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Abstract. The aim of this note is to give a new and elementary proof of
Kazhdan’s Property (T) for Sp, (k), the symplectic group on 4 variables, for
any local field k. The crucial step is the proof that the Dirac measure dg at 0 is
the unique mean on the Borel subsets of the second symmetric power S2(k?) of
k2 which is invariant under the natural action of SLy (k). In the case where k
has characteristic 2, we observe that this is no longer true if S?(k?) is replaced
by its dual, the space of the symmetric bilinear forms on k2.

1. Introduction

A locally compact group G has Kazhdan’s Property (T) ([5]) if whenever
a strongly continuous unitary representation 7w of G on a Hilbert space A has
almost invariant vectors, then it actually has a nonzero fixed vector. Recall that
7 has almost invariant vectors if, for any € > 0 and any compact subset K of G,
there exists a unit vector & in H with ||7(g)§ —&|| < e for all g in K. Kazhdan’s
Property (T) is a powerful tool and has remarkable applications. For an excellent
account, see [3].

Let k be a local field (that is, a non-discrete locally compact field), and let
G be a connected almost simple algebraic k-group with k-rank > 2. Then, as is
well known, G(k), the group of the k-rational points in G, has Property (T). This
central result is quickly deduced, using Howe-Moore’s theorem and root theory,
from the fact that SLj (k) and Sp, (k), the symplectic group on 4 variables, have
Property (T) (see [6, Chap. III, (5.3) Theorem]). The aim of this note is to give
an elementary proof of Property (T) for Sp, (k). A proof in this spirit was given
in [1] for SLj (k). Property (T) for Sp, (k) was first established in [2] and [8].

Theorem 1.1.  ([2], [8]) Sp, (k) has Property (T), for any local field k.

The group Sp, (k) contains a copy of the semi-direct product SL, (k) x S2*(k?),
for the standard action of SL, (k) on the space S?*(k?) of the symmetric bilinear
forms on k? (see Section 4).

Theorem 1.1 is a consequence of the following fact.
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Theorem 1.2.  The pair (SLy (k) x S%*(k?), S?*(k?)) has the relative Property
(T), for any local field k.

Recall that a pair (G, H) of a locally compact group G and a closed subgroup
H has the relative Property (T), if whenever a unitary representation 7 of G on
a Hilbert space H has almost invariant vectors, then it has a nonzero H -fixed
vector.

Our proof of Theorem 1.2 is based on the next result and avoids the usual
Mackey type analysis of the irreducible unitary representations of SLy (k)x S?*(k?),
used in [6, Chap. III, (5.1) Lemmal, in [10, 7.4.2 Theorem] or in [2] and [8] (see
also [3] for a sketch of proof of Theorem 1.2 based on the so-called Furstenberg
Lemma). The dual group of the abelian group S$%*(k?) may be identified with the
second symmetric power S%(k?) of k2.

Theorem 1.3.  Let k be a local field. The Dirac measure dy at 0 is the unique
mean on the Borel subsets of S*(k?) which is invariant under the natural action
of SLy (k) on S?(k?).

Recall that a mean on a ring of subsets of a set X is a finitely additive
positive measure m on this ring with total mass 1 (that is, with m(X) = 1).
Theorem 1.3 has a completely elementary proof. Theorem 1.2 is a consequence
of Theorem 1.3, via the following general fact which was observed in [7, Theorem
5.5] and for which we give a short and different proof.

Proposition 1.4.  ([7]) Let G be a locally compact group and N a normal
abelian subgroup. Let N be the dual group of N. Assume that the Dirac measure
at the trivial character of N is the unique mean on the Borel subsets of N which
1s tnvariant under the dual action of G on N given by conjugation. Then (G, N)
has the relative Property (T).

The two natural representations of SL, (k) on S?(k?) and S**(k?) (which
are contragredient to each other) are equivalent representations, but only if char(k),
the characteristic of k, is different from 2. In fact, in case char(k) = 2, one has
the following somewhat surprising result.

Theorem 1.5.  The pair (SLy (k) x S?(k?), S%(k?)) does not have the relative
Property (T) if k is a local field of characteristic 2.

The paper is organized as follows. In Section 2, we give the proof of Theorem 1.3.
Proposition 1.4 and Theorem 1.2 are proved in Section 3 and Theorem 1.1 and
Theorem 1.5 in Section 4.

2. Proof of Theorem 1.3

Denote by p the standard representation of SLj (k) on the second symmet-
ric power S?(k?) of k2. Fix a basis {e;, ez} of k%. Identify S?(k?) with k* by

means of the basis {e?, e;®eq, €3}. The matrix of p(g) for g = 3 ) € SL, (k)
is then
a? ab b?
p(g) = | 2ac ad+bec 2bd

c? cd d?
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1 b
So, for u, = ( 01 ),onehas
1 b b
plup) =1 0 1 20 |, Vbek.
0 0 1
Hence,
x T+ by + b2 T
pluy) | v | = y + 2bz , V| y | ek’
z z z

Assume first that char(k) # 2. For every ¢ € R, ¢ > 0, consider the
following Borel subset of k?

x
Q. = y | €Kzl >clyl o,
z

where |-| denotes the absolute value of k. One has, for every b € k and every
T
y | €9,
z

1 1
(|2b\ - E) 12| < |y +2bz] < <\Qb| + E) |z| . (1)

Let p be an invariant mean on B(k?), the Borel subsets of k3. For every fixed
¢ > 0, choose a sequence (by,), in k such that

2
|bn+1| > |bn|+—a Vn € N.
2|c

Then, by (1),
p(ubn)QC m Io(ubm)QC = ®’

for all n # m. Since u(k®) < oo, this implies that

w(Q) =0, Ve>0.

Forw:< 0 1 ) € SL, (k), one has

-1 0
0 0 1
pwy=1 0 =1 0
1 0 O
So,
X z x
p | v |=| -v |, V|vy]ek,
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and hence,

pw)k=9 | vy | €k’ : ]z >clyl

-1 o-1
Observe that u(p(w)€2.) = 0, by invariance of y. For r = ( 2_1 21 ) €
SLs (k), one has

47t 471 471t
p(ry=1 -1 0 1
1 -1 1
So,
T 47 (z+y+2) T
pr) | v | = —T 42 , V| oy | ek
z rT—y+z z
T
Let | y | € k® with |y| > |z| and |y| > |2| and (z,2) # (0,0). Then
z
w+ytzltle—y+zl = lz+y+al+l-z+y—z =2y =2]yl
2|
> Bl gay 4 1)
2
> %(|—x+z|)

Hence, for ¢ = |2| /4 (|4]| + 1), one has

either ‘4_1 (:v+y—|—z)‘ >co(|l—x+2]) or |x—y+2z|>co(|l—2+2]).

Therefore,
x
p(r) | v | € Qe Upw)Qe,
z
x
forall | y | ek®\ (QUp(w)Q) with (z,2) # (0,0). Since
z
0 Y
,0(7') ) = 0 )
0 —Y

this also holds if (z,z) = (0,0) and y # 0. The above shows that
K2\ {0} = 2 U p(w) U p(r™1)Qe, U p(r™ w) Qe
Since

() = (p(r ) = p (p(r'w),) = p(p(w)1) =0,

this implies that p (k®\ {0}) = 0 and concludes the proof of the theorem in the
case where char(k) # 2.
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Assume now that char(k) = 2. Let
T
Q=4q| v | €K\ {0}:|z|<|e] and [y <[z

z

One has, with the above notation,

x x + by + b’z x
plus) | v | = Y , V| y ek
< VA <

and |z| < [b%z| and |by| < |b%z| if |b] > 1. Choose a sequence (b,), in k with
|bnt1| > |by| > 1. Then

p(ue, )20 p(up, )2 =0 Vn #m,

since |z + by + b?z| = |b?z|, if |z| < [b?z| and |by| < |b?z]. Indeed, the absolute
value on k being non-archimedean satisfies

|z + by| < max {|z|, |by|} < [v*z|
and, hence, |z + by + b%z| < |b?z| as well as

‘b22| < max{‘x + by + b*2

o+ by|} < [6%]

Let p be an invariant mean on B(k3). By the above, p(Q2) = 0.

Clearly,
M
p(w)Q = y | €k*\{0}:]z] <|z| and |y <]z
Z

So, k¥ \ {0} = QU p(w)QU Q', where

T
Q= y | €eX |zl <[yl and |z <|y|
z
Moreover,
x r+y+z
plur) | vy | = Y ,
z z

and |z +y + z| = |y| when |z| < |y| and |z| < |y|. Hence, p(u;)Q' is contained in
p(w)Q). Therefore, u (Q') = 0. This implies u (k®\ {0}) = 0. So, p has to be d;.

3. Proofs of Proposition 1.4 and Theorem 1.2

The proof of Proposition 1.4 is based on the following elementary lemma
from [1, Lemma 2.1]
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Lemma 3.1.  Let G be a locally compact group and let (m,H) be a unitary
representation of G with almost invariant vectors. Then there exists an AdG -
invariant state on the C*-algebra L(H) of all bounded operators on H, that is, a
positive linear form ¢ on L(H) with ¢ (Id) =1 and ¢ (7(z)Tw(x)"') = o(T) for
alzeG and T € L(H).

Proof of Proposition 1.4. Let (7,7) be a unitary representation of G on
H, with almost invariant vectors. Let

~

P:B(N) > L(H), Ew P(E)

be the projection valued measure on N associated with the unitary representation
7|y of the abelian group N. One has

w(g)P(E)r(g9) "' = P(¢E), VE€B(N),g€G,

where R
gA(n) = Xg 'ng), neN,AEN

is the dual action of g € G on N. By the above lemma, there exists an Ad G-
invariant state ¢ on the C*-algebra of all bounded linear operators on H. Define

u(E) = ¢(P(E)), VE € B(N).

Then p is a G-invariant mean on B(N). So, p is the Dirac measure at the trivial
character \g of N. Hence, P ({\o}) # 0. This shows that 7|y has a non-zero
fixed vector and (G, N) has the relative Property (T). n

Proof of Theorem 1.2.  The dual vector space of the space S?*(k?) of the
bilinear forms on k2, may be identified with the second symmetric power S?(k?)
of k%, by means of the duality formula

(B,in ® y;) — ZB(mi,yi), VB € S*(k?) and sz ®y; € S*(k?).

Under this identification, the dual action of the natural action of SLs (k)
on S$%(k?) corresponds to the inverse transpose of the representation p of SL (k)
on S?(k?) considered in Section 2, that is, to the representation p of SLj (k) on
S?(k?) defined by p(g) = p(tg™"), where g is the transpose of g.

Observe that p and p are equivalent (for any value of char(k)). Indeed, for
w= ( _01 (1) ) , one has 'g~! = wgw! for g € SLy (k).

The dual group of S?*(k?) may be identified with S?(k?) as follows (see
[9, Chap. II, section 5, Theorem 3]). Fix a non-trivial character A of the additive
group of k. Then, for any X € S§%(k?), the formula

M (V)= A (Y(X)), VY e S*K?)

defines a character on S$%*(k?) and the mapping X — Ax is an isomorphism
between the additive group S?(k?) and the dual group of $*(k?). Theorem 1.2
follows now from Theorem 1.3. ]
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4. Proofs of Theorem 1.1 and Theorem 1.5

For the proof of Theorem 1.1, we shall need the two following well-known
lemmas, the first of which is called Mautner’s lemma (for the elementary proofs,
see [6, Chap. II, (3.2) Lemma and (3.4) Lemmal).

Lemma 4.1.  Let G be a locally compact group, (w,H) a unitary representation
of G and z,y € G such that lim, o z"yz ™™ =e. If m(x) € =& for some € € H,
then 7 (y)& =€.

Lemma 4.2.  Let (m,H) be a unitary representation of SLy (k). Let & be a
vector in H which is invariant under the subgroup

{3 5) e}

Then & is invariant under SLo (k).

Recall that Sp, (k) is the group of all matrices g € GL4 (k) with ‘gJg = J,
where g is the transpose of ¢ and

(0 L
J-(_Iz 0).

Proof of Theorem 1.1.  Consider the following subgroups of Sp, (k):

G = {(13 tfl):AESLQ(k),AtB:BtA}

_ I, B\ p_
v (5 ) mon).
Since
A 0 I, B\(A 0 \ ' (I, AB'A
0 tA™! 0 I, 0 tAa™! “\o I

and N = §?*(k?), the group G is isomorphic to SLy (k) x S*(k?).

Let (m,7) be a unitary representation of Sp, (k) with almost invariant
vectors. Then, by Theorem 1.2, there exists a vector £ # 0 in H which is fixed by
N.

Consider the following subgroups of Sp, (k) :

a 0 b 0
01 00 -~

Hl_ c 0do tad—bec=1 :SLQ(k)
0 001

and

10 00
0 a 0 b ~

H, = 00 10 rad —bc=1 p 2 SLy (k).
0 ¢c 0 d
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Since ¢ is fixed by the subgroups

I b 0 I 0 0
> 00 |:beky and Np= 20 b
0 .[2 0 -[2

le bEk

of H; and H,, it is fixed by H; and H, (by Lemma 4.2). In particular, ¢ is fixed
by the matrices

A1 and

0

O O O
o O = O

]
o O O
o O O
o O o
o= o o

Now choosing A € k with [A| <1 or |A\7!| < 1, it follows from Mautner’s Lemma
above that ¢ is fixed by the subgroups

(5 2) )
L, = {(61 tf_l):AeGLQ(k)}.

Since Ly U Ly U N generates Sp, (k) (see [4, Section 6.9]), the vector & is fixed
under Sp, (k). u

Proof of Theorem 1.5.  Suppose that the characteristic of k is 2. Set N =
S%(k?). The dual group of N may be identified with the space S**(k?) of sym-
metric bilinear forms on k?, with compatible SLy (k)-actions (see proof of Theo-

rem 1.2 above). Now, SL, (k) has non-zero fixed points in $**(k?). Indeed, since
char(k) = 2,

(L) o) (ea)=(00) v(aa)esnm,

and the bilinear forms B, defined by the symmetric matrices , s €k,

s
0
are fixed under SL, (k). The characters A\; of N corresponding to the B;’s extend
to characters A, of G = SL, (k) x N defined by

M(A, X) = As(X), VAeSLy(k),X € N.

Now, lim,_,g ;\; = 1 uniformly on compact subsets of G and Ay # 15 for s # 0.

Hence, (G, N) does not have the relative Property (T). u
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