Square-integrablity of tensor products

Matthias Mayer
Communicated by A. Valette

Abstract

This paper is concerned with C_{0}-representations of locally compact groups. The focus is on the relationship between the C_{0} - property and square-integrability, the latter meaning that the representation is quasi-equivalent to a subrepresentation of the regular one. We show that for certain real algebraic groups every $C_{0}-$ representation has a square-integrable tensor power and discuss some classes of groups enjoying this property. We point out to which extent this result supports a conjecture of Figà-Talamance and Piccardello concerning the radical of the Fourier algebra in the Fourier-Stietjes algebra. Finally, we give a simple criterion for a C_{0} - representation to be square-integrable.

1. Introduction

In this paper we are concerned with asymptotic properties of (strongly continuous) unitary representations $\left(\pi, \mathcal{H}_{\pi}\right)$ of a locally compact group G and with their relations to square-integrability. By the latter we mean that there is a dense subspace D of the representation space \mathcal{H}_{π}, such that for all $\xi, \eta \in D$ the matrix coefficient

$$
\varphi_{\xi_{\eta}}: G \rightarrow \mathbb{C}, \quad g \mapsto\langle\pi(g) \xi, \eta\rangle
$$

is in $\mathrm{L}^{2}(G)$. Square-integrable representations have been extensively studied, and it follows from the results of Rieffel [40], Duflo-Moore [15] and others that a representation $\left(\pi, \mathcal{H}_{\pi}\right)$ is square-integrable if and only if it is quasi-equivalent in the sense of ([14],5.3.1) to a subrepresentation of the regular representation $\left(\lambda_{G}, \mathrm{~L}^{2}(G)\right)$. We write $\pi \stackrel{\mathrm{q}}{\leq} \lambda_{G}$. Beyond the classical theory, square-integrable representations recently gained interest, since they
are the basic tool for the construction of continuous wavelet transforms from cyclic representations, see e.g., $[29,31,25]$.

Thus it is highly desirable to be able to construct square-integrable representations or to decide when a given representation $\left(\pi, \mathcal{H}_{\pi}\right)$ is squareintegrable and we present results concerning both questions (see Theorems 1.1 and 1.2).

Square-integrable representations are C_{0}-representations, which means that all matrix coefficients of π vanish at infinity, but not vice versa. The main theorem of this paper shows that, for certain real algebraic groups, every C_{0}-representation has a square integrable tensor power.

To be more precise, recall that a connected real algebraic group G has a unique largest unipotent radical N, and decomposes as

$$
G=N \rtimes_{\varphi} H
$$

where H is a reductive Levi-complement of $N . N$ and H are Zariskiclosed, N is simply connected with respect to the topology induced by $\mathrm{GL}(n, \mathbb{C})$ and H acts algebraically and reductively on the Lie algebra \mathfrak{n} by the derived representation. The centralizer in G of a subset $S \in G$ is denoted by $\mathcal{Z}(S, G)$.

Theorem 1.1. Let G be a connected real algebraic group and keep the above notation.
Suppose that
(i) $\mathcal{Z}(H, G) \cap N=\{e\}$,
(ii) $\mathcal{Z}(\mathcal{Z}, G) \cap H$ is compact, where \mathcal{Z} is the center of N.

Then there exists a finite $k_{0} \in \mathbb{N}$ such that for all $k \geq k_{0}$ and for all representations $\left(\pi, \mathcal{H}_{\pi}\right)$ whose subrepresentations all have compact kernel

$$
\pi^{\otimes k} \stackrel{\mathrm{q}}{\leq} \lambda_{G}
$$

Our second theorem gives a criterion for square-integrability of $C_{0}{ }^{-}$ representations. Before formulating the theorem, let us recall that any irreducible representation $\left(\pi, \mathcal{H}_{\pi}\right)$ of a locally compact group G which contains a regularly embedded normal subgroup N is of the following form

$$
\left(\pi, \mathcal{H}_{\pi}\right)=\operatorname{ind}_{G_{\tilde{\chi}}}^{G} \chi
$$

Here, $\tilde{\chi}$ is an irreducible representation of $N, G_{\tilde{\chi}}$ is the group of elements in G which preserve $\tilde{\chi}$ under conjugation and χ is an irreducible representation of $G_{\tilde{\chi}}$ such that $\left.\chi\right|_{N}$ is a multiple of $\tilde{\chi}$.

Theorem 1.2. Let N be a regularly embedded simply connected nilpotent normal subgroup of a Lie group G. Let $\left(\pi, \mathcal{H}_{\pi}\right)$ be a unitary representation of G and let $\pi=\int_{\hat{G}}^{\oplus} m(\varrho) \varrho d \mu(\varrho)$ be a decomposition in irreducibles. Then $\pi \stackrel{\mathrm{q}}{\leq} \lambda_{G}$ provided that
(i) for μ-almost all $\varrho=\operatorname{ind}_{G_{\tilde{\chi}}}^{G} \chi$, the fixed group $G_{\tilde{\chi}}$ of the character $\tilde{\chi}$, which $\left.\chi\right|_{N}$ is a multiple of, is a compact extension of N;
(ii) for μ-almost all ϱ the G-orbit of the Kirillov-orbit associated to $\tilde{\chi}$ is open in \mathfrak{n}^{*}.

Let us discuss these theorems. In Theorem 1.1, assumption (i) is a bit stronger than the requirement that N does not contain nontrivial subgroups which are central in G (such a group would be non-compact). As to the second requirement, identify G with the outer semidirect product $N \rtimes_{\varphi} H$ and observe that we may split off the kernel of φ from H, yielding

$$
G=(N \rtimes H / \operatorname{ker} \varphi) \times \operatorname{ker} \varphi,
$$

(at least modulo finite subgroups). See ([27],p.87) for more details. Since the property, that any representation as in the theorem has a square-integrable tensor power, carries over to direct products and finite extensions, we may consider both factors separately. Then $\operatorname{ker} \varphi$ will enjoy this property if its center is compact and it is a Kazhdan group, by well-known results of Cowling [11] and Moore [38]. Our result 1.1 applies to the first factor if the quotient $(\operatorname{ker}(\varphi \mid \mathcal{Z})) /(\operatorname{ker} \varphi)$ is compact. If this requirement is not satisfied one may try to embed $H / \operatorname{ker} \varphi$ in an appropriate $\operatorname{Sp}(n, \mathbb{R})$ and to use a result of Howe and Moore [27]. We discuss some examples in Section 3.

In any case, we may apply Theorem 1.1 to the groups $G:=V \rtimes H$, where V is a vector space and H the group of diagonal matrices or a semisimple Kazhdan group acting on V without nontrivial fixed points. We will give more elaborate examples in Section 2.

Several examples of groups are known such that, for every $C_{0}-$ representation $\left(\pi, \mathcal{H}_{\pi}\right)$, a sufficiently large tensor power is square-integrable: This follows easily for semisimple Kazhdan groups from the results of Cowling [11] and Moore [38], for generalized motion groups from those of Liukonnen and Mislove $[33,34]$ and for $G:=\mathbb{R}^{2} \rtimes \operatorname{SL}(2, \mathbb{R})$ from [37]. By way of contrast, on groups with non-compact center and on non-compact nilpotent groups there exist C_{0}-representations whose tensor powers are far from being square-integrable. This was shown by Figá-Talamanca and Picardello generalizing methods of Varopoulos [23].

Observe that we do not require the representation π in Theorem 1.1 to be a C_{0}-representation, this is a part of the result. The fact that representations whose subrepresentations all have compact kernel are C_{0} is of considerable interest in many areas, e.g., in ergodic theory ([7], [8]). This C_{0}-property is known for semisimple groups with finite center by the HoweMoore theorem [27] and for connected so called totally minimal groups, treated below [35, 36].

The proof of Theorem 1.1 is based on the one given by Howe and Moore for the fact that irreducible representations of algebraic groups have a tensor power which is square-integrable modulo the projective kernel ([27],6.1). A somewhat different approach would use the methods in [33, 34], after getting rid of the compactness assumption made there.

Theorem 1.1 also bears significance to a conjecture by Figá-Talamanca and Picardello concerning Fourier-Stieltjes algebras. The Fourier-Stieltjes algebra $\mathrm{B}(G)$ is one of the most fruitful constructions of a dual object for a general locally compact group G, due to P. Eymard [16]. $\mathrm{B}(G)$ is the space of all matrix coefficients of strongly continuous unitary representations of G. Using sums, tensor products and contragredient representations, it is easily seen that $\mathrm{B}(G)$ carries the pointwise structure of an involutive commutative algebra. In addition, $\mathrm{B}(G)$ may be identified with the dual space of the group C^{*}-algebra $\mathrm{C}^{*}(G)$ via

$$
\varphi_{\xi \eta} \mapsto\left(\mathrm{C}^{*}(G) \ni T \mapsto\langle\pi(T) \xi, \eta\rangle\right),
$$

where $\left(\pi, \mathcal{H}_{\pi}\right)$ denotes also the lifting to $\mathrm{C}^{*}(G)$ and ξ, η are vectors in \mathcal{H}_{π}. The dual space norm makes $\mathrm{B}(G)$ an involutive (semisimple) Banach algebra which the group G acts upon by left and right translations. The matrix coefficients of the regular representation form a closed ideal, the Fourier algebra $\mathrm{A}(G)$. It coincides with the closure of all coefficient functions with compact support in $\mathrm{B}(G)$. For abelian G, Bochner's theorem identifies $\mathrm{B}(G)$ with the measure algebra $\mathrm{M}(\hat{G})$ on \hat{G} and $\mathrm{A}(G)$ with $\mathrm{L}^{1}(\hat{G})$. For all these facts, see $[16,17]$.

More generally, denote by A_{π} the closure in $\mathrm{B}(G)$ of all coefficients of a unitary representation $\left(\pi, \mathcal{H}_{\pi}\right)$. By Arsac's theory ([1],3.1.II), A_{π} characterizes $\left(\pi, \mathcal{H}_{\pi}\right)$ up to quasi-equivalence. If

$$
\mathrm{B}_{0}(G):=\{\psi \in \mathrm{B}(G) \mid \psi \text { vanishes at infinity }\},
$$

the above question on the square-integrability of tensor products is related to the question on the relationship between $\mathrm{B}_{0}(G)$ and the radical $\mathrm{A}_{r}(G)$ of the Fourier algebra, that is

$$
\mathrm{A}_{r}(G)=\left\{\psi \in \mathrm{B}(G) \mid \exists k \in \mathbb{N}: \psi^{k} \in \mathrm{~A}(G)\right\}
$$

Figà-Talamanca and Picardello [23] showed that $\mathrm{A}_{r}(G)$ is not norm dense in $\mathrm{B}_{0}(G)$ if the center of G is not compact or if G is a non-compact nilpotent group. Their conjecture reads as follows

Conjecture 1.3. Let G be an analytic group with compact center and without non-compact nilpotent direct factors. Then $\mathrm{A}_{r}(G)$ is dense in $\mathrm{B}_{0}(G)$.
Observe that $\mathrm{A}_{r}(G)$ might be a proper dense subspace of $\mathrm{B}_{0}(G)$. Consider for instance $G:=\mathrm{SL}(2, \mathbb{R})$ and

$$
\pi:=\int_{[0,1]}^{\oplus} \kappa_{s} d s
$$

where $\kappa_{s}, 0<s<1$, denotes the complementary series representations (see e.g., [24],p. 246) and $d s$ is a finite measure equivalent to the Lebesguemeasure. Then $\mathrm{A}_{\pi} \subseteq \overline{\mathrm{A}_{r}(G)}$, but $\mathrm{A}_{\pi} \nsubseteq \mathrm{A}_{r}(G)$.
Theorem 1.1 might be seen as a step towards proving Conjecture 1.3. Another class of groups satisfying this conjecture are linear reductive groups (with compact center), as follows immediately from the results of Cowling [11, 12]. Arbitrary compact central extensions of reductive Kazhdan groups are discussed in Chapter 3. Furthermore, in this chapter, we construct more groups supporting Conjecture 1.3, as $G:=H_{n} \rtimes \operatorname{Sp}(n, \mathbb{R})$, where H_{n} is the $(2 n+1)$-dimensional Heisenberg group with compact center, and related examples.

The proof of Theorem 1.2 is more or less a byproduct of the proof of Theorem 1.1. Let us discuss some appplications. Theorem 1.2 shows that all C_{0}-representations of the affine group of the line are square-integrable. Observing that the proof allows an immediate generalization to arbitrary local fields, we see that the same is true for the Fell group $\mathbb{Q}_{p} \rtimes \mathbb{Z}_{p}$. These two examples are well-known ([30],[41]). To give a new example, consider the following semidirect product: Let \mathbb{R}^{+}act on the $(2 n+1)$-dimensional Heisenberg group (identified with its Lie algebra)

$$
\mathfrak{h}_{n}:=\left\{[(x, y), z]: \left.=\left(\begin{array}{ccc}
0 & x & z \\
0 & 0 & y \\
0 & 0 & 0
\end{array}\right) \right\rvert\, x, y \in \mathbb{R}^{n}, z \in \mathbb{R}\right\}
$$

via

$$
t[(x, y), z]:=\left[(t x, t y), t^{2} z\right]
$$

The resulting group $G:=\mathfrak{h}_{n} \rtimes \mathbb{R}^{+}$acts on \mathfrak{h}_{n}^{*} via the coadjoint representation. Defining $\left(Z^{*}, X_{1}^{*}, \ldots, X_{n}^{*}, Y_{1}^{*}, \ldots, Y_{n}^{*}\right)$ to be the dual basis on \mathfrak{h}_{n}^{*} w.r.t. the canonical basis, we see that the C_{0}-representations are induced by representations of \mathfrak{h}_{n} corresponding to the linear forms $\pm Z^{*}$. Observe that \mathbb{R}^{+} acts freely and without nontrivial fixed points on \mathfrak{h}_{n}. Thus Theorem (1.2) implies that on this group all C_{0}-representations are square-integrable.

The question when C_{0}-representations are square-integrable, has been widely discussed. One of the most important results is that the regular representation splits into irreducibles if every $C_{0}-$ representation is squareintegrable ([22], [3]), but this is only a necessary condition, at least in the nonunimodular case ([4],Ex.4). Baggett [2] showed by means of the Fell topology on the dual that the regular representation of a non-compact analytic unimodular group does not split.

From now on we will assume that G is a second countable and connected locally compact group and that all occuring Hilbert spaces are separable. A representation $\left(\pi, \mathcal{H}_{\pi}\right)$ is a strongly continuous unitary representation on a Hilbert space \mathcal{H}_{π}.

Acknowledgement I want to thank Prof. B. Bekka for many valuable ideas, fruitful discussions and a careful reading of the first version of the paper, H. Führ for a lot of critical and helpful remarks and the German Research Foundation (DFG) for supporting my work.

2. Square-Integrability of Tensor Products on Linear Groups

a. The Proof of Theorem 1.1

The group $G=N \rtimes_{\varphi} H$ is by our assumptions a regular semidirect product and we may apply Mackey's theory to obtain the dual: Every $\varrho \in \hat{G}$ is of the form

$$
\begin{equation*}
\varrho=\operatorname{ind}_{N H_{\chi}}^{G} \chi^{\prime} \otimes \sigma \tag{1}
\end{equation*}
$$

where

- $\chi \in \hat{N}$,
- $H_{\chi}:=\left\{h \in H \mid h \chi:=\chi \circ \varphi(h)^{-1} \simeq \chi\right\}$ is the fixed group of χ in H,
- χ^{\prime} and σ are multiplier representations in the following sense:

There is a Borel function $\omega: H_{\chi} \times H_{\chi} \rightarrow\{z \in \mathbb{C}| | z \mid=1\}$, constant on the $N \times N$-cosets and satisfying

$$
\omega(e, x)=\omega(x, e)=1, \quad \omega(x y, z) \omega(x, y)=\omega(x, y z) \omega(y, z)
$$

(e denoting the group identity), such that χ^{\prime} is an extension of χ to $N H_{\chi}$ with $\chi^{\prime}(x y)=\overline{\omega(x, y)} \chi^{\prime}(x) \chi^{\prime}(y)$ and $\sigma(n)=1, \forall n \in$ $N, \sigma(x, y)=\omega(x, y) \sigma(x) \sigma(y)$.

We denote the Mackey surjection $\hat{G} \rightarrow \hat{N} / G, \varrho \mapsto G \cdot \chi$ by θ and recall that θ is continuous with respect to the Fell topology ([19],Lemma 3).

To fix notation, we shortly recall the Kirillov picture (for a complete discussion, see e.g., [10]): Let \mathfrak{n}^{*} be the dual of the Lie algebra \mathfrak{n} of N and
denote by Ad^{*} the coadjoint action of N on $\mathfrak{n}^{*}: \operatorname{Ad}^{*}(n) f:=f \circ \operatorname{Ad}(n)^{-1}$ for all $n \in N, f \in \mathfrak{n}^{*}$. There is a homeomorphism, the Kirillov-map,

$$
\kappa: \mathfrak{n}^{*} / N \rightarrow \hat{N}
$$

realized in the following way: Let $f \in \mathfrak{n}^{*}$ and \mathfrak{p} be a real polarization of f. This means that \mathfrak{p} is a maximal subalgebra which is subordinate to f, that is $f([\mathfrak{p}, \mathfrak{p}])=0$. It should be noted that every subalgebra subordinate to f is contained in a real polarization. Now form the analytic subgroup $P:=\exp \mathfrak{p}$ and obtain

$$
\begin{equation*}
\chi:=\operatorname{ind}_{P}^{N} e^{i f(\cdot)} \tag{2}
\end{equation*}
$$

Then χ depends only on the coadjoint orbit of f and (2) defines the Kirillov homeomorphism. Since the coadjoint orbits are closed, there exists a Borel section $F: \hat{N} \rightarrow \mathfrak{n}^{*}$ ([42],A.7).

Going back to our group $G=N \rtimes H$, we may identify \mathfrak{n} with an ideal of the Lie algebra $\mathfrak{g}=\mathfrak{n} \rtimes \mathfrak{h}$. Hence G acts upon \mathfrak{n}^{*} via

$$
\operatorname{Ad}^{*}(n, h) f:=f \circ \operatorname{Ad}(n, h)^{-1}
$$

Thus the fixed group H_{χ} consists of the elements $h \in H$ satisfying

$$
\operatorname{Ad}^{*}(1, h) F(\chi) \in N \cdot F(\chi)
$$

Furthermore, since $\mathrm{Ad}^{*} g \mathrm{Ad}^{*} N f=\mathrm{Ad}^{*} N \mathrm{Ad}^{*} g f$, we have $\bar{\chi} \in G \chi \Longleftrightarrow$ $F(\bar{\chi}) \in G F(\chi)$. Now let $G(F(\chi)):=\left\{g \in G \mid \operatorname{Ad}^{*} g F(\chi)=F(\chi)\right\}$ be the stabilizer of $F(\chi)$ in G. This is an algebraic group and we may choose a Levi-complement H_{2} of $G(F(\chi))$. As explained in ([27],p.87), we may conjugate $F(\chi)$ with a suitable $n \in N$ to obtain $H_{2}=H_{\chi}$. Thus we find an $F^{\prime} \in N \cdot F(\chi)$, which is stabilized by H_{χ}. In particular, $N \cdot H_{\chi}$ is algebraic.
Richardson's theorem ([32],p.132) together with the fact that the Zariskitopology is noetherian implies that there are closed subgroups $H_{1}, H_{2}, \ldots, H_{s}$ of H and a finite measurable invariant partition $\mathfrak{n}^{*}=D_{1} \cup D_{2} \cup \ldots \cup D_{s}$ defined by

$$
F \in D_{j} \Longleftrightarrow\{h \in H \mid h F \in N \cdot F\} \text { is conjugate to } H_{j}, \quad 1 \leq j \leq s
$$

Since G acts smoothly upon \hat{N}, we find by the same argument as above a Borel section $L: \hat{N} / G \rightarrow \hat{N}$ and the composition map

$$
R: \hat{G} \rightarrow \mathfrak{n}^{*}, \varrho \mapsto F \circ L \circ \theta(\varrho)
$$

is Borel.

Hence the mapping R induces a finite measurable partition of \hat{G} in

$$
\hat{G}_{j}:=R^{-1}\left(D_{j}\right), 1 \leq j \leq s
$$

We will keep these notations all through this paper.
The proof of Theorem 1.1 runs roughly as follows:
Starting from a direct integral decomposition of a representation $\left(\pi, \mathcal{H}_{\pi}\right)$ as in the theorem, we obtain, by somewhat sophisticated calculations involving Mackey's tensor product theorem, the fact that π has no subrepresentations with non-compact kernel and requirement (ii), that

$$
\pi^{\otimes k} \stackrel{q}{\leq} \int_{\hat{G}^{k}}^{\oplus} \operatorname{ind}_{N}^{G} \int_{\mathfrak{n}^{*}}^{\oplus} \kappa(f) d \mu_{\varrho_{1}, \ldots, \varrho_{k}}(f) d \mu^{\otimes k}\left(\varrho_{1}, \ldots, \varrho_{k}\right),
$$

where k is a natural number independent of π, μ is the spectral measure of π and $\mu_{\varrho_{1}, \ldots, \varrho_{k}}$ is the measure on the dual \mathfrak{n}^{*} induced by the smooth mapping

$$
G^{k} \rightarrow \mathfrak{n}^{*},\left(g_{1}, g_{2}, \ldots, g_{k}\right) \mapsto \sum_{j=1}^{k} g_{j} R\left(\varrho_{j}\right) .
$$

The reductiveness of the H-action, requirement (i) and again the fact that π has no subrepresentations with non-compact kernel yield that this mapping has full rank a.e. $\mu^{\otimes k}$, whence $\mu_{\rho_{1}, \ldots, \varrho_{k}}$ is absolutely continuous to the Lebesgue-measure on \mathfrak{n}^{*} for $\mu^{\otimes k}$ - almost all $\varrho_{1}, \ldots, \varrho_{k} \in \hat{G}^{k}$. The theorem then follows from induction in stages.
Now let $\left(\pi, \mathcal{H}_{\pi}\right)$ be a representation such that all its subrepresentations have at most compact kernel. Since G is type I, π is quasi-equivalent to a multiplicity-free representation ([14],5.4.1). Hence we may assume that

$$
\begin{equation*}
\pi=\int_{\hat{G}}^{\oplus} \varrho d \mu(\varrho) \tag{3}
\end{equation*}
$$

to be its decomposition in irreducibles. Thus $\pi=\bigoplus_{j=1}^{s} \pi_{j}$, where each π_{j} is supported on $\hat{G}_{j}, 1 \leq j \leq s$. If we find a $k \in \mathbb{N}$ such that $\pi_{j}^{\otimes k} \stackrel{q}{\leq} \lambda_{G}$ for every $1 \leq j \leq s$ then $k_{0}:=k s$ will do the task for arbitrary representations as in the theorem (recall that the tensor product of a representation which is quasi-contained in the regular representation with any representation of G is quasi-contained in the regular representation, too). Thus we may restrict ourselves to the case, where μ is supported on a single $\hat{G}_{j_{0}}, 1 \leq j_{0} \leq s$.

The first lemma repeats an argument of Howe and Moore [27] which we include for completeness:

Lemma 2.1. There is an $r_{0} \in \mathbb{N}, r_{0} \leq \operatorname{dim} H_{j_{0}}$, such that there is a Zariski-open subset $\mathcal{D} \subseteq H_{j_{0}}^{r_{0}}$ with: For all $r \geq r_{0},\left(h_{1}, h_{2}, \ldots, h_{r}\right) \in$ $\mathcal{D} \times H^{r-r_{0}}$

$$
\left(h_{1}^{-1} H_{j_{0}} h_{1} \cap h_{2}^{-1} H_{j_{0}} h_{2} \cap \ldots \cap h_{r}^{-1} H_{j_{0}} h_{r}\right)_{0}=\left(H_{j_{0}}^{\mathrm{nor}}\right)_{0} .
$$

Here, U_{0} denotes the identity component of a subgroup U and $H_{j_{0}}^{\text {nor }}$ the intersection of all conjugates of $H_{j_{0}}$, which is an algebraic normal subgroup.

Proof. Recall that the dimension function

$$
H^{r} \ni\left(h_{1}, h_{2}, \ldots, h_{r}\right) \mapsto \operatorname{dim}\left(h_{1}^{-1} H_{j_{0}} h_{1} \cap h_{2}^{-1} H_{j_{0}} h_{2} \cap \ldots \cap h_{r}^{-1} H_{j_{0}} h_{r}\right)
$$

is upper semicontinuous with respect to the Zariski-topology on H^{r}. Thus the minimum
$d(r):=\min \left\{\operatorname{dim}\left(h_{1}^{-1} H_{j_{0}} h_{1} \cap h_{2}^{-1} H_{j_{0}} h_{2} \cap \ldots \cap h_{r}^{-1} H_{j_{0}} h_{r}\right) \mid h_{1}, h_{2}, \ldots, h_{r} \in H\right\}$
is assumed on a Zariski-open subset $\mathcal{D}_{r} \subseteq H^{r}$. Clearly, after at most $\operatorname{dim} H_{j_{0}}$ steps, we have $d(r+1)=d(r)$. This implies that the identity component of $h_{1}^{-1} H_{j_{0}} h_{1} \cap h_{2}^{-1} H_{j_{0}} h_{2} \cap \ldots \cap h_{r}^{-1} H_{j_{0}} h_{r}$ is normal for all $h_{1}, h_{2}, \ldots, h_{r} \in \mathcal{D}_{r}$. Hence define $r_{0}:=r, \mathcal{D}:=\mathcal{D}_{r}$.

For the remainder of this section, recall the measurable mappings

$$
\theta: \hat{G} \rightarrow \hat{N} / G, \quad L: \hat{N} / G \rightarrow \hat{N}, \quad R: \hat{G} \rightarrow \mathfrak{n}^{*}
$$

from the beginning.
Lemma 2.2. Keep the above notations. If $\tilde{S} \subseteq \hat{G}$ is μ-measurable and satisfies

$$
W:=\operatorname{Span}(G \cdot R(\varrho) \mid \varrho \in \tilde{S}) \not \mathfrak{n}^{*}
$$

then $\mu(\tilde{S})=0$.
Proof. Let \tilde{S} be as in the lemma and define

$$
M_{W}:=\{x \in \mathfrak{n} \mid x \in \operatorname{ker} g R(\varrho) \forall g \in G, \varrho \in \tilde{S}\}
$$

By assumption, M_{W} is a closed non-compact normal subgroup of N and of G (after identifying N with \mathfrak{n}), subordinate to $g R(\varrho)$ for all $g \in G, \varrho \in \tilde{S}$. For each $\varrho \in \tilde{S}$, choose a real polarization \mathfrak{p} containing M_{W}. Then M_{W}, being normal in N, is contained in the kernel of $L \circ \theta(\varrho)=\operatorname{ind}_{\mathfrak{p}}^{N} e^{i R(\varrho)}$. Since M_{W} is normal in G and since $\varrho=\operatorname{ind}_{N}^{G}\left((L \circ \theta(\varrho))^{\prime} \otimes \sigma(\varrho)\right)$, the same argument shows that M_{W} is contained in ker ϱ for all $\varrho \in \widetilde{S}$. Thus the kernel of $\int_{\tilde{S}}^{\oplus} \varrho d \mu$ were not compact if $\mu(\tilde{S}) \neq 0$.

Corollary 2.3. With the assumptions of Theorem 1.1 , we have for all $r \geq r_{0}$ and all $\left(h_{1}, h_{2}, \ldots, h_{r}\right) \in \mathcal{D} \times H^{r-r_{0}} \quad\left(r_{0}\right.$ and \mathcal{D} defined by (2.1)) that the subgroup

$$
h_{1}^{-1} H_{j_{0}} h_{1} \cap h_{2}^{-1} H_{j_{0}} h_{2} \cap \ldots \cap h_{r}^{-1} H_{j_{0}} h_{r}
$$

is compact.

Proof. Since the groups under consideration are all algebraic, they have only finitely many connected components. By (2.1), it remains to show that $\left(H_{j_{0}}^{\text {nor }}\right)_{0}$ is compact. Indeed, every $h_{0} \in\left(H_{j_{0}}^{\text {nor }}\right)_{0}$ satisfies

$$
h_{0} h R(\varrho) \in h N R(\varrho)=N h R(\varrho), \quad \forall h \in H, \varrho \in \operatorname{supp} \mu
$$

in particular

$$
h_{0}\left(\left.h R(\varrho)\right|_{\mathcal{Z}}\right)=\left.h R(\varrho)\right|_{\mathcal{Z}}, \quad \forall h \in H,
$$

where \mathcal{Z} denotes the center of \mathfrak{n}. By (2.2), the orbits $H N R(\varrho)$ span \mathfrak{n}^{*}. Thus every $f \in \mathcal{Z}^{*}$ is a linear combination of elements of $H N R(\varrho) \mid \mathcal{Z}$ and $\left(H_{j_{0}}^{\text {nor }}\right)_{0}$ acts trivially on \mathcal{Z}^{*}, hence on \mathcal{Z}. By requirement (ii), $\left(H_{j_{0}}^{\text {nor }}\right)_{0}$ is compact.

The aim of these lemmas is to apply Mackey's tensor product theorem.

Proposition 2.4. With the above assumptions and notations, we have for $k \geq r_{0}$:

$$
\begin{aligned}
\pi^{\otimes k} \stackrel{\mathrm{q}}{\leq} & \int_{\hat{G}^{k}}^{\oplus} \operatorname{ind}_{N}^{G}\left(\int_{\mathcal{D} \times H^{k-r_{0}}}^{\oplus} \bigotimes_{j=1}^{k} h_{j} \cdot(L \circ \theta)\left(\varrho_{j}\right) d \nu^{\otimes k}\left(\left(h_{1}, \ldots, h_{k}\right)\right)\right) \times \\
& \times d \mu^{\otimes k}\left(\left(\varrho_{1}, \ldots, \varrho_{k}\right)\right)
\end{aligned}
$$

where ν^{k} denotes a finite measure on H^{k}, equivalent to the Haar measure.
Proof. Observe at first that the diagonal group $\Delta G \triangleleft G^{k}$ and $\left(N H_{j_{0}}\right)^{k}$ are regularly related, since all these groups are algebraic. Thus, let $d \tilde{\nu}{ }^{\otimes k}$ be the measure on the double coset space $\Delta G:\left(N H_{j_{0}}\right)^{k}$ induced by a finite measure on G^{k}, equivalent to the Haar measure, and define for $g:=\left(g_{1}, \ldots, g_{k}\right) \in G^{k}$

$$
G^{(g)}:=g_{1}^{-1} N H_{j_{0}} g_{1} \cap \ldots \cap g_{k}^{-1} N H_{j_{0}} g_{k}
$$

and

$$
\varrho^{(g)}: G^{(g)} \rightarrow \mathcal{U}\left(\bigotimes_{j=1}^{k} \mathcal{H}_{\left(L \circ \theta\left(\varrho_{j}\right)\right)^{\prime} \otimes \sigma_{j}}\right), \quad x \mapsto \bigotimes_{j=1}^{k}\left(\left(L \circ \theta\left(\varrho_{j}\right)\right)^{\prime} \otimes \sigma_{j}\right)\left(g_{j} x g_{j}^{-1}\right),
$$

where again $\left(L \circ \theta\left(\varrho_{j}\right)\right)^{\prime}$ denotes the extension of $(L \circ \theta)\left(\varrho_{j}\right)$ to $N H_{j_{0}}$ and $\mathcal{U}\left(\mathcal{H}_{\pi}\right)$ denotes the group of unitary operators on \mathcal{H}_{π}. Then, by Mackey's tensor product theorem,

$$
\bigotimes_{j=1}^{k} \varrho_{j}=\bigotimes_{j=1}^{k}\left(\operatorname{ind}_{N H_{j_{0}}}^{G}\left(L \circ \theta\left(\varrho_{j}\right)\right)^{\prime} \otimes \sigma_{j}\right)=\int_{\Delta G:\left(N H_{j_{0}}\right)^{k}}^{\oplus} \operatorname{ind}_{G^{(g)}}^{G} \varrho^{(g)} d \tilde{\nu}^{\otimes k}
$$

But clearly $\Delta G:\left(N H_{j_{0}}\right)^{k}$ is identified with $\Delta H: H_{j_{0}}^{k}$ and we may write

$$
\bigotimes_{j=1}^{k}\left(\operatorname{ind}_{N H_{j_{0}}}^{G}\left(L \circ \theta\left(\varrho_{j}\right)\right)^{\prime} \otimes \sigma_{j}\right)=\int_{\Delta H: H_{j_{0}}^{k}}^{\oplus} \operatorname{ind}_{G^{(g)}}^{G} \varrho^{(g)} d \bar{\nu}^{\otimes k}
$$

$\bar{\nu}$ being induced by a finite measure ν on H which is equivalent to the Haar measure. Now take $\mathcal{D} \subseteq H^{r_{0}}$ as in Lemma 2.1. Then $\mathcal{D} \times H^{k-r_{0}}$, being Zariski-open, is conull in H^{k}, hence we have certainly

$$
\bigotimes_{j=1}^{k}\left(\operatorname{ind}_{N H_{j_{0}}}^{G}\left(L \circ \theta\left(\varrho_{j}\right)\right)^{\prime} \otimes \sigma_{j}\right) \leq \int_{\mathcal{D} \times H^{k-r_{0}}}^{\oplus} \operatorname{ind}_{G^{(g)}}^{G} \varrho^{(g)} d \nu^{\otimes k}
$$

Now, $G^{(h)} / N$ is compact for $h:=\left(h_{1}, \ldots, h_{r}\right) \in \mathcal{D} \times H^{k-r_{0}}$, by (2.3). Thus ([18],Lemma 4.2) implies $\operatorname{ind}_{N}^{G^{(h)}}\left(\left.\varrho^{(h)}\right|_{N}\right)=\left(\operatorname{ind}_{N}^{G^{(h)}} 1\right) \otimes \varrho^{(h)} \geq \varrho^{(h)}$. On the other hand, $\left.\varrho^{(h)}\right|_{N} \stackrel{q}{\simeq} \bigotimes_{j=1}^{k} h_{j}(L \circ \theta)\left(\varrho_{j}\right)$. Putting all together and using induction in stages, we find (writing ϱ and h instead of $\left(v r h_{1}, \ldots, \varrho_{k}\right)$ and $\left(h_{1}, \ldots, h_{k}\right)$, respectively)

$$
\begin{aligned}
\pi^{\otimes k} & =\int_{\hat{G}^{k}}^{\oplus} \bigotimes_{j=1}^{k} \varrho_{j} d \mu^{\otimes k}(\varrho)=\int_{\hat{G}^{k}}^{\oplus} \bigotimes_{j=1}^{k}\left(\operatorname{ind}_{N H_{j_{0}}}^{G}\left(L \circ \theta\left(\varrho_{j}\right)\right)^{\prime} \otimes \sigma_{j}\right) d \mu^{\otimes k}(\varrho)= \\
& \leq \int_{\hat{G}^{k}}^{\oplus} \int_{\mathcal{D} \times H^{k-r_{0}}}^{\oplus} \operatorname{ind}_{N}^{G}\left(\varrho^{(h)} \mid N\right) d \nu^{\otimes k}(h) d \mu^{\otimes k}(\varrho) \\
& \stackrel{\mathrm{q}}{\simeq} \int_{\hat{G}^{k}}^{\oplus} \int_{\mathcal{D} \times H^{k-r_{0}}}^{\oplus} \operatorname{ind}_{N}^{G} \bigotimes_{j=1}^{k} h_{j}(L \circ \theta)\left(\varrho_{j}\right) d \nu^{\otimes k}(h) d \mu^{\otimes k}(\varrho) \\
& =\int_{\hat{G}^{k}}^{\oplus} \operatorname{ind}_{N}^{G}\left(\int_{\mathcal{D} \times H^{k-r_{0}}}^{\oplus} \bigotimes_{j=1}^{k} h_{j}(L \circ \theta)\left(\varrho_{j}\right) d \nu^{\otimes k}(h)\right) d \mu^{\otimes k}(\varrho) .
\end{aligned}
$$

This shows the formula.
The strategy is now to prove that the inner integral

$$
\begin{equation*}
\int_{\mathcal{D} \times H^{k-r_{0}}}^{\oplus} \bigotimes_{j=1}^{k} h_{j}(L \circ \theta)\left(\varrho_{j}\right) d \nu^{\otimes k}\left(h_{1}, \ldots, h_{k}\right) \tag{4}
\end{equation*}
$$

defines a square-integrable representation of N for large enough k. Induction in stages then yields the theorem. There are many results on the decomposition of tensor products on nilpotent Lie groups, e.g., in [10], [21], [5]. Here we need only the following qualitative version:

$$
\bigotimes_{j=1}^{k} h_{j}(L \circ \theta)\left(\varrho_{j}\right) \stackrel{\mathfrak{q}}{\simeq} \int_{\mathbf{n}^{*}}^{\oplus} \kappa(f) d \eta_{1} * d \eta_{2} * \ldots * d \eta_{k},
$$

where $\stackrel{\mathrm{q}}{\sim}$ denotes quasi-equivalence, κ the Kirillov map, $d \eta_{j}$ a finite quasi N-invariant measure on \mathfrak{n}^{*}, supported by the orbit of $h_{j} R\left(\varrho_{j}\right)$, and * denotes the additive convolution on \mathfrak{n}^{*}. For each $1 \leq j \leq k$, let $\overline{n_{j}}$ be the equivalence class of $n \in N$ in $\operatorname{Ad}^{*}(N) h_{j} R\left(\varrho_{j}\right) \simeq N / \mathfrak{s}(j)$, where $\mathfrak{s}(j)$ is the stabilizer of $h_{j} R\left(\varrho_{j}\right)$ and let $d \tilde{\eta}_{j}$ be a quasi N-invariant finite measure on $N / \mathfrak{s}(j)$. By uniqueness, $d \eta_{j}$ is quasi-equivalent to the measure induced by $d \tilde{\eta}_{j}$ and the canonical mapping $N / \mathfrak{s}(j) \ni \bar{n}_{j} \mapsto n_{j} h_{j} R\left(\varrho_{j}\right)$. Whence we may write the above intergral more explicitly as

$$
\begin{aligned}
\bigotimes_{j=1}^{k} h_{j}(L \circ \theta)\left(\varrho_{j}\right) \stackrel{\mathrm{q}}{\sim} & \int_{N / \mathfrak{s}(1)}^{\oplus} \int_{N / \mathfrak{s}(2)}^{\oplus} \ldots \int_{N / \mathfrak{s}(k)}^{\oplus} \kappa\left(\sum_{j=1}^{k} n_{j} h_{j} s_{j} R\left(\varrho_{j}\right)\right) \times \\
& \times d \tilde{\eta}_{1}\left(\overline{n_{1}}\right) d \tilde{\eta}_{2}\left(\overline{n_{2}}\right) \ldots d \tilde{\eta}_{k}\left(\overline{n_{k}}\right) .
\end{aligned}
$$

Now, let $d \sigma_{j}$ denote a finite measure on $\mathfrak{s}(j)$, equivalent to the Haar measure. We certainly don't change the quasi-equivalence class if we substitute

$$
\begin{aligned}
& \bigotimes_{j=1}^{k} h_{j}(L \circ \theta)\left(\varrho_{j}\right) \stackrel{\mathrm{q}}{\sim} \\
\stackrel{\mathrm{q}}{\sim} & \int_{N / \mathfrak{s}(1)}^{\oplus} \int_{\mathfrak{s}(1)}^{\oplus} \cdots \int_{N / \mathfrak{s}(k)}^{\oplus} \int_{\mathfrak{s}(k)}^{\oplus} \kappa\left(\sum_{j=1}^{k} n_{j} s_{j} h_{j} R\left(\varrho_{j}\right)\right) \times \\
& \times d \sigma_{1}\left(s_{1}\right) d \tilde{\eta}_{1}\left(\overline{n_{1}}\right) \ldots d \sigma_{k}\left(s_{k}\right) d \tilde{\eta}_{k}\left(\overline{n_{k}}\right) .
\end{aligned}
$$

All together, choosing finite measures $d g, d n$ on G and N, equivalent to the respective Haar measures, and using Weil's formula, we find

$$
\begin{aligned}
& \int_{\mathcal{D} \times H^{k-r_{0}}}^{\oplus} \stackrel{k}{\bigotimes_{j=1}} h_{j}(L \circ \theta)\left(\varrho_{j}\right) d \nu^{\otimes k}(h) \stackrel{\mathrm{q}}{\sim} \\
\stackrel{q}{\sim} & \int_{\mathcal{D} \times H^{k-r_{0}}}^{\oplus} \int_{N^{k}}^{\oplus} \kappa\left(\sum_{j=1}^{k} n_{j} h_{j} R\left(\varrho_{j}\right)\right) d n^{\otimes k}(n) d \nu^{\otimes k}(h) \\
= & \int_{N^{k} \times \mathcal{D} \times H^{k-r_{0}}}^{\oplus} \kappa\left(\sum_{j=1}^{k} g_{j} R\left(\varrho_{j}\right)\right) d g^{\otimes k}(g) .
\end{aligned}
$$

Now define for fixed $\varrho_{1}, \varrho_{2}, \ldots, \varrho_{k}$:

$$
\begin{equation*}
\psi_{\varrho_{1}, \ldots, \varrho_{k}}: G^{k} \rightarrow \mathfrak{n}^{*}, \quad\left(g_{1}, g_{2}, \ldots, g_{k}\right) \mapsto \sum_{j=1}^{k} g_{j} R\left(\varrho_{j}\right) . \tag{5}
\end{equation*}
$$

The integral in Eq. (5) is just the integral over \mathfrak{n}^{*} with respect to the measure $\mu_{\varrho_{1}, \ldots, \varrho_{k}}$ induced by $\psi_{\varrho_{1}, \ldots, \varrho_{k}}$ and a finite measure on G^{k}, equivalent to the Haar measure. Since the Plancherel measure of N corresponds to the Lebesgue measure $\lambda_{\mathfrak{n}^{*}}$ on \mathfrak{n}^{*}, it remains to prove the absolute continuity

$$
\begin{equation*}
\mu_{\varrho_{1}, \ldots, \varrho_{k}} \ll \lambda_{\mathfrak{n}^{*}} \tag{6}
\end{equation*}
$$

This will follow from an elementary argument from local differential geometry.

Lemma 2.5. If the differential $d \psi_{\varrho_{1}, \ldots, \varrho_{k}}$ has full rank at one point, the induced measure $\mu_{\varrho_{1}, \ldots, \varrho_{k}}$ is absolutely continuous with respect to the Lebesgue measure.

Proof. By assumption, there is a point in G^{k}, where $\psi_{\varrho_{1}, \ldots, \varrho_{k}}$ has maximal rank. Since this mapping is analytic, the points $g \in G^{k}$ satisfying $\operatorname{rank} d \psi_{\varrho_{1}, \ldots, \varrho_{k}}(g) \leq \operatorname{dim} \mathfrak{n}^{*}$ form a submanifold of lower dimension, thus a nullset. The remainder of the proof is an immediate application of the implicit function theorem.

In order to show that the condition of (2.5) is fullfilled for $\mu^{\otimes k}$-almost all $\left(\varrho_{1}, \varrho_{2}, \ldots, \varrho_{n}\right)$ and large enough k, we turn now to the more geometrical aspects of our special situation.

Let G be a linear Lie group, acting on a finite dimensional real vector space V and let \mathfrak{g} be its Lie algebra. The derived representation of \mathfrak{g} is defined by

$$
X y:=\lim _{t \rightarrow 0} \frac{\exp (t X) y-y}{t}, \quad \forall y \in V, X \in \mathfrak{g}
$$

In particular, the tangent space of the orbit $G \cdot y$ at the point y is $\mathfrak{g} \cdot y$.
If $A \subseteq V$, we denote by $\operatorname{Aff}(A)$ the smallest affine subspace containing A. The following lemma is probably well-known. We include the proof for sake of completeness.

Lemma 2.6. Keep the above notations. Let $x \in V$. Then $\operatorname{Aff}(G x)=$ $x+L_{x}$, where L_{x} is the vector space

$$
L_{x}:=\operatorname{Span}(\{\mathfrak{g} g x, g \in G\})
$$

Proof. Define $\mathcal{L}:=\operatorname{Span}\left(g_{2} x-g_{1} x \mid g_{1}, g_{2} \in G\right)$. Since \mathcal{L} is closed, $\mathcal{L} \supset L_{x}$. To show the other direction, choose at first $g_{1}, g_{2} \in G$, such that $g_{2} g_{1}^{-1}$ is contained in a Campbell-Hausdorff neighbourhood of the identity. Thus there are $t_{0} \geq 0$ and $X \in \mathfrak{g}$ with $g_{2}=\exp \left(t_{0} X\right) g_{1}$. Hence

$$
\begin{aligned}
g_{2} x-g_{1} x & =\left(\exp \left(t_{0} X\right)-1\right) g_{1} x \\
& =\int_{0}^{t_{0}} \exp (s X) X g_{1} x d s=\int_{0}^{t_{0}} X \underbrace{\exp (s X) g_{1}}_{=: g(s)} x d s
\end{aligned}
$$

Now, computing the integral as Riemannian sum yields

$$
g_{2} x-g_{1} x=\lim _{N \rightarrow \infty} \frac{t_{0}}{N} \sum_{j=0}^{N-1} X g\left(\frac{(j+1)}{N} t_{0}\right) x
$$

Thus $g_{2} x-g_{1} x \in L_{x}$.

As to the general case, join g_{1} and g_{2} with a compact arc γ and cover γ with finitely many translates $U_{1}, U_{2}, \ldots, U_{n+1}$ of Campbell-Hausdorff neighbourhoods. Then pick

$$
\tilde{g_{1}}:=g_{1}, \tilde{g_{j}} \in U_{j-1} \cap U_{j} \cap \gamma(2 \leq j \leq n), \widetilde{g_{n+1}}:=g_{2} .
$$

By the first part, this yields

$$
g_{2} x-g_{1} x=\sum_{j=1}^{n} \underbrace{\left(\widetilde{g_{j+1}}-\tilde{g_{j}}\right) x}_{\in L_{x}} \in L_{x} .
$$

Lemma 2.7. Keep the above notations and let $G=N \rtimes H$ be as in Theorem 1.1, acting upon \mathfrak{n}^{*} via the coadjoint action.
Then we have for all $f \in \mathfrak{n}^{*}$

$$
\operatorname{Aff}(G f)=L_{f}=\operatorname{Span}(G f)
$$

Proof. We have $\operatorname{Aff}(G f)=f_{1}+L_{f}$.
Then $\operatorname{Span}(G f)=\operatorname{Span}\left(f, L_{f}\right)$. Clearly, $L_{f}, f+L_{f}$ and $\operatorname{Span}\left(f, L_{f}\right)$ are H-invariant. Since H acts reductively, there is an at most one-dimensional H-invariant complement of L_{f} in $\operatorname{Span}\left(f, L_{f}\right)$, say $\mathbb{R} \cdot y$. We have to show that $y=0$. Otherwise y is not fixed under H and, by connectedness, $H y$ is a ray through y. If necessary, we change the sign of y to obtain $H y \cap\left(f+L_{f}\right) \neq \emptyset$. By invariance, $f+L_{f}$ contains the whole ray, thus it contains 0 and $f \in L_{f}$, as desired.

The following corollary finishes the proof of Theorem 1.1.
Corollary 2.8. Keep the above notations. There is a $k_{0} \in \mathbb{N}, k_{0} \leq$ $\operatorname{dim} N$, such that for all $k \geq k_{0}$ and for $\mu^{\otimes k}$-almost all $\left(\varrho_{1}, \varrho_{2}, \ldots, \varrho_{k}\right) \in$ \hat{G}^{k} there is a $\left(g_{1}, g_{2}, \ldots, g_{k}\right) \in G^{k}$ such that

$$
\operatorname{Span}\left(\mathfrak{g} g_{1} R\left(\varrho_{1}\right), \ldots, \mathfrak{g} g_{k} R\left(\varrho_{k}\right)\right)=\mathfrak{n}^{*}
$$

Proof. Let k be the smallest natural number with:
(*) There exists a measurable set $S \in \hat{G}^{k}$ with $\mu^{\otimes k}(S)>0$ and for all $\left(\varrho_{1}, \ldots, \varrho_{k}\right) \in S,\left(g_{1}, \ldots, g_{k}\right) \in G^{k}:$

$$
\operatorname{dim}\left(\operatorname{Span}\left(\mathfrak{g} g_{1} R\left(\varrho_{1}\right), \ldots, \mathfrak{g} g_{k} R\left(\varrho_{k}\right)\right)\right)=k-1
$$

By (2.2) and (2.7), we have $k>1$. Using Fubini's theorem we find

$$
\mu^{\otimes k}(S)=\int_{\hat{G}} \mu^{\otimes(k-1)}\left(\left\{\left(\varrho_{1}, \ldots, \varrho_{k-1}\right) \mid\left(\varrho_{1}, \ldots \varrho_{k-1}, \varrho\right) \in S\right\}\right) d \mu(\varrho) .
$$

Since $\mu^{\otimes k}(S)>0$, there exists $\left(\varrho_{1}, \ldots, \varrho_{k-1}\right) \in \hat{G}^{k-1}$ such that

$$
\left(\varrho_{1}, \ldots, \varrho_{k-1}, \varrho\right) \in S
$$

for all ϱ in a subset $\bar{S} \subseteq \hat{G}$ of positive measure. In particular, for all $\varrho \in \bar{S}$ and for all $\left(g_{1}, \ldots, g\right) \in G^{k}$,

$$
\mathfrak{g} g R(\varrho) \subseteq \operatorname{Span}\left(\mathfrak{g} g_{1} R\left(\varrho_{1}\right), \ldots, \mathfrak{g} g_{k-1} R\left(\varrho_{k-1}\right)\right)
$$

whence, by (2.7),

$$
L_{R(\varrho)}=\operatorname{Span}(G \cdot R(\varrho)) \subseteq \operatorname{Span}\left(\mathfrak{g} g_{1} R\left(\varrho_{1}\right), \ldots, \mathfrak{g} g_{k-1} R\left(\varrho_{k-1}\right)\right),
$$

Thus fix $\left(g_{1}, \ldots, g_{k-1}\right) \in G^{k-1}$ and observe that

$$
W:=\operatorname{Span}\left(\mathfrak{g} g_{1} R\left(\varrho_{1}\right), \ldots, \mathfrak{g} g_{k-1} R\left(\varrho_{k-1}\right)\right)
$$

is ($k-1$)-dimensional. But the above and (2.7) imply

$$
\operatorname{Span}(\{G \cdot R(\varrho) \mid \varrho \in \bar{S}\}) \subseteq W
$$

But $\mu(\bar{S})>0$, whence by (2.2), $k>n+1$, as desired.
b. The Proof of Theorem 1.2

Let

$$
\pi=\int_{\hat{G}}^{\oplus} m(\varrho) \varrho d \mu
$$

be as in (1.2). By the compactness assumption and ([18],Lemma 4.2), we have for almost all ϱ :

$$
\varrho=\operatorname{ind}_{G_{\tilde{\chi}}}^{G} \chi \leq \operatorname{ind}_{N}^{G}\left(\left.\chi\right|_{N}\right) \simeq \operatorname{ind}_{N}^{G} g\left(\left.\chi\right|_{N}\right)
$$

for all $g \in G$. Thus, if $d g$ denotes a finite measure on G, equivalent to the Haar measure,

$$
\left.\varrho \stackrel{\mathrm{q}}{\leq} \operatorname{ind}_{N}^{G} \int_{G}^{\oplus} g \chi\right|_{N} d g
$$

Since $\left.G \chi\right|_{N}$ produces an open orbit in \mathfrak{n}^{*}, we see with (2.5)

$$
\left.\int_{G}^{\oplus} g \chi\right|_{N} d g \stackrel{\mathrm{q}}{\leq} \lambda_{N}
$$

Thus induction in stages shows $\varrho \leq^{q} \lambda_{G}$, whence the theorem.
Examples 2.9. (i) Canonical examples for an application of Theorems 1.1 and 1.2 are the generalized affine group, where $N=\mathbb{R}^{n}$ and H is the group of diagonal matrices, or the action of \mathbb{R}^{+}on the $(2 n+1)$-dimensional Heisenberg group mentioned in the introduction.
(ii) Consider the space \mathbb{R}^{3} as row vectors and the three-dimensional skew symmetric matrices Σ. Then $\mathfrak{n}:=\mathbb{R}^{3} \times \Sigma$ is a two step nilpotent algebra with the bracket

$$
[(u, U),(v, V)]:=\left(0, u^{\mathrm{t}} v-v^{\mathrm{t}} u\right) .
$$

Take $H:=\mathrm{SO}(3, \mathbb{R})$ and define

$$
h(u, U):=\left(u h^{\mathrm{t}}, h U h^{\mathrm{t}}\right) .
$$

Then $G:=\mathfrak{n} \rtimes H$ satisfies the assumptions of 1.1.
(iii) Let G be a linear totally minimal group with abelian nilradical. By [35],2.5 $G=V \rtimes H$ for a vector group V. Then G has a finite extension \tilde{G} satisfying

$$
\tilde{G}=V \rtimes\left(K \times S_{1} \ldots \times S_{n}\right),
$$

where K is compact and S_{j} is non-compact simple with finite center for all $1 \leq j \leq n$. Let Σ_{1} be the product of all the S_{j}, acting trivially on V and Σ_{2} be the product of the remaining factors. Then

$$
\tilde{G}=\left(V \rtimes \Sigma_{2}\right) \times \Sigma_{1} .
$$

Since each S_{i} is a finite extension of a linear algebraic group, Theorem 1.1 is applicable to the first factor and the second factor is handled below. This will yield $\overline{\mathrm{A}_{r}(G)}=\mathrm{B}_{0}(G)$.
(iv) The proofs of the Theorems 1.1 and 1.2 carry over without essential changes for connected algebraic groups over arbitrary local fields.
(v) The fact that each C_{0}-representation has a square-integrable tensor power is related to Haagerup's property (H), as discussed in [6]. A locally compact group is said to have property (H) if there is a C_{0} representation which weakly contains the trivial representation. Since taking tensor products is continuous [20], the groups occuring in (1.1) have property (H) if and only if they are amenable.

c. Linear Reductive Groups with Compact Center

For these groups the solutions of the problems mentioned in the introduction are easily obtained by reformulation of the results of M . Cowling $[11,12,13]$ and C.C. Moore [38]. Here, we need

Theorem 2.10. Let G be a simple analytic group with finite center. Then
(i) For every $\pi \in \hat{G}$, there is $q=q(\pi)>0$ and $C>0$, such that all matrix coefficients $\varphi_{\xi \eta}$ of π are in $\mathrm{L}^{2 q}(G)$ and satisfy

$$
\left\|\varphi_{\xi_{\eta}}\right\|_{2 q} \leq C\|\xi\|\|\eta\| .
$$

Furthermore C is independent of π.
(ii) If every matrix coefficient of a unitary representation $\left(\pi, \mathcal{H}_{\pi}\right)$ is in $\mathrm{L}^{p}(G),(p \geq 1)$, the same is true for every representation weakly contained in π. In particular, the set

$$
\hat{G}_{q}:=\left\{\pi \in \hat{G} \mid \text { all matrix coefficients of } \pi \text { are in } \mathrm{L}^{2 q}(G)\right\}
$$

is closed in \hat{G}. (This is true for an arbitrary locally compact group.)
(iii) $\mathrm{L}^{2}(G) * \mathrm{~L}^{2}(G)=\mathrm{A}(G) \subseteq \mathrm{L}^{2+\varepsilon}(G)$ for all $\varepsilon>0$. This is called the Kunze-Stein phenomenon.

The first two results carry over without difficulties to linear reductive groups with compact center. In order to prove (iii) one uses Herz' majorisation principle ([11],7.2). The question on the universality of q as in (i) is solved by results of Cowling and Moore:

Theorem 2.11. A simple group with finite center has Kazhdan's property (T) if and only if there is a q such that the matrix coefficients of all nontrivial irreducible representations are in $\mathrm{L}^{2 q}(G)$.
This implies immediately

Corollary 2.12. Let G be a linear reductive group with compact center. Then $\mathrm{B}_{0}(G)=\overline{\mathrm{A}_{r}(G)}$, and $\mathrm{B}_{0}(G)=\mathrm{A}_{r}(G)$ if and only if G is a Kazhdan group.
G is Kazhdan if and only if there is $k \in \mathbb{N}$ such that $\pi^{\otimes k} \stackrel{\mathrm{q}}{\leq} \lambda_{G}$ for all C_{0}-representations $\left(\pi, \mathcal{H}_{\pi}\right)$.

Proof. There is a finite central extension \tilde{G} of G satisfying

$$
\tilde{G}=K \times S_{1} \times \ldots \times S_{n}
$$

where K is compact and S_{1}, \ldots, S_{n} are non-compact simple groups with finite center. Clearly, it is enough to look at \tilde{G}. The dual of \tilde{G} identifies topologically with $\hat{K} \times \widehat{S_{1}} \times \ldots \times \widehat{S_{n}}$, since any irreducible representation is an outer tensor product

$$
\pi=\varrho \otimes \sigma_{1} \otimes \ldots \otimes \sigma_{n}, \quad \varrho \in \hat{K}, \sigma_{i} \in \hat{S}_{i}, 1 \leq i \leq n
$$

Now let ψ be a C_{0}-representation of \tilde{G} which is (without loss of generality) multiplicity free, and

$$
\psi=\int_{\widehat{\tilde{G}}}^{\oplus} \pi_{s} d \mu(s)
$$

its decomposition in irreducibles. Clearly, almost all π_{s} are nontrivial on every $S_{j}, 1 \leq j \leq n$. By (2.10.ii), the set of these representations is the union of the closed sets $\bigcup_{q \geq 2} \widehat{\tilde{G}}_{q}$. By regularity of μ, one has for all $\xi, \eta \in \mathcal{H}_{\psi}:$

$$
\langle\pi(\cdot) \xi, \eta\rangle=\mathrm{B}(G)-\lim _{q \rightarrow \infty} \int_{\widehat{\tilde{G}}_{q}}\left\langle\pi(\cdot) \xi_{s}, \eta_{s}\right\rangle d \mu(s)
$$

Now if $\psi_{q}:=\int_{\widehat{\tilde{G}}_{q}}^{\oplus} \pi d \mu$, all matrix coefficients of ψ_{q} are in $\mathrm{L}^{2 q}(\tilde{G})$ and, by Hölder's inequality, $\psi_{q}^{\otimes q}$ has a dense set of square-integrable coefficients, hence is square-integrable. This shows one direction and the other follows from ([38],3.6). The second statement follows from the same arguments.

This proof is a very special case of the one given in [13].

3. Some Further Groups Satisfying $\mathrm{A}_{r}(G)=\mathrm{B}_{0}(G)$

In this section we discuss some groups not covered by Theorem 1.1. We start by continuing Example 2.9.i:
$\operatorname{sl}(2, \mathrm{R}) G:=\mathfrak{h}_{n} \rtimes\left(\mathbb{R}^{+} \times \operatorname{Sp}(n, \mathbb{R})\right):$
Here $\mathfrak{h}_{n} \rtimes \mathbb{R}^{+}$is the semidirect product of the Heisenberg group by \mathbb{R}^{+}as in (2.9.i). The symplectic group $\operatorname{Sp}(n, \mathbb{R})$ acts upon \mathfrak{h}_{n} via

$$
A[(x, y), z]:=\left[(x, y) A^{\mathrm{t}}, z\right]
$$

This action commutes with that of \mathbb{R}^{+}.
Recall the metaplectic representations $\left(\omega_{r}, \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)\right), r \neq 0$, of the metaplectic group $\operatorname{Mp}(n, \mathbb{R})$, a two-fold covering of $\operatorname{Sp}(n, \mathbb{R})$ with covering homomorphism $p: \operatorname{Mp}(n, \mathbb{R}) \rightarrow \operatorname{Sp}(n, \mathbb{R})$. ω_{r} is defined in the following way: Let π_{r} be an infinite dimensional irreducible representation of \mathfrak{h}_{n} whose restriction to the center \mathcal{Z} is a multiple of $\chi_{r}: z \mapsto e^{i r z}$. Since this requirement
determines π_{r} up to unitary equivalence, every $m \in \operatorname{Mp}(n, \mathbb{R})$ defines a unitary operator $\omega_{r}(m)$ satisfying:

$$
\pi_{r}(p(m) n)=\omega_{r}(m) \pi_{r}(n) \omega_{r}(m)^{-1}, \quad \forall n \in \mathfrak{h}_{n}
$$

The mapping $m \mapsto \omega_{r}(m)$ is indeed a unitary representation of $\operatorname{Mp}(n, \mathbb{R})$ and thus uniquely induces a τ_{r}-representation $\tilde{\omega}_{r}$ on $\operatorname{Sp}(n, \mathbb{R})$, where τ_{r} is a multiplier of order 2 , such that

$$
\begin{equation*}
\pi_{r}^{\prime}(n, A):=\pi_{r}(n) \tilde{\omega}_{r}(A), \quad n \in \mathfrak{h}_{n}, A \in \operatorname{Sp}(n, \mathbb{R}) \tag{7}
\end{equation*}
$$

extends π_{r} to an irreducible τ_{r}-representation of $\mathfrak{h}_{n} \rtimes \operatorname{Sp}(n, \mathbb{R})$. Furthermore we may take $\omega_{r}=\omega_{s}$ if $r s>0$. Keeping these notations, we cite a result of Howe and Moore ([27],6.4):

Proposition 3.1. There is a dense set D of vectors in $\mathrm{L}^{2}\left(\mathbb{R}^{n}\right)$, such that, for all $r \neq 0$, the absolute values of the matrix coefficients of π_{r}^{\prime} to vectors in D belong to $\mathrm{L}^{4 n+2+\varepsilon}\left(\left(\mathfrak{h}_{n} \rtimes \operatorname{Sp}(n, \mathbb{R})\right) / \mathcal{Z}\right)$ for all $\varepsilon>0, \mathcal{Z}$ denoting the center of \mathfrak{h}_{n}.
Now we return to our group $G=\mathfrak{h}_{n} \rtimes\left(\mathbb{R}^{+} \times \operatorname{Sp}(n, \mathbb{R})\right)$. The G-orbits in \mathfrak{h}_{n}^{*} are:

$$
\left\{Z^{*}>0\right\},\left\{Z^{*}<0\right\},\left\{Z^{*}=0\right\} \backslash\{0\},\{0\}
$$

where $\left(Z^{*}, X_{1}^{*}, \ldots X_{n}^{*}, Y_{1}^{*}, \ldots, Y_{n}^{*}\right)$ denotes the dual base.
Thus C_{0}-representations are supported on
$\hat{G}_{ \pm}:=\left\{\operatorname{ind}_{h_{n} \rtimes \operatorname{Sp}(n, \mathbb{R})}^{G} \pi_{ \pm 1}^{\prime} \otimes \sigma \mid \sigma\right.$ irreducible $\bar{\tau}_{ \pm 1}-$ representation of $\left.\operatorname{Sp}(n, \mathbb{R})\right\}$.
So, let $\pi:=\int_{\tilde{G}_{+}}^{\oplus} \operatorname{ind}_{h_{n} \rtimes \operatorname{Sp}(n, \mathbb{R})}^{G} \pi_{1}^{\prime} \otimes \sigma d \mu \quad$ (we may assume again that π is multiplicity free). Then, for $k \in \mathbb{N}$, the same computation as in (2.4) yields

$$
\pi^{\otimes k} \stackrel{\mathrm{q}}{\leq} \int_{\hat{G}_{+}^{k}}^{\oplus} \int_{\mathbb{R}^{+k}}^{\oplus} \operatorname{ind}_{h_{n} \rtimes \operatorname{Sp}(n, \mathbb{R})}^{G} \bigotimes_{i=1}^{k} \pi_{1}^{t_{i}} \otimes \sigma_{i}^{t_{i}} d t^{\otimes k} d \mu^{\otimes k}
$$

where $d t$ is a finite measure on \mathbb{R}^{+}, equivalent to the Haar measure, and

$$
\pi_{1}^{\prime t} \otimes \sigma^{t}(n, A):=\pi_{1}^{\prime}(t \cdot n, A) \sigma(A)==\pi_{t^{2}}^{\prime}(n, A) \sigma(A)
$$

If k is even, $\bigotimes_{i=1}^{k} \pi_{1}^{\prime t_{i}}$ and $\bigotimes_{i=1}^{k} \sigma_{i}$ are ordinary representations. Furthermore, by (3.1), the absolute value of the matrix coefficients of $\bigotimes_{i=1}^{k} \pi_{1}^{\prime t_{i}}$ associated to a dense set of vectors are square-integrable modulo the center \mathcal{Z} for $k \geq 2 n+2$, hence

$$
\bigotimes_{i=1}^{k} \pi_{1}^{\prime t_{i}} \leq \operatorname{ind}_{\mathcal{Z}}^{h_{n} \rtimes \operatorname{Sp}(n, \mathbb{R})} \chi_{\sum_{i=1}^{k} t_{i}^{2}}
$$

This yields, by (2.5),

$$
\begin{aligned}
\pi^{\otimes k} & \stackrel{\mathrm{q}}{\leq} \int_{\hat{G}_{+}^{k}}^{\oplus} \operatorname{ind}_{h_{n} \rtimes \operatorname{Sp}(n, \mathbb{R})}^{G}\left(\left(\operatorname{ind}_{\mathcal{Z}}^{h_{n} \rtimes \operatorname{Sp}(n, \mathbb{R})} \int_{\mathbb{R}^{+k}}^{\oplus} \chi_{\sum_{i=1}^{k} t_{i}^{2}} d t^{\otimes k}\right) \bigotimes_{i=1}^{k} \sigma_{i}\right) d \mu^{\otimes k} \\
& \stackrel{\mathrm{q}}{\leq} \int_{\hat{G}_{+}^{k}}^{\oplus} \operatorname{ind}_{h_{n} \rtimes \operatorname{Sp}(n, \mathbb{R})}^{G}\left(\left(\operatorname{ind}_{\mathcal{Z}}^{h_{n} \rtimes \operatorname{Sp}(n, \mathbb{R})} \lambda_{\mathcal{Z}}\right) \bigotimes_{i=1}^{k} \sigma_{i}\right) d \mu^{\otimes k} \\
& \stackrel{\mathrm{q}}{\leq} \int_{\hat{G}_{+}^{k}}^{\oplus} \operatorname{ind}_{h_{n} \rtimes \operatorname{Sp}\left(n, \mathbb{R} \mathbb{R}^{\lambda}\right.}^{G} \lambda_{h_{n} \rtimes \operatorname{Sp}(n, \mathbb{R})} d \mu^{\otimes k} \leq \lambda_{G},
\end{aligned}
$$

since for every locally compact group U and for every representation ϱ of $U: \lambda_{U} \otimes \varrho \stackrel{\mathrm{q}}{\simeq} \lambda_{U}$. Decomposing an arbitrary C_{0}-representation $\pi=$ $\pi_{+} \oplus \pi_{-}$, where $\pi_{ \pm}$is supported on $\hat{G}_{ \pm}$, we see:

Corollary 3.2. Let π be a C_{0}-representation of $G=\mathfrak{h}_{n} \rtimes\left(\mathbb{R}^{+} \times \operatorname{Sp}(n, \mathbb{R})\right)$, then for all $k>4 n+4: \pi^{\otimes k} \stackrel{q}{\leq} \lambda_{G}$.
$\mathrm{sl}(2, \mathrm{R})$ Upper Triangular Matrices in $\mathrm{SL}(3, \mathbb{R})$:
Let

$$
G:=\left\{\left.\left(\begin{array}{ccc}
\frac{1}{\alpha \beta} & x & z \\
0 & \alpha & y \\
0 & 0 & \beta
\end{array}\right) \right\rvert\, x, y, z \in \mathbb{R}, \alpha, \beta>0\right\} .
$$

The representation theory of this group is a classical example due to Mackey, see ([32],III.B.Ex.6). Clearly, G is a semidirect product of the threedimensional Heisenberg group \mathfrak{h}_{1} with \mathbb{R}^{+2}, where the action is given by

$$
(\alpha, \beta) \cdot(x, y, z):=\left(\frac{x}{\alpha^{2} \beta}, \frac{\alpha}{\beta} y, \frac{z}{\alpha \beta^{2}}\right) .
$$

The C_{0}-representations are supported by

$$
\operatorname{ind}_{h_{1} \rtimes D^{\prime}}^{G} \pi_{ \pm 1}^{\prime} \otimes \chi_{\lambda}
$$

where $D^{\prime}:=\left\{\left(s^{-2}, s\right) \mid s \in \mathbb{R}^{+}\right\} \simeq \mathbb{R}^{+}$is the fixed group of $\pi_{ \pm 1}$, the irreducible representation of \mathfrak{h}_{1} which, restricted to the center, is quasiequivalent to $z \mapsto e^{ \pm i z}, \pi_{ \pm 1}^{\prime}$ is an extension to $\mathfrak{h}_{1} \rtimes D^{\prime}$ and χ_{λ} denotes a character of \mathbb{R}^{+}. Here one uses the fact that \mathbb{R}^{+}has only trivial cocycle representations. Observe that D^{\prime} acts upon \mathfrak{h}_{1} via $\left(s^{-2}, s\right)(x, y, z)=$ $\left(s^{3} x, \frac{1}{s^{3}} y, z\right)$. This defines an embedding $D^{\prime} \hookrightarrow \operatorname{Sp}(1, \mathbb{R})$. By the uniqueness of the extension, the representation π_{+}^{\prime} of $\mathfrak{h}_{1} \rtimes D^{\prime}$ is the restriction of the cocycle representation $\pi_{+} \tilde{\omega}_{1}$ of $\mathfrak{h}_{1} \rtimes \operatorname{Sp}(1, \mathbb{R})$ to $\mathfrak{h}_{1} \rtimes D^{\prime}$, where $\tilde{\omega}_{1}$ denotes the metaplectic representation. By (3.1), there is a dense set of vectors in $\mathcal{H}_{\pi_{+} \tilde{\omega}_{1}}$ producing coefficients of $\pi_{+} \tilde{\omega}_{1}$ in $\mathrm{L}^{k}\left(\mathfrak{h}_{1} \rtimes \operatorname{Sp}(n, \mathbb{R}) / \mathcal{Z}\right)$ for sufficiently large $k(k>6)$. Denoting the Haar measures on $G_{1}:=\left(\mathfrak{h}_{1} \rtimes \operatorname{Sp}(1, \mathbb{R})\right) / \mathcal{Z}, L_{1}:=$ $\left(\mathfrak{h}_{1} \rtimes D^{\prime}\right) / \mathcal{Z}$ and G_{1} / L_{1} with $d g, d h$ and $d \bar{g}$, respectively, we have for ξ, η contained in the above mentioned dense set:

$$
\infty>\int_{G_{1}}\left|\varphi_{\xi \eta}\right|^{k}(g) d g=\int_{G_{1} / L_{1}}\left(\int_{L_{1}}\left|\varphi_{\xi \eta}(g h)\right|^{k} d h\right) d \bar{g}
$$

Thus the inner integral $\int_{L_{1}}\left|\varphi_{\xi_{\eta}}(h g)\right|^{k} d h$ is finite for almost all $g \in G$ yielding enough k-integrable vectors. Whence π_{+}and a fortiori $\pi_{+} \otimes \chi_{\lambda}$ has a dense subset of L^{k}-vectors for all $\lambda \in \mathbb{R}$. Now, the same arguments used in the above example show:

Corollary 3.3. Let π be a C_{0}-representation of G. Then for all $k \geq 8$:

$$
\pi^{\otimes k} \stackrel{q}{\leq} \lambda_{G}
$$

We now turn to nonlinear groups:
$\operatorname{sl}(2, \mathrm{R}) G:=H_{n} \rtimes \operatorname{Sp}(n, \mathbb{R}):$
Here H_{n} denotes the $(2 n+1)$-dimensional Heisenberg group with compact center, that is the image of an infinite dimensional irreducible representation of the simply connected group \mathfrak{h}_{n}. We parametrize H_{n} by $[(p, q), t], p, q \in$ $\mathbb{R}^{n}, t \in \mathbb{T}$. Then the action of $\operatorname{Sp}(n, \mathbb{R})$ on \mathfrak{h}_{n} factors to an action on H_{n}. The center of the associated semidirect product $G:=H_{n} \rtimes \operatorname{Sp}(n, \mathbb{R})$ is identified with the torus \mathbb{T} and $G / \mathbb{T} \simeq \mathbb{R}^{2 n} \rtimes \operatorname{Sp}(n, \mathbb{R})$ is a linear totally minimal group. The dual of G is determined by Mackey's theory and decomposes in essentially three measurable parts: $\hat{G}_{\operatorname{Sp}(n, \mathbb{R})}:=\left\{\pi \in \hat{G} \mid \operatorname{ker} \pi \supset H_{n}\right\}, \hat{G}_{\mathbb{T}}:=$ $\{\pi \in \hat{G} \mid \operatorname{ker} \pi \supset \mathbb{T}\} \backslash \hat{G}_{\operatorname{Sp}(n, \mathbb{R})}$ and $\hat{G}_{\text {faithful }}:=\hat{G} \backslash\left(\hat{G}_{\mathrm{Sp}(n, \mathbb{R})} \cup \hat{G}_{\mathbb{T}}\right)$. Since the center is compact here, the application of (3.1) is more easy than above:

Corollary 3.4. Let π be a C_{0}-representation of $G=H_{n} \rtimes \operatorname{Sp}(n, \mathbb{R})$, then for sufficiently large $k, \pi^{\otimes k} \stackrel{\mathrm{q}}{\leq} \lambda_{G}$.

Proof. We write π as direct integral

$$
\pi=\int_{\hat{G}_{\mathbb{T}}}^{\oplus}+\int_{\hat{G}_{\text {faithful }}}^{\oplus} \varrho d \mu(\varrho)=: \pi_{\mathbb{T}} \oplus \pi_{\text {faithful }}
$$

The first summand satisfies $\pi_{\mathbb{T}}^{\otimes m} \stackrel{q}{\leq} \lambda_{G}$ for large enough m, by Theorem 1.1, and the second $\pi_{\text {faithful }}^{\otimes 2 n+2} \stackrel{\mathrm{q}}{\leq} \lambda_{G}$, by (3.1). Thus, for k large enough, $\pi^{\otimes k} \stackrel{\mathrm{q}}{\leq} \sum_{\ell=0}^{k} \pi_{\mathbb{T}}^{\otimes k-\ell} \otimes \pi_{\text {faithful }}^{\otimes \ell} \stackrel{\mathrm{q}}{\leq} \lambda_{G}$.
$\mathrm{sl}(2, \mathrm{R})$ Compact Central Extensions of Linear Reductive Groups :
At first we consider an example. Let G be a simple analytic group with infinite center Z, e.g., the universal covering group of $\operatorname{Sp}(n, \mathbb{R})$. Then Z is a discrete, finitely generated abelian group, algebraically $Z \simeq \mathbb{Z}^{n} \times$ Tor , where Tor denotes the torsion part. Let $c_{1}, c_{2}, \ldots, c_{n}$ be generators of the free part of Z and $t \in \mathbb{T}$ be of infinite order. Then

$$
L:=\left\{\left(\left(c_{1}^{k_{1}}, t^{k_{1}}\right),\left(c_{2}^{k_{2}}, t^{k_{2}}\right), \ldots\left(c_{n}^{k_{n}}, t^{k_{n}}\right)\right), k_{i} \in \mathbb{Z}\right\}
$$

is a discrete central subgroup of $G \times \mathbb{T}^{n}$. Define the canonical projection

$$
p: G \times \mathbb{T}^{n} \rightarrow \bar{G}:=\left(G \times \mathbb{T}^{n}\right) / L
$$

By the discreteness of L, we have $\mathcal{Z}(\bar{G})=p\left(\mathcal{Z}\left(G \times \mathbb{T}^{n}\right)\right)=p\left(\right.$ Tor $\left.\times \mathbb{T}^{n}\right)$ ([26],III.3.2). Thus the center of \bar{G} is compact and $\bar{G} / \mathcal{Z}(\bar{G}) \simeq G / Z \simeq \operatorname{Ad} G$ is a linear simple group. Hence \bar{G} is totally minimal itself ([35],2.3). Observe that \bar{G} contains a dense subgroup isomorphic to G, whence it is not linear. Using the results of Cowling and Moore presented in the last section, we can show the following

Theorem 3.5. Let G be an analytic group with compact center Z, such that G / Z is a linear reductive Kazhdan group with compact center. Then $\mathrm{B}_{0}(G)=\overline{\mathrm{A}_{r}(G)}$.

Proof. Let π be a C_{0}-representation of G. By the compactness of Z, π splits as $\pi=\sum_{\gamma \in \hat{Z}} \pi_{\gamma}$, where $\left.\pi_{\gamma}\right|_{Z} \stackrel{q}{\leq} \gamma$ for all $\gamma \in \hat{Z}$. Thus it remains to consider π_{γ}. Then $\pi_{\gamma} \otimes \overline{\pi_{\gamma}}$ is a C_{0}-representation of the Kazhdan group G / Z, whence by $(2.12),\left(\pi_{\gamma} \otimes \overline{\pi_{\gamma}}\right)^{\otimes k_{0}} \in \lambda_{G / Z}$ for a finite $k_{0} \in \mathbb{N}$. By the Kunze-Stein phenomenon (2.10.iii), all coefficients of $\pi_{\gamma} \otimes \overline{\pi_{\gamma}}$ belong to $\mathrm{L}^{2 k}(G / Z) \subseteq \mathrm{L}^{2 k}(G)$ for all $k>k_{0}$. Thus, for all $\xi, \eta \in \mathcal{H}_{\pi}:\left|\varphi_{\xi \eta}\right|^{2 k} \in \mathrm{~L}^{2}(G)$. By Hölder's inequality, $\pi_{\gamma}^{\otimes 2 k}$ is squareintegrable, showing the theorem.

I suppose the result to be true in general.

References

[1] Arsac, G., Sur l'Espace de Banach Engendré par les Coéfficients d'une Représentation Unitaire, Publ. Dépt. Math. Lyon 13 (1976), 1-101.
[2] Baggett, L., Unimodularity and Atomic Plancherel Measure, Math. Ann. 266 (1984), 513-518.
[3] Baggett, L., and K. Taylor, Groups with Completely Reducible Regular Representation, Proc. Amer. Math. Soc. 72 (1978), 593-600.
[4] -, A Sufficient Condition for the Complete Reducibility of the Regular Representation, J. Funct. Anal. 34 (1979), 250-265.
[5] Baklouti, A., and J. Ludwig, La Désintégration des Représentations Unitaires des Groupes de Lie Nilpotents, Preprint.
[6] Bekka, M. E. B., P.-A. Cherix, and A. Valette, Proper Affine Isometric Actions of Amenable Groups, In: London Math. Soc. Lecture Notes Ser. 227, Cambridge University Press, 1995.
[7] Bekka, M. E. B., and M. Mayer, "Ergodic Theory and Topological Dynamics for Group Actions on Homogeneous Spaces," Preversion.
[8] Berglund, J., H. Jungham, and P. Milnes, "Analysis on Semi groups," J. Wiley and Sons, 1989.
[9] Brown, I. D., Dual Topology of a Nilpotent Group, Ann. Sci. Ecole Normale Sup.(4)6 (1973), 407-411.
[10] Corwin, L. W., and F. P. Greenleaf, "Representations of Nilpotent Lie Groups and their Applications," Cambridge, 1990.
[11] Cowling, M., Sur les Coéfficients des Représentations Unitaires des Groupes de Lie Simple, In: Springer Lecture Note 739 (1979), 132178.
[12] -, The Kunze-Stein Phenomenon, Ann. Math. 207 (1978), 209-234.
[13] -, The Fourier-Stieltjes Algebra of a Semisimple Group, Colloq. Math. 41 (1979), 84-94.
[14] Dixmier, J., "C*-Algebras," North Holland, Amsterdam, 1981.
[15] Duflo, M., and C. C. Moore, On the regular Representation of a Nonunimodular Locally Compact Group, J. Funct. Anal. 21 (1976), 209-243.
[16] Eymard, P., L'Algèbre de Fourier d'un Groupe Localement Compact, Bull. Soc. Math. France 92 (1964), 181-236.
[17] - , A Survey of Fourier Algebras, Contemp. Math. 183 (1995), 111128.
[18] Fell, J., Weak Containment and Induced Representations of Groups, Canad. J. Math. 14 (1962), 237-268.
[19] -, A New Proof that Nilpotent Groups are $C C R$, Proc. Amer. Math. Soc. 13 (1962), 93-99.
[20] -, Weak Containment and Kronecker Products of Group Representations, Pacific J. Math. 13 (1963), 503-510.
[21] Felix, R., Über Integralzerlegungen von Darstellungen nilpotenter Gruppen, Manuscripta math. 27 (1979), 279-290.
[22] Figá-Talamanca, A., Positive Definite Functions that Vanish at Infinity, Pacific J. Math. 69 (1977), 355-363.
[23] Figá-Talamanca, A., and M. Picardello, Functions that Operate on $\mathrm{B}_{0}(G)$, Pacific J. Math. 74 (1978), 57-61.
[24] Folland G., "A Course in Abstract Harmonic Analysis," CRC Press, Boca Raton, 1995.
[25] Führ, H., and M. Mayer, Continuous Wavelet Transforms from Cyclic Representations: A General Approach Using Plancherel Measures, submitted.
[26] Hilgert J. and K. H. Neeb, "Lie Gruppen und Lie Algebren," Vieweg, 1991.
[27] Howe, R., and C. C. Moore, Asymptotic Properties of Unitary Representations, J. Funct. Anal. 32 (1979), 72-96.
[28] Howe, R., and Eng Che Tan, "Non-Abelian Harmonic Analysis," Springer, Berlin, 1992.
[29] Isham, C. J., and J. R. Klauder, Coherent States for n-dimensional Euclidean Groups $E(n)$ and their Application, J. Math. Phys. 32 (1991), 607-620.
[30] Khalil, I., Sur l'Analyse Harmonique du Groupe Affine de la Droite, Studia Math. 51 (1974), 139-167.
[31] Klauder, J. R., and R. F. Streater, A wavelet transform for the Poincaré group, J. Math. Phys. 32 (1991),1609-1611.
[32] Lipsman, R., "Group Representations," Springer Lecture Notes in Math. 388, 1974.
[33] Liukkonen, J., and M. Mislove, Symmetry in Fourier-Stieltjes Algebras, Math. Ann. 217 (1975), 97-112.
[34] -, Fourier-Stieltjes Algebras of Compact Extensions of Nilpotent Groups, J. reine angew. Math. 325 (1981), 210-220.
[35] Mayer, M., Asymptotics of Matrix Coefficients and Closures of FourierStieltjes Algebras, J. Funct. Anal. 143 (1997), 42-54.
[36] -, Strongly Mixing Groups, Semigroup Forum 54 (1997), 303-316.
[37] -, Harmonic Analysis on $\mathbb{R}^{2} \rtimes \operatorname{SL}(2, \mathbb{R})$, Submitted.
[38] Moore, C. C., Exponential Decay of Correlations for Geodesic Flows, in: Group Representations, Ergodic Theory, Operator Algebras and Mathematical Physics, Proc. Conf. in honor of G. W. Mackey, MSRI Publications, Springer 1987, 163-181.
[39] Richardson, R., Principal Orbit Types for Algebraic Transformation Spaces in Characteristic Zero, Invent. Math. 116 (1972), 6-14.
[40] Rieffel, M. A., Square-Integrable Representations of Hilbert Algebras, J. Funct. Anal. 3 (1969), 265-300.
[41] Walter, M., On a Theorem of Figaá-Talamanca, Proc. Amer. Math. Soc. 60 (1976), 72-74.
[42] Zimmer, R., "Ergodic Theory and Semisimple Groups," Birkhäuser, Boston, 1984.

Matthias Mayer
Zentrum Mathematik
Technische Universität München
D-80290 München
mayerm@mathematik.tu-
muenchen.de

Received June 25, 1998
and in final form January 27, 1999

