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Description of infinite dimensional
abelian regular Lie groups
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Abstract. It is shown that every abelian regular Lie group is a quotient
of its Lie algebra via the exponential mapping.
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This paper is a sequel of [3] (see also [4], chapter VIII), where a regular Lie
group is defined as a smooth Lie group modeled on convenient vector spaces such
that the right logarithmic derivative has a smooth inverse Evol : C∞(R, g) →
C∞(R, G), the canonical evolution operator, where g is the Lie algebra. We
follow the notation and the concepts of this paper closely.

Lemma. Let G be an abelian regular Lie group with Lie algebra g . Then the
evolution operator is given by Evol(X)(t) := Evolr(X)(t) = exp

(∫ t
0
X(s)ds

)
for

X ∈ C∞(R, g) .

Proof. Since G is regular it has an exponential mapping exp : g→ G which is
a smooth group homomorphism, because s 7→ exp(sX) exp(sY ) is a smooth one-
parameter group in G with generator X+Y , thus exp(X) exp(Y ) = exp(X+Y )
by uniqueness, [3], 3.6 or [4], 36.7. The Lie algebra g is a convenient vector space

with evolution mapping Evolg(X)(t) =
∫ t

0
X(s)ds, see [3], 5.4, or [4], 38.5. The

mapping exp : g→ G is a homomorphism of Lie groups and thus intertwines the
evolution operators by [3], 5.3 or [4], 38.4, hence the formula.

Another proof is by differentiating the right hand side, using [3], 5.10 or
[4], 38.2.

As a consequence we obtain that an abelian Lie group G is regular if and
only if an exponential map exists. Furthermore, an exponential map is surjective
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on a connected abelian Lie group, because exp(
∫ t

0
δrc(s)ds) = Evol(δrc)(t) = c(t)

for any smooth curve c:R→ G with c(0) = e .

Theorem. Let G be an abelian, connected and regular Lie group, then there
is a c∞ -open neighborhood V of zero in g so that exp(V ) is open in G and
exp : V → exp(V ) is a diffeomorphism. Moreover, g/ ker(exp) → G is an
isomorphism of Lie groups.

Proof. Given a connected, abelian and regular Lie group G , we look at the
universal covering group G̃

π→ G , see [4], 27.14, which is also abelian and regular.
Any tangent Lie algebra homomorphism from a simply connected Lie group to a
regular Lie group can be uniquely integrated to a Lie group homomorphism by
[5] or [3], 7.3 or [4], 40.3. Consequently, there exists a homomorphism Φ : G̃→ g
with Φ′ = idg . Since G̃ is regular there is a map from g to G̃ extending id ,
which has to be the inverse of Φ and which is a fortiori the exponential map ẽxp
of G̃ , so Φ is an isomorphism of Lie groups. The universal covering projection π
intertwines ẽxp and exp, so the result follows. The quotient g/ ker(exp) is a Lie
group since there are natural chart maps and the quotient space is a Hausdorff
space by the Hausdorff property on G .

Remarks. Given a convenient vector space E and a subgroup Z , it is not
obvious how to determine simple conditions to ensure that E/Z is a Hausdorff
space, because c∞E is not a topological vector space in general (see [4], Chapter
I): An additive subgroup Z of E is called “discrete” if there is a c∞ -open zero
neighborhood V with V ∩ (Z +V ) = {0} and for any x /∈ Z there is a c∞ -open
zero neighborhood U so that (x+ Z + U) ∩ (Z + U) = Ø. The above kernel of
exp naturally has this property, consequently any regular connected abelian Lie
group is a convenient vector space modulo a “discrete” subgroup.

Let E be a Fréchet space, then a subgroup is “discrete” if and only
if there is an open zero neighborhood V with V ∩ (Z + V ) = {0} , because
c∞E = E . This leads immediately to a generalization of a result of Galanis ([2]),
who proved that every abelian Fréchet-Lie group which admits an exponential
map being a local diffeomorphism around zero is a projective limit of Banach Lie
groups. With the above theorem one can easily write down this limit in general.

With the above methods it is necessary to assume regularity: Otherwise
one obtains as image of Φ a dense arcwise connected subgroup of the convenient
vector space g , which does not allow any conclusion in contradiction to the finite
dimensional case. Note that the closed subgroup of integer-valued functions
in L2([0, 1],R) is arcwise connected but not a Lie subgroup (see [1]) so that
Yamabe’s theorem is already wrong on the level of infinite dimensional Hilbert
spaces.
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