k.\mathfrak{a}_v = k.(\mathfrak{k}_0.v)^{\perp} = k.(\widetilde{\mathfrak{k}}_0.v)^{\perp}$ for some $k \in K_0$. This implies that $(\widetilde{K}_0:\widetilde{\mathfrak{p}}_0)$ is polar with \mathfrak{a}_0 as Cartan subspace.

We need to recall a few facts from the theory of symmetric spaces [4, VI.3]. Let \mathfrak{a}_0 be a Cartan subspace for $(K_0 : \mathfrak{p}_0)$ and let $\lambda \in \mathfrak{a}_0^*$. One sets:

$$\begin{aligned} \mathbf{\mathfrak{g}}_{0}^{\lambda} &= \{ x \in \mathbf{\mathfrak{g}}_{0} : [a, x] = \lambda(a)x \text{ for all } a \in \mathbf{\mathfrak{a}}_{0} \} \\ \Sigma &= \{ \alpha \in \mathbf{\mathfrak{a}}_{0}^{*} : \alpha \neq 0 \text{ and } \mathbf{\mathfrak{g}}_{0}^{\alpha} \neq 0 \} \\ \mathbf{\mathfrak{m}}_{0} &= \mathbf{\mathfrak{g}}_{0}^{0} \cap \mathbf{\mathfrak{k}}_{0} = \operatorname{cent}_{\mathbf{\mathfrak{k}}_{0}}(\mathbf{\mathfrak{a}}_{0}) \end{aligned}$$

Then Σ is a root system, possibly non reduced; we fix a choice Σ^+ of positive roots. Define the reduced associated root system by

$$\Sigma_{\rm red} = \{\lambda \in \Sigma : \lambda \notin 2\Sigma\}.$$

(If Σ is reduced we have $\Sigma_{red} = \Sigma$; otherwise, in the irreducible case, Σ is of type $(\mathsf{BC})_p$ and $\Sigma_{red} \cong \mathsf{B}_p$.)

If V is a real vector space we denote by $V_{\mathbb{C}}$ its complexification and if \mathfrak{l}_0 is a subspace of \mathfrak{g}_0 , we set $\mathfrak{l} = (\mathfrak{l}_0)_{\mathbb{C}}$. With this notation the decomposition $\mathfrak{g}_0 = \bigoplus_{\lambda \in \Sigma \cup \{0\}} \mathfrak{g}_0^{\lambda}$ yields

$$\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p} = \bigoplus_{\lambda \in \Sigma \cup \{0\}} \mathfrak{g}^{\lambda}$$

 $\mathfrak{m} = \operatorname{cent}_{\mathfrak{k}}(\mathfrak{a})$

Recall that the multiplicity of $\lambda \in \Sigma$ is $m_{\lambda} = \dim_{\mathbb{C}} \mathfrak{g}^{\lambda} = \dim \mathfrak{g}_{0}^{\lambda}$. Let $\lambda \in \Sigma^{+}$ and set

$$\begin{aligned} &\mathfrak{k}_0^{\lambda} = \{ \mathtt{X} \in \mathfrak{k}_0 : \mathrm{ad}(a)^2 . \mathtt{X} = \lambda(a)^2 \mathtt{X} \text{ for all } a \in \mathfrak{a}_0 \} \\ &\mathfrak{p}_0^{\lambda} = \{ v \in \mathfrak{p}_0 : \mathrm{ad}(a)^2 . v = \lambda(a)^2 v \text{ for all } a \in \mathfrak{a}_0 \}. \end{aligned}$$

Then, $\mathfrak{k}_0 = \mathfrak{m}_0 \oplus \left(\bigoplus_{\lambda \in \Sigma^+} \mathfrak{k}_0^{\lambda} \right)$, $\mathfrak{p}_0 = \mathfrak{a}_0 \oplus \left(\bigoplus_{\lambda \in \Sigma^+} \mathfrak{p}_0^{\lambda} \right)$. Furthermore, see [5, III.4], $\mathfrak{g}^{\lambda} \oplus \mathfrak{g}^{-\lambda} = \mathfrak{k}^{\lambda} \oplus \mathfrak{p}^{\lambda}$. Let $v \in \mathfrak{a}$ be generic, i.e. $\lambda(v) \neq 0$ for all $\lambda \in \Sigma_{\mathrm{red}}$, then $\mathrm{ad}(v)$ induces an isomorphism $\mathfrak{p}^{\lambda} \cong \mathfrak{k}^{\lambda}$. It follows in particular that $m_{\lambda} = \dim \mathfrak{g}^{\lambda} = \dim \mathfrak{k}^{\lambda} = \dim \mathfrak{p}^{\lambda}$.

Denote the set of generic elements in \mathfrak{a} by

$$\mathfrak{a}' = \{ v \in \mathfrak{a} : \alpha(v) \neq 0 \text{ for all } \alpha \in \Sigma \}$$

and let $\mathfrak{a}^{sing} = \mathfrak{a} \setminus \mathfrak{a}'$ be the set of singular elements. We recall, for completeness, the following lemma.

Lemma 1.7. Let $x \in \mathfrak{a}$. Then

(i)
$$\mathfrak{k}^x = \mathfrak{m} \oplus \left(\bigoplus_{\{\lambda \in \Sigma^+ : \lambda(x) = 0\}} \mathfrak{k}^\lambda \right)$$

(ii) $x \text{ generic} \iff \mathfrak{k}^x = \mathfrak{m} \iff \dim \mathfrak{k}^x \text{ is minimal} \iff \dim \mathfrak{k}^x = \dim \mathfrak{p} - p$.

Proof. (i) follows from $\mathfrak{k} = \mathfrak{m} \oplus (\bigoplus_{\lambda \in \Sigma^+} \mathfrak{k}^{\lambda})$ and $\operatorname{Ker} \operatorname{ad}(a)^2 = \operatorname{Ker} \operatorname{ad}(a)$ for $a \in \mathfrak{a}$ (since a is semisimple).

(ii) is consequence of (i) and the definitions.

For
$$\alpha \in \Sigma_{\text{red}}^+$$
 we set $\mathfrak{a}_{\alpha} = \text{Ker } \alpha = \{a \in \mathfrak{a} : \alpha(a) = 0\}$. Therefore,

$$\mathfrak{a}^{\text{sing}} = \bigcup_{\alpha \in \Sigma_{\text{red}}^+} \mathfrak{a}_{\alpha} \tag{1}$$

and the \mathfrak{a}_{α} are pairwise distinct hyperplanes. Set

$$\mathfrak{a}_0' = \mathfrak{a}' \cap \mathfrak{a}_0, \quad \mathfrak{a}_0^{\mathrm{sing}} = \mathfrak{a}_0 \cap \mathfrak{a}^{\mathrm{sing}}, \quad \mathfrak{a}_{0,\alpha} = \mathfrak{a}_0 \cap \mathfrak{a}_{\alpha}.$$

Since dim $K_0 \cdot x = \dim_{\mathbb{C}} K \cdot x$ for all $x \in \mathfrak{a}_0$, it follows from Lemma 1.7 that \mathfrak{a}'_0 is the set of regular elements in \mathfrak{a}_0 .

2. Proof of $\operatorname{ad}(\mathfrak{k}) = \widetilde{\mathfrak{k}}$

We continue with the notation of the previous sections. Recall that the proof of the Main Theorem reduces to the case when $(\mathfrak{g}_0, \mathfrak{k}_0)$ is irreducible, see Remark 1.2. From now on, we assume that this hypothesis holds. Since $\mathrm{ad} : \mathfrak{k}_0 \to \mathfrak{gl}(\mathfrak{p}_0)$ is injective, we will identify \mathfrak{k}_0 with the Lie subalgebra $\mathrm{ad}(\mathfrak{k}_0)$ of \mathfrak{k}_0 , therefore \mathfrak{k} is identified with $\mathrm{ad}(\mathfrak{k})$. Note that the representations $(K_0 : \mathfrak{p}_0)$ and $(\widetilde{K}_0 : \widetilde{\mathfrak{p}}_0)$ are irreducible and faithful.

From the classification of irreducible polar representations one can deduce the following result, see [1, Theorem 9, Theorem 10 and Proposition 6].

Proposition 2.1. Let $(L_0 : V_0)$ be an irreducible faithful polar representation of a compact Lie group L_0 . Then, there exists a semisimple symmetric pair $(\overline{\mathfrak{g}}_0, \overline{\mathfrak{k}}_0)$ such that (with obvious notation):

- (i) $\overline{\mathfrak{g}}_0 = \overline{\mathfrak{k}}_0 \oplus V_0$ is the associated Cartan decomposition;
- (ii) $L_0 \subset \overline{K}_0$ and $(L_0 : V_0)$ is the restriction of $(\overline{K}_0 : V_0)$;
- (iii) $S(V_0^*)^{\overline{K}_0} = S(V_0^*)^{L_0}$.

Corollary 2.2. The representation $(\widetilde{K}_0 : \widetilde{\mathfrak{p}}_0)$ is an irreducible symmetric space representation.

Proof. By Proposition 1.6 and Proposition 2.1, there exists a semisimple symmetric pair $(\overline{\mathfrak{g}}_0, \overline{\mathfrak{k}}_0)$ such that $\mathfrak{p}_0 = \overline{\mathfrak{p}}_0 = \overline{\mathfrak{p}}_0$ (as vector spaces), $\mathfrak{k}_0 \subset \widetilde{\mathfrak{k}}_0 \subset \overline{\mathfrak{k}}_0$ and $S(\mathfrak{p}_0^*)^{K_0} = S(\mathfrak{p}_0^*)^{\overline{K}_0}$. It follows then from the definition of $\widetilde{\mathfrak{k}}_0$ that $\widetilde{\mathfrak{k}}_0 = \overline{\mathfrak{k}}_0$.

Remark. B. Kostant has informed us that Corollary 2.2 can also be deduced from the results contained in [6].

From the previous corollary we may suppose now that $(\widetilde{K}_0 : \widetilde{\mathfrak{p}}_0)$ is coming from a semisimple symmetric pair $(\widetilde{\mathfrak{g}}_0, \widetilde{\mathfrak{k}}_0)$. Without lost of generality we can assume that $\widetilde{\mathfrak{g}}_0$ has Cartan decomposition $\widetilde{\mathfrak{g}}_0 = \widetilde{\mathfrak{k}}_0 \oplus \widetilde{\mathfrak{p}}_0$ and that, if $[,]^{\sim}$ is the bracket on $\widetilde{\mathfrak{g}}_0$, $[\mathbf{X}, v] = [\mathbf{X}, v]^{\sim}$, $[\mathbf{X}, \mathbf{Y}] = [\mathbf{X}, \mathbf{Y}]^{\sim}$ for all $\mathbf{X}, \mathbf{Y} \in \mathfrak{k}_0$, $v \in \mathfrak{p}_0 = \widetilde{\mathfrak{p}}_0$. Notice

that if $\mathfrak{l}_0 \subset \widetilde{\mathfrak{k}}_0 \subset \operatorname{End} \widetilde{\mathfrak{p}}_0$ is an ideal of $\widetilde{\mathfrak{g}}_0$, then $\mathfrak{l}_0 \cdot \widetilde{\mathfrak{p}}_0 = [\mathfrak{l}_0, \widetilde{\mathfrak{p}}_0]^\sim \subset \widetilde{\mathfrak{k}}_0 \cap \widetilde{\mathfrak{p}}_0 = 0$ and therefore $\mathfrak{l}_0 = 0$. Thus the symmetric pair $(\widetilde{\mathfrak{g}}_0, \widetilde{\mathfrak{k}}_0)$ is also irreducible. Recall that we have fixed the Cartan subspace \mathfrak{a}_0 and that we can take $\widetilde{\mathfrak{a}}_0 = \mathfrak{a}_0$ as Cartan subspace for $(\widetilde{\mathfrak{g}}_0, \widetilde{\mathfrak{k}}_0)$, see Proposition 1.6. The associated Weyl groups will be denoted by W and \widetilde{W} .

The notation given in §1 for $\mathfrak{k}_0, \mathfrak{p}_0, \mathfrak{a}_0, \mathfrak{g}_0$, etc. can be introduced for $\tilde{\mathfrak{k}}_0, \tilde{\mathfrak{p}}_0, \tilde{\mathfrak{a}}_0, \tilde{\mathfrak{g}}_0$, etc. If an object x is defined relatively to $(\mathfrak{g}_0, \mathfrak{k}_0)$ we denote by \tilde{x} the corresponding one, relatively to $(\tilde{\mathfrak{g}}_0, \tilde{\mathfrak{k}}_0)$. Since there is only one degree two invariant in $S(\mathfrak{p}_0^*)^{K_0} = S(\tilde{\mathfrak{p}}_0^*)^{\tilde{K}_0}$, the scalar product B on \mathfrak{p}_0 is a positive scalar multiple of the scalar product \tilde{B} on $\tilde{\mathfrak{p}}_0$ and we will suppose in the sequel that they are actually equal.

Proposition 2.3. (1) There exists a bijection $t : \Sigma_{red}^+ \to \widetilde{\Sigma}_{red}^+$, $\alpha \mapsto \widetilde{\alpha}$, such that $\mathfrak{a}_{0,\alpha} = \widetilde{\mathfrak{a}}_{0,\widetilde{\alpha}}$.

(2) $W = \widetilde{W}$.

(3) Let $\alpha \in \Sigma_{\text{red}}^+$ and $w \in W$ be such that $w.\alpha \in \Sigma_{\text{red}}^+$. Then $t(w.\alpha) = \pm w.t(\alpha)$.

(4) There exist $c_1, c_2 \in \mathbb{R}^*$ such that

$$\widetilde{\alpha} = \begin{cases} \pm c_1 \alpha & \text{if } \alpha \text{ short,} \\ \pm c_2 \alpha & \text{if } \alpha \text{ long.} \end{cases}$$

Proof. (1) By Corollary 1.5 we have $\mathfrak{a}_0^{\text{sing}} = \tilde{\mathfrak{a}}_0^{\text{sing}}$, hence we get from (1):

$$\bigcup_{\alpha \in \Sigma_{\mathrm{red}}^+} \mathfrak{a}_{0,\alpha} = \bigcup_{\beta \in \widetilde{\Sigma}_{\mathrm{red}}^+} \widetilde{\mathfrak{a}}_{0,\beta}$$

Since the hyperplanes occuring in each side of the previous equality are pairwise distinct, we obtain that

$$\forall \, \alpha \in \Sigma_{\mathrm{red}}^+, \,\, \exists! \, \mathbf{t}(\alpha) \in \widetilde{\Sigma}_{\mathrm{red}}^+, \,\, \mathbf{\mathfrak{a}}_{0,\alpha} = \widetilde{\mathbf{\mathfrak{a}}}_{0,\mathbf{t}(\alpha)}.$$

It is then clear that $\alpha \mapsto \mathbf{t}(\alpha) = \widetilde{\alpha}$ gives the required bijection. Notice that $\operatorname{Ker} \alpha = \operatorname{Ker} \widetilde{\alpha}$ (in \mathfrak{a}_0) implies that $\widetilde{\alpha} = c_{\alpha} \alpha$ for some $c_{\alpha} \in \mathbb{R}^*$.

(2) Recall that W is generated by the reflections r_{α} , $\alpha \in \Sigma_{\text{red}}^+$, and that the reflecting hyperplane of r_{α} is $\mathfrak{a}_{0,\alpha}$. Thus $r_{\alpha} = r_{\widetilde{\alpha}}$ and it follows that $W = \widetilde{W}$.

(3) We have Ker $w.\alpha = w(\text{Ker }\alpha)$, thus $w(\mathfrak{a}_{0,\alpha}) = w(\tilde{\mathfrak{a}}_{0,\tilde{\alpha}})$ is equivalent to Ker $w.\alpha = \text{Ker } w.\tilde{\alpha}$. Let $\epsilon = \pm 1$ such that $\epsilon w.\tilde{\alpha} \in \tilde{\Sigma}^+_{\text{red}}$. Then Ker $w.\tilde{\alpha} = \tilde{\mathfrak{a}}_{0,\epsilon w.\tilde{\alpha}} = \mathfrak{a}_{0,\omega\alpha}$ and, by definition of $\mathfrak{t}(w.\alpha)$, we obtain that $\mathfrak{t}(w.\alpha) = \epsilon w.\tilde{\alpha}$.

(4) Let $\alpha, \beta \in \Sigma_{\text{red}}^+$ having the same length and $w \in W$ be such that $\beta = w.\alpha$. By (3), $\tilde{\beta} = \pm w.\tilde{\alpha}$ and, therefore, $\tilde{\beta} = c_{\beta}\beta = \pm c_{\alpha}w.\alpha = \pm c_{\alpha}\beta$. Hence $c_{\beta} = \pm c_{\alpha}$. The assertion then follows easily (with the convention that all the roots are short when there is only one root length in Σ).

Corollary 2.4. (1) If $\Sigma_{\text{red}} \notin \{\mathsf{B}_p, \mathsf{C}_p\}$, then Σ_{red} and $\widetilde{\Sigma}_{\text{red}}$ are of the same type.

(2) If
$$\Sigma_{\text{red}} \in \{\mathsf{B}_p, \mathsf{C}_p\}$$
, then $\Sigma_{\text{red}} \in \{\mathsf{B}_p, \mathsf{C}_p\}$.

Proof. Recall that the Weyl group distinguishes irreducible root systems which are not of type B_p or C_p and that the Weyl groups of B_p and C_p are the same. The claims are therefore consequences of Proposition 2.3(2).

Observe that it could happen that $\Sigma_{\text{red}} \cong \mathsf{B}_p$ and $\widetilde{\Sigma}_{\text{red}} \cong \mathsf{C}_p$, the bijection t being given by $t(\alpha) = 2\alpha$, α short, $t(\alpha) = \alpha$, α long. (Similarly, $\Sigma_{\text{red}} \cong \mathsf{C}_p$ and $\widetilde{\Sigma}_{\text{red}} \cong \mathsf{B}_p$ could occur.) In case $\Sigma = \Sigma_{\text{red}} \cong \mathsf{F}_4$ (resp. G_2) we must have $\widetilde{\Sigma} \cong \mathsf{F}_4$ (resp. G_2) but it possible that t interchanges the short and long roots. In summary, we have the following possibilities for the pair ($\Sigma_{\text{red}}, \widetilde{\Sigma}_{\text{red}}$):

- $(A_p, A_p), (D_p, D_p), (E_p, E_p);$
- $(F_4, F_4), (G_2, G_2);$
- $(\mathsf{B}_p,\mathsf{B}_p), (\mathsf{C}_p,\mathsf{C}_p), (\mathsf{B}_p,\mathsf{C}_p), (\mathsf{C}_p,\mathsf{B}_p).$

For all $\lambda \in \Sigma_{\text{red}}^+$ we set $\mathfrak{m}_{\lambda} = \text{cent}_{\mathfrak{k}}(\mathfrak{a}_{\lambda}) = \{x \in \mathfrak{k} : [x, \mathfrak{a}_{\lambda}] = 0\}$. If, similarly, $\widetilde{\mathfrak{m}}_{\widetilde{\lambda}} = \text{cent}_{\widetilde{\mathfrak{k}}}(\widetilde{\mathfrak{a}}_{\widetilde{\lambda}})$ we obtain from $\mathfrak{a}_{\lambda} = \widetilde{\mathfrak{a}}_{\widetilde{\lambda}}$ that

$$\mathfrak{m}_{\lambda} = \widetilde{\mathfrak{m}}_{\widetilde{\lambda}} \cap \mathfrak{k}. \tag{2}$$

The Lie algebra \mathfrak{m}_{λ} is described by the following well known lemma.

Lemma 2.5. Let $\lambda \in \Sigma_{\text{red}}^+$. Then, $\mathfrak{m}_{\lambda} = \mathfrak{m} \oplus \mathfrak{k}^{\lambda} \oplus \mathfrak{k}^{2\lambda}$ (with the convention that $\mathfrak{k}^{2\lambda} = 0$ if $2\lambda \notin \Sigma$).

Proof. Let $X \in \mathfrak{k}$ and set $X = X_0 + \sum_{\alpha \in \Sigma^+} X_\alpha$, $X_0 \in \mathfrak{m}$, $X_\alpha \in \mathfrak{k}^\alpha$. Thus $X \in \mathfrak{m}_\lambda$ if and only if $\sum_{\alpha \in \Sigma^+} [a, X_\alpha] = 0$ for all $a \in \mathfrak{a}_\lambda$. But, since $[a, X_\alpha] \in \mathfrak{p}^\alpha$, this is equivalent to $[a, X_\alpha] = 0$ for all $\alpha \in \Sigma^+$ and $a \in \mathfrak{a}_\lambda$. Hence,

$$\begin{split} \mathbf{X} \in \mathbf{\mathfrak{m}}_{\lambda} \iff \forall \alpha \in \Sigma^{+}, \; \forall a \in \mathbf{\mathfrak{a}}_{\lambda}, \; \mathbf{X}_{\alpha} \in \operatorname{Ker} \operatorname{ad}(a) = \operatorname{Ker} \operatorname{ad}(a)^{2} \\ \iff \forall \alpha \in \Sigma^{+}, \; \forall a \in \mathbf{\mathfrak{a}}_{\lambda}, \; \alpha(a) = 0 \; \operatorname{or} \; \mathbf{X}_{\alpha} = 0. \end{split}$$

Therefore, if $X_{\alpha} \neq 0$, $\mathfrak{a}_{\lambda} = \operatorname{Ker} \lambda \subset \operatorname{Ker} \alpha$; thus $\operatorname{Ker} \lambda = \operatorname{Ker} \alpha$ and $\alpha = \lambda$ or 2λ . Conversely, if $X \in \mathfrak{k}^{\lambda}$ or $\mathfrak{k}^{2\lambda}$ we have $X \in \operatorname{Ker} \operatorname{ad}(a)^2 = \operatorname{Ker} \operatorname{ad}(a)$ for all $a \in \mathfrak{a}_{\lambda}$. Hence $X \in \operatorname{cent}_{\mathfrak{k}}(\mathfrak{a}_{\lambda})$.

Let $\lambda \in \Sigma_{\text{red}}^+$; set

$$\mathfrak{s}_{\lambda} = \mathfrak{k}^{\lambda} \oplus \mathfrak{k}^{2\lambda}, \quad s_{\lambda} = \dim \mathfrak{s}_{\lambda} = m_{\lambda} + m_{2\lambda}$$

(with $m_{2\lambda} = 0$ if $2\lambda \notin \Sigma$). Notice that $s_{\lambda} = \dim(\mathfrak{p}^{\lambda} \oplus \mathfrak{p}^{2\lambda})$.

Lemma 2.6. One has $s_{\lambda} = \widetilde{s}_{\lambda}$ for all $\lambda \in \Sigma_{red}^+$.

Proof. It follows from Lemma 2.5 and (2) that $\mathfrak{m} \oplus \mathfrak{s}_{\lambda} \subset \widetilde{\mathfrak{m}} \oplus \widetilde{\mathfrak{s}}_{\lambda}$. Let $\phi : \widetilde{\mathfrak{m}}_{\lambda} \to \widetilde{\mathfrak{s}}_{\lambda}$ be the projection afforded by the decomposition $\widetilde{\mathfrak{m}}_{\lambda} = \widetilde{\mathfrak{m}} \oplus \widetilde{\mathfrak{s}}_{\lambda}$. By composing ϕ with the inclusions $\mathfrak{s}_{\lambda} \hookrightarrow \mathfrak{m}_{\lambda} \hookrightarrow \mathfrak{m}_{\lambda}$, we obtain a linear map $\varphi : \mathfrak{s}_{\lambda} \to \widetilde{\mathfrak{s}}_{\lambda}$. Suppose that $\varphi(x) = 0$, then $x \in \widetilde{\mathfrak{m}} \cap \mathfrak{s}_{\lambda} = \widetilde{\mathfrak{m}} \cap \mathfrak{s}_{\lambda} = \mathfrak{m} \cap \mathfrak{s}_{\lambda} = 0$. Thus φ is injective and, consequently, $s_{\lambda} \leq \widetilde{s}_{\lambda}$. Now, recall that

$$\mathfrak{p} = \widetilde{\mathfrak{p}} = \mathfrak{a} \oplus \left(\bigoplus_{\lambda \in \Sigma_{\mathrm{red}}^+} \mathfrak{p}^{\lambda} \oplus \mathfrak{p}^{2\lambda} \right) = \mathfrak{a} \oplus \left(\bigoplus_{\widetilde{\lambda} \in \widetilde{\Sigma}_{\mathrm{red}}^+} \widetilde{\mathfrak{p}}^{\widetilde{\lambda}} \oplus \widetilde{\mathfrak{p}}^{2\widetilde{\lambda}} \right).$$

Therefore $\sum_{\lambda \in \Sigma_{\text{red}}^+} s_{\lambda} = \sum_{\widetilde{\lambda} \in \widetilde{\Sigma}_{\text{red}}^+} \widetilde{s}_{\widetilde{\lambda}}$ and, since $s_{\lambda} \leq \widetilde{s}_{\widetilde{\lambda}}$, we obtain that $s_{\lambda} = \widetilde{s}_{\widetilde{\lambda}}$ for all $\lambda \in \Sigma_{\text{red}}^+$.

Remark. One has $\mathfrak{p}^{\lambda} \oplus \mathfrak{p}^{2\lambda} = \widetilde{\mathfrak{p}}^{\widetilde{\lambda}} \oplus \widetilde{\mathfrak{p}}^{2\widetilde{\lambda}}$ for all $\lambda \in \Sigma_{\mathrm{red}}^+$. This can be shown as follows. Let $v \in \mathfrak{a}'$, then $\mathrm{ad}(v)$ induces an isomorphism $\mathfrak{t}^{\alpha} \xrightarrow{\sim} \mathfrak{p}^{\alpha}$ for all $\alpha \in \Sigma^+$. Recall that if $X \in \mathfrak{k}$, $[v, X]^{\sim} = [v, X]$. Thus $\mathrm{ad}_{\widetilde{\mathfrak{g}}}(v)$ restricted to \mathfrak{m}_{λ} coincides with $\mathrm{ad}(v)$. It follows that

$$\mathfrak{p}^{\lambda} \oplus \mathfrak{p}^{2\lambda} = \mathrm{ad}_{\widetilde{\mathfrak{g}}}(v).\mathfrak{s}_{\lambda} \subset \mathrm{ad}_{\widetilde{\mathfrak{g}}}(v).(\widetilde{\mathfrak{m}} \oplus \widetilde{\mathfrak{s}}_{\widetilde{\lambda}}) = \widetilde{\mathfrak{p}}^{\widetilde{\lambda}} \oplus \widetilde{\mathfrak{p}}^{2\widetilde{\lambda}}.$$

Since $s_{\lambda} = \widetilde{s}_{\widetilde{\lambda}}$, we get that $\mathfrak{p}^{\lambda} \oplus \mathfrak{p}^{2\lambda} = \widetilde{\mathfrak{p}}^{\widetilde{\lambda}} \oplus \widetilde{\mathfrak{p}}^{2\widetilde{\lambda}}$.

We now set:

$$s_{1} = s_{\lambda} \text{ if } \lambda \in \Sigma_{\text{red}}^{+} \text{ is short,}$$

$$s_{2} = s_{\lambda} \text{ if } \lambda \in \Sigma_{\text{red}}^{+} \text{ is long,}$$

$$s_{2} = 0 \text{ if all } \lambda \in \Sigma^{+} \text{ are short.}$$
(3)

Hence, we can associate to the Lie algebra \mathfrak{g}_0 two ordered pairs (s_1, s_2) and (s_2, s_1) . It is shown in Appendix A that these pairs almost determine \mathfrak{g}_0 . A similar definition holds for the pair $\tilde{\mathfrak{g}}_0$ and gives the pairs $(\tilde{s}_1, \tilde{s}_2)$, $(\tilde{s}_2, \tilde{s}_1)$. We now compare the s_i and \tilde{s}_j .

Lemma 2.7. (1) Assume that Σ is simply laced. Then, $(s_1, s_2) = (\tilde{s}_1, \tilde{s}_2)$. (2) Assume that Σ has two root lengths. Then,

$$(s_1, s_2) = \begin{cases} (\widetilde{s}_1, \widetilde{s}_2) \text{ or } (\widetilde{s}_2, \widetilde{s}_1) & \text{if } (\Sigma_{\text{red}}, \widetilde{\Sigma}_{\text{red}}) = (\mathsf{F}_4, \mathsf{F}_4), \ (\mathsf{G}_2, \mathsf{G}_2), \ (\mathsf{B}_2, \mathsf{B}_2), \\ (\widetilde{s}_1, \widetilde{s}_2) & \text{if } (\Sigma_{\text{red}}, \widetilde{\Sigma}_{\text{red}}) = (\mathsf{B}_p, \mathsf{B}_p), \ (\mathsf{C}_p, \mathsf{C}_p), \ p \ge 3, \\ (\widetilde{s}_2, \widetilde{s}_1) & \text{if } (\Sigma_{\text{red}}, \widetilde{\Sigma}_{\text{red}}) = (\mathsf{B}_p, \mathsf{C}_p), \ (\mathsf{C}_p, \mathsf{B}_p), \ p \ge 3. \end{cases}$$

Proof. Observe first that $s_{\alpha} = s_{\beta}$ if α, β have the same length; then Lemma 2.6 yields $\tilde{s}_{\alpha} = \tilde{s}_{\beta} = \tilde{s}_1$ or \tilde{s}_2 , depending on the length of $\tilde{\alpha}$.

(1) is clear.

(2) Recall that if Σ_{red} has two root lengths, then the number of short roots is equal to the number of long roots if, and only if, Σ_{red} is of type $B_2 = C_2$, F_4 or G_2 . The assertion then follows from Lemma 2.6 and Proposition 2.3(4).

Theorem 2.8. Assume that $p \ge 2$. Then, $\mathfrak{g}_0 \cong \widetilde{\mathfrak{g}}_0$ and, therefore, $\mathfrak{k}_0 = \widetilde{\mathfrak{k}}_0$.

Proof. By Corollary 2.4 and Lemma 2.7, the hypothesis (h.j), j = 1, ..., 4, of Appendix A hold. Thus, by Theorem 2.9, if $\mathfrak{g}_0 \not\cong \tilde{\mathfrak{g}}_0$ we are in one of the following cases.

Case 1: Diagonal case with $\Sigma, \widetilde{\Sigma} \in \{\mathsf{B}_p, \mathsf{C}_p\}$. Then, $\dim \mathfrak{k}_0 = \dim \mathfrak{g}_0 = \dim \widetilde{\mathfrak{g}}_0 = \dim \widetilde{\mathfrak{k}}_0$ and $\mathfrak{k}_0 \subset \widetilde{\mathfrak{k}}_0$ force $\mathfrak{k}_0 = \widetilde{\mathfrak{k}}_0$ and, consequently, $\mathfrak{g}_0 \cong \widetilde{\mathfrak{g}}_0$.

Case 2: \mathfrak{g}_0 and $\tilde{\mathfrak{g}}_0$ are of type $\mathsf{Bl}(p, p+1)$ or $\mathsf{Cl}(p)$. This implies that \mathfrak{k}_0 and $\tilde{\mathfrak{k}}_0$ are isomorphic to $\mathfrak{so}(p) \times \mathfrak{so}(p+1)$ or $\mathfrak{u}(p)$, which are both of dimension p^2 . Since $\mathfrak{k}_0 \subset \tilde{\mathfrak{k}}_0$, this implies $\mathfrak{k}_0 = \tilde{\mathfrak{k}}_0$. But $\mathfrak{so}(p) \times \mathfrak{so}(p+1) \cong \mathfrak{u}(p)$ only happens when p = 2 (see [4, p. 519]), in which case $\mathfrak{g}_0 \cong \tilde{\mathfrak{g}}_0 \cong \mathfrak{so}(2, 3)$.

Proof of the Main Theorem. As noticed in Remark 1.2, we may assume that $(\mathfrak{g}, \mathfrak{k})$ is irreducible. Now, the assertion follows from Lemma 1.3 if $(\mathfrak{g}, \mathfrak{k})$ has rank one and from Theorem 2.8 if this rank is ≥ 2 .

A. Appendix

Let \mathfrak{g}_0 be a real semisimple Lie algebra. We adopt the notation of §§1 and 2. In particular, we fix a Cartan decomposition $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{p}_0$ and a Cartan subspace $\mathfrak{a}_0 \subset \mathfrak{p}_0$ of dimension p. Let $\tilde{\mathfrak{g}}_0$ be another semisimple Lie algebra with Cartan decomposition $\tilde{\mathfrak{g}}_0 = \tilde{\mathfrak{k}}_0 \oplus \tilde{\mathfrak{p}}_0$. Any object x defined relatively to \mathfrak{g}_0 has an analogue for $\tilde{\mathfrak{g}}_0$ and it will be denoted by \tilde{x} .

We will assume that the pairs $(\mathfrak{g}_0, \mathfrak{k}_0)$ and $(\tilde{\mathfrak{g}}_0, \tilde{\mathfrak{k}}_0)$ are both irreducible and that the following hypothesis hold.

(h.1) $p \ge 2$.

(h.2) $\Sigma_{\text{red}} \in \{\mathsf{B}_p, \mathsf{C}_p\}$ if, and only if, $\widetilde{\Sigma}_{\text{red}} \in \{\mathsf{B}_p, \mathsf{C}_p\}$.

(h.3) $\Sigma_{\text{red}} \cong \widetilde{\Sigma}_{\text{red}}$ when Σ_{red} is not of type B_p or C_p .

(h.4) The pairs (s_1, s_2) , $(\tilde{s}_1, \tilde{s}_2)$ being defined as in (3), one has

$$(s_1, s_2) = \begin{cases} (\widetilde{s}_1, \widetilde{s}_2) & \text{if } \Sigma \text{ is simply laced,} \\ (\widetilde{s}_1, \widetilde{s}_2) \text{ or } (\widetilde{s}_2, \widetilde{s}_1) & \text{if } (\Sigma_{\text{red}}, \widetilde{\Sigma}_{\text{red}}) = (\mathsf{F}_4, \mathsf{F}_4), \, (\mathsf{G}_2, \mathsf{G}_2), \, (\mathsf{B}_2, \mathsf{B}_2), \\ (\widetilde{s}_1, \widetilde{s}_2) & \text{if } (\Sigma_{\text{red}}, \widetilde{\Sigma}_{\text{red}}) = (\mathsf{B}_p, \mathsf{B}_p), \, (\mathsf{C}_p, \mathsf{C}_p), \, p \ge 3, \\ (\widetilde{s}_2, \widetilde{s}_1) & \text{if } (\Sigma_{\text{red}}, \widetilde{\Sigma}_{\text{red}}) = (\mathsf{B}_p, \mathsf{C}_p), \, (\mathsf{C}_p, \mathsf{B}_p), \, p \ge 3. \end{cases}$$

Observe that the hypothesis are symmetric in \mathfrak{g}_0 and $\widetilde{\mathfrak{g}}_0$.

The notation for the classification of irreducible symmetric pairs, i.e. of semisimple real Lie algebras, will be (almost) as in [4, X.6]; in particular, we adopt the notation of [4, pp. 532-534]. For instance, if $\mathfrak{g}_0 = \mathfrak{so}(p,q)$, $\mathfrak{k}_0 = \mathfrak{so}(p) \times \mathfrak{so}(q)$, $p \leq q$, p + q even, we say that \mathfrak{g}_0 is of type $\mathsf{DI}(p,q)$.

Suppose that $\mathfrak{g}_0 = \mathfrak{g}_1^{\mathbb{R}}$ for some complex simple Lie algebra \mathfrak{g}_1 . Define an involution ϑ on $\mathfrak{g} = \mathfrak{g}_0 \otimes_{\mathbb{R}} \mathbb{C} \cong \mathfrak{g}_1 \times \mathfrak{g}_1$ by $\vartheta(x, y) = (y, x)$. Then the symmetric pair $(\mathfrak{g}, \mathfrak{k})$ is isomorphic to $(\mathfrak{g}_1 \times \mathfrak{g}_1, \mathfrak{g}_1)$. This case will be called the *diagonal case* and $(\mathfrak{g}, \vartheta)$ is said to be of *diagonal type*.

Theorem 2.9. Up to symmetry between \mathfrak{g}_0 and $\tilde{\mathfrak{g}}_0$, the following (exclusive) possibilities hold.

(i) $\mathfrak{g}_0 \cong \widetilde{\mathfrak{g}}_0$.

(ii) $(\mathfrak{g}, \vartheta)$ and $(\widetilde{\mathfrak{g}}, \widetilde{\vartheta})$ are of diagonal type, $\Sigma \cong \mathsf{B}_p$, $\widetilde{\Sigma} \cong \mathsf{C}_p$.

(iii) \mathfrak{g}_0 is of type $\mathsf{Bl}(p, p+1)$, \mathfrak{g}_0 is of type $\mathsf{Cl}(p)$, $p \ge 3$ (thus $\mathfrak{k}_0 \cong \mathfrak{so}(p) \times \mathfrak{so}(p+1)$, $\mathfrak{k}_0 \cong \mathfrak{u}(p)$).

Proof. The proof is a case by case analysis using [4, X, Table VI]: One computes the pairs (s_1, s_2) for each type of irreducible symmetric pair $(\mathfrak{g}_0, \mathfrak{k}_0)$ and, then, one notes that the hypothesis (h.i), $i = 1, \ldots, 4$, yield the desired result. We will simply make a few remarks in order to explain the method and the appearance of cases (i), (ii), (iii).

If $(\mathfrak{g}, \vartheta)$ is of diagonal type with $\mathfrak{g} \cong \mathfrak{g}_1 \times \mathfrak{g}_1$, \mathfrak{g}_1 complex simple of type T_p ($\mathsf{T} = \mathsf{A}, \mathsf{B}, \mathsf{C}, \mathsf{D}, \mathsf{E}, \mathsf{F}, \mathsf{G}$), then $\Sigma \cong \mathsf{T}_p$ and $(s_1, s_2) = (2, 0)$ or (2, 2). Then, the (h.i)'s show that only cases (i) or (ii) may occur.

If \mathfrak{g}_0 of type $\mathsf{AIII}(p,p)$, then $(s_1,s_2) = (2,1)$, $\Sigma \cong \mathsf{C}_p$. The only possibility for $\widetilde{\mathfrak{g}}_0$ and $(\widetilde{s}_1, \widetilde{s}_2) = (s_1, s_2)$ or (s_2, s_1) occurs when $\widetilde{\mathfrak{g}}_0$ is of type $\mathsf{DI}(p, p+2)$. In this case $\widetilde{\Sigma} \cong \mathsf{B}_p$. When p = 2 we find the isomorphism $\mathsf{DI}(2, 2+2) \cong \mathsf{AIII}(2,2)$, see [4, p. 519]. When $p \ge 3$, the hypothesis (h.4) forces $(s_1, s_2) = (2, 1) =$ $(\widetilde{s}_2, \widetilde{s}_1) = (1, 2)$, hence a contradiction.

If \mathfrak{g}_0 is of type $\mathsf{BI}(p, 2\ell + 1 - p)$, then $(s_1, s_2) = (2\ell - 2p + 1, 1)$, $\Sigma \cong \mathsf{B}_p$. From $s_2 = 1$ and s_1 odd, it follows that the only possibility for $\tilde{\mathfrak{g}}_0$ may occur in type $\mathsf{CI}(p)$, where $(\tilde{s}_2, \tilde{s}_1) = (1, 1)$, $\Sigma \cong \mathsf{C}_p$. But this forces $2\ell - 2p + 1 = 1$, i.e. $\ell = p$. Recalling that $\mathsf{BI}(2, 3) \cong \mathsf{CI}(2)$, see [4, p. 519], this yields case (iii).

References

- [1] Dadok, J., Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc. **288** (1985), 125–137.
- [2] Dadok, J., and V. Kac, *Polar representations*, J. Algebra **92** (1985), 504– 524.
- [3] Dixmier, J., Champs de vecteurs adjoints sur les groupes et algèbres de Lie semi-simples, J. Reine Angew. Math. **309** (1979), 183–190.
- [4] Helgason, S., "Differential Geometry, Lie Groups, and Symmetric Spaces," Academic Press, 1978.
- [5] —, "Groups and Geometric Analysis," Academic Press, 1984.
- [6] Kostant, B., On invariant skew-tensors, Proc. Nat. Acad. of Sci. 42 (1956), 148–151.
- [7] Kostant, B., and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. **93** (1971), 753–809.
- [8] Kowata, A., Spherical hyperfunctions on the tangent space of symmetric spaces, Hiroshima Math. J. **21** (1991), 401–418.
- [9] Levasseur, T., and J. T. Stafford, Invariant differential operators on the tangent space of some symmetric spaces, Preprint, 1997.
- [10] Ochiai, H., Invariant functions on the tangent space of a rank one semisimple symmetric space, J. Fac. Sci. Univ. Tokyo **39** (1992), 17–31.
- [11] Onischik, A. L., and E. B. Vinberg, "Lie Groups and Algebraic Groups," Springer Verlag, Berlin etc., 1990.
- Procesi, C., and G. Schwarz, *Inequalities defining orbit spaces*, Invent. Math. 81 (1985), 539–554.
- [13] Schwarz, G. W., *Lifting differential operators from orbit spaces*, Ann. Scient. Éc. Norm. Sup., **28** (1995), 253–306.

Département de Mathématiques Université de Poitiers F-86022 Poitiers, France levasseu@mathlabo.univ-poitiers.fr Département de Mathématiques Université de Poitiers F-86022 Poitiers, France rosane@mathlabo.univ-poitiers.fr

Received December 17, 1997