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Abstract. We study injective continuous homomorphisms between simply
connected Lie groups that are nilpotent of class 2 and whose group of
automorphisms acts with 3 orbits.

1. Introduction

A topological group G is called almost homogeneous if the group Aut(G) of
all topological automorphisms has 3 orbits on . In the general case, there are
different constructions leading to almost homogeneous groups (including Sym(3),
Alt(4), additive groups of free modules over the ring Z/p?Z for a prime p,
Suzuki 2-groups, semidirect products ) x V with respect to a suitable linear
representation of a cyclic group @ on a vector space V', and certain generalized
Heisenberg groups), compare [2].

In [5], it has been shown that every almost homogeneous locally compact
connected group is a simply connected Lie group which is nilpotent of class 2:
that is, a Heisenberg group. The Heisenberg groups are obtained by the following

Construction. Let V and Z be vector spaces of finite dimension over R,
and let 3:V XV — Z be a symplectic map (that is, a skew-syminetric bilinear
map). Then the vector space V x Z becomes a Lie algebra gh (V,Z,3) with
Lie bracket® [(v,z), (w,y)] = (0, (v, w)ﬂ) . The corresponding simply connected
Lie group GH(V,Z,3) is then the space V x Z with (Campbell-Hausdorff)
multiplication (v,z) * (w,y) = (v +w,r+y+ %(U,U))ﬁ). If H:=GH(V,Z,p3)

is not abelian then the set

C:= {(0,(?],71))’@)‘ v,w € V}

¥ Maps will be applied from the right, and we use exponential notation. Linear maps, however,
will be denoted by juxtaposition; this should remind of multiplication of row vectors by
matrices.
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of commutators is a nontrivial characteristic subset, and it i1s contained in the
center of H which is a proper characteristic subset of H. In an almost ho-
mogeneous group H, we thus have that C' and the center of H coincide; this

entails C' = {0} x Z. Note also that 3 is nondegenerate if GH (V, Z, ) is almost

homogeneous.

2. Classification of Almost Homogeneous Heisenberg Groups

The almost homogeneous ones among the Heisenberg groups have been deter-
mined in [4]. They are characterized by the following result, see [4] 2.2 and 4.5.

Proposition 2.1. Let 3:V xV — Z be a nonzero symplectic map. The
Hewsenberg group GH (V,Z,3) s almost homogeneous if, and only if, there is
a compact group ® inducing groups of orthogonal transformations on V and
on Z that act transitively on the respective spheres, and such that the equation
(v, wp)? = (v,w)Pp holds for all v,w €V and all ¢ € ®. ]

Transitive actions on spheres are well understood, compare [3] 96.16-24.
The symplectic map # is somewhat hard to deal with. Standard methods of
multi-linear algebra lead us to consider the exterior product V AV (that is,
the space of skew-symmetric tensors) and the linearization 3: VAV — Z of 3.
The action of ® on V then yields an action of ® on V AV, and the map 3
is a homomorphism of R[®]-modules. The R[®]-modules V and Z are both
simple because of the transitive action of ® on the respective sphere. As an
almost homogeneous Heisenberg group GH (V, Z,3) is generated by V x {0},
we may (and will) assume that @ acts effectively on V'; the reader should be
aware, however, that this does not imply that & acts effectively on V A V.
As @ is compact, the R[®]-module V' AV is semi-simple, and the surjective
homomorphism 3 may be considered as projection onto some suitable simple
submodule of VA V. We will freely use the representation theory of compact
groups, cf. [1].

The R[®]-module V AV has a convenient model: we identify V AV
with the Lie algebra o4 of all skew-symmetric d x d matrices over R, where
d = dim V. The universal bilinear map from V x V to V AV 1is then given by
mapping (v, w) to the matrix v'"w — w' v, where we consider the elements of V
as row vectors, and v'" denotes the transpose of v. The action of the group @
on VAV is obtained by identifying & with a subgroup of the orthogonal group
O4R and restricting the adjoint action of O4R on its Lie algebra o4: that 1s, a
matrix A € ® maps X € 04 to A" XA = A1 X A. This interpretation makes
it easy to find certain submodules of the R[®]-module 0,4: for instance, we have
the Lie algebra f of @, and its centralizer (which is a submodule on which &
acts trivially).

The results of [4] amount to a complete classification of almost homoge-
neous Heisenberg groups. There are three infinite series:

Examples 2.2. First of all, one has nondegenerate symplectic F-bilinear forms
B F*" x F?" — F, for F € {R,C} and each positive integer n. This leads to
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almost homogeneous Heisenberg groups HZ" := GH (RM,R,ﬁﬁ) and H" :=
GH (CZ",C, BE), respectively. The skewfield H of Hamilton’s quaternions does
not admit nonzero H-b:linear forms. However, each anisotropic hermitian form
i H" x H* — H leads to a symplectic R-bilinear map #7: H” x H* — Pu (H)
via (v,w)% = Pu ((U, w)vﬁ). Thus we obtain another infinite series of almost
homogeneous Heisenberg groups HE" := GH (H", Pu (H) , 3%).

The proof that these series consist of almost homogeneous groups uses
the fact that, for F € {R,C}, the symplectic group Sp,,F contains a compact
subgroup U,K (where K is the skewfield extension of degree 2 over F) acting
transitively on the unit sphere of F?" | and transitivity of U, H on the unit sphere
in H"™. It remains to enlarge these compact groups in order to obtain transitivity
on the spheres in R, C, and Pu (H), respectively.

In the case of HZ", one may take a finite extension of U,C for the
group &. For F € {C,H} one uses ® = Sy U,H to show that Hz" is
almost homogeneous; here Sy is the group consisting of scalar multiplications
by elements of the unit sphere in F.

Apart from these infinite series, there are 6 ezceptional almost homo-
geneous Heisenberg groups. The group H? is obtained using a subgroup &
of SO4R, the R[®]-module 04, and the projection onto some simple submodule
Z of dimension z in 04. More specifically:

Examples 2.3: Exceptional almost homogeneous Heisenberg groups.
o The group H3 is obtained from ® = SO3R, with Z = o03.

e The group H{ is obtained from ® = SU3C, with Z the complement to
the Lie algebra of UsC in the R[SU;C]-module og.

e The group H? is obtained from ® = G, , with Z the complement of the
Lie algebra of Gz in the R[Gz]-module o7.

e The group Hf is obtained from ® = UpH, with Z one of the five-
dimensional submodules in the complement of the sum of the Lie algebra
of UyH and its 3-dimensional centralizer in the R[UsH]|-module og.

e The group H§ is obtained from ® = SU4C, with Z one of the simple
6 -dimensional submodules of the 12-dimensional complement of the Lie

algebra of U4C in the R[SU4C]-module os.

e The group H2 is obtained from @ = Spin,, with Z the complement of
the Lie algebra of Spin, in the R[Spin,]-module og.

For details, see the discussion in [4]. The main result of that paper is the following

(see [4] 7.5):

Theorem 2.4. Let H = GH(V,Z,3) be an almost homogeneous real Heisen-
berg group. Then H is isomorphic to an element of the series HE", HE", or

H3i", where n runs over the positive integers; or H is isomorphic to one of the
groups H3, HS HI 6 HE, HE, and HE. [ ]
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As we are interested in embeddings, the following alternative descrip-
tions of the groups H3, HS, and HI are helpful. For F € {R,C}, let V be a
3-dimensional vector space over F. Then the exterior product V A V', formed
over F, is a 3-dimensional vector space over F which may be identified with the
orthogonal Lie algebra 03F. Mapping (v,w) to v A w (that is, the commutator
map in 03F) yields a symplectic map A:V xV — VAV and an almost homoge-
neous Heisenberg group Sy := GH(V,V AV, A). A second method to construct
almost homogeneous Heisenberg groups starts with a noncommutative alterna-
tive division algebra F over R (that is, with F € {H, 0} ). The commutator map
induces a symplectic map from Pu(F) x Pu(F) onto Pu(F), leading to almost
homogeneous Heisenberg groups Cg and Cg, respectively. The classification 2.4
yields isomorphisms Hj & Sg = Cy, HS =S¢, and HI = Cgp.

3. Embeddings

We already noticed the isomorphisms Sg & Cg = H} and Cg = HY. There are
obvious inclusions H3" < H{", for each natural number n. Restricting ourselves
to the subspace C" of H" , we also find inclusions of HZ" in HE"; note that the set
of commutators of elements from C" x C" is a vector space of dimension 1 since
we take the pure part of a complex number. Moreover, we have an inclusion
H} = Sgp < S¢ = Hf, and an inclusion H} = Cg < Cg = HI. It appears
reasonable to ask for other embeddings.

In general, an injective continuous group homomorphism need not be an
embedding (that is, a homeomorphism onto its image). In the present situation,
we are dealing with connected, simply connected, nilpotent Lie groups, where
this problem does not occur: every injective continuous homomorphism between
such groups is an embedding. However, we will not use that fact in the sequel,
because we reduce our problems to R-linear maps. Recall that continuous group
homomorphisms between vector groups (that is, additive groups of vector spaces
of finite dimension over R) are R-linear. Thus it makes sense to consider
dimensions of the vector groups H' and H/H', for any Heisenberg group H.

There is one Heisenberg group that appears to be omni-present:

Proposition 3.1. Let G = GH(V,Z,3) be any noncommutative Heisenberg
group. Then there is an embedding of HE into G.

Proof. We pick elements z,y € G such that z := [z,y] # 1. Putting
S := Rz + Ry and Y := Rz we obtain the subgroup GH(S,Y,B|sxs) = Hi
in G. |

Lemma 3.2. Let G = GH(S,Y,~) and H = GH(V,Z,3) be almost homo-
geneous Heisenberg groups. Assume that ©:G — H s an injective continuous
homomorphism. Then the following hold.

a. The commutator groups satisfy G'* = H' N G¥.
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b. There are injective linear maps ¢1: S =V and p2:Y — Z such that the
following diagram commutes:

Sx§ 1 Y

(9017901)1 lw
VxV Z

c. We have inequalities dim G’ < dim H' and dim(G/G") < dim(H/H').

d. If diim(G/G") = dim(H/H") then p1, @2 and ¢ are isomorphisms.
Proof. First of all, we note that G’ = (G¥)’ < H' yields that ¢ induces an
injection of G' = {0} x Y into H' = {0} x Z. This gives the injective linear
map @9 from Y into Z. Moreover, we obtain an injective homomorphism from
G¥/(H' N G¥) into H/H'. As H' coincides with the center of H, we have that
H' N G¥ is contained in the center of G¥. But the latter is G'¥, and we have
proved assertion a. Moreover, we obtain an inclusion ¢: G/G' — H/H', and a
corresponding linear injection ¢q: 5 — V.

For each s € S we write g5 := (s,0) € G. Then we have (G'g)? =
H'(s%,0), and [¢%,9]] = (0,(3‘Pl,t"’1)ﬂ) leads to (0,(s,t)7%?) = [gs,q:]¥ =
[9%,97] = (0, (s%1,t#1)8) . This completes the proof of assertion b. We obtain a
commutative diagram

21

SAS — G/G'NG/C el .Y
991/\9011 @A@l lﬁﬁ 1902
VAV — H/H NH/H' ; - H' . 7

where ¢ is obtained by restriction of ¢. Equality dim(G/G") = dim(H/H')
yields that ¢y is an isomorphism. Then surjectivity of [ entails that the
embedding s, is also surjective, and we obtain the last assertion. |

Corollary 3.3.  There are no injective continuous homomorphisms between the
groups Hy", HE" and Hy", nor between HY and HY; and there are no injective
continuous homomorphisms between the groups HE , HY., HY, HE K HY, and HS.

|

Proposition 3.4.  There is no injective homomorphism from H{ into HY .

Proof. Assume, to the contrary, that there is an injective homomorphism ¢
from H{ into H}. We note that ¢ may also be considered as an (injective)
homomorphism of Lie algebras, because the exponential map is bijective (in fact,
the identity) for these groups. We consider the elements

w = ((1,0),0) , T = ((i,O),O) , Y= ((0, 1),0) , and z:= ((O,i),O)

in H{. Our assumption that ¢ is injective entails that none of these elements
is mapped into the center of HY. Since H} is almost homogeneous, we may
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assume w?¥ = ((1,0),0). As w and z commute with each other, we have
x? = ((p,a),p) with (p,0) € R x H and p € Pu(H). Using a suitable element
in the group UsH (which acts as a group of automorphisms on HE; ), we achieve
o € R, as well. We write ((a +a,0+ b),q) := y¥ and ((’y +ec,d+ d),u) = z¥
with (a,a),(8,b),(v,¢),(6,d) € R x Pu(H) and ¢,u € Pu(H). The commutator
relations for w,z,y,z in the Lie algebra of H{ are translated by ¢ into the
relations

[wsoyylp] = _[$¢7Z¢]7 [wlp7ztp] = [$¢7y¢]7 and [pr;ZLp] = 0.
The first two of these relations yield the equations
od=—a—pc and ob=c— pa.

As ¢ is injective, we also have that [w? y¥] = ((0,0,),—@) and [w?¥ z¥] =
((0, 0,), —c) are linearly independent over R. This implies ¢ # 0, and the third
commutator relation now gives

2 1 2
upu

0 = Pu((a—l—a)(’y—c)—l—(ﬂ—l—b)((S—d)) € Ra+ Re— 5 (ac).

o
However, since the elements a,c¢ € Pu(H) are linearly independent, the three
elements a, ¢, and Pu(ac) = a x ¢ are linearly independent, as well. This means
that the positive real number o2 + 1 + p2 has to be zero, a contradiction. ]

Proposition 3.5.  There is an embedding of H{ into H}f.

Proof. Resuming the notation from the proof of 3.4, we notice that w?¥ :=

((1,0,0),0), =¥ := ((0,1,0),0), y* = ((4,4,1),0), ¥ := ((j,—i,—2k),0)
defines an embedding ¢: H{ — H{?, as claimed. |

Theorem 3.6.  Let k and n be positive integers, let F,K € {R,C H} and
assume that there is an injective continuous homomorphism @: HEF — HE" . Then

k> n wmples F = K.

Proof. From 3.2 we know F < K. For K = R, there is nothing left to prove.
Now assume k > n. We have H2* = GH(V, Z, 3) with dimg V = 2k > 2n. The
image of V under ¢ will be denoted by 5.

In the case K = C, we have dimg S > %dimR C?", and the intersection
SNiS is not trivial. Therefore, we find u,v € V\{0} with v? = ju?. Commuta-
tors [(z,0),(y,0)] in HA or H2? are both given as (0, (z|y)), where (:|-) denotes
the (essentially unique) nondegenerate symplectic form on R2? and C?¢, respec-
tively. Picking w € V such that (u|w) # 0, we compute 0 # (0, (u?|w?)) =
[(u,0),(w,0)]? and [(v,0),(w,0)]? = (0, (v?|w?)) = (0,i(u?|w?)). This means
that the commutator of (H2F)¥ = H2* has dimension 2, and F = C follows.

Now consider the case K = H. The commutators in HE" are given by
[(z,0),(y,0)] = (0, Pu ((x|y))) for some anisotropic hermitian form (-|-) on H".
We consider a pure quaternion h € Pu(H). As before, we have SN hS # {0},
for dimension reasons, and find w,v € V such that v? = hu®?. Computing
[(v,0),(u,0)]” = (0,Pu((v?[u?))) = (0,h(u?u?)) € (0,h)R we find that the
commutator of (H2F)? = H2* contains {0} x Pu(H), and F = H. |
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Theorem 3.7.  There is an embedding of Hj into HE.

Proof. We construct the symplectic map 3:R* x R* — R? corresponding to
Hy , as follows: identify the R[SO4R]-module R* A R* with the Lie algebra oy,
and let 3 be the projection onto some 3-dimensional ideal Z.

Now restrict the R[SO4R]-module R* to an R[SO3;R]-module, and let
S be the (unique) submodule of dimension 3. Then the submodule S A S is not
invariant under the action of the larger group SO4R. Therefore, it is not one of
the ideals, and its image under 3 is a nontrivial R[SO3R]-submodule of Z. This
means (S A S)B = Z, and we have found the subgroup GH (S, Z,8|sxs) = H}
inside GH (R4, Z, /3) ~ HY. ]

Theorem 3.8. There are embeddings of HE into HY and of HY into HT.
However, there are no injective continuous homomorphisms from Hg or HE
into HY, and no injective continuous homomorphisms from Hy or H{ into HI.

Proof. For z € {6,7}, we model H? by the group GH (R?* Z,3,) obtained
from a suitable projection 3.:0. — Z , where o, is considered as an R[A]-module
with A € {SU3C, Gy }, according to the value of z.

Guided by 3.2, we search for a vector subspace S of R* such that
Y := (SAS)B. has dimension 1, 2 or 3. The restriction v: $x .S — Y of 3, then
gives a Heisenberg group GH (S,Y,v). We will find S together with a group of
automorphisms of GH (5,Y, ) in such a way that we also see that GH (S,Y,~) is
almost homogeneous; together with the parameters, this determines GH (S,Y,~)
up to isomorphism.

Let S < R* be a vector subspace of dimension 4. Then, under our usual
identification of R* A R# with o,, the subspace S A S corresponds to the Lie
algebra of the pointwise stabilizer of the orthogonal complement S+ of S in R?.
This allows to determine € := (S A S) N ker 3, , as follows.

For z = 6 we have that ker 3g is the Lie algebra of UsC, and £ either
is the Lie algebra of UyC (if S is a complex subspace), or of U;C. In the first
case, we obtain dimY = 2, and the action of UyC shows GH (S,Y,~) = H{.
The second case, where dimY = 5, does not lead to an almost homogeneous
subgroup.

For z = 7 we have to consider stabilizers in the group Gs. We regard
R” as the space Pu(0) of pure octonions in such a way that Gy acts as the
group Aut(Q). If S generates O, the pointwise stabilizer of S+ in Aut(Q) is
of course trivial. This means dimY = 6, and we do not obtain an almost homo-
geneous group. The situation is different if S+ generates a proper subalgebra
of @: this subalgebra is isomorphic to H, and the pointwise stabilizer of S+
in Aut(Q) is a group isomorphic to UyH = SU,C, while a subgroup ¥ = SO4R
of Aut(Q) leaves ST and § invariant, compare [3] 11.31. This yields dimY = 3,
and the action of ¥ shows that GH(59,Y, ) is almost homogeneous. |

Theorem 3.9.  There is an embedding of Hi into HE.

Proof. @ We consider HS = GH (]HI2,Z, B) as in 2.3: the symplectic map g
is obtained from the projection of the R[UyH]-module H?> A H* onto a five-
dimensional submodule Z.
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We claim that S := H x {0} generates a subgroup GH(S,Y,~) = Hg
in HS where, of course, we have v := B|sxs. We know that S A S is the Lie
algebra of the pointwise stabilizer T' of S+ = {0} x H in SOgR. The intersection
A =T NUzH is a group isomorphic to U1H. As the central involution of UyH
is not contained in A, we have that A acts effectively on Z, and the R[A]-
module Z splits as the sum of F' := Fixz(A) and some irreducible module of
dimension 4. The central involution of A acts trivially on Y because it induces
—1d on S. Thus Y 1s contained in F'. In order to see that equality holds, we
consider the projection 7 from the R[UsH]|-module 0gR onto the complement
C of the Lie algebra g of Sg- U;H. The centralizer of A in Sy - U;H has
dimension 6. Since A has 9-dimensional centralizer in SOgR , this implies that
(Fixo, (A)) m = Fixe(A) has dimension 3. The kernel of the restriction 7|gas
is the intersection of S A S with g, and thus 3-dimensional. We obtain the
equalities (S A S)m = Fixc(A) and (SAS)3=F. |

I did not find any embeddings from Hi into HE, for F € {C,H}. Ac-
cording to 3.2, the only other almost homogeneous Heisenberg group admitting
an embedding into H would be HE,.

The main problem is that the R[UsH]|-module og has lots of submodules:
it splits as the sum of the 10-dimensional Lie algebra of UsH, its 3-dimensional
centralizer, and the 15-dimensional sum of (pairwise isomorphic, and thus not
uniquely determined) 5-dimensional modules. The search for embeddings of
H: (or for proofs of nonexistence of such embeddings) would have to consider
subalgebras S A S = 04 corresponding to 4-dimensional subspaces S of RE.
For such subalgebras, one needs to know the intersection with the kernel of the
projection onto one of the 5-dimensional submodules.

For all (v,z) # (8,5), the exceptional almost homogeneous Heisenberg
group H? is described by a rather simple factorization of the module o0, . We use
this in the sequel to obtain a fairly complete understanding of embeddings.

Theorem 3.10.  There are no injective continuous homomorphisms from HE
or HS into HI.

Proof. Let V = Pu(Q) = Z, and define 3:V xV — Z by (v,w)? =
[v,w] :== vw —wv. Then H := GH(V,Z,3) = Cp = HI. Assume that G < H
is a subgroup satisfying G = Hf or G = H§. From 3.2a we know G' = H' N G.
The commuting diagram 5

H/H' x H/H - H'

]

G/G x G/G - G’

shows that there is a hyperplane T of Pu(Q) = H/H' such that dim[T,T] =1
or dim[T,T] = 6, respectively. Every hyperplane in Pu(Q) is the orthogonal
space z1 of some nonzero element = € Pu(Q). Using transitivity properties of
Aut(0), we may assume T = it. Now we compute 2i = [j,k] € [i+,it] and
—25 = [j1,1] € [i*,it]. The orbit of j under the stabilizer of 7 in Aut(Q) is
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the unit sphere in i1, see [3] 11.30. Therefore, we obtain Pu(Q) = [i1,i1],

contradicting our assumptions. This shows that there is no subgroup isomorphic
to HS or HE in HT. ]

Theorem 3.11. There is an embedding of HS into HS, but there is no
continuous injective homomorphism from HY into HS.

Proof. Choose a vector subspace S of R®, and assume that dim S = 6. Then
S A S corresponds to the Lie algebra g of a subgroup T' 2 SOgR in SOgR, and
rnuUuC=UsC (if CS = 95) or TNULC = U,C (if S is not a complex subspace).
The R[SU4C]-module o0z has two 6-dimensional simple submodules Z; and Z,
whose sum Z; 4+ Z; forms a complement to the Lie algebra u of UyC. Restricting
the projection n: 05 — Z; +Z3 modulo u to the 15-dimensional space SAS =g,
we find dim(g Nu) € {9,4}. In the latter case, the projection of g to Z; has
dimension at least 11 — 6 = 5. Surely, this does not yield an embedding of HS, .

It remains to consider the case where § is a complex subspace. Then
there is at least one simple R[SU,C]-submodule Z of Z; + Z5 such that the
projection onto this submodule has nontrivial restriction 8 to S A S. As an
R[SU3C]-submodule, the module Z has to be simple (note that all the trivial

R[SU3C]-submodules of 0g are contained in u). We have thus found a subgroup
GH (S, Z,[3) of H§ such that GH (S, Z,3) = HS. [ ]

Theorem 3.12. There is an embedding of HI into HS. Moreover, up
to automorphisms of HS, any almost homogeneous Heisenberg group properly
contained in HS is contained in the image of this embedding. Consequently, there
are no continuous injective homomorphisms from H, HL, HE or HY into HS.

Proof. The group Spin; contains a subgroup isomorphic to Gy (this is just
the stabilizer in the transitive action of Spin; on S7). Restricting the simple
R[Spin,]-module R® to an R[Gs]-module, we obtain a (unique) submodule S
of dimension 7. Under the identification of R®* A R® with og, the exterior
product S A S corresponds to the Lie algebra of the stabilizer of a vector.
Thus it does not coincide with the Lie algebra of Spin,. This means that the
projection 3 from the R[Spin,]-module og onto its 7-dimensional submodule Z
(leading to the Heisenberg group GH (RS, 7, B) >~ HZ) restricts to a nontrivial
map from S A S to Z. But the group G acts irreducibly on Z, and we
obtain that GH (S5, Z, 3|sxs) is a subgroup of GH (RS, Z, ﬂ_) with the property
GH (S, Z,8|sxs) = HE.

Now assume that H < H2 is an almost homogeneous Heisenberg group.
Then H # HE implies H + Z # H2, see 3.2d. Thus (H + Z)/Z is a proper
subspace of the vector space HS/Z, and its orthogonal complement contains
a nonzero vector v. As the orbit of v under Spin, meets the orthogonal
complement of (S + Z)/Z, we may assume (H + Z)/Z < (S + Z)/Z, and
H < 5§+ 7, as required. The rest follows from 3.8 and 3.10. [ ]

Open Problems. It remains to answer the following questions:

(a) Is there an embedding of Hy into HS ?
(b) Is there an embedding of H. into H§ ?
(c) Is there an embedding of H into HZ or into HS ?
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(d) Is there an embedding of Hf into HS ?

Note that in each of the open cases the larger group has a dimension which is
considerably larger than that of the subgroup in question.

Apart from these special problems, there are the following, more general ones:
(e) For which pairs (k,n) of positive integers is there an embedding of HE
into HE* 7 (Partial answers have been given in 3.4, 3.5, and 3.6.)
(f) In those cases where embeddings exist: what can be said about unique-
ness?

The following diagram attempts to visualize the embeddings of almost homoge-
neous Heisenberg groups, as far as we have found them. The diagram contains all
almost homogeneous Heisenberg groups of dimension at most 18; in particular,
all exceptional ones. Absence of (paths along) arrows indicates that no embed-
ding exists. There remain the Open Problems, as stated above (and indicated
by dotted arrows in the diagram). See, however, the results in 3.3, 3.8, 3.10,
and 3.11.

10 12 14 16
HJR HJR HJR H]R

H

12 16
HC HC

HE?
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