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Square-integrablity of tensor products
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Abstract. This paper is concerned with C0−representations of lo-
cally compact groups. The focus is on the relationship between the
C0−property and square-integrability, the latter meaning that the rep-
resentation is quasi-equivalent to a subrepresentation of the regular one.
We show that for certain real algebraic groups every C0−representation
has a square-integrable tensor power and discuss some classes of groups
enjoying this property. We point out to which extent this result supports
a conjecture of Figà-Talamance and Piccardello concerning the radical
of the Fourier algebra in the Fourier-Stietjes algebra. Finally, we give a
simple criterion for a C0−representation to be square-integrable.

1. Introduction

In this paper we are concerned with asymptotic properties of (strongly
continuous) unitary representations (π,Hπ) of a locally compact group G
and with their relations to square-integrability. By the latter we mean that
there is a dense subspace D of the representation space Hπ , such that for
all ξ, η ∈ D the matrix coefficient

ϕξη :G→ C, g 7→ 〈π(g)ξ, η〉

is in L2(G) . Square-integrable representations have been extensively stud-
ied, and it follows from the results of Rieffel [40], Duflo–Moore [15] and
others that a representation (π,Hπ) is square-integrable if and only if it
is quasi-equivalent in the sense of ([14],5.3.1) to a subrepresentation of the

regular representation (λG,L
2(G)) . We write π

q
≤ λG . Beyond the classical

theory, square-integrable representations recently gained interest, since they
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are the basic tool for the construction of continuous wavelet transforms from
cyclic representations, see e.g., [29, 31, 25].

Thus it is highly desirable to be able to construct square-integrable
representations or to decide when a given representation (π,Hπ) is square-
integrable and we present results concerning both questions (see Theorems
1.1 and 1.2).

Square-integrable representations are C0 –representations, which means
that all matrix coefficients of π vanish at infinity, but not vice versa. The
main theorem of this paper shows that, for certain real algebraic groups,
every C0 –representation has a square integrable tensor power.

To be more precise, recall that a connected real algebraic group G
has a unique largest unipotent radical N , and decomposes as

G = N oϕ H ,

where H is a reductive Levi-complement of N . N and H are Zariski-
closed, N is simply connected with respect to the topology induced by
GL(n,C) and H acts algebraically and reductively on the Lie algebra n

by the derived representation. The centralizer in G of a subset S ∈ G is
denoted by Z(S,G) .

Theorem 1.1. Let G be a connected real algebraic group and keep the
above notation.

Suppose that

(i) Z(H,G) ∩N = {e} ,

(ii) Z(Z, G) ∩H is compact, where Z is the center of N .

Then there exists a finite k0 ∈ N such that for all k ≥ k0 and for all
representations (π,Hπ) whose subrepresentations all have compact kernel

π⊗k
q
≤ λG .

Our second theorem gives a criterion for square-integrability of C0 –
representations. Before formulating the theorem, let us recall that any
irreducible representation (π,Hπ) of a locally compact group G which
contains a regularly embedded normal subgroup N is of the following form

(π,Hπ) = indGGχ̃χ .

Here, χ̃ is an irreducible representation of N , Gχ̃ is the group of elements in
G which preserve χ̃ under conjugation and χ is an irreducible representation
of Gχ̃ such that χ|N is a multiple of χ̃ .

Theorem 1.2. Let N be a regularly embedded simply connected nilpotent
normal subgroup of a Lie group G . Let (π,Hπ) be a unitary representation
of G and let π =

∫⊕
Ĝ
m(%)%dµ(%) be a decomposition in irreducibles. Then

π
q
≤ λG provided that

(i) for µ–almost all % = indGGχ̃χ , the fixed group Gχ̃ of the character χ̃ ,
which χ|N is a multiple of, is a compact extension of N ;

(ii) for µ–almost all % the G–orbit of the Kirillov-orbit associated to χ̃ is
open in n∗ .
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Let us discuss these theorems. In Theorem 1.1, assumption (i) is
a bit stronger than the requirement that N does not contain nontrivial
subgroups which are central in G (such a group would be non-compact).
As to the second requirement, identify G with the outer semidirect product
N oϕH and observe that we may split off the kernel of ϕ from H , yielding

G = (N oH/ kerϕ)× kerϕ ,

(at least modulo finite subgroups). See ([27],p.87) for more details. Since the
property, that any representation as in the theorem has a square-integrable
tensor power, carries over to direct products and finite extensions, we may
consider both factors separately. Then kerϕ will enjoy this property if
its center is compact and it is a Kazhdan group, by well-known results of
Cowling [11] and Moore [38]. Our result 1.1 applies to the first factor if the
quotient (ker(ϕ | Z))/(kerϕ) is compact. If this requirement is not satisfied
one may try to embed H/ kerϕ in an appropriate Sp(n,R) and to use a
result of Howe and Moore [27]. We discuss some examples in Section 3.

In any case, we may apply Theorem 1.1 to the groups G : = V oH ,
where V is a vector space and H the group of diagonal matrices or a
semisimple Kazhdan group acting on V without nontrivial fixed points.
We will give more elaborate examples in Section 2.

Several examples of groups are known such that, for every C0 –
representation (π,Hπ) , a sufficiently large tensor power is square-integrable:
This follows easily for semisimple Kazhdan groups from the results of Cowl-
ing [11] and Moore [38], for generalized motion groups from those of Liukon-
nen and Mislove [33, 34] and for G : = R2 o SL(2,R) from [37]. By way of
contrast, on groups with non-compact center and on non-compact nilpotent
groups there exist C0 –representations whose tensor powers are far from be-
ing square-integrable. This was shown by Figá-Talamanca and Picardello
generalizing methods of Varopoulos [23].

Observe that we do not require the representation π in Theorem
1.1 to be a C0 –representation, this is a part of the result. The fact that
representations whose subrepresentations all have compact kernel are C0 is
of considerable interest in many areas, e.g., in ergodic theory ([7], [8]). This
C0 –property is known for semisimple groups with finite center by the Howe–
Moore theorem [27] and for connected so called totally minimal groups,
treated below [35, 36].

The proof of Theorem 1.1 is based on the one given by Howe and
Moore for the fact that irreducible representations of algebraic groups have
a tensor power which is square-integrable modulo the projective kernel
([27],6.1). A somewhat different approach would use the methods in [33, 34],
after getting rid of the compactness assumption made there.

Theorem 1.1 also bears significance to a conjecture by Figá-Talamanca
and Picardello concerning Fourier-Stieltjes algebras. The Fourier-Stieltjes
algebra B(G) is one of the most fruitful constructions of a dual object for a
general locally compact group G , due to P. Eymard [16]. B(G) is the space
of all matrix coefficients of strongly continuous unitary representations of
G . Using sums, tensor products and contragredient representations, it is
easily seen that B(G) carries the pointwise structure of an involutive com-
mutative algebra. In addition, B(G) may be identified with the dual space
of the group C∗–algebra C∗(G) via

ϕξη 7→ (C∗(G) 3 T 7→ 〈π(T )ξ, η〉) ,
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where (π,Hπ) denotes also the lifting to C∗(G) and ξ, η are vectors in Hπ .
The dual space norm makes B(G) an involutive (semisimple) Banach algebra
which the group G acts upon by left and right translations. The matrix
coefficients of the regular representation form a closed ideal, the Fourier
algebra A(G) . It coincides with the closure of all coefficient functions with
compact support in B(G) . For abelian G , Bochner’s theorem identifies
B(G) with the measure algebra M(Ĝ) on Ĝ and A(G) with L1(Ĝ) . For all
these facts, see [16, 17].

More generally, denote by Aπ the closure in B(G) of all coefficients
of a unitary representation (π,Hπ) . By Arsac’s theory ([1],3.1.II), Aπ

characterizes (π,Hπ) up to quasi-equivalence. If

B0(G) : = {ψ ∈ B(G)|ψ vanishes at infinity} ,

the above question on the square-integrability of tensor products is related
to the question on the relationship between B0(G) and the radical Ar(G)
of the Fourier algebra, that is

Ar(G) = {ψ ∈ B(G)| ∃k ∈ N : ψk ∈ A(G)} .

Figà-Talamanca and Picardello [23] showed that Ar(G) is not norm dense in
B0(G) if the center of G is not compact or if G is a non-compact nilpotent
group. Their conjecture reads as follows

Conjecture 1.3. Let G be an analytic group with compact center and
without non-compact nilpotent direct factors. Then Ar(G) is dense in
B0(G) .

Observe that Ar(G) might be a proper dense subspace of B0(G) . Consider
for instance G : = SL(2,R) and

π : =

∫ ⊕

[0,1]
κsds

where κs, 0 < s < 1, denotes the complementary series representations
(see e.g., [24],p. 246) and ds is a finite measure equivalent to the Lebesgue-
measure. Then Aπ ⊆ Ar(G) , but Aπ 6⊆ Ar(G) .
Theorem 1.1 might be seen as a step towards proving Conjecture 1.3. An-
other class of groups satisfying this conjecture are linear reductive groups
(with compact center), as follows immediately from the results of Cowling
[11, 12]. Arbitrary compact central extensions of reductive Kazhdan groups
are discussed in Chapter 3. Furthermore, in this chapter, we construct more
groups supporting Conjecture 1.3, as G : = HnoSp(n,R) , where Hn is the
(2n + 1)–dimensional Heisenberg group with compact center, and related
examples.

The proof of Theorem 1.2 is more or less a byproduct of the proof of
Theorem 1.1. Let us discuss some appplications. Theorem 1.2 shows that
all C0 -representations of the affine group of the line are square-integrable.
Observing that the proof allows an immediate generalization to arbitrary
local fields, we see that the same is true for the Fell group Qp o Zp . These
two examples are well-known ([30],[41]). To give a new example, consider
the following semidirect product: Let R+ act on the (2n+ 1)–dimensional
Heisenberg group (identified with its Lie algebra)

hn : =



[(x, y), z] : =




0 x z
0 0 y
0 0 0



∣∣∣x, y ∈ Rn, z ∈ R




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via
t[(x, y), z] : = [(tx, ty), t2z] .

The resulting group G : = hn o R+ acts on h∗n via the coadjoint representa-
tion. Defining (Z∗, X∗1 , . . . , X

∗
n, Y

∗
1 , . . . , Y

∗
n ) to be the dual basis on h∗n w.r.t.

the canonical basis, we see that the C0 –representations are induced by rep-
resentations of hn corresponding to the linear forms ±Z∗ . Observe that R+

acts freely and without nontrivial fixed points on hn . Thus Theorem (1.2)
implies that on this group all C0 –representations are square-integrable.

The question when C0 -representations are square-integrable, has
been widely discussed. One of the most important results is that the regular
representation splits into irreducibles if every C0 –representation is square-
integrable ([22], [3]), but this is only a necessary condition, at least in
the nonunimodular case ([4],Ex.4). Baggett [2] showed by means of the
Fell topology on the dual that the regular representation of a non-compact
analytic unimodular group does not split.

From now on we will assume that G is a second countable and con-
nected locally compact group and that all occuring Hilbert spaces are sep-
arable. A representation (π,Hπ) is a strongly continuous unitary represen-
tation on a Hilbert space Hπ .
Acknowledgement I want to thank Prof. B. Bekka for many valuable
ideas, fruitful discussions and a careful reading of the first version of the
paper, H. Führ for a lot of critical and helpful remarks and the German
Research Foundation (DFG) for supporting my work.

2. Square-Integrability of Tensor Products on Linear Groups

a. The Proof of Theorem 1.1

The group G = N oϕH is by our assumptions a regular semidirect product
and we may apply Mackey’s theory to obtain the dual: Every % ∈ Ĝ is of
the form

% = indGNHχχ
′ ⊗ σ , (1)

where

• χ ∈ N̂ ,

• Hχ : = {h ∈ H|hχ : = χ ◦ ϕ(h)−1 ' χ} is the fixed group of χ in H ,

• χ′ and σ are multiplier representations in the following sense:

There is a Borel function ω :Hχ ×Hχ → {z ∈ C| |z| = 1} , constant
on the N ×N –cosets and satisfying

ω(e, x) = ω(x, e) = 1, ω(xy, z)ω(x, y) = ω(x, yz)ω(y, z)

(e denoting the group identity), such that χ′ is an extension of
χ to NHχ with χ′(xy) = ω(x, y)χ′(x)χ′(y) and σ(n) = 1, ∀n ∈
N, σ(x, y) = ω(x, y)σ(x)σ(y) .

We denote the Mackey surjection Ĝ→ N̂/G, % 7→ G.χ by θ and recall that
θ is continuous with respect to the Fell topology ([19],Lemma 3).

To fix notation, we shortly recall the Kirillov picture (for a complete
discussion, see e.g., [10]): Let n∗ be the dual of the Lie algebra n of N and
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denote by Ad∗ the coadjoint action of N on n∗ : Ad∗(n)f : = f ◦ Ad(n)−1

for all n ∈ N, f ∈ n∗ . There is a homeomorphism, the Kirillov-map,

κ : n∗/N → N̂ ,

realized in the following way: Let f ∈ n∗ and p be a real polarization of
f . This means that p is a maximal subalgebra which is subordinate to f ,
that is f([p, p]) = 0 . It should be noted that every subalgebra subordinate
to f is contained in a real polarization. Now form the analytic subgroup
P : = exp p and obtain

χ : = indNP e
if(·) . (2)

Then χ depends only on the coadjoint orbit of f and (2) defines the Kirillov
homeomorphism. Since the coadjoint orbits are closed, there exists a Borel
section F : N̂ → n∗ ([42],A.7).

Going back to our group G = N o H , we may identify n with an
ideal of the Lie algebra g = n o h . Hence G acts upon n∗ via

Ad∗(n, h)f : = f ◦Ad(n, h)−1 .

Thus the fixed group Hχ consists of the elements h ∈ H satisfying

Ad∗(1, h)F (χ) ∈ N · F (χ) .

Furthermore, since Ad∗gAd∗Nf = Ad∗NAd∗gf , we have χ̄ ∈ Gχ ⇐⇒
F (χ̄) ∈ GF (χ) . Now let G(F (χ)) : = {g ∈ G|Ad∗gF (χ) = F (χ)} be the
stabilizer of F (χ) in G . This is an algebraic group and we may choose
a Levi-complement H2 of G(F (χ)) . As explained in ([27],p.87), we may
conjugate F (χ) with a suitable n ∈ N to obtain H2 = Hχ . Thus we find
an F ′ ∈ N · F (χ) , which is stabilized by Hχ . In particular, N · Hχ is
algebraic.
Richardson’s theorem ([32],p.132) together with the fact that the Zariski-
topology is noetherian implies that there are closed subgroups H1,H2, . . . ,Hs

of H and a finite measurable invariant partition n∗ = D1 ∪ D2 ∪ . . . ∪ Ds

defined by

F ∈ Dj ⇐⇒ {h ∈ H|hF ∈ N · F} is conjugate to Hj, 1 ≤ j ≤ s .

Since G acts smoothly upon N̂ , we find by the same argument as
above a Borel section L : N̂/G→ N̂ and the composition map

R : Ĝ→ n∗, % 7→ F ◦ L ◦ θ(%)

is Borel.

Ĝ

θ

N̂/G
L

N̂

F

n∗R

↑
−→

↓
−→

........

........

........

........

........

........

........

........

........

........

........

........

........

....

.....................................................................................................

........................................................................................................................

.....................................................................................................

Hence the mapping R induces a finite measurable partition of Ĝ in

Ĝj : = R−1(Dj), 1 ≤ j ≤ s .
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We will keep these notations all through this paper.

The proof of Theorem 1.1 runs roughly as follows:
Starting from a direct integral decomposition of a representation (π,Hπ) as
in the theorem, we obtain, by somewhat sophisticated calculations involving
Mackey’s tensor product theorem, the fact that π has no subrepresentations
with non-compact kernel and requirement (ii), that

π⊗k
q
≤
∫ ⊕

Ĝk
indGN

∫ ⊕

n∗
κ(f)dµ%1,...,%k(f)dµ⊗k(%1, . . . , %k) ,

where k is a natural number independent of π , µ is the spectral measure
of π and µ%1,...,%k is the measure on the dual n∗ induced by the smooth
mapping

Gk → n∗, (g1, g2, . . . , gk) 7→
k∑

j=1

gjR(%j) .

The reductiveness of the H –action, requirement (i) and again the fact that π
has no subrepresentations with non-compact kernel yield that this mapping
has full rank a.e. µ⊗k , whence µ%1,...,%k is absolutely continuous to the
Lebesgue-measure on n∗ for µ⊗k– almost all %1, . . . , %k ∈ Ĝk . The theorem
then follows from induction in stages.
Now let (π,Hπ) be a representation such that all its subrepresentations
have at most compact kernel. Since G is type I, π is quasi-equivalent to a
multiplicity-free representation ([14],5.4.1). Hence we may assume that

π =

∫ ⊕

Ĝ
%dµ(%) (3)

to be its decomposition in irreducibles. Thus π =
⊕s

j=1 πj , where each πj

is supported on Ĝj , 1 ≤ j ≤ s . If we find a k ∈ N such that π⊗kj
q
≤ λG for

every 1 ≤ j ≤ s then k0 : = ks will do the task for arbitrary representations
as in the theorem (recall that the tensor product of a representation which is
quasi-contained in the regular representation with any representation of G
is quasi-contained in the regular representation, too). Thus we may restrict
ourselves to the case, where µ is supported on a single Ĝj0 , 1 ≤ j0 ≤ s .

The first lemma repeats an argument of Howe and Moore [27] which
we include for completeness:

Lemma 2.1. There is an r0 ∈ N, r0 ≤ dimHj0 , such that there is
a Zariski-open subset D ⊆ Hr0

j0
with: For all r ≥ r0, (h1, h2, . . . , hr) ∈

D ×Hr−r0
(
h−1

1 Hj0h1 ∩ h−1
2 Hj0h2 ∩ . . . ∩ h−1

r Hj0hr
)

0
=
(
Hnor
j0

)
0
.

Here, U0 denotes the identity component of a subgroup U and Hnor
j0 the

intersection of all conjugates of Hj0 , which is an algebraic normal subgroup.

Proof. Recall that the dimension function

Hr 3 (h1, h2, . . . , hr) 7→ dim(h−1
1 Hj0h1 ∩ h−1

2 Hj0h2 ∩ . . . ∩ h−1
r Hj0hr)

is upper semicontinuous with respect to the Zariski-topology on H r . Thus
the minimum

d(r) : = min{dim(h−1
1 Hj0h1∩h−1

2 Hj0h2∩. . .∩h−1
r Hj0hr)|h1, h2, . . . , hr ∈ H}
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is assumed on a Zariski-open subset Dr ⊆ Hr . Clearly, after at most
dimHj0 steps, we have d(r + 1) = d(r) . This implies that the identity
component of h−1

1 Hj0h1 ∩ h−1
2 Hj0h2 ∩ . . . ∩ h−1

r Hj0hr is normal for all
h1, h2, . . . , hr ∈ Dr . Hence define r0 : = r, D : = Dr .

For the remainder of this section, recall the measurable mappings

θ : Ĝ→ N̂/G, L : N̂/G→ N̂ , R : Ĝ→ n∗

from the beginning.

Lemma 2.2. Keep the above notations. If S̃ ⊆ Ĝ is µ–measurable and
satisfies

W : = Span(G · R(%)| % ∈ S̃) � n∗

then µ(S̃) = 0 .

Proof. Let S̃ be as in the lemma and define

MW : = {x ∈ n|x ∈ ker gR(%) ∀g ∈ G, % ∈ S̃} .

By assumption, MW is a closed non-compact normal subgroup of N and of
G (after identifying N with n), subordinate to gR(%) for all g ∈ G, % ∈ S̃ .
For each % ∈ S̃ , choose a real polarization p containing MW . Then
MW , being normal in N , is contained in the kernel of L◦θ(%) = indNp e

iR(%) .

Since MW is normal in G and since % = indGN ((L ◦ θ(%))′ ⊗ σ(%)) , the same
argument shows that MW is contained in ker % for all % ∈ S̃ . Thus the
kernel of

∫ ⊕
S̃
%dµ were not compact if µ(S̃) 6= 0 .

Corollary 2.3. With the assumptions of Theorem 1.1 , we have for all
r ≥ r0 and all (h1, h2, . . . , hr) ∈ D ×Hr−r0 (r0 and D defined by (2.1) )
that the subgroup

h−1
1 Hj0h1 ∩ h−1

2 Hj0h2 ∩ . . . ∩ h−1
r Hj0hr

is compact.

Proof. Since the groups under consideration are all algebraic, they have
only finitely many connected components. By (2.1), it remains to show that
(Hnor

j0 )0 is compact. Indeed, every h0 ∈ (Hnor
j0 )0 satisfies

h0hR(%) ∈ hNR(%) = NhR(%), ∀h ∈ H, % ∈ suppµ ,

in particular
h0 (hR(%)|Z) = hR(%)|Z , ∀h ∈ H ,

where Z denotes the center of n . By (2.2), the orbits HNR(%) span n∗ .
Thus every f ∈ Z∗ is a linear combination of elements of HNR(%)|Z and
(Hnor

j0 )0 acts trivially on Z∗ , hence on Z . By requirement (ii), (Hnor
j0 )0 is

compact.

The aim of these lemmas is to apply Mackey’s tensor product theorem.
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Proposition 2.4. With the above assumptions and notations, we have
for k ≥ r0 :

π⊗k
q
≤

∫ ⊕

Ĝk
indGN

(∫ ⊕

D×Hk−r0

k⊗

j=1

hj · (L ◦ θ) (%j) dν
⊗k((h1, . . . , hk))

)
×

× dµ⊗k((%1, . . . , %k)) ,

where νk denotes a finite measure on Hk , equivalent to the Haar measure.

Proof. Observe at first that the diagonal group ∆G / Gk and (NHj0)k

are regularly related, since all these groups are algebraic. Thus, let dν̃⊗k

be the measure on the double coset space ∆G : (NHj0)k induced by a
finite measure on Gk , equivalent to the Haar measure, and define for
g : = (g1, . . . , gk) ∈ Gk

G(g) : = g−1
1 NHj0g1 ∩ . . . ∩ g−1

k NHj0gk

and

%(g) :G(g) → U
( k⊗

j=1

H(L◦θ(%j ))′⊗σj

)
, x 7→

k⊗

j=1

((L ◦ θ(%j))′ ⊗ σj)(gjxg−1
j ) ,

where again (L ◦ θ(%j))′ denotes the extension of (L ◦ θ)(%j) to NHj0 and
U(Hπ) denotes the group of unitary operators on Hπ . Then, by Mackey’s
tensor product theorem,

k⊗

j=1

%j =
k⊗

j=1

(
indGNHj0

(L ◦ θ(%j))′ ⊗ σj
)

=

∫ ⊕

∆G:(NHj0 )k
indGG(g)%

(g)dν̃⊗k .

But clearly ∆G : (NHj0)k is identified with ∆H : Hk
j0 and we may write

k⊗

j=1

(
indGNHj0

(L ◦ θ(%j))′ ⊗ σj
)

=

∫ ⊕

∆H:Hk
j0

indGG(g)%
(g)dν⊗k ,

ν being induced by a finite measure ν on H which is equivalent to the Haar
measure. Now take D ⊆ Hr0 as in Lemma 2.1. Then D × Hk−r0 , being
Zariski-open, is conull in Hk , hence we have certainly

k⊗

j=1

(
indGNHj0

(L ◦ θ(%j))′ ⊗ σj
)
≤
∫ ⊕

D×Hk−r0
indGG(g)%

(g)dν⊗k .

Now, G(h)/N is compact for h : = (h1, . . . , hr) ∈ D×Hk−r0 , by (2.3). Thus

([18],Lemma 4.2) implies indG
(h)

N (%(h)|N ) =
(
indG

(h)

N 1
)
⊗%(h) ≥ %(h) . On the

other hand, %(h)|N
q' ⊗k

j=1 hj(L ◦ θ)(%j) . Putting all together and using
induction in stages, we find (writing % and h instead of (vrh1, . . . , %k) and
(h1, . . . , hk) , respectively)

π⊗k =

∫ ⊕

Ĝk

k⊗

j=1

%jdµ
⊗k(%) =

∫ ⊕

Ĝk

k⊗

j=1

(
indGNHj0

(L ◦ θ(%j))′ ⊗ σj
)
dµ⊗k(%) =

≤
∫ ⊕

Ĝk

∫ ⊕

D×Hk−r0
indGN

(
%(h) |N

)
dν⊗k(h)dµ⊗k(%)

q'
∫ ⊕

Ĝk

∫ ⊕

D×Hk−r0
indGN

k⊗

j=1

hj(L ◦ θ)(%j)dν⊗k(h) dµ⊗k(%)

=

∫ ⊕

Ĝk
indGN

(∫ ⊕

D×Hk−r0

k⊗

j=1

hj(L ◦ θ)(%j)dν⊗k(h)

)
dµ⊗k(%).
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This shows the formula.

The strategy is now to prove that the inner integral

∫ ⊕

D×Hk−r0

k⊗

j=1

hj(L ◦ θ)(%j)dν⊗k(h1, . . . , hk) (4)

defines a square-integrable representation of N for large enough k . In-
duction in stages then yields the theorem. There are many results on the
decomposition of tensor products on nilpotent Lie groups, e.g., in [10], [21],
[5]. Here we need only the following qualitative version:

k⊗

j=1

hj(L ◦ θ)(%j)
q'
∫ ⊕

n∗
κ(f)dη1 ∗ dη2 ∗ . . . ∗ dηk ,

where
q' denotes quasi-equivalence, κ the Kirillov map, dηj a finite

quasi N –invariant measure on n∗ , supported by the orbit of hjR(%j) , and
∗ denotes the additive convolution on n∗ . For each 1 ≤ j ≤ k , let n̄j be
the equivalence class of n ∈ N in Ad∗(N)hjR(%j) ' N/s(j) , where s(j) is
the stabilizer of hjR(%j) and let dη̃j be a quasi N –invariant finite measure
on N/s(j) . By uniqueness, dηj is quasi-equivalent to the measure induced
by dη̃j and the canonical mapping N/s(j) 3 n̄j 7→ njhjR(%j). Whence we
may write the above intergral more explicitly as

k⊗

j=1

hj(L ◦ θ)(%j)
q'

∫ ⊕

N/s(1)

∫ ⊕

N/s(2)
. . .

∫ ⊕

N/s(k)
κ




k∑

j=1

njhjsjR(%j)


 ×

×dη̃1(n̄1)dη̃2(n̄2) . . . dη̃k(n̄k) .

Now, let dσj denote a finite measure on s(j) , equivalent to the Haar mea-
sure. We certainly don’t change the quasi-equivalence class if we substitute

k⊗

j=1

hj(L ◦ θ)(%j)
q'

q'
∫ ⊕

N/s(1)

∫ ⊕

s(1)
. . .

∫ ⊕

N/s(k)

∫ ⊕

s(k)
κ




k∑

j=1

njsjhjR(%j)


 ×

×dσ1(s1)dη̃1(n̄1) . . . dσk(sk)dη̃k(n̄k) .

All together, choosing finite measures dg, dn on G and N , equivalent to
the respective Haar measures, and using Weil’s formula, we find

∫ ⊕

D×Hk−r0

k⊗

j=1

hj(L ◦ θ)(%j)dν⊗k(h)
q'

q'
∫ ⊕

D×Hk−r0

∫ ⊕

Nk
κ




k∑

j=1

njhjR(%j)


 dn⊗k(n)dν⊗k(h)

=

∫ ⊕

Nk×D×Hk−r0
κ




k∑

j=1

gjR(%j)


 dg⊗k(g) .

Now define for fixed %1, %2, . . . , %k :

ψ%1,...,%k :Gk → n∗, (g1, g2, . . . , gk) 7→
k∑

j=1

gjR(%j) . (5)
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The integral in Eq. (5) is just the integral over n∗ with respect to the measure
µ%1,...,%k induced by ψ%1,...,%k and a finite measure on Gk , equivalent to
the Haar measure. Since the Plancherel measure of N corresponds to the
Lebesgue measure λn∗ on n∗ , it remains to prove the absolute continuity

µ%1,...,%k � λn∗ . (6)

This will follow from an elementary argument from local differential geom-
etry.

Lemma 2.5. If the differential dψ%1,...,%k has full rank at one point,
the induced measure µ%1,...,%k is absolutely continuous with respect to the
Lebesgue measure.

Proof. By assumption, there is a point in Gk , where ψ%1,...,%k has
maximal rank. Since this mapping is analytic, the points g ∈ Gk satisfying
rankdψ%1 ,...,%k(g) � dim n∗ form a submanifold of lower dimension, thus
a nullset. The remainder of the proof is an immediate application of the
implicit function theorem.

In order to show that the condition of (2.5) is fullfilled for µ⊗k–almost all
(%1, %2, . . . , %n) and large enough k , we turn now to the more geometrical
aspects of our special situation.

Let G be a linear Lie group, acting on a finite dimensional real vector
space V and let g be its Lie algebra. The derived representation of g is
defined by

Xy : = lim
t→0

exp(tX)y − y
t

, ∀y ∈ V,X ∈ g .

In particular, the tangent space of the orbit G · y at the point y is g · y.
If A ⊆ V , we denote by Aff(A) the smallest affine subspace con-

taining A . The following lemma is probably well-known. We include the
proof for sake of completeness.

Lemma 2.6. Keep the above notations. Let x ∈ V . Then Aff(Gx) =
x+ Lx , where Lx is the vector space

Lx : = Span({ggx, g ∈ G}) .

Proof. Define L : = Span(g2x − g1x| g1, g2 ∈ G) . Since L is closed,
L ⊃ Lx . To show the other direction, choose at first g1, g2 ∈ G , such that
g2g
−1
1 is contained in a Campbell–Hausdorff neighbourhood of the identity.

Thus there are t0 ≥ 0 and X ∈ g with g2 = exp(t0X)g1 . Hence

g2x− g1x = (exp(t0X)− 1)g1x

=

t0∫

0

exp(sX)Xg1xds =

t0∫

0

X exp(sX)g1︸ ︷︷ ︸
=:g(s)

x ds

Now, computing the integral as Riemannian sum yields

g2x− g1x = lim
N→∞

t0
N

N−1∑

j=0

Xg

(
(j + 1)

N
t0

)
x

Thus g2x− g1x ∈ Lx .
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As to the general case, join g1 and g2 with a compact arc γ and cover
γ with finitely many translates U1, U2, . . . , Un+1 of Campbell–Hausdorff
neighbourhoods. Then pick

g̃1 : = g1, g̃j ∈ Uj−1 ∩ Uj ∩ γ (2 ≤ j ≤ n), g̃n+1 : = g2 .

By the first part, this yields

g2x− g1x =
n∑

j=1

(g̃j+1 − g̃j)x︸ ︷︷ ︸
∈Lx

∈ Lx .

Lemma 2.7. Keep the above notations and let G = N o H be as in
Theorem 1.1 , acting upon n∗ via the coadjoint action.
Then we have for all f ∈ n∗

Aff(Gf) = Lf = Span(Gf) .

Proof. We have Aff(Gf) = f1 + Lf .
Then Span(Gf) = Span(f, Lf ) . Clearly, Lf , f + Lf and Span(f, Lf ) are
H –invariant. Since H acts reductively, there is an at most one-dimensional
H –invariant complement of Lf in Span(f, Lf ) , say R · y . We have to
show that y = 0 . Otherwise y is not fixed under H and, by connectedness,
Hy is a ray through y . If necessary, we change the sign of y to obtain
Hy ∩ (f +Lf ) 6= Ø . By invariance, f +Lf contains the whole ray, thus it
contains 0 and f ∈ Lf , as desired.

The following corollary finishes the proof of Theorem 1.1.

Corollary 2.8. Keep the above notations. There is a k0 ∈ N, k0 ≤
dimN , such that for all k ≥ k0 and for µ⊗k –almost all (%1, %2, . . . , %k) ∈
Ĝk there is a (g1, g2, . . . , gk) ∈ Gk such that

Span(gg1R(%1), . . . , ggkR(%k)) = n∗ .

Proof. Let k be the smallest natural number with:

(∗) There exists a measurable set S ∈ Ĝk with µ⊗k(S) > 0 and for all
(%1, . . . , %k) ∈ S, (g1, . . . , gk) ∈ Gk :

dim (Span(gg1R(%1), . . . , ggkR(%k))) = k − 1 .

By (2.2) and (2.7), we have k > 1 . Using Fubini’s theorem we find

µ⊗k(S) =

∫

Ĝ
µ⊗(k−1)({(%1, . . . , %k−1)| (%1, . . . %k−1, %) ∈ S})dµ(%) .

Since µ
⊗k

(S) > 0 , there exists (%1, . . . , %k−1) ∈ Ĝk−1 such that

(%1, . . . , %k−1, %) ∈ S

for all % in a subset S̄ ⊆ Ĝ of positive measure. In particular, for all % ∈ S̄
and for all (g1, . . . , g) ∈ Gk ,

ggR(%) ⊆ Span(gg1R(%1), . . . , ggk−1R(%k−1)) ,
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whence, by (2.7),

LR(%) = Span(G · R(%)) ⊆ Span(gg1R(%1), . . . , ggk−1R(%k−1)) ,

Thus fix (g1, . . . , gk−1) ∈ Gk−1 and observe that

W : = Span(gg1R(%1), . . . , ggk−1R(%k−1))

is (k − 1)–dimensional. But the above and (2.7) imply

Span({G · R(%)| % ∈ S̄}) ⊆W .

But µ(S̄) > 0 , whence by (2.2), k > n+ 1 , as desired.

b. The Proof of Theorem 1.2

Let

π =

∫ ⊕

Ĝ
m(%)%dµ

be as in (1.2). By the compactness assumption and ([18],Lemma 4.2), we
have for almost all % :

% = indGGχ̃χ ≤ indGN (χ|N ) ' indGNg(χ|N )

for all g ∈ G . Thus, if dg denotes a finite measure on G , equivalent to the
Haar measure,

%
q
≤ indGN

∫ ⊕

G
gχ|Ndg .

Since Gχ|N produces an open orbit in n∗ , we see with (2.5)

∫ ⊕

G
gχ|Ndg

q
≤ λN .

Thus induction in stages shows %
q
≤ λG, whence the theorem.

Examples 2.9. (i) Canonical examples for an application of Theo-
rems 1.1 and 1.2 are the generalized affine group, where N = Rn

and H is the group of diagonal matrices, or the action of R+ on the
(2n+1)–dimensional Heisenberg group mentioned in the introduction.

(ii) Consider the space R3 as row vectors and the three-dimensional skew
symmetric matrices Σ . Then n : = R3 × Σ is a two step nilpotent
algebra with the bracket

[(u,U), (v, V )] : = (0, utv − vtu) .

Take H : = SO(3,R) and define

h(u,U) : = (uht, hUht) .

Then G : = n oH satisfies the assumptions of 1.1.

(iii) Let G be a linear totally minimal group with abelian nilradical. By
[35],2.5 G = V o H for a vector group V . Then G has a finite
extension G̃ satisfying

G̃ = V o (K × S1 . . .× Sn) ,
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where K is compact and Sj is non-compact simple with finite center
for all 1 ≤ j ≤ n . Let Σ1 be the product of all the Sj , acting trivially
on V and Σ2 be the product of the remaining factors. Then

G̃ = (V o Σ2)× Σ1 .

Since each Si is a finite extension of a linear algebraic group, Theorem
1.1 is applicable to the first factor and the second factor is handled
below. This will yield Ar(G) = B0(G) .

(iv) The proofs of the Theorems 1.1 and 1.2 carry over without essential
changes for connected algebraic groups over arbitrary local fields.

(v) The fact that each C0 –representation has a square-integrable tensor
power is related to Haagerup’s property (H), as discussed in [6]. A
locally compact group is said to have property (H) if there is a C0 -
representation which weakly contains the trivial representation. Since
taking tensor products is continuous [20], the groups occuring in (1.1)
have property (H) if and only if they are amenable.

c. Linear Reductive Groups with Compact Center

For these groups the solutions of the problems mentioned in the introduction
are easily obtained by reformulation of the results of M. Cowling [11, 12, 13]
and C.C. Moore [38]. Here, we need

Theorem 2.10. Let G be a simple analytic group with finite center.
Then

(i) For every π ∈ Ĝ , there is q = q(π) > 0 and C > 0 , such that all
matrix coefficients ϕξη of π are in L2q(G) and satisfy

‖ϕξη‖2q ≤ C‖ξ‖‖η‖ .

Furthermore C is independent of π .

(ii) If every matrix coefficient of a unitary representation (π,Hπ) is in
Lp(G), (p ≥ 1) , the same is true for every representation weakly
contained in π . In particular, the set

Ĝq : = {π ∈ Ĝ| all matrix coefficients of π are in L2q(G)}

is closed in Ĝ . (This is true for an arbitrary locally compact group.)

(iii) L2(G) ∗ L2(G) = A(G) ⊆ L2+ε(G) for all ε > 0 . This is called the
Kunze-Stein phenomenon.

The first two results carry over without difficulties to linear reductive groups
with compact center. In order to prove (iii) one uses Herz’ majorisation
principle ([11],7.2). The question on the universality of q as in (i) is solved
by results of Cowling and Moore:

Theorem 2.11. A simple group with finite center has Kazhdan’s prop-
erty (T) if and only if there is a q such that the matrix coefficients of all
nontrivial irreducible representations are in L2q(G) .

This implies immediately
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Corollary 2.12. Let G be a linear reductive group with compact center.
Then B0(G) = Ar(G) , and B0(G) = Ar(G) if and only if G is a Kazhdan
group.

G is Kazhdan if and only if there is k ∈ N such that π
⊗k q
≤ λG for all

C0 –representations (π,Hπ) .

Proof. There is a finite central extension G̃ of G satisfying

G̃ = K × S1 × . . .× Sn ,

where K is compact and S1, . . . , Sn are non-compact simple groups with
finite center. Clearly, it is enough to look at G̃ . The dual of G̃ identifies
topologically with K̂ × Ŝ1 × . . . × Ŝn , since any irreducible representation
is an outer tensor product

π = %⊗ σ1 ⊗ . . .⊗ σn, % ∈ K̂, σi ∈ Ŝi, 1 ≤ i ≤ n .

Now let ψ be a C0 –representation of G̃ which is (without loss of generality)
multiplicity free, and

ψ =

∫ ⊕
̂̃G
πsdµ(s)

its decomposition in irreducibles. Clearly, almost all πs are nontrivial on
every Sj, 1 ≤ j ≤ n . By (2.10.ii), the set of these representations is the

union of the closed sets
⋃
q≥2

̂̃
Gq . By regularity of µ , one has for all

ξ, η ∈ Hψ :

〈π(·)ξ, η〉 = B(G)− lim
q→∞

∫

̂̃Gq
〈π(·)ξs, ηs〉dµ(s).

Now if ψq : =
∫⊕
̂̃Gq
πdµ , all matrix coefficients of ψq are in L2q(G̃) and, by

Hölder’s inequality, ψ⊗qq has a dense set of square-integrable coefficients,
hence is square-integrable. This shows one direction and the other follows
from ([38],3.6). The second statement follows from the same arguments.

This proof is a very special case of the one given in [13].

3. Some Further Groups Satisfying Ar(G) = B0(G)

In this section we discuss some groups not covered by Theorem 1.1. We
start by continuing Example 2.9.i:

sl(2,R) G : = hn o (R+ × Sp(n,R)) :
Here hn o R+ is the semidirect product of the Heisenberg group by R+ as
in (2.9.i). The symplectic group Sp(n,R) acts upon hn via

A[(x, y), z] : = [(x, y)At, z] .

This action commutes with that of R+ .
Recall the metaplectic representations (ωr,L

2(Rn)), r 6= 0, of the metaplec-
tic group Mp(n,R) , a two-fold covering of Sp(n,R) with covering homo-
morphism p : Mp(n,R) → Sp(n,R). ωr is defined in the following way: Let
πr be an infinite dimensional irreducible representation of hn whose restric-
tion to the center Z is a multiple of χr : z 7→ eirz . Since this requirement
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determines πr up to unitary equivalence, every m ∈ Mp(n,R) defines a
unitary operator ωr(m) satisfying:

πr(p(m)n) = ωr(m)πr(n)ωr(m)−1, ∀n ∈ hn .

The mapping m 7→ ωr(m) is indeed a unitary representation of Mp(n,R)
and thus uniquely induces a τr –representation ω̃r on Sp(n,R) , where τr is
a multiplier of order 2, such that

π′r(n,A) : = πr(n)ω̃r(A), n ∈ hn, A ∈ Sp(n,R) , (7)

extends πr to an irreducible τr –representation of hnoSp(n,R) . Furthermore
we may take ωr = ωs if rs > 0 . Keeping these notations, we cite a result
of Howe and Moore ([27],6.4):

Proposition 3.1. There is a dense set D of vectors in L2(Rn) , such
that, for all r 6= 0 , the absolute values of the matrix coefficients of π ′r to
vectors in D belong to L4n+2+ε((hnoSp(n,R))/Z) for all ε > 0, Z denoting
the center of hn .

Now we return to our group G = hn o (R+ × Sp(n,R)) . The G–orbits in
h∗n are:

{Z∗ > 0}, {Z∗ < 0}, {Z∗ = 0} \ {0}, {0} ,
where (Z∗, X∗1 , . . . X

∗
n, Y

∗
1 , . . . , Y

∗
n ) denotes the dual base.

Thus C0 –representations are supported on

Ĝ± : = {indGhnoSp(n,R)π
′
±1⊗σ| σ irreducible τ̄±1 –representation of Sp(n,R)}.

So, let π : =
∫ ⊕
Ĝ+

indGhnoSp(n,R)π
′
1 ⊗ σdµ (we may assume again that π is

multiplicity free). Then, for k ∈ N , the same computation as in (2.4) yields

π⊗k
q
≤
∫ ⊕

Ĝk+

∫ ⊕

R+k
indGhnoSp(n,R)

k⊗

i=1

π′ti1 ⊗ σtii dt⊗kdµ⊗k ,

where dt is a finite measure on R+ , equivalent to the Haar measure, and

π′t1 ⊗ σt(n,A) : = π′1(t · n,A)σ(A) == π′t2(n,A)σ(A) .

If k is even,
⊗k

i=1 π
′ti
1 and

⊗k
i=1 σi are ordinary representations. Further-

more, by (3.1), the absolute value of the matrix coefficients of
⊗k

i=1 π
′ti
1

associated to a dense set of vectors are square-integrable modulo the center
Z for k ≥ 2n+ 2 , hence

k⊗

i=1

π′ti1 ≤ ind
hnoSp(n,R)
Z χ∑k

i=1
t2i
.

This yields, by (2.5),

π⊗k
q
≤

∫ ⊕

Ĝk+

indGhnoSp(n,R)

((
ind

hnoSp(n,R)
Z

∫ ⊕

R+k
χ∑k

i=1
t2i
dt⊗k

) k⊗

i=1

σi

)
dµ⊗k

q
≤

∫ ⊕

Ĝk+

indGhnoSp(n,R)

((
ind

hnoSp(n,R)
Z λZ

) k⊗

i=1

σi

)
dµ⊗k

q
≤

∫ ⊕

Ĝk+

indGhnoSp(n,R)λhnoSp(n,R)dµ
⊗k q
≤ λG,

since for every locally compact group U and for every representation % of

U : λU ⊗ %
q' λU . Decomposing an arbitrary C0 –representation π =

π+ ⊕ π− , where π± is supported on Ĝ± , we see:
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Corollary 3.2. Let π be a C0 –representation of G = hno(R+×Sp(n,R)) ,

then for all k > 4n+ 4 : π⊗k
q
≤ λG .

sl(2,R)Upper Triangular Matrices in SL(3,R) :

Let

G : =








1
αβ x z
0 α y
0 0 β



∣∣∣∣∣x, y, z ∈ R, α, β > 0



 .

The representation theory of this group is a classical example due to Mackey,
see ([32],III.B.Ex.6). Clearly, G is a semidirect product of the three-
dimensional Heisenberg group h1 with R+2 , where the action is given by

(α, β) · (x, y, z) : = (
x

α2β
,
α

β
y,

z

αβ2
) .

The C0 –representations are supported by

indGh1oD′π
′
±1 ⊗ χλ ,

where D′ : = {(s−2, s)| s ∈ R+} ' R+ is the fixed group of π±1 , the
irreducible representation of h1 which, restricted to the center, is quasi-
equivalent to z 7→ e±iz , π′±1 is an extension to h1 o D′ and χλ denotes
a character of R+ . Here one uses the fact that R+ has only trivial co-
cycle representations. Observe that D ′ acts upon h1 via (s−2, s)(x, y, z) =
(s3x, 1

s3 y, z) . This defines an embedding D′ ↪→ Sp(1,R) . By the uniqueness
of the extension, the representation π ′+ of h1oD′ is the restriction of the co-
cycle representation π+ω̃1 of h1oSp(1,R) to h1oD′ , where ω̃1 denotes the
metaplectic representation. By (3.1), there is a dense set of vectors in Hπ+ω̃1

producing coefficients of π+ω̃1 in Lk(h1 o Sp(n,R)/Z) for sufficiently large
k (k > 6) . Denoting the Haar measures on G1 : = (h1 o Sp(1,R))/Z, L1 : =
(h1 oD′)/Z and G1/L1 with dg, dh and dḡ , respectively, we have for ξ, η
contained in the above mentioned dense set:

∞ >

∫

G1

|ϕξη|k(g)dg =

∫

G1/L1

(∫

L1

|ϕξη(gh)|kdh
)
dḡ .

Thus the inner integral
∫
L1
|ϕξη(hg)|kdh is finite for almost all g ∈ G

yielding enough k–integrable vectors. Whence π+ and a fortiori π+ ⊗ χλ
has a dense subset of Lk –vectors for all λ ∈ R . Now, the same arguments
used in the above example show:

Corollary 3.3. Let π be a C0 –representation of G . Then for all k ≥ 8 :

π⊗k
q
≤ λG .

We now turn to nonlinear groups:

sl(2,R) G : = Hn o Sp(n,R) :
Here Hn denotes the (2n+ 1)–dimensional Heisenberg group with compact
center, that is the image of an infinite dimensional irreducible representation
of the simply connected group hn . We parametrize Hn by [(p, q), t], p, q ∈
Rn, t ∈ T . Then the action of Sp(n,R) on hn factors to an action on Hn .
The center of the associated semidirect product G : = HnoSp(n,R) is iden-
tified with the torus T and G/T ' R2noSp(n,R) is a linear totally minimal
group. The dual of G is determined by Mackey’s theory and decomposes in
essentially three measurable parts: ĜSp(n,R) : = {π ∈ Ĝ| kerπ ⊃ Hn}, ĜT : =

{π ∈ Ĝ| ker π ⊃ T} \ ĜSp(n,R) and Ĝfaithful : = Ĝ \ (ĜSp(n,R) ∪ ĜT) . Since the
center is compact here, the application of (3.1) is more easy than above:



Mayer 478

Corollary 3.4. Let π be a C0 –representation of G = Hn o Sp(n,R) ,

then for sufficiently large k, π⊗k
q
≤ λG .

Proof. We write π as direct integral

π =

∫ ⊕

ĜT
+

∫ ⊕

Ĝfaithful

%dµ(%) =: πT ⊕ πfaithful .

The first summand satisfies π⊗mT
q
≤ λG for large enough m , by Theorem

1.1, and the second π⊗2n+2
faithful

q
≤ λG , by (3.1). Thus, for k large enough,

π⊗k
q
≤∑k

`=0 π
⊗k−`
T ⊗ π⊗`faithful

q
≤ λG .

sl(2,R)Compact Central Extensions of Linear Reductive Groups :
At first we consider an example. Let G be a simple analytic group with
infinite center Z , e.g., the universal covering group of Sp(n,R) . Then Z
is a discrete, finitely generated abelian group, algebraically Z ' Zn × Tor ,
where Tor denotes the torsion part. Let c1, c2, . . . , cn be generators of the
free part of Z and t ∈ T be of infinite order. Then

L : = {((ck1
1 , t

k1), (ck2
2 , t

k2), . . . (cknn , t
kn)), ki ∈ Z}

is a discrete central subgroup of G× Tn . Define the canonical projection

p :G× Tn → G : = (G× Tn)/L .

By the discreteness of L , we have Z(G) = p(Z(G × Tn)) = p(Tor × Tn)
([26],III.3.2). Thus the center of G is compact and G/Z(G) ' G/Z ' AdG
is a linear simple group. Hence G is totally minimal itself ([35],2.3). Observe
that G contains a dense subgroup isomorphic to G , whence it is not linear.
Using the results of Cowling and Moore presented in the last section, we can
show the following

Theorem 3.5. Let G be an analytic group with compact center Z , such
that G/Z is a linear reductive Kazhdan group with compact center. Then
B0(G) = Ar(G) .

Proof. Let π be a C0 –representation of G . By the compactness of

Z , π splits as π =
∑
γ∈Ẑ πγ , where πγ |Z

q
≤ γ for all γ ∈ Ẑ . Thus

it remains to consider πγ . Then πγ ⊗ πγ is a C0 –representation of the
Kazhdan group G/Z , whence by (2.12), (πγ ⊗ πγ)⊗k0 ∈ λG/Z for a finite
k0 ∈ N . By the Kunze-Stein phenomenon (2.10.iii), all coefficients of
πγ ⊗ πγ belong to L2k(G/Z) ⊆ L2k(G) for all k > k0 . Thus, for all
ξ, η ∈ Hπ : |ϕξη |2k ∈ L2(G) . By Hölder’s inequality, π⊗2k

γ is square-
integrable, showing the theorem.

I suppose the result to be true in general.
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1–101.



Mayer 479

[2] Baggett, L., Unimodularity and Atomic Plancherel Measure, Math.
Ann. 266 (1984), 513–518.

[3] Baggett, L., and K. Taylor, Groups with Completely Reducible Reg-
ular Representation, Proc. Amer. Math. Soc. 72 (1978), 593–600.

[4] —, A Sufficient Condition for the Complete Reducibility of the Reg-
ular Representation, J. Funct. Anal. 34 (1979), 250–265.

[5] Baklouti, A., and J. Ludwig, La Désintégration des Représentations
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[16] Eymard, P., L’Algèbre de Fourier d’un Groupe Localement Compact,
Bull. Soc. Math. France 92 (1964), 181–236.

[17] —, A Survey of Fourier Algebras, Contemp. Math. 183 (1995), 111–
128.

[18] Fell, J., Weak Containment and Induced Representations of Groups,
Canad. J. Math. 14 (1962), 237–268.

[19] —, A New Proof that Nilpotent Groups are CCR, Proc. Amer. Math.
Soc. 13 (1962), 93–99.

[20] —, Weak Containment and Kronecker Products of Group Represen-
tations, Pacific J. Math. 13 (1963), 503–510.
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