On Kazhdan's Property (T) for $Sp_2(k)$

M. B. Bekka and M. Neuhauser*

Communicated by A. Valette

Abstract. The aim of this note is to give a new and elementary proof of Kazhdan's Property (T) for $\operatorname{Sp}_2(\mathbf{k})$, the symplectic group on 4 variables, for any local field \mathbf{k} . The crucial step is the proof that the Dirac measure δ_0 at 0 is the unique mean on the Borel subsets of the second symmetric power $S^2(\mathbf{k}^2)$ of \mathbf{k}^2 which is invariant under the natural action of $\operatorname{SL}_2(\mathbf{k})$. In the case where \mathbf{k} has characteristic 2, we observe that this is no longer true if $S^2(\mathbf{k}^2)$ is replaced by its dual, the space of the symmetric bilinear forms on \mathbf{k}^2 .

1. Introduction

A locally compact group G has Kazhdan's Property (T) ([5]) if whenever a strongly continuous unitary representation π of G on a Hilbert space $\mathcal H$ has almost invariant vectors, then it actually has a nonzero fixed vector. Recall that π has almost invariant vectors if, for any $\varepsilon > 0$ and any compact subset K of G, there exists a unit vector ξ in $\mathcal H$ with $\|\pi(g)\xi - \xi\| < \varepsilon$ for all g in K. Kazhdan's Property (T) is a powerful tool and has remarkable applications. For an excellent account, see [3].

Let \mathbf{k} be a local field (that is, a non-discrete locally compact field), and let \mathbf{G} be a connected almost simple algebraic \mathbf{k} -group with \mathbf{k} -rank ≥ 2 . Then, as is well known, $\mathbf{G}(\mathbf{k})$, the group of the \mathbf{k} -rational points in \mathbf{G} , has Property (T). This central result is quickly deduced, using Howe-Moore's theorem and root theory, from the fact that $\mathrm{SL}_3(\mathbf{k})$ and $\mathrm{Sp}_2(\mathbf{k})$, the symplectic group on 4 variables, have Property (T) (see [6, Chap. III, (5.3) Theorem]). The aim of this note is to give an elementary proof of Property (T) for $\mathrm{Sp}_2(\mathbf{k})$. A proof in this spirit was given in [1] for $\mathrm{SL}_3(\mathbf{k})$. Property (T) for $\mathrm{Sp}_2(\mathbf{k})$ was first established in [2] and [8].

Theorem 1.1. ([2], [8]) $\operatorname{Sp}_{2}(\mathbf{k})$ has Property (T), for any local field \mathbf{k} .

The group $\operatorname{Sp}_2(\mathbf{k})$ contains a copy of the semi-direct product $\operatorname{SL}_2(\mathbf{k}) \ltimes S^{2*}(\mathbf{k}^2)$, for the standard action of $\operatorname{SL}_2(\mathbf{k})$ on the space $S^{2*}(\mathbf{k}^2)$ of the symmetric bilinear forms on \mathbf{k}^2 (see Section 4).

Theorem 1.1 is a consequence of the following fact.

 $^{^*}$ The second author acknowledges the financial support he received from the Bayerisch-Französischen Hochschulzentrum

Theorem 1.2. The pair $(SL_2(\mathbf{k}) \ltimes S^{2*}(\mathbf{k}^2), S^{2*}(\mathbf{k}^2))$ has the relative Property (T), for any local field \mathbf{k} .

Recall that a pair (G, H) of a locally compact group G and a closed subgroup H has the relative Property (T), if whenever a unitary representation π of G on a Hilbert space \mathcal{H} has almost invariant vectors, then it has a nonzero H-fixed vector.

Our proof of Theorem 1.2 is based on the next result and avoids the usual Mackey type analysis of the irreducible unitary representations of $SL_2(\mathbf{k}) \ltimes S^{2*}(\mathbf{k}^2)$, used in [6, Chap. III, (5.1) Lemma], in [10, 7.4.2 Theorem] or in [2] and [8] (see also [3] for a sketch of proof of Theorem 1.2 based on the so-called Furstenberg Lemma). The dual group of the abelian group $S^{2*}(\mathbf{k}^2)$ may be identified with the second symmetric power $S^2(\mathbf{k}^2)$ of \mathbf{k}^2 .

Theorem 1.3. Let \mathbf{k} be a local field. The Dirac measure δ_0 at 0 is the unique mean on the Borel subsets of $S^2(\mathbf{k}^2)$ which is invariant under the natural action of $SL_2(\mathbf{k})$ on $S^2(\mathbf{k}^2)$.

Recall that a *mean* on a ring of subsets of a set X is a finitely additive positive measure m on this ring with total mass 1 (that is, with m(X) = 1). Theorem 1.3 has a completely elementary proof. Theorem 1.2 is a consequence of Theorem 1.3, via the following general fact which was observed in [7, Theorem 5.5] and for which we give a short and different proof.

Proposition 1.4. ([7]) Let G be a locally compact group and N a normal abelian subgroup. Let \widehat{N} be the dual group of N. Assume that the Dirac measure at the trivial character of N is the unique mean on the Borel subsets of \widehat{N} which is invariant under the dual action of G on \widehat{N} given by conjugation. Then (G,N) has the relative Property (T).

The two natural representations of $SL_2(\mathbf{k})$ on $S^2(\mathbf{k}^2)$ and $S^{2*}(\mathbf{k}^2)$ (which are contragredient to each other) are equivalent representations, but only if $char(\mathbf{k})$, the characteristic of \mathbf{k} , is different from 2. In fact, in case $char(\mathbf{k}) = 2$, one has the following somewhat surprising result.

Theorem 1.5. The pair $(SL_2(\mathbf{k}) \ltimes S^2(\mathbf{k}^2), S^2(\mathbf{k}^2))$ does not have the relative Property (T) if \mathbf{k} is a local field of characteristic 2.

The paper is organized as follows. In Section 2, we give the proof of Theorem 1.3. Proposition 1.4 and Theorem 1.2 are proved in Section 3 and Theorem 1.1 and Theorem 1.5 in Section 4.

2. Proof of Theorem 1.3

Denote by ρ the standard representation of $\operatorname{SL}_2(\mathbf{k})$ on the second symmetric power $S^2(\mathbf{k}^2)$ of \mathbf{k}^2 . Fix a basis $\{e_1, e_2\}$ of \mathbf{k}^2 . Identify $S^2(\mathbf{k}^2)$ with \mathbf{k}^3 by means of the basis $\{e_1^2, e_1 \otimes e_2, e_2^2\}$. The matrix of $\rho(g)$ for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbf{k})$ is then

$$\rho(g) = \begin{pmatrix} a^2 & ab & b^2 \\ 2ac & ad + bc & 2bd \\ c^2 & cd & d^2 \end{pmatrix}.$$

So, for $u_b = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$, one has

$$\rho(u_b) = \begin{pmatrix} 1 & b & b^2 \\ 0 & 1 & 2b \\ 0 & 0 & 1 \end{pmatrix}, \quad \forall b \in \mathbf{k}.$$

Hence,

$$\rho(u_b) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + by + b^2z \\ y + 2bz \\ z \end{pmatrix}, \quad \forall \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{k}^3.$$

Assume first that char(\mathbf{k}) \neq 2. For every $c \in \mathbf{R}$, c > 0, consider the following Borel subset of \mathbf{k}^3

$$\Omega_c = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{k}^3 : |z| > c |y| \right\},$$

where $|\cdot|$ denotes the absolute value of \mathbf{k} . One has, for every $b \in \mathbf{k}$ and every $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \Omega_c$,

$$\left(|2b| - \frac{1}{c}\right)|z| < |y + 2bz| < \left(|2b| + \frac{1}{c}\right)|z|.$$
 (1)

Let μ be an invariant mean on $\mathcal{B}(\mathbf{k}^3)$, the Borel subsets of \mathbf{k}^3 . For every fixed c > 0, choose a sequence $(b_n)_n$ in \mathbf{k} such that

$$|b_{n+1}| > |b_n| + \frac{2}{|2|c}, \quad \forall n \in \mathbf{N}.$$

Then, by (1),

$$\rho(u_{b_n})\Omega_c \cap \rho(u_{b_m})\Omega_c = \emptyset,$$

for all $n \neq m$. Since $\mu(\mathbf{k}^3) < \infty$, this implies that

$$\mu\left(\Omega_c\right) = 0, \quad \forall c > 0.$$

For
$$\omega = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in SL_2(\mathbf{k})$$
, one has

$$\rho(\omega) = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{array} \right).$$

So,

$$\rho(\omega) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z \\ -y \\ x \end{pmatrix}, \quad \forall \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{k}^3,$$

and hence,

$$\rho(\omega)\Omega_c = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{k}^3 : |x| > c |y| \right\}$$

Observe that $\mu(\rho(\omega)\Omega_c) = 0$, by invariance of μ . For $r = \begin{pmatrix} 2^{-1} & 2^{-1} \\ -1 & 1 \end{pmatrix} \in SL_2(\mathbf{k})$, one has

$$\rho(r) = \left(\begin{array}{ccc} 4^{-1} & 4^{-1} & 4^{-1} \\ -1 & 0 & 1 \\ 1 & -1 & 1 \end{array}\right).$$

So,

$$\rho(r) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4^{-1} (x + y + z) \\ -x + z \\ x - y + z \end{pmatrix}, \quad \forall \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{k}^3.$$

Let $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{k}^3$ with $|y| \ge |x|$ and $|y| \ge |z|$ and $(x, z) \ne (0, 0)$. Then

$$\begin{split} |x+y+z| + |x-y+z| &= |x+y+z| + |-x+y-z| \ge |2y| = |2| \, |y| \\ &\ge \frac{|2|}{2} \, (|x|+|z|) \\ &> \frac{|2|}{4} \, (|-x+z|) \, . \end{split}$$

Hence, for $c_0 = |2|/4(|4|+1)$, one has

either
$$|4^{-1}(x+y+z)| > c_0(|-x+z|)$$
 or $|x-y+z| > c_0(|-x+z|)$.

Therefore,

$$\rho(r) \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \Omega_{c_0} \cup \rho(\omega)\Omega_{c_0},$$

for all $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{k}^3 \setminus (\Omega_1 \cup \rho(\omega)\Omega_1)$ with $(x, z) \neq (0, 0)$. Since

$$\rho(r) \begin{pmatrix} 0 \\ y \\ 0 \end{pmatrix} = \begin{pmatrix} y \\ 0 \\ -y \end{pmatrix},$$

this also holds if (x, z) = (0, 0) and $y \neq 0$. The above shows that

$$\mathbf{k}^3 \setminus \{0\} = \Omega_1 \cup \rho(\omega)\Omega_1 \cup \rho(r^{-1})\Omega_{c_0} \cup \rho(r^{-1}\omega)\Omega_{c_0}.$$

Since

$$\mu\left(\Omega_{1}\right) = \mu\left(\rho(r^{-1})\Omega_{co}\right) = \mu\left(\rho(r^{-1}\omega)\Omega_{co}\right) = \mu\left(\rho(\omega)\Omega_{1}\right) = 0,$$

this implies that $\mu(\mathbf{k}^3 \setminus \{0\}) = 0$ and concludes the proof of the theorem in the case where $\operatorname{char}(\mathbf{k}) \neq 2$.

Assume now that $char(\mathbf{k}) = 2$. Let

$$\Omega = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{k}^3 \setminus \{0\} : |x| \le |z| \quad \text{and} \quad |y| \le |z| \right\}.$$

One has, with the above notation,

$$\rho(u_b) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + by + b^2z \\ y \\ z \end{pmatrix}, \quad \forall \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{k}^3$$

and $|x| < |b^2z|$ and $|by| < |b^2z|$ if |b| > 1. Choose a sequence $(b_n)_n$ in **k** with $|b_{n+1}| > |b_n| > 1$. Then

$$\rho(u_{b_n})\Omega \cap \rho(u_{b_m})\Omega = \emptyset \quad \forall n \neq m,$$

since $|x + by + b^2z| = |b^2z|$, if $|x| < |b^2z|$ and $|by| < |b^2z|$. Indeed, the absolute value on **k** being non-archimedean satisfies

$$|x + by| \le \max\{|x|, |by|\} < |b^2z|$$

and, hence, $|x + by + b^2z| \le |b^2z|$ as well as

$$\left|b^2z\right| \le \max\left\{\left|x + by + b^2z\right|, \left|x + by\right|\right\} \le \left|b^2z\right|$$

Let μ be an invariant mean on $\mathcal{B}(\mathbf{k}^3)$. By the above, $\mu(\Omega) = 0$. Clearly,

$$\rho(\omega)\Omega = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{k}^3 \setminus \{0\} : |z| \le |x| \quad \text{and} \quad |y| \le |x| \right\}.$$

So, $\mathbf{k}^3 \setminus \{0\} = \Omega \cup \rho(\omega)\Omega \cup \Omega'$, where

$$\Omega' = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{k}^3 : |x| < |y| \quad \text{and} \quad |z| < |y| \right\}.$$

Moreover,

$$\rho(u_1) \left(\begin{array}{c} x \\ y \\ z \end{array} \right) = \left(\begin{array}{c} x + y + z \\ y \\ z \end{array} \right),$$

and |x+y+z|=|y| when |x|<|y| and |z|<|y|. Hence, $\rho(u_1)\Omega'$ is contained in $\rho(\omega)\Omega$. Therefore, $\mu(\Omega')=0$. This implies $\mu(\mathbf{k}^3\setminus\{0\})=0$. So, μ has to be δ_0 .

3. Proofs of Proposition 1.4 and Theorem 1.2

The proof of Proposition 1.4 is based on the following elementary lemma from [1, Lemma 2.1]

Lemma 3.1. Let G be a locally compact group and let (π, \mathcal{H}) be a unitary representation of G with almost invariant vectors. Then there exists an $\operatorname{Ad} G$ -invariant state on the C^* -algebra $\mathcal{L}(\mathcal{H})$ of all bounded operators on \mathcal{H} , that is, a positive linear form φ on $\mathcal{L}(\mathcal{H})$ with $\varphi(\operatorname{Id}) = 1$ and $\varphi(\pi(x)T\pi(x)^{-1}) = \varphi(T)$ for all $x \in G$ and $T \in \mathcal{L}(\mathcal{H})$.

Proof of Proposition 1.4. Let (π, \mathcal{H}) be a unitary representation of G on \mathcal{H} , with almost invariant vectors. Let

$$P: \mathcal{B}(\widehat{N}) \to \mathcal{L}(\mathcal{H}), \quad E \mapsto P(E)$$

be the projection valued measure on \widehat{N} associated with the unitary representation $\pi|_{N}$ of the abelian group N. One has

$$\pi(g)P(E)\pi(g)^{-1} = P(gE), \quad \forall E \in \mathcal{B}(\widehat{N}), g \in G,$$

where

$$g\lambda(n) = \lambda(g^{-1}ng), \quad n \in N, \lambda \in \widehat{N}$$

is the dual action of $g \in G$ on \widehat{N} . By the above lemma, there exists an AdG-invariant state φ on the C*-algebra of all bounded linear operators on \mathcal{H} . Define

$$\mu(E) = \varphi(P(E)), \quad \forall E \in \mathcal{B}(\widehat{N}).$$

Then μ is a G-invariant mean on $\mathcal{B}(\widehat{N})$. So, μ is the Dirac measure at the trivial character λ_0 of N. Hence, $P(\{\lambda_0\}) \neq 0$. This shows that $\pi|_N$ has a non-zero fixed vector and (G, N) has the relative Property (T).

Proof of Theorem 1.2. The dual vector space of the space $S^{2*}(\mathbf{k}^2)$ of the bilinear forms on \mathbf{k}^2 , may be identified with the second symmetric power $S^2(\mathbf{k}^2)$ of \mathbf{k}^2 , by means of the duality formula

$$(B, \sum_i x_i \otimes y_i) \mapsto \sum_i B(x_i, y_i), \quad \forall B \in S^{2*}(\mathbf{k}^2) \text{ and } \sum_i x_i \otimes y_i \in S^2(\mathbf{k}^2).$$

Under this identification, the dual action of the natural action of $SL_2(\mathbf{k})$ on $S^{2*}(\mathbf{k}^2)$ corresponds to the inverse transpose of the representation ρ of $SL_2(\mathbf{k})$ on $S^2(\mathbf{k}^2)$ considered in Section 2, that is, to the representation $\widetilde{\rho}$ of $SL_2(\mathbf{k})$ on $S^2(\mathbf{k}^2)$ defined by $\widetilde{\rho}(g) = \rho({}^tg^{-1})$, where tg is the transpose of g.

Observe that ρ and $\widetilde{\rho}$ are equivalent (for any value of char(\mathbf{k})). Indeed, for $\omega = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, one has ${}^tg^{-1} = \omega g \omega^{-1}$ for $g \in \mathrm{SL}_2(\mathbf{k})$.

The dual group of $S^{2*}(\mathbf{k}^2)$ may be identified with $S^2(\mathbf{k}^2)$ as follows (see [9, Chap. II, section 5, Theorem 3]). Fix a non-trivial character λ of the additive group of \mathbf{k} . Then, for any $X \in S^2(\mathbf{k}^2)$, the formula

$$\lambda_X(Y) = \lambda(Y(X)), \quad \forall Y \in S^{2*}(\mathbf{k}^2)$$

defines a character on $S^{2*}(\mathbf{k}^2)$ and the mapping $X \to \lambda_X$ is an isomorphism between the additive group $S^2(\mathbf{k}^2)$ and the dual group of $S^{2*}(\mathbf{k}^2)$. Theorem 1.2 follows now from Theorem 1.3.

4. Proofs of Theorem 1.1 and Theorem 1.5

For the proof of Theorem 1.1, we shall need the two following well-known lemmas, the first of which is called Mautner's lemma (for the elementary proofs, see [6, Chap. II, (3.2) Lemma and (3.4) Lemma]).

Lemma 4.1. Let G be a locally compact group, (π, \mathcal{H}) a unitary representation of G and $x, y \in G$ such that $\lim_{n\to\infty} x^n y x^{-n} = e$. If $\pi(x) \xi = \xi$ for some $\xi \in \mathcal{H}$, then $\pi(y) \xi = \xi$.

Lemma 4.2. Let (π, \mathcal{H}) be a unitary representation of $SL_2(\mathbf{k})$. Let ξ be a vector in \mathcal{H} which is invariant under the subgroup

$$N = \left\{ \left(\begin{array}{cc} 1 & x \\ 0 & 1 \end{array} \right) : x \in \mathbf{k} \right\}.$$

Then ξ is invariant under $SL_2(\mathbf{k})$.

Recall that $\operatorname{Sp}_{2}(\mathbf{k})$ is the group of all matrices $g \in \operatorname{GL}_{4}(\mathbf{k})$ with ${}^{t}gJg = J$, where ${}^{t}g$ is the transpose of g and

$$J = \left(\begin{array}{cc} 0 & I_2 \\ -I_2 & 0 \end{array} \right).$$

Proof of Theorem 1.1. Consider the following subgroups of $Sp_2(\mathbf{k})$:

$$G = \left\{ \begin{pmatrix} A & B \\ 0 & {}^{t}A^{-1} \end{pmatrix} : A \in \operatorname{SL}_{2}(\mathbf{k}), A^{t}B = B^{t}A \right\}$$

$$N = \left\{ \begin{pmatrix} I_{2} & B \\ 0 & I_{2} \end{pmatrix} : {}^{t}B = B \right\}.$$

Since

$$\begin{pmatrix} A & 0 \\ 0 & {}^{t}A^{-1} \end{pmatrix} \begin{pmatrix} I_2 & B \\ 0 & I_2 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & {}^{t}A^{-1} \end{pmatrix}^{-1} = \begin{pmatrix} I_2 & AB^{t}A \\ 0 & I_2 \end{pmatrix}$$

and $N \cong S^{2*}(\mathbf{k}^2)$, the group G is isomorphic to $\mathrm{SL}_2(\mathbf{k}) \ltimes S^{2*}(\mathbf{k}^2)$.

Let (π, \mathcal{H}) be a unitary representation of $\operatorname{Sp}_2(\mathbf{k})$ with almost invariant vectors. Then, by Theorem 1.2, there exists a vector $\xi \neq 0$ in \mathcal{H} which is fixed by N.

Consider the following subgroups of $Sp_2(\mathbf{k})$:

$$H_{1} = \left\{ \begin{pmatrix} a & 0 & b & 0 \\ 0 & 1 & 0 & 0 \\ c & 0 & d & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} : ad - bc = 1 \right\} \cong \operatorname{SL}_{2}(\mathbf{k})$$

and

$$H_{2} = \left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & a & 0 & b \\ 0 & 0 & 1 & 0 \\ 0 & c & 0 & d \end{pmatrix} : ad - bc = 1 \right\} \cong \operatorname{SL}_{2}(\mathbf{k}).$$

Since ξ is fixed by the subgroups

$$N_1 = \left\{ \begin{pmatrix} I_2 & b & 0 \\ I_2 & 0 & 0 \\ 0 & I_2 \end{pmatrix} : b \in \mathbf{k} \right\} \text{ and } N_2 = \left\{ \begin{pmatrix} I_2 & 0 & 0 \\ I_2 & 0 & b \\ 0 & I_2 \end{pmatrix} : b \in \mathbf{k} \right\}$$

of H_1 and H_2 , it is fixed by H_1 and H_2 (by Lemma 4.2). In particular, ξ is fixed by the matrices

$$\begin{pmatrix} \lambda & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \lambda^{-1} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \lambda & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \lambda^{-1} \end{pmatrix}, \quad \lambda \in \mathbf{k}.$$

Now choosing $\lambda \in \mathbf{k}$ with $|\lambda| < 1$ or $|\lambda^{-1}| < 1$, it follows from Mautner's Lemma above that ξ is fixed by the subgroups

$$L_{1} = \left\{ \begin{pmatrix} I_{2} & 0 \\ B & I_{2} \end{pmatrix} : {}^{t}B = B \right\},$$

$$L_{2} = \left\{ \begin{pmatrix} A & 0 \\ 0 & {}^{t}A^{-1} \end{pmatrix} : A \in \operatorname{GL}_{2}(\mathbf{k}) \right\}.$$

Since $L_1 \cup L_2 \cup N$ generates $\operatorname{Sp}_4(\mathbf{k})$ (see [4, Section 6.9]), the vector ξ is fixed under $\operatorname{Sp}_2(\mathbf{k})$.

Proof of Theorem 1.5. Suppose that the characteristic of \mathbf{k} is 2. Set $N = S^2(\mathbf{k}^2)$. The dual group of N may be identified with the space $S^{2*}(\mathbf{k}^2)$ of symmetric bilinear forms on \mathbf{k}^2 , with compatible $\mathrm{SL}_2(\mathbf{k})$ -actions (see proof of Theorem 1.2 above). Now, $\mathrm{SL}_2(\mathbf{k})$ has non-zero fixed points in $S^{2*}(\mathbf{k}^2)$. Indeed, since $\mathrm{char}(\mathbf{k}) = 2$,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & s \\ s & 0 \end{pmatrix}^t \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & s \\ s & 0 \end{pmatrix}, \quad \forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbf{k}),$$

and the bilinear forms B_s defined by the symmetric matrices $\begin{pmatrix} 0 & s \\ s & 0 \end{pmatrix}$, $s \in \mathbf{k}$, are fixed under $\mathrm{SL}_2(\mathbf{k})$. The characters λ_s of N corresponding to the B_s 's extend to characters $\widetilde{\lambda}_s$ of $G = \mathrm{SL}_2(\mathbf{k}) \ltimes N$ defined by

$$\widetilde{\lambda_s}(A, X) = \lambda_s(X), \quad \forall A \in \mathrm{SL}_2(\mathbf{k}), X \in N.$$

Now, $\lim_{s\to 0} \widetilde{\lambda}_s = 1_G$ uniformly on compact subsets of G and $\lambda_s \neq 1_N$ for $s \neq 0$. Hence, (G, N) does not have the relative Property (T).

References

[1] Bekka, M. E. B., and M. Mayer, On Kazhdan's property (T) and Kazhdan constants associated to a Laplacian for SL(3,R), J. Lie Theory 10 (2000), 93–105.

- [2] Delaroche, C., and A. Kirillov, Sur les relations entre l'espace dual d'un groupe et la structure de ses sous-groupes fermés, Séminaire Bourbaki **343** (1967/68).
- [3] de la Harpe, P., and A. Valette, "La propriété (T) de Kazhdan pour les groupes localement compacts," Astérisque 175, Soc. Math. de France, Paris, 1989.
- [4] Jacobson, N., "Basic algebra I," Freeman, New York, 1985.
- [5] Kazhdan, D., Connection of the dual space of a group with the structure of its closed subgroups, Funct. Anal. Appl. 1 (1967), 63–65.
- [6] Margulis, G. A., "Discrete subgroups of semisimple Lie groups," Springer-Verlag, New York, 1991.
- [7] Shalom, Y., Invariant measures for algebraic actions, Zariski dense subgroups and Kazhdan's property (T), Trans. Amer. Math. Soc. **351** (1999), 3387–3412.
- [8] Vaserstein, L. N., On groups possessing property T, Funct. Anal. Appl. 2 (1968), 174.
- [9] Weil, A., "Basic number theory," Springer-Verlag, New York, 1973.
- [10] Zimmer, R. J., "Ergodic theory and semisimple groups," Birkhäuser, Boston, 1984.

M. B. Bekka Université de Metz Département de Mathématiques Ile du Saulcy F- 57045 Metz, France bekka@poncelet.univ-metz.fr M. Neuhauser Technische Universität München Zentrum Mathematik Arcisstr. 21 D-80290 München, Germany neuhausm@mathematik.tu-muenchen.de

Received September 1, 2000 and in final form October 6, 2000