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On Representations of SL,
with Algebras of Invariants being Complete Intersections

Dmitri A. Shmel’kin*

Communicated by E. B. Vinberg

Abstract. We obtain the complete list of representations of SL,, such
that the algebra of invariants is a hypersurface. We also give a list containing
all the representations of SL, such that the algebra of invariants is a
complete intersection.

Introduction.

Let A be a N-graded finitely-generated commutative algebra over an algebraically
closed field k of characteristic 0 such that Ay = k. Then a choice of a minimal
system fi,---, f, of homogeneous generators of A yields an exact sequence

0—-1-k[T,---,T,] > A—0,

where [ is the ideal of syzygies of f1,---, f,. Denote by tr.deg.A the transcendence
degree of A and set hdA = n —tr.deg.A. If A is a Cohen-Macaulay algebra, hd A
equals the homological dimension of A, i.e., the length of a minimal free resolution
of k[T1,---,T,]-module A ( [20]). The algebra A is called a hypersurface if I is
a principal ideal, i.e., hdA = 1. Moreover, A is called a complete intersection if I
is generated by hdA elements or, equivalently, a minimal system of homogeneous
generators of I is a regular sequence in k[T%,---,7,]. In this case the affine
variety X = Spec(A) naturally embedded in A" is the intersection of n —dim(X)
hypersurfaces. In the sequel, c.i. will be shorthand of ”complete intersection” and
h-s of "hypersurface”.

Let G be a reductive algebraic group over k, p : G — GL(V) a finite-
dimensional representation. The algebra k[V]¢ of G-invariant regular functions
on V is finitely-generated by Hilbert’s theorem. Recall that p is called coregular

*This research was supported by RFFI grant 98-01-00598, CRDF grant RM1-206, and
INTAS-OPEN grant 97-1570.

ISSN 0949-5932 / $2.50 © Heldermann Verlag



208 SHMEL'KIN

if k[V]¢ is a polynomial algebra. We will say that p is a c.i. (h-s) representation
if k[V]¢ is a c.i. (h-s).

In this paper we classify c.i. representations of SL,. The starting point
of this classification is the Classical Invariant Theory of the 19" century. For
example, classical texts consider all the c.i. representations of SLy (see, e.g. [7]).
Coregular representations of connected simple groups are classified in [9], [1],
[18]. Noncoregular irreducible c.i. representations of connected simple groups
are classified in [14] and [22, 5.1]. All of them are h-s. Also, [14] contains
the classification of c.i. representations of SL,. In [22], [23] we classified the
representations of connected simple groups admitting a finite coregular extension
in GL(V). All of them are h-s. Further, [15] provides some important examples
of c.i. representations of simple groups. It should be noted that noncoregular c.i.
representations listed above are for the most part representations of SL,. The
results of this paper are the following

Theorem 0.1. A representation p : SL, — GL(V) such that V5~ = {0} is
h-s if and only if either p or its dual is contained in Tables 1-8.

Theorem 0.2.  For any c.i. representation p : SL, — GL(V) such that
VSn = {0}, hdk[V]5En > 2, either p or its dual is contained either in Table
9 or in List 10. All the representations in Table 9 are c.1.

The paper is organized as follows. In § 1. we present Tables 1-9 and List 10.
In § 2. we apply Classical Invariant Theory to calculate generators of the algebra
of invariants for several series of representations, some of them being c.i. In § 3.
we explain how we got our lists. In § 4. we prove Theorem 0.1. In § 5. we prove
Theorem 0.2 and also discuss the indeterminate cases from List 10. In § 6. we
discuss the situation for the other simple groups.

1. Tables.

For the group SL, we denote by ¢;,2=1,---,n — 1 the fundamental weights. A
dominant weight is denoted by a monomial in ¢;-s. This monomial denotes also
the irreducible representation with the corresponding highest weight. A reducible
representation is denoted by a polynomial in ¢;-s like @105 + ¢?. An asterisk
denotes the dual representation, for example ¢} = ¢, _;. Note that o;,0%, 10,1
is nothing but A’k™, S’k", and the adjoint representation, respectively.

For each p : SL, — GL(V) from Tables 1-8 below we describe a minimal
system of polyhomogeneous generators of k[V]¥L» and the generator of the ideal
of syzygies. Here ”polyhomogeneous” means homogeneous with respect to each
irreducible factor of a fixed decomposition of (SL,, V). For some generators and
syzygies we give only their polydegrees, for example f(3,0,1). However when it
is possible and reasonable, we describe them explicitly.

From now on, we fix tensor notation for coordinates on irreducible factors
as follows: v* for @1, a; for ¢}, AY for p?, C;; for ¢2_,, BY for ¢,, D;; for ¢},
Q¥ for @3, L} for 1¢_1. Tensors corresponding to different isomorphic factors

differ from each other by an index in parentheses as follows: Ag), D,(;f) .
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For describing invariants we use well-known notation of linear algebra: detA
for the determinant and trL for the trace of a matrix, pfB for the pfaffian of a skew
matrix, [a()--- )] for the determinant of a system of vectors or linear forms,
a(v), B(a;, o)), Ala) = A(a, a) for the corresponding contractions of covariant

Table 1. The serial h-s representations of SL,,.
n > 4 in entries 6-9,13,14, n > 3 in the other entries.

P Generators Syzygy
n+1
1{(n+1)pi1+ | d; = [U(1),"',?T(i\),---,v(n+1)], ii—:l(—l)idili =0
+¢7 l; = a(v(i))
2| ner+npy | d= (o), vwl b = e (vg), | de = det(ly)i; -
e = log) - ),
3| o2+ npt d=detA e = [oq) - ), de* = det(fij)Zj:I
fii = Alag), 0),1 <
4| i+ d = detA, fi; = Ao, o), i < J, fi = det(fij)7;-
(n = 1)gi+ | fan = [A7- - Ay _][A7--- AT ], | for fin = dfns
+p1 fni = @ (v), fo = [A}--- AL _jv]*
(AL o) - (An_ 1, -1y
5 ¢l +rei+ | d=detA, A(a(i)a O‘(j)):i <J ely = eren + dg
+2¢1, o) (v(k)) e = [A] - Ay o ]*
r<m—3 |*[A2-. levl)]/-c<l
9= [Al Ap 5001V |*
AT A2 2V(1) V(2 )]
6|92+ nQOT d= pr’ €= [Oé a(n)]a de = pf(fij)zn,jzl
n even [ij = Blag, a(j)),i <j
7| @2+ nei+ | neven : allof 6 and ag)(v) de = pf(fij)7 =1
+¢1 nodd : e, f;; of 6,1; = agy(v), de = F(fi;, lk)
= [B--- By
8| ot B(ory, o)), k < 1, o (vgy), and (n—2,1,---,1)
(n—1)pi+ | neven : pr [B-- Bv(Z v, t < J
+3¢1 odd : [B BU(,)] [B Bv(l)U(Q)U(g)]
9| ot B(awy, o)), k <1, o) (v)), and
ret+4p; | neven: hz] =[B-- Bv(Z vili <J, | dp = highas+
r<n-—3 d=piB,p= [B " 'BU(l)U(Q)U(3)U(4)] hizhos + hishos
=[B--Bugy -3 - - v

and contravariant tensors. For bilinear tensors X% and Y}; we denote by XY the
operator XY}’ = X¥Y);.

We also describe invariants of SL, as contractions of copies of the above
tensors with copies of SL,,-invariant covariant tensor det,,..;, and its contravariant
analog det . A contraction containing p copies of a tensor X defines an invariant
of degree p with respect to the irreducible factor corresponding to X . Copies of a
tensor corresponding to the same factor differ from each other either by an index

without parentheses ( Q7% QY* etc.) or as follows: Azm Aééiz ete.
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We present contractions in a special short form as follows. If an upper
index of a tensor is contracted with a lower index of another one, both tensors
being different from det, we place the symbols of the tensors with the indicated
indices in parentheses; for example, (A2%_,, oq,_1)) means that the second index of

Table 1. Continuation.

10 | 202 + ¢4 fio s det(Aqy — M) = foA" +---+ | fE=F(--")
+fn', [AZ A21)A”+1‘ Azg) ‘o)
«[ ALl ---Agl Alt - Al

l=0,---,n—1,
frin(n—=1)/2,n(n—1)/2,n)
11 | 207 + ¢} Ji of 10, Ag)(a), fi=F(-)
(Al -+ Al ATy - AT
A AfﬁA((I?) AT

(Aﬁ) )(A(é) =1,---,n

@), m
frin(n—1)/2,n(n—1)/2,n)

12 0+ @2 1+ | d, fun of 4,detC, tr(AC)Y, f2=F(-)
+¢1 C(v,(AC) ), 1<i<n-—1,
frin(n—1)/2,n(n—1)/2,n)
13| 2+ s+ @1 | d, fanof 4, f; = tr(AD)%, f? =

n=29m+1 gi= D, (AD)* ), i=1,---,m, eF(f;) + dgm
fL — [P ) 'PU]’ij = f4lel77114m]C +dR(f'LagJ)

14 | o + 5 + 31 | d;, eq of 9,tr(BD)’, (2m —1,m,1)
n=2m+1 | D(vw,(BD)'v),i=1--,mk<I
15| pr1on-1+ o, =trl* 2<k<n, f,= a(le), de — det M
To1+ ¢ 0<I<n—-1ld=[vLv---L* W], |M;=
e=[aaL---al"!] = a(Li*iy)?

Ap_y is contracted with the unique index of «,—1y. Further, we write brackets [- - -]
for each copy of det and det™ and place into the brackets the tensors with their
indices contracted with this copy (the absence of indices means all the indices).

If our representation contains several isomorphic factors, say py;, and a
contraction involves v, ---,v(), then it is assumed that each of 4,---,j runs
from 1 to p; if necessary, we give restrictions on 7, ---,j

We illustrate the above conventions by an example. For p = 3ps + 1 + 3
of SL, we wrote: [B(k)B ](B(l «), k < I. This means:

[B(k)B(ll)U](B(%)a a) = szﬁlBfffzvt%detmmt-

Since p contains 3 copies of ¢, k <! means 1 < k <[ < 3 and this contraction
defines 3 different generators.

References like ” f;; of 6” mean that one should append f;; from entry 6 of
the same Table to the list of generators.

The notation fr, refers to a polynomial generating the ideal of functions on
V' vanishing on a codimension-1 Luna stratum of the quotient for a finite extension

2By the Hamilton-Cayley theorem, for any p € N «(LPv) is a polynomial in f;, 0.



H C GL(V) of p(SL,) (see [23]). Note that in these cases such a group H and
such a stratum are unique. Furthermore, f? = F(---) means that F depends on

all the generators

We drop sometimes coefficients of monomials in the syzygy.
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but fL .

multiplying the generators by some scalars, one can get such a form of syzygy.

Table 2. The h-s representations of SLs.

This classification is contained in [16, Theorem 10.2] For SL, we write ¢
In entries 3,7,9 the action of SLy, on ¢? and ¢*
of as that of SOz on vectors A of k® endowed with an invariant form (x,x) and
on selfadjoint operators R on k3, respectively. The explicit form of generators in

instead of ;.

entries 5,6,10,11 can be found in [7] (or [21] for 5,6).

P Generators Syzygy
1 |4y ZZ] = [v(i)v(j)] l12l34 — li3log+
liale3 =0
2 | @*+2¢ | d=detA, f;; = [Alvp)][A%v0)], de? = fi1for — f%
i < j,e=[vnyve)
3 | 3¢? fig = (Aw> Ap) i < 7, d? = det(fi;); =1
d = [An) A A)]
4 | 2¢%+ ¢ | allof 3for Az = v?, but fz3 =0
5 |3+ ¢ [ D(4,0),H(2,2),G(3,3), f(1,3) G’ + H?>=Df?
6 | >+ ¢? | D(4,0),detA, (2,1),(2,3), fr(4,3) fP=F(-)
7 | "+ o | RE, R, (A, AY, (RA, A), (R2A, A), | f2=F(-)
L =[A, RA, R?A]
8 |¢*+¢ |allof Tfor A =v? but(A, A) =0
9 |20 tr(RfRiy)), b +1=2,30r (k,1) = (2,2) | (6,6)
10 | ¢° (4), (8), (12), f1.(18) fi=F(-)
11| ¢° (2), (4), (6), (10), f1(15) p=F(-)
Table 3. The h-s representations of SLs.
In entries 5,6 X = A(l), Y = A(g), Z = A(3) ;
P Generators Syzygy
1| 20109 tr(L(1 9) k+1=2,30r (k1) = (2,2), 2=F(---)
fL= tf(Lu)L@)L(nL?) LiyLinLeLw)
2 @1¢2+Q0% (2a0) ( ) ( )’(2’ )7(3 3) ( )’( ’3) (1279)
3lei+er | (4,0),(6,0),(3,3),(5,3), (4,6), f1(12,9) | ff =F(--)
4 90?+§02 (4,0),(6,0),(1,3),(3, ) (8 6) (12,9) fg = ()
5 | 32 coefficients of det (X + uY + \2), (6,6,6)
[(X{Y} Z1][X, Yy Zo)[ X3 X5 Z7)[Yi°Y5 Z3]
6 | 292 + @2 | coefficients of det(X + \Y'), detC, tr(XC), | (6,6, 6)
tr(YO), tr(XC)2, tr(YC)2, tr(XCYC),
(XX VRV Yy XF)(XT, C1) (Y, Cs)

However by

can be thought
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Table 4. The h-s representations of SLj.

In entries 3-5: Miimypg = (BB

V@) [ By Bloyv)]-

P Generators Syzygy
1]} (8), (16), (24), (32), (40), f1(100) fi=F(-)
2 | 6o (BB, i < g, fr(1,---,1) fr=F(-")
3| dps + 1 [BZ)B(J)] t < J, hgiman, k<l <m (2,2,2,2,4)
4| 32 + 2¢ (B Z)B(J)] [B V(1)V(2 ] 1< 7, (2,2,2,2,2)
h123,pq1p < q

5 3902 + Y1+ @3 [B )B(])] 1 < _], (1}) h123 11, (2, 2, 2, 2, 2)
[By Byv|(Bpy, @), k <1,
[Ba) (2)3(3)](3?2),a) B(23),a)

6 (10% + 1 ( ) ( ) (41 0)’ (5’ O)’ (6’ 0) (30’ 16)
(3,4), (5,4), (6,4), (7,4), (9, 4)

7 (Pg+902 ( )a(3’0)5(4:0)7(5’0)’(&0) f%:F( )
(0,2),(1,2),(2,2),(3,2), (4,2), (5,2),
fL( 5,6)

Table 5. The h-s representations of SLs.

P Generators Syzygy

1 2g02 + 3g04 [B(l)B(Q)B(lz)](CM(]), B(ZZ)), (2 2, 1, 1, 1)
By (o), aw),i=1,2,5 <k

2302+ 1 [Bi)Bj)B())[Bii) By By (4,4,4,1)
[Bii) By B[ Biiy By By 7 < K,
1 75 j,i 75 k‘, [B(Z)B(m)v],l S m

3| 202 + @3+ @1 | tr(ByD)P(ByD)%,p+q=1,2, (4,4,4,2)
[Bii) BiiyB(;)| (B, D1) (v, Dy), i # ,
[BayBmyv], 1 < m,
[B B B(z)][B 2Bz B(l)](321)aD1)*
*(By: D2), v"v° B BEY Dy Dyns Din

Table 6. The h-s representations of SLg.

= [QQT*QI)[QQ*Q3, e = pfB, f = [QBQ*[QBB'|[QQ"™B?],

= [@BB'(B?, o)), hi = [QQ™B1][QQ*BiB;](B3, o),
= [QR¥B'|(B?, a»)(Q?, ay)).-
P Generators Syzygy
1| @3+ 2+ 295 d,e, f, B(agqy, 9), 9, hi, pij, (8,5,2,2)
[@BQI][QRTQ:*|(Q7F, a1)) (@3, o)
2| o3+ o+ o1+ o5 | dye, f, g1, b, P11, a(v), [QBy], (8,6,2,2)
[QQR™v][QBQ’], [QB] Byv][QB; B3v],
[QQ12/U] (Q3’ a)’ (2’ 3’ 1’ 1)’ (4’ 3’ 1’ 1)




SHMEL'KIN 213
Table 7. The h-s representations of SL7.
= [QR*Q3Q1][QR*Q3Q7][QQ5° QT4
= [QQ%Qng(l)][QQ?QgU 2)][QQ5*Qiva)]s Thim = Q(r), ), Ctem))
= [QQ’ Qv [QQQ1vy)], 9 = [QRPQYI(QT, 2w (@3, o)),
z ts — [QQPQ%H[QQ% IU ](QZ; a(t))(Qi&v )
P Generators Syzygy
S03+3(,01 dapafijaigjae(532’252) p2:de+F(f2])
Y3+ 2()01 d, f'L]agZJaZ <7 a(k))(v(i))ahi;l% (14521252:2)
+2S06 [Qlev(l)U(Z)](Q3a a(i))a (7a 1,1,1, 1)
w3+ @1 | d, fi1,9i5,1 < J, o) (v), hags, t < 58,7123, (13,2,2,2,2)
+3()06 [QPQ%QQ{?U]( ?7 a(U)(QQ? 2))(@3: )
Q03+4()06 d gzgai<jarklm:k<l<m (6a171:151) (1272:232:2)
p3+ @2 | d,(1,2),(8,2),(2,4),(9,4), fi=F(-)
( ’6)’ ( 0, ) (10 6) fL(15 9)
Table 8. The h-s representations of SLg.
p Generators Syzygy
(7:ja3 ) J_Oala ) (4a252 ,fL(22 3 3)
Y3+ o1+ (16,0,0)5(1052,0)5((]’1 1)a(650, )’(7 3, 0) fg:F()
+pr7 (135 2a 1)5 (31 15 2)a (95 Oa )a (165 2 ), L(24: 35 3)
S03+2(107 (16,0,0)7(611'72_7’)11_071127 df[%_ ( )
(9,4,3-4),J=0,1,2,3,(12,2,2), f£(10,3,3)
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Table 9. The known c.i. representations of SL, with hd > 2.

Set m :% for n even, m :”T_l for n odd.

n P hd
1123 (n+1)er+ref r
2<r<n
2 >3] ¢l +201+ (n—2)¢; 2
3 | =242+ 201+ nel 2
4 | >4 o2 +4p1+ (n—2)¢] 2
O | 241209+ kpr + 1o} ifn=1=4

k+1l=4,k>2ifnisodd | m,if n =2m < 20 + 2
n—1—1,else

6 | =>5|p2+9s+kor+1p] m, if (k,1) = (2,2)
k+l=4k>1 m,if (k,1) = (3,1),n =2m
[ > 1lifnisodd m+ 1, else

T >4 07+ oo+ kot + lg} 2,if n =4, (k,1) = (0,2)
k+1=2k>1ifnisodd | n—1—1,else

8 | >5 | i+ s+ ko1 + g} m,if (k,1) = (0,2)
kE+1=2,1>1ifnisodd |m,if(k,l)=(1,1),n=2m

m + 1, else

9 [2 [2¢° 2

1004 | o2+ 3p 2

1114 g01g03+2(102 3

12 |6 03 + L1 + meps 2,if (I, m)

= (3,3),(4,1),
(I,m) = (3,3),(4,1),(4,2) | 4,if (I,m) = (4,2)
13|16 | o3+ @9+ 20, 2

List 10. Representations of SL, that may be c.i.

SLy,n>5 odd: ©? + o + 207, 209 + 01 + 3%, 209 + 47,
SLs: 3pa+ @4, 202 + @3+ @u, SLr: o3+ 301 + .-

2. Classical methods.

Recall some classical results on invariants of SL, (see, e.g. [17, §9]). In this
section, vectors are denoted by characters x, ¥, z, etc., covectors by Greek letters.

Theorem 2.1. A minimal system of generators of k[Ik™ + mk™]n is:

a(x), [(l/, o 'aﬁ]: [.’L’, o ay]-
The ideal of syzygies have generators of the form:

[CU, Yo Z]l(u) = [u’ya T Z]l(x) +t [:C, Y o u]l(z)’ (1)
where either l(u) = a(u) or l(u) = [u,v,z,---,w], similar relations for a-s, and
[ vi ol g, o] = det(ai(vy).

Consider now a representation of SL,, in the space V = Vi +---+V,,, where
coordinates on each Vj is a tensor 7} over k™.
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Theorem 2.2.  The linear space k[V]5' is generated over k by the complete
contractions of copies of the tensors Ty, --,T, with copies of the covariant tensor
det and the contravariant tensor det™ such that either det or det™ is not
wwolved in the contraction.

Furthermore, in some cases one can reduce the set of contractions that give
generators. In [1] this was done for several series of representations. Unfortunately,
this paper is not available in English and also the text is not completely clear even
for a Russian reader. Therefore we present these results below.

Lemma 2.3. A minimal system of generators of k[A2k™ + IK"™ + mk™|5Ln is:

a(x),[a---ﬁ],B(a,ﬁ),and
forneven: [B---B|,[B---Bx---yl,---,[x---y],
fornodd : [B---Bx],[B---Bxyz|, -, [z -y].

Proof. Let f be a polyhomogeneous generator of the algebra of invariants. By
2.2, f can be represented by a contraction of copies of tensors BY, .-+, y, o, - -+
.-+, B,det,det ™. We say that a copy B, connects two copies of det, if the indices
of B, are contracted with these two copies. To prove that the above invariants
generate the algebra of invariants, it is sufficient to present f by a contraction
such that a det has no connections with other det-s.

The classical idea consists of two steps. First we polarize f, that is, we
substitute in the contraction ¢ ”different” tensors B instead of ¢ copies of B,
where ¢ is the degree of f by B. This new point of view makes f a multilinear
invariant. Secondly we note that, as a multilinear invariant, f is completely
determined by its action on "decomposable” tensors B, = b @ b» — blr ® b'».
Substituting such By, - -+, B, in the contraction, we obtain a linear combination of
contractions of vectors b, b/, .- bl bl z --- vy, covectors a,---,/3, and det-s,
skew by b, b for any p. Assume that ¢ > 0 and some b is contracted with a
det. Then f can be written as follows:

=020, b b b0 — [b%2, 0, - B b B 101,

We apply the formula ( 1) and obtain:

f = [bjl,bh, t '7bipabjpabi1: o ]l(bzz) + [bizabjla t '7bip7bjpabi17 o ]l(bjz) + o

Now the sum of the first and the second summands equals —f, if we
forget the polarization. The same is true for the sum of the third and the fourth

summands etc. Therefore we obtain: f = —(2p+1)f+g, where g is a contraction
such that b, b7, --- b b are contracted with the same det. Thus, f = ngﬁ,

and we can ”cut off” all the connections. That this system of generators is minimal,
follows from a consideration of their polydegrees. |
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Lemma 2.4. A minimal system of generators of k[S?k™ + [k™ + mk™]5L» is:

oz(:v),[oz---ﬂ],[x---y],A(a,,B),
[Ai---Azl,x---y][Af---Azz---w],p2 1,
[AL - Ajz - -y](AT, a) -+ (AL, B).

Proof. Note that if both indices of a copy of A are contracted with the
same det, then the contraction equals zero. Hence, it is sufficient to prove, that
if in a contraction giving a generator there is at least 2 det-s, then it equals
[A}--- Ajz---y][A7--- AZz---w]. An application of the formula ( 1) as in the
proof of 2.3 completes the proof. [ ]

Lemma 2.5. A system of generators of k[2 A2 k" + IK™ + mk™]5L» is (we set
A= B(l), B = B(Q))

a(x),[oz---,@],A(a,,B),B(oz, ﬁ)v
[x...yA...AB...BB%...B;](B%Q)...(35’5)_ (2)

Proof. Take any contraction with A-s contracted with a det. As in the proof
of 2.3, we can transfer to these brackets all the a’t-s such that a’-s are already
there. Then we transfer all the b%-s from these brackets to their #%:-s that are
in other brackets. Clearly, the A-s and B-s that were completely in the first det
before the latter procedure, remain there after it and we can repeat the procedure
for A-s, then for B-s. Finally, we obtain one of the above generators. |

Remark. All the above generators except some invariants from ( 2) with p > 0
can be included in a minimal system of generators. On the other hand, 2.3
implies [zB--- BB'|(B?,«) = ca(z)[B--- B],c € k. Since the set of polydegrees
for a minimal system of generators is symmetric with respect to the transposition
of two ¢y factors, an invariant from ( 2) can be included in a minimal system of
generators only if it involves > p copies of A. Sometimes this is also a sufficient
condition (see § 5.).

Lemma 2.6. For V = AZk™ + A’k™ + k™ + mk™ a minimal system of
generators of k[V]|5tn is:

[@---BD---D|,[B---Bx---y],tr(BD)*,2<2s <n-—1,
a((BD)'z),0 < 2t <n —2,D((BD)"z,vy), B(a(BD)", 3),0 < 2p < n — 3.

Proof. Consider a contraction giving a generator f. If a det is involved in the
contraction, then, arguing as in the proof of 2.3, we may change the contraction
to have that a det have no connections with other det-s. Then this f is nothing
but [B---Bz---y]. The same is true for det™. Furthermore, in any contraction
without det and det™ we can find a maximal chain like ADA---D such that
any two neighbors are contracted with each other. The two extreme indices are
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contracted with each other (this gives tr(BD)?®), or with z,y (D((BD)Pz,y)), or
with a, 8 (B(a(BD)?,8)), or with a, z (a((BD)'z)). Which s,t,p give members
of a minimal system of generators follows from a consideration in [18] of coregular
subrepresentations with (I, m) = (2,0), (1,1). u

Lemma 2.7. A system of generators of k[S?k™ + A2k™ + [k" + mk™|5L» is:

a(z), Ala), A, B), B(a, B),
[a,---,B],[B---Bx---yA}---Azl,](Af,a)---(Af),ﬁ),
[A}---A}B---Bx---yBll---B;](Bf,a)---(Bg,ﬂ)* (3)

A3+ APB Br 2Bl - Bl|(BLy,0) -+ (BEA), 1> 0.

Proof. Let f be a generator of the algebra of invariants. If f is a contraction
without det-s or having only one det, then as in the proof of 2.3, we prove
that f is one of the above invariants. Assume now that f is a contraction
involving A and at least two det-s. Then as in the proof of 2.4, we can transform
f=[A}---ALl---][A}--- A2..]--- such that A;,---, A, are all the A-s contracted
with both det-s. Further, as in the proof of 2.3, we transfer all the b%-s from
both det-s to their &’¢-s that are outside these two brackets. We repeat the first
procedure, then the second one and so on. In the end we will have that both our
det-s have no connection with other det-s; since f is a generator, there are only
two det-s. Moreover, for any b contracted with one of two det-s, b’ is either
in the same det, or is contracted with «, or is in the other det. In the first and
the second cases we are done. In the third case we apply the formula ( 1) to our
contraction to bring ¢ in the first det and proceed as in the proof of 2.3 (note
that terms containing [--- AL --- A%--.] are zero). ]

Lemma 2.8. A system of generators of k[S?k™ + A2k™ + [k™ + mk™ |5 js:

[D---Da---ﬁ],[A}---A,lcac---y][Af---Aﬁac---z],

tr(AD)* 2 <25 <n—1, (4)
D(z, (AD)**'2),0 < 2t <n — 3, A(a, a(AD)*),0 < 2u < n — 2, (5)
D(z, (AD)"y), A(e, B(AD)?), a((AD) ), (6)

and, if [ > 0, some contractions involving exactly one det.

Proof. Arguing as in the proofs of 2.3 and 2.4, we have that, if a contraction
of a generator f involves det '-s or at least two det-s, then f is one of the above
invariants. If f involves exactly one det and f = [A}--- Al]--- then f vanishes
on the zero level of detA; since the latter is irreducible, f is not a generator. If
the contraction does not contain det and det™, then as in the proof of 2.6, we
see that f is one of the invariants from ( 4),( 5),( 6). The restrictions on s in
(4) and on t,u in ( 5) follow from a description in [18], [22] of the algebra of
invariants for the subrepresentations with (I, m) = (1,0), (0,1). n
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3. Necessary Conditions.

Let G C GL(V) be a reductive algebraic group. The algebra k[V]“ is finitely
generated and the affine variety V /G = Speck[V]9 is called the quotient whereas
the natural morphism 7y : V — VG is called the quotient map. For any point v
of a closed orbit Gv € V' the isotropy group G, is reductive by the Matsushima
theorem. Choose a G, -invariant complementary vector subspace N, to T,(Gv)
in T,(V). The representation (G,,N,) is called the slice representation of v. By
Luna’s slice theorem [12], the natural morphism (v + N,)/G, — VG is étale at
ot N, (v). This implies:

Proposition 3.1.
1. ( [16, Theorem 1.2]) hdk[N,]% < hdk[V]“
2. ([2])) If V)G is a c.i., then N,J|G, is a c.i. as well.

Let Vi,V5 be G-modules. Choose a minimal system of polyhomogeneous
generators of k[V; + V5]%. Clearly, the elements of this system of degree 0 with
respect to Vo constitute a minimal system of homogeneous generators for k[V;]¢.
The same is true for the syzygies. Then from the definition of c.i. we obtain:

Proposition 3.2.  If (G,Vi +V3) is a c.i., then (G, V1) is a c.i. as well.

Using 3.1 and 3.2, we reduce in most cases the question about c.i. property
of a representation of SL,, to that for a finite group, a 1-dimensional torus, or SL,.
For finite groups we have:

Lemma 3.3.  ([6], [10]) Suppose that G is finite and V|G is a c.i. Then G is
generated by elements v such that vk(r — Id) < 2.

For 1-dimensional torus we use the following easy observation.

Proposition 3.4. The representations of k* defined by the following systems
of weights are not c.i.:

ottt ), (G T ), (4 R T R ).

Now we explain how we got our lists. Any irreducible factor of a c.i.
representation is ci. by 3.2; by [14], [22] such a factor is either coregular (see
[9]) or (SLg, %),k =5,6, (SLs, ¢3). The remaining candidates for reducible c.i.
representations were found by applying 3.1, 3.2 to sums of the above irreducible
factors. The absence of the c.i. property for slice representations follows from
3.3, 3.4, and the classification of c.i. representations of SLs from [14]. However
there are some special cases such that 3.1 is not sufficient. Then we apply results
of § 2. together with arguments using Poincaré series.

For a = (a!,---,a") € N” denote by t* the monomial ¢* ---¢* . For
a N7"-graded finitely generated algebra A consider the Poincaré series of A:
@Doene dimA,t*. Recall that this is the Taylor series at 0 of a rational function Py .
Denote by ¢(A) the difference of degrees of the denominator and the numerator
of P A -
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Lemma 3.5. Let A be a N"-graded algebra generated by homogeneous elements
of degrees «y,--+,ay, such that the ideal of syzygies is generated by elements of
degrees Bi,---, Bm. If A is a c.i., then the Poincaré series of A is of the form:

(1 —tﬂl)---(l _tﬁm)
(1 —tor).-- (1 —tom)

Py = 7CI(A):O‘1+"'+an_/81_"'_ﬁm-

Proof. For a N"-graded algebra B and a homogeneous element b € B of
degree (3 such that b is not zero divisor, we have for the Poincaré series: ~ Pp;4) =
Pp — Py = Pp(1 — t#). Since the ideal of syzygies of A is generated by a regular
sequence, we get the claim by applying the above equality m times. [ ]

Now we consider the special cases.

p=(n+2)p. By 2.1, k[V]9L» is generated by (";’2) elements and the

ideal of syzygies is generated by ("IQ) elements. We have tr.deg.k[V]%L» = 2n+1;
hence, p is not a c.i.

p = @2+ 3p1. By 2.4, k[V]" is generated by 14 generators of degrees:
(n,0,0,0), (n—1,4,7,k),i+j+k=2, (n—2,k,l,m),k+l+m=4k1,m<2,
and either (n — 3,2,2,2) for n > 4 or (0,1,1,1) for n = 3. Moreover, we have
tr.deg.k[V]%» = 7. From the syzygy of entry 5, Table 1 we get here 6 syzygies of
degrees (2n — 2, k,l,m),k+1+m = 4,k,l,m < 2. Assume that p is a c.i. Then
its Poincaré series is like in 3.5 and we have: ¢(k[V]%I") = (2n —9,6,6,6) — v
for n > 4, and q(k[V]%%2) = (=3,5,5,5) — v, where ~ is the degree of the seventh
generator of the ideal of syzygies. By [11], q(k[V]") € N* and q(k[V]*I") =
(4n — 6,4,4,4) for n > 5. A contradiction.

p = s+ 5p;. By 2.3, k[V]°I» is generated by 16 polynomials. We have
tr.deg.k[V]%E» = 11. From the syzygy of entry 9, Table 1 we get here 5 syzygies
of degrees (n—2,1,1,1,1,0),---,(n—2,0,1,1,1,1). As above, we assume that p
is a c.i., calculate ¢(k[V]%L"), and obtain a contradiction with [11].

Therefore all the non-coregular representations of SL, but those appearing
in Tables 1-9 and in List 10 above are not c.i. The estimate hdk[V]t» > 2 for
the representations from List 10 can be checked either by applying 3.1.1 or (for
SLs and SL7) by constructing sufficiently many generators. On the other hand,
one can prove:

Proposition 3.6.  For any representation p from List 10 and any closed orbit
SLyv CV,v #0 the slice representation ((SLy)y, Ny) is a c.i.0

4. Proof of Theorem 0.1.

Cases considered in other papers.
From now on, "case n.m” will refer to entry m from Table n.

Table 1. Cases 1.1-1.9 follow from 2.3, 2.4. Cases 1.10-1.13, 1.15 are
considered in [22]. Case 1.14 is a subrepresentation of one of representations
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from the Table in [15, 4.3]; hence, it is a c.i. Moreover, Panyushev’s deformation
arguments prove that it is a h-s®> and the generators are easy to find.

Table 2. Representations of S Ly were studied by Classical Invariant Theory
of the 19-th century and all the representations in Table 2 were considered, e.g. in
[7] (cf. also [21]).

Tables 3-8. Cases 3.1, 3.3, 3.4, 7.1 see in [22]. Cases 7.5, 7.6, 8.1, 8.2 see
in [23]. Case 4.1 see in [2]. Since (SL4, @) = (S04, k®), case 4.2 is classical and
case 4.7 is contained in [22], Table 1.9. Case 5.1 see in [18, Table 1a’].

Further, a representation from the Tables can sometimes be obtained as
a slice-representation of another one, up to trivial factors. Then by 3.1, we
reduce to prove the h-s property for the second one. We present such relations
in the following diagrams with arrows directed from a representation to a slice-
representation:

7.2 — 6.2 — 5.3, 7.3 — 6.1 — 4.5, 7.4 — 4.4.

Case 3.2. Case 3.2 can be considered as follows. For the group Spg let
¢; denote the highest weight irreducible factor of A’k®. Let (G, V) be the finite
extension of the group (Sps, v3 + ¢2) by the operator acting by multiplication by
v/—1 on the first factor and trivially on the second one. Then by [22], (G,V) is
coregular. Moreover, using the method of [23], one can prove that V//G has the
unique codimension-1 Luna stratum corresponding to an isotropy group L of order
2. It turns out that (Ngp, (L), V*) is isomorphic to (SLs, p102 + ¢?). Using the
technique of [23], one can prove that the closure of this stratum is normal; hence,
by [13], k[VL]¥sps(L) is isomorphic to the quotient of k[V]¢ by the principal ideal
vanishing on the stratum. By [23, 1.17], this ideal is generated by f7, where ff
is the unique generator of k[V]¢’ that is not G-invariant. This f;, is nothing but
h in the notation of entry 24 of Table 1 in [22]. This completes the proof.

Method for other cases. Thus we reduced to prove cases 3.5, 3.6, 4.3,
4.6, 5.2, 7.2, 7.3, 7.4, 8.3. In all these cases but 4.6 we apply a criterion from [23]
for the algebra of invariants to be a hypersurface. For convenience of a reader we
formulate it below.

Let G be an algebraic group with a semisimple identity component G°.
Suppose that V' is a coregular G-module such that k[V]¢ = k[V]%* = k[fi,- - -, fs]
and the nilcone N’ C V contains a dense orbit G°z. Let H be a principal isotropy
group of (G,V); this means that generic closed G-orbits in V' are isomorphic to
G/H . Moreover, assume that generic G-orbits in V' are closed, in other words, H
is a generic isotropy group. Consider a G-module U having r irreducible factors
so that k[U] carries a N"-grading preserved by the action of G'. Define a natural
partial order in N” as follows: o < B ifand onlyif of < B¢ fori=1,---,r, a < f8
means o < 3 and « # 3. For any f € k[V + U] denote by f the restriction of f
to the subvariety z+U CV + U.

3Moreover, the representations of cases 1.2 with n = 4, 1.8 with n = 4, 1.9 with » < 2, 1.13,
1.14 are lacking in the Table of [15, 4.3]
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Lemma 4.1.  ( [23, 4.5])

Assume that:

(a) k[U)" is a h-s generated by elements of degrees Bi,---,B; € N with
the unique syzyqgy of degree 3 € N”

(b) there exist gi,---,g; € K[V + U]% of degrees (a1, 1), -, (o, Bt) such
that X[g1,- - -, G¢] is a h-s with the unique syzygy of degree v € N", v £ 3.

Then X[V +U)% =K[f1, -, fs, g1, -, 4] is a h-s.

Example of application of Lemma 4.1. Now we show how one can
apply Lemma 4.1. Consider case 7.2, i.e., the group

(G, V+U) = (SLz, 03+ (201 + 2¢5)).

For (G,V) = (SLy,p3), all the assumptions of Lemma 4.1 are fulfilled: k[V]¢ =
k[d] and the orbit of z =e; Aes Aes+e3AesNeg+es AesAer+egAegAer is dense
in the zero level of d ( [25]). By [5], H is a simple group of type Gs; therefore
(H,U) = (Go,4K"). By [19], k[U]# is a h-s generated by invariants of the following
degrees: (i,7,k,1), where either i+j+k+1l=2o0r4,j,k,l=0,1,i+j+k+1=3,
and (1,1,1,1). By [11], ¢(k[U]#) = (7,7,7,7). Hence, by 3.5, the degree of
the unique syzygy is (2,2,2,2). Therefore the hypothesis (a) of Lemma 4.1 is
fulfilled. Moreover, the degrees of the invariants given in Table 7, entry 2 satisfy
the hypothesis (b).
Denote by z1,---, 27 the dual basis for e;,---,e7. For a, b, c;,dy € k set:

7 = (Z, aer, 1)161 + -+ b767, T + C3T3 + CrZ7, d1$1 —+ d2$2 + d3$3 —+ T4 -+ d7$7).

Using the explicit description of G, it can be shown that G,Z is dense in z 4+ U.
Hence, in the hypothesis (b) of Lemma 4.1 we can replace the restrictions to z+U
by that to Z.

Let Ay g5 denote the generator from Table 7, entry 2 of degree (x,p, g, 7, s)
with 0 < p+g+r+s < 4. One can easily compute the restrictions of A, g5 to Z
as 14 polynomials in 14 variables a, b;, c;, d;,. To check that these are algebraically
independent, we calculated their Jacobian (by an appropriate choice of polynomials
and variables the Jacobian matrix is ”almost triangular”) and found it to be
nonzero.

Therefore to check the hypothesis (b) of Lemma 4.1, we only need to prove
the existence of f € k[V + U] of degree (x,1,1,1,1) such that the restriction of
f to Z and the above 14 polynomials have no syzygies of degree < (2,2,2,2).

We believe that it would be possible to find an explicit form for f. However
we find it interesting to give a theoretical proof of the existence of f as follows.
Let d be the restriction of d to V. By [18, 3.13], the inclusion V¥ C V induces
an isomorphism k[V + U|§ 2 k[V# + U ]gG(H). Consider a generator f of degree
(1,1,1,1) of k[U]¥ as an element of k[V# + U]. Since Ng(H) = HZ(G), f is
Ng(H)-invariant. Thanks to the above isomorphism, there exists f € k[V + U]
of degree (71,1,1,1,1),1 > 1 such that the restriction of f to V# + U is df.
Moreover, assume that [ is the minimal possible.

Besides, since k[U]" has a unique generator of degree (1,1,1,1), we can
choose f and f to be semi-invariant with respect to the group Ss X So permuting
the isomorphic G-factors of U.
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Note that for any pi,---,pn € k[V + U], R € k[Ty,---,T,,] a relation
R(p1, -+, Pm) = 0 is equivalent to d dividing R(p1,--,pm) in k[V + U]. In
particular, since [ is the minimal possible, f does not vanish.

Let R be a polynomial in 15 variables such that F' = R(h(pqrs), f) is
polyhomogeneous and F' € (d). Assume also that degF' is the minimal possible;
then degF = (x,) for v from Lemma 4.1. We see that v = (1,1, 1,1) contradicts
either f being a generator of k[U]" or the minimality of /. Since the set {hwars)
is Sy x Sy-stable and f is Sy X Sp-semi-invariant, F' is Sy X Sp-semi-invariant as
well. In particular, v = (m,m,n,n). Assuming v < (2,2,2,2), we have 7 is
either (2,2,1,1) or (1,1,2,2).

Assume v = (1,1,2,2). We write down the monomials in f, g g
degree (x,1,1,2,2), and easily show that [ =1 and F must be of the form:

)Of

pfhopa,1) + qh(l,l,0,0)h’?o,o,Ll) + 7h(1,1,0,0)P(0,0,2,0)P(0,0,0,2) T 8h(1,0,1,1)A(0,1,1,1)5

where p,q,7,s € k, and either 7 # 0 or s # 0. Hence, the relation F' = 0 im-
plies that the restriction of h(1,1) to Z divides that of rh(1,1,0,0)h(0,0,2,0)P(0,0,0,2) +
sh(1,0,1,1)P(0,1,1,1) for a nontrivial pair (r,s). Using the explicit form of our invari-
ants restricted to Z, we check this is wrong.

Similarly, we prove that v = (2,2,1,1) yields a contradiction. Therefore
the hypothesis (b) holds and k[V]% is a hypersurface. To find I, we consider the
Poincaré series of k[V]%. By [11], q(k[V]%) = (35,7,7,7,7). Hence, the degree
of the syzygy is (7l +7,2,2,2,2). We assume [ > 1 and consider the monomials
of this degree in the generators. It turns out that each monomial contains either
f or d. This is impossible, because d and f are irreducible in k[V + U]. Thus
[ =1 and we are done.

The proofs for cases 3.5, 3.6, 4.3, 5.2, 7.3, 7.4 are similar and easier. We
emphasize that such proofs are possible whenever one can calculate almost all
generators restricted to a subvariety in z + U intersecting generic G,-orbits. For
this reason, this method can not be applied directly to case 8.3.

Case 8.3. Case 8.3 resembles 8.1 and 8.2. For each of 8.1,8.2 the h-s
property is a corollary of the fact that a finite extension of the group is coregular
([23]). The group 8.3 does not admit a coregular extension. Nevertheless, consider
a nice finite extension as follows.

Let (G°, V) = (SLg, p3+2¢7) be the group 8.3. Let v act by multiplication
by A3 on the first factor of V' and by A" on the second and the third one, where A
is a primitive root of unity of degree 16. Note that v? belongs to G° and consider
a finite extension G = G°(7). Applying the technique of [23] to G, we prove that
V//G has a unique Luna stratum C' of codimension 1 such that the corresponding
isotropy group L is of order 2. Further, the ideal I, in k[V]® vanishing on C
is generated by f#, where f; can be defined as the unique generator of k[V]GO
such that v(fy) = —fr, the other generators of k[V]%° being G-invariant ( [23,
1.17]). From this we deduce as in [23, case 5.3]: degfr = (10 + 16k, 3,3),k € N.
Using the normality criterion from [23], we prove that the closure C is normal.
Therefore by [13], the restriction of functions to V% yields an isomorphism:

k[C] = k[V]9/1, = k[VL]Ne@D),
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Suppose that k[VZ]¥e¢() is a h-s with generators of the degrees from Table
8, entry 3 (but (10,3,3)). Then the above isomorphism implies hdk[V]¢ < 1 and
actually V/G is a h-s, because G is not coregular. Moreover, the generators of
k[V]¢ are f? and some invariants of the above degrees. Replacing f2 by fr, we
get the generators of k[V]¢°. Note that the equality p = 3(q¢ + ) holds for the
degree (p, q,r) of any generator but d, f;,. With the help of this observation, one
can prove the form df? = F(---) of the syzygy. Applying [11] as above, we get
degfr, = (10, 3,3) and we are done.

Thus we need to study the action

(N(L),V") = (SLs x SLy xk*, 0@t + 0o @ 01 ®t + 204 0 @ %),

where  stands for a trivial representation, ¢ is a basic character of k*. We can
not apply Lemma 4.1 here, because G is not semisimple. We adjust 4.1 to
this case as follows. Let V,U C V' be the subspaces of the subrepresentations
() t;l5 +p @01 ®t and 20, ® O @13, respectively. Let N §~¥~/ be the nilcone.
Let H be a principal isotropy group of (Ng(L), V);: clearly, H is also a generic
isotropy group. However A is reducible and does not contain a dense Ng(L)-
orbit. Denote by f the restriction of f € k[V] to N x U. Then the hypotheses
(a), (b) of Lemma 4.1 make sense and one can check as in the proof of [23, 4.5]
that these are sufficient for k[V*]¥¢(%) being a h-s. We check the hypotheses (a)
and (b) and prove that k[VZ]Ne(L) is a h-s with generators of the degrees from
Table 8, entry 3 (but (10, 3,3)). This concludes the proof.

Case 4.6. Set (G,U+ W) = (SLy4, 93+ ¢1). Choose a basis of k*. Let V
be the group of Klein acting on k* by permutations of the basis vectors. Denote by
H C @ the finite subgroup generated by V, and the operators having a diagonal
matrix in this basis with eigenvalues +v/—1. One can easily check that H is a
principal isotropy group of (G,U).

Furthermore, the algebra k[W]# is a h-s. Namely, if x,y, z,w is the dual
basis, then k[W]# is generated by:

22y + 22w?, 222 + P ot 4+ 2R 2t 4yt 4 2 4wt ryw, (7)
with a unique syzygy R of degree 16.
We applied the technique of [4] to obtain the Poincaré series for modules of

covariants. Let M be the isotypic component of G-module k[U] of highest weight
¢7. Our calculations show that the Poincaré series of M has the form:
A A A

(1—122)(1 —3)(1 —t*)(1 —t°)(1 — t8)°
From this one easily deduces that there exist elements of degrees (3,4),(5,4),
(6,4), (7,4),(9,4) of k[U+W]¢ such that for generic point u € U the restriction of
these to u-+WW are the generators of k[u+W]% = k[W]#. Let A C k[U+W]“ be
the subalgebra generated by these invariants and k[U]%. Then the above property
implies that A is a h-s with the ideal of syzygies generated by a syzygy of degree
(a,16),a € N.

Moreover, we calculated the Poincaré series P of the N?-graded algebra
k[U + W]%; P is a fraction with numerator 1 — ¢3°s'® and denominator

1—2H1 -1 —tH(1 - °)(1 — %)%

PM:
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#(1— 13" (1 — 5sM) (1 — 15s%) (1 — 7s%) (1 — 9s%).

Assuming a > 30, we obtain dim Agg16 > dim(k[U + W])(50,16), @
contradiction. Hence, a < 30, and if we prove the inequality a > 30, then the
Poincaré series of N2-graded algebra A is equal to P. Hence, A = k[U + W|]¢
and we are done.

So we need to prove a > 30. Restricting the generators of A to the sub-
space U + W, we obtain some Ng(H)-invariant functions of the same degrees.
Moreover, since generic orbit intersects U + W, the syzygies of these restrictions
are the same as ones of the generators. Clearly, the restrictions of the genera-
tors of degree (x,4) are linear combinations of the polynomials from ( 7) with
homogeneous coefficients in k[U*]. Replacing the polynomials from ( 7) by the
variables 771, - - -, T5, and substituting the above linear combinations in the syzygy
of A, we obtain a polynomial of degree 4 in Ty, - - -, Ty, with coefficients in k[U#].
Moreover, this polynomial has the form Q(u)R(Ty,---,T5), where Q € k[U¥]V is
a homogeneous polynomial of degree a, R is the syzygy of the polynomials from
(7).

One can easily prove, Ng(H)/H = S and the action Sg : U¥ can be
thought of as that of Sg on the hyperplane u; +---+ug = 0 in k%, where Sg acts

by permutations of uy,---,us. Let D € k[U#]% be the discriminant:
D= T[ (ui—uy).
1<i£j<6

Then for v € U?, D # 0 if and only if G, = H. In other words, the equation
D = 0 defines a unique codimension 1 Luna stratum D of U¥/N = U/G. We
claim that the above polynomial ) vanishes on D. This implies a > 30, since
deg D = 30 and () is N-invariant.

Let us prove the claim. Take a generic point u € D, set L = (Ng(H))y 2
H. The action of L on the linear span T of the polynomials from ( 7) is not
trivial. Indeed, otherwise we would have k[W]* = k[W|¥ and this is impossible,
since L O H,L # H. Substituting u in the generators of A, we obtain some
elements of TF. Assume that a basis of T is chosen such that T is generated
by the first m < 5 elements. Then, substituting » in the relation, we obtain a
polynomial in 77,---,7,, with zero coefficients, since the first m basis elements
of T are algebraically independent. But these coefficients are equal @Q(u). Thus
Q(u) = 0. This completes the proof.

5. Proof of Theorem 0.2.

We prove that the representations in Table 9 are c.i. We also describe a minimal
system of generators of k[V]5Ln.

For case 9.1, Theorem 2.1 yields generators and syzygies.

For cases 9.2, 9.3, 9.4, the generators are described in 2.3, 2.4 and we have
hdk[V]%L» = 2. For the classical case 9.9 generators are described in [7] and
hd = 2 in this case, too. Then we apply:

Lemma 5.1.  ([16], Remark to Proposition 1.5) Let G C GL(V') be a connected
semisimple group such that hdk[V]¢ = 2. Then k[V]% is a c.i.
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For cases 9.5-9.8, the c.i. property and the upper bound hdk[V]%f» < n—1
are proved in [15]. Applying 3.1, we find a lower bound hdk[V]5/» > m for these
cases. Minimal systems of generators are as follows.

For case 9.6, a minimal system of generators is described in 2.6.

For case 9.5, a minimal system of generators consists of all the invariants
from 2.5 with the following restriction: in ( 2) we take the contractions involving
> p copies of A. This restriction is necessary in general (see Remark after 2.5). If
n is odd, then all such invariants are members of a minimal system of generators
for a subrepresentation. If n is even, we had to calculate these invariants in special
points to prove that they can not be obtained from the invariants of smaller degrees.

In cases 9.7,9.8 we apply 2.7, 2.8 together with the results of [15]. For a
reductive group G and two affine G-varieties X and Y, Panyushev introduced a
special filtration of k[X x Y]“ such that

grk[X x V] = (k[X]” @ k[Y]"™)", (8)

where U is a maximal unipotent subgroup of G, 1" is a maximal torus normalizing
U, U is the opposite maximal unipotent group (this means U N U = {e}).
Moreover, assume that k[X]| and k[Y] carry G-stable N!- and N™-gradings,
respectively. Then the above filtration respects the N!*™-grading of k[X x Y]¢.
Therefore grk[X x Y]¢ inherits the N'*™_grading and ( 8) is an isomorphism of
Nt _graded algebras. Denote by G the set of polydegrees for a minimal system
of generators of (k[X]Y @ k[Y]V")T. Then k[X x Y]% has a (minimal or not
minimal) system of generators with the same set G of polydegrees. Moreover, if
the set of polydegrees for a minimal system of generators of k[X x Y] does not
contain v € G, then (k[X]Y @ k[Y]V"")T has a syzygy of polydegree < -, where
=< refers to the partial order from Lemma 4.1. For any group of cases 9.7,9.8 one
can present V = X x Y, where k[X]Y k[Y]Y" are polynomial by [3], and check
that (k[X]Y @ k[Y]V")T is a c.i. with hd =n — 1.

For case 9.8, the generators from 2.8 with polydegrees from G are the
generators of algebras of invariants for proper subrepresentations (see [18] and
cases 1.13, 1.5) and:

D(LE, (AD)py)aO S p S n— 3,A(O{,/B(AD)q),Oj((AD)r$), 0 S q,T S n— 2a

[P---Pzy],[P--- PrA'(A? a), where PY = A" Dy A%

Thus we obtain either tr.deg.k[V]%"» +m or tr.deg.k[V]*"" + m + 1 generators.
Taking into account the above estimate hdk[V]%E» > m, it is not difficult to prove
that the above system of generators is minimal.

For case 9.7, the invariants from 2.7 with polydegrees from G are the
generators of algebras of invariants for proper subrepresentations (see [18]), their
polarizations and:

[B---BrA'|(A2,a),[B--- BALAL(A2,a)(AZ, B),
[AL---ALB---Bay[A2--- A2B---Bl,[A}--- ALB- - Bay][A?--- A2B- - Buy],
[Al---AlB-.-Bg][A2---A2B--- BB'|(B,«),
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[Ai...A;B...BxBl][Af...ASB...B](B{Q),
(A}~ A\B- - BeBl[A}--- A2B - BeB})(B},)(B}, o), (9)
[Ay---A;B--- BB B,|[A{--- AB - - B|(BY, 0) (B3, §),
[Ay -+ AB--- BB B,[A} - - A{B - - BBy Bi](B}, o) (B3, B) (B3, @) (B, B),
p>1l,g>2,1r>4,5s>4.

Let g be one of the above invariants. If grk[V]"» has no syzygies of
degree v, v < degg, then, as we noted above, g is a member of a minimal system
of generators. This is a case for all the above invariants but that from ( 9) with
¢ = 2 and that from the last series with s = 4 (in both cases n = 2m). Here
we had to calculate some invariants in special points to prove that these are not
generators.

For case 9.11, we have (SLa, o103 + 2¢1) = (SOg, A?k® + 2k®). This is a
slice representation of (SLg, 0? + o4 + 2¢5), up to a trivial factor. Hence, the c.i.
property and the upper bound hdk[V]%» < 3 follow from case 9.8 and 3.1. On
the other hand, applying 3.1, we obtain hdk[V]%f» > 3, hence, hdk[V]%f» = 3.
Substituting A = § in the generators of the algebra of invariants of SLg (see
above), we obtain the generators for this case.

For case 9.13, ( 8) and [3] imply the c.i. property and the upper bound
hd < 3. Arguing as above, we obtain hdk[V]°L» = 2. Besides the generators of
the algebra of invariants for proper subrepresentations, we obtain generators of
the following degrees: (2,2,1,1), (2,2,1,1), (4,2,1,1), (4,1,2,2).

For case 9.10, we present V = X x Y for (G, X) = (SLy4, S?k*), (G,Y) =
(SLy, 3 A% k%) = (S04, 3k%). By [3], k[X]V is polynomial. On the other hand, by
[24], k[Y]Y is generated by k[Y] and the multilinear antisymmetric invariants
having the following degrees and weights with respect to the standard maximal
torus of SLy: (1,p2),(2,0103), (3,9?),(3,42). Applying ( 8), we obtain that,
besides the generators from the subrepresentations of p (see [18]), k[V] has
generators of degrees (1,1,1,1) and (3,1,1,1). Therefore hdk[V]¢ =2 and by 5.1,
k[V]¢ is a c.i.

For case 9.12, we present V = X x Y for (G, X,Y) = (SLg, A’k®, [k® +
mk®). By [3], k[X]Y is polynomial. On the other hand, by [24], k[Y]Y is
generated by k[Y]% k[Ik®]Y, and k[mk®*]V. Moreover, k[Ik®]V is generated by
the multilinear antisymmetric invariants having the following degrees and weights
with respect to the standard maximal torus of SLg: (1,¢1),(2,92), -+, (L, ). A
similar assertion holds for k[mk5*]V.

Applying ( 8), we obtain that all the generators of k[V]“ arise from the
coregular subrepresentations of p (see [18]). Moreover, for (I,m) = (3,3), (4,1)
we have hdk[V]% = 2. Then by 5.1, k[V]% is a c.i.

Furthermore, using [11], one can show that the ideal of syzygies for the
case (SLe,p3 + 491 + ¢5) is generated by elements of degree (3,4,1) and (5,4,1)
(here we give the total degrees by the isotypic components). Now consider the
group (SLg, @3 + 41 + 2p5). We have: hdk[V]® = 4. Let z € X be a generic
point, H = G,. Clearly, (H,Y) & (SL3 x SL5, 4(p1 + ¢}) + 2(p2 + ¢5)). By
2.1, hdk[Y]# = 4 and the ideal of syzygies of k[Y]¥ is generated by 4 elements
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of degree (4,1). The restrictions of the generators of k[V]% to z x Y turn out to
be the generators of k[z x Y]7. It can be deduced that the ideal of syzygies of
k[V]¢ is generated by two pairs of relations of degrees (3,4,1) and (5,4,1) arising
from two subrepresentations of the form @3 + 4p; + ¢5. Hence, k[V]¢ is a c.i.

Thus we proved Theorem 0.2. For the groups from List 10 the situation is
as follows. For the serial cases,

G=SL,n=2m+1,p= @+ @2+ 20,_1,202 + ©1 + 30n_1, 202 + 401,

one can deduce a minimal system of generators from 2.5 and 2.7. For instance,
we obtain for (SLs,2ps + 1 + 3p4): hdk[V]%Ls = 2. By 5.1, this is a c.i.
representation.

However, for these serial cases and general n, hdk[V]%‘» > 2. In such a
situation above we applied the deformation arguments. Here V is of the form
V =X xY, where (G,Y) = (SLopy1, 92 + 2¢,_1) and either X =Y, or k[X]Y
is polynomial by [3]. Applying an idea of [3], one can prove that k[Y]Y” is a
hypersurface, find generators of k[Y]Y” and their unique syzygy. Unfortunately,
(k[X]Y @ k[Y]Y")T is not a c.i. Further, the Poincaré series of k[V]“ is equal to
that of (k[X]Y®k[Y]V”)T and one can try to calculate the latter. Let GL, act on
the ¢; factor of p as on A’k™. So we have an action GL, : V. The action of the
center of GL, gives rise to a N-grading of both k[V]% and (k[X]V ® k[Y]V"")T.
We calculated the Poincaré series of the latter algebra for the second and the third
representations. This Poincaré series satisfies the condition 3.5 for Poincaré series
of c.i. Thus all the necessary conditions of c.i. are fulfilled for these cases. But we
have no idea how one can prove that these three representations are c.i.

For the groups

(SLs, 202 + 03+ ©4), (SL7, 03 + 31 + @),

one can find tr.deg.k[V] +2 generators of k[V]9. By 5.1, the c.i. property would
follow from the fact that these are all the generators.

To prove this, one can try to apply an analog of 4.1, as follows. We present,
our group (G, V) in the form

(G, V) =(G,W +U) = (SLs, (p2 + ¢3) + (02 + ¢4)), (SLz, (#3) + (31 + ¥s)).

We have: W is a coregular G-module such that k[W]% = k[f1,---, f] and the
nilcone N' C W contains a dense orbit Gz. For a principal isotropy group H
of (G,W), k[U]" is a h-s. Hence, we obtain easily the Poincaré series of k[U]#
with respect to the grading of k[U] considered in 4.1. Let gy,---, g; be the above
tr.deg.k[V]¢+2—s generators of k[V]¢, different from f,---, f;. Let g7,---,7; be
their restrictions to z+U C W+U. Then to prove k[V]% = k[f1, -, fs, 91, -+, 9],
it is sufficient to check that the Poincaré series of k[g7, - - -, g¢] is the same as that of
k[U]2. One can calculate g7, -, g; explicitly. To calculate the Poincaré series of
a subalgebra generated by a given system of homogeneous polynomials is a priori
possible with the help of (powerful) computers. But we find the proofs of such
kind too different from what we are doing in this paper.

For the group (SLs, 3pa+¢4) we have no idea how to prove the c.i. property.
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6. C.i. representations of simple groups.

Examples of c.i. representations of connected simple groups different from SL,
can be found in [22], [15]. Further, applying 3.1 to the groups of entries 5, 7 in
Table 9 and entry 1 in Table 6, we get new examples:

(SOn, N°Kk™ + 2k™), (Sp,, A°K™ + 4k™), (Sp,, S?k™ + 2k™), (Sps, A°k® + 2Kk°).

As a matter of fact, almost all non-coregular c.i. representations of SO,,, Sp,
are contained among the above examples. However for Spin, there is a number
of representations that seem to be c.i. and need to be considered.

By [19], [22], the representations (Gg,4k?) and (Ga, A’k”) are h-s. It is
easy to prove that these are all the non-coregular c.i. representations of Gs.

Further, for Fj, Eg, E7, the remaining candidates for c.i. representations
are:

(Fy, 3k%%),  (Fg, pk®" + q(k*)*),p+q =4, (E,3k).

By [8], (Fy,3k?®) is a h-s.
For Eg the unique c.i. representation is the adjoint one.
This will be the object of another paper.
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