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Convexity of Hamiltonian Manifolds
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Abstract. We study point set topological properties of the moment map.

In particular, we introduce the notion of a convex Hamiltonian manifold.
This notion combines convexity of the momentum image and connectedness

of moment map fibers with a certain openness requirement for the moment
map. We show that convexity rules out many pathologies for moment maps.

Then we show that the most important classes of Hamiltonian manifolds

(e.g., unitary vector spaces, compact manifolds, or cotangent bundles) are
in fact convex. Moreover, we prove that every Hamiltonian manifold is

locally convex.

1. Introduction

Let K be a connected compact Lie group with Lie algebra k and let M be a
Hamiltonian K -manifold, i.e., a symplectic K -manifold equipped with a moment
map µ : M → k∗ . The purpose of this note is to study certain point-set
topological properties of µ .

Let t ⊆ k be a Cartan subalgebra and t+ ⊆ t∗ a Weyl chamber. Since
every K -orbit of k∗ meets t+ in exactly one point, the image of µ is determined
by ψ(M) := µ(M) ∩ t+ . A celebrated theorem of Kirwan, [5], states that if M
is compact and connected then

i) ψ(M) is a convex set, and
ii) all fibers of µ are connected.

On the other hand, many other Hamiltonian manifolds have these two properties.
A very important example of a non-compact Hamiltonian manifold is a finite-
dimensional unitary representation of K . Here also i), ii) hold. Therefore, it
seems worthwhile to introduce a general concept which encompasses both the
compact and the unitary case.

In this paper we introduce a certain completeness property called con-
vexity. To define it, let ψ : M → t+ be the map which assigns to x ∈ M the
point of intersection of Kµ(x) with t+ . This is a K -invariant continuous map.
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For any two points u, v ∈ t+ let uv be the line segment joining u with v . Then
we call M convex if ψ−1(uv) is connected for all u, v ∈ ψ(M).

It is pretty immediate from the definition that convexity of M implies
i) and ii). Less obvious is the fact that convexity entrains also a more subtle
property, namely that

iii) the map ψ : M → ψ(M) is open.
In section 2 we show that, conversely, i), ii), and iii) are equivalent to

convexity. To this end, we use results of Sjamaar, [8], on the local structure of
the moment map. It is an open problem whether iii) is really needed to imply
convexity. In any case, convexity is a useful concept since it rules out much of
the pathological behavior a moment map may have. To illustrate this we give
various examples of bad moment maps in section 3.

On the other hand, we prove that many Hamiltonian manifolds occurring
in applications are in fact convex. For example, we show that a connected
Hamiltonian manifold is convex whenever it is compact, a complex algebraic
Kähler variety, or a cotangent bundle.

Then, in section 5, we show that every Hamiltonian manifold is locally
convex. This makes the concept of convexity useful even for arbitrary Hamilto-
nian manifolds. This fact conceptualizes some topological considerations in the
paper [4] by Karshon-Lerman.

The convexity of M has consequences far beyond the topological prop-
erties i)–iii). A few are mentioned in this paper like the fact that for convex M ,
the momentum image ψ(M) is locally a convex polytope. For a much deeper ap-
plication see the paper [6] where we were able to identify all collective functions
on M provided M is convex.

Remark. This paper is an extended version of the second section of the
preprint [6].

Acknowledgment. I would like to thank Y. Karshon, E. Lerman, S. Tolman,
and Ch. Woodward for useful discussions on topics related to this paper. I also
thank the referee for pointing out a gap in the proof of Theorem 4.2iv) in a
previous version of this paper.

2. Convex Hamiltonian manifolds: the definition and a criterion

Let K be a connected, compact Lie group with Lie algebra k . A Hamiltonian
K -manifold is a K -manifold M with a K -invariant symplectic form ω and with
a moment map, i.e., a K -equivariant map µ : M → k∗ such that

〈ξ, dµ(η)〉 = ω(ξx, η) for all ξ ∈ k, x ∈M,η ∈ Tx(M). (2.1)

Let t ⊆ k be a Cartan subalgebra corresponding to a maximal torus T ⊆ K .
Since t has a unique T -stable complement in k , we can regard t∗ as a subspace
of k∗ . Let t+ ⊆ t∗ be a Weyl chamber. The composition t+ ↪→ k∗ � k∗/K is a
homeomorphism. We use it to construct a continuous map ψ which makes the
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following diagram commutative:

M
µ→ k∗

ψ ↓ ↓
t+ → k∗/K

(2.2)

In other words, ψ is the unique map with Kµ(x) ∩ t+ = {ψ(x)} for all x ∈M .
For any two (not necessarily distinct) points u, v ∈ t∗ let uv be the line

segment joining them. Observe, that a subset C of t∗ is convex if uv ∩ C is
connected for all u, v ∈ C . This is just a slight reformulation of the classical
definition and motivates:

Definition. A Hamiltonian K -manifold is called convex if ψ−1(uv) is con-
nected for all u, v ∈ ψ(M).

A first reformulation of the concept is:

Proposition 2.1. A Hamiltonian K -manifold M is convex if and only if
ψ−1(B) is connected for every convex subset B of t+ .

Proof. Suppose there is a convex subset B ⊆ t+ such that ψ−1(B) is
disconnected. Then ψ−1(B) is the disjoint union of two non-empty open subsets,
say U and V . Let u ∈ ψ(U) and v ∈ ψ(V ). Since B is convex, we have uv ⊆ B ,
hence X := ψ−1(uv) ⊆ ψ−1(B). Thus, X = (X ∩ U) ∪ (X ∩ V ) is the disjoint
union of two non-empty open subsets which means that M is not convex. This
shows one direction, the other is trivial.

Putting u = v in the definition, we see that for a convex manifold M the fibers
of ψ are connected. Moreover, for every u, v ∈ ψ(M) the intersection uv∩ψ(M)
has to be connected, i.e., ψ(M) is convex. These two properties are not enough to
imply convexity, though. More precisely, we have the following characterization:

Theorem 2.2. A Hamiltonian K -manifold is convex if and only if the following
conditions are satisfied:

i) The image ψ(M) is convex.
ii) The fibers of ψ are connected.

iii) The map ψ : M → ψ(M) is open.

Proof of “⇐”. Assume that i) through iii) hold. If X := ψ−1(uv) is dis-
connected then there are open subsets U1, U2 of M such that X is the disjoint
union of the non-empty subsets Xi := X ∩ Ui . Suppose w ∈ ψ(X1) ∩ ψ(X2).
Then F := ψ−1(w) is the union of the non-empty disjoint sets F ∩ U1 and
F ∩ U2 . Since this contradicts ii), we have ψ(X1) ∩ ψ(X2) = Ø. Furthermore
ψ(X1) ∪ ψ(X2) = ψ(X) = uv ∩ ψ(M) = uv , by i). Finally, iii) implies that
ψ(Xi) = uv ∩ ψ(Ui) is open in uv which contradicts the connectedness of uv .
The proof of the reverse direction is deferred to after Lemma 2.5.

All properties which we considered so far make sense for any continuous
map ψ from a topological space M to a convex subset of a real vector space and
we have shown that the following implications hold:

i) ∧ ii) ∧ iii) ⇒ ψ convex ⇒ i) ∧ ii) (2.3)
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Neither of these implications is reversible in this generality: For the first arrow, let
ψ : M → R

2 be the (real) blow up of R2 in the origin, i.e., M = {((x0, x1), [y0 :
y1]) ∈ R2 × P1(R) | x0y1 = x1y0} . Consider the inverse image X of a line
segment uv ⊆ R2 . If uv does not contain the origin then X

∼→ uv . Otherwise,
X is the union of the exceptional fiber ψ−1(0, 0) ∼= S1 and an interval meeting in
one point. In either case, X is connected, hence ψ is convex. On the other hand,
the image of any sufficiently small neighborhood of a point in the exceptional
fiber is contained in a small cone and contains the origin. Such a set can’t be
open, hence iii) does not hold. For the second arrow let M be the same as above
but with one point in the exceptional fiber removed. Then ψ is still surjective
and all fibers are connected. But there is a line segment uv whose preimage is
disconnected.

This shows that we have to use some special properties of moment maps.
The dual of the Cartan algebra t∗ contains a canonical lattice Γ namely the
differentials of all homomorphisms T → R/Z . A rational homogeneous cone is a
subset of t∗ which is of the form

∑N
i=1 R≥0γi where γ1, . . . , γN ∈ Γ. A rational

cone is a translate u+C of a homogeneous rational cone C by a vector u ∈ t∗ .
In this case we say that u is a vertex of u+C . Note that u+C can have many
vertices namely all points in u + (C ∩ −C). The following theorem of Sjamaar
contains all the special properties of the moment map which we are going to
need.

Theorem 2.3. ([8] Thm. 6.5) Let M be a Hamiltonian K -manifold. Then for
every orbit Kx ⊆ M there is a unique rational cone Cx ⊆ t∗ with vertex ψ(x)
such that:

i) There exist an arbitrarily small K -stable neighborhood U of Kx such
that ψ(U) is a neighborhood of ψ(x) in Cx .

ii) For u ∈ t+ let x and y be in the same connected component of ψ−1(u) .
Then Cx = Cy .

A first application of this theorem is a general openness property of ψ :

Proposition 2.4. Let M be a Hamiltonian K -manifold such that all fibers of
ψ : M → t+ are connected. Let U ⊆M be open. Then also ψ−1ψ(U) is open.

Proof. Let U ′ be the union of all translates kU , k ∈ K . Then U ′ is
open with ψ(U ′) = ψ(U). Thus, we may replace U by U ′ and assume that
U is K -stable. Let y ∈ ψ−1ψ(U) and u := ψ(y). Then there is x ∈ U such
that also ψ(x) = u . Since ψ−1(u) is connected, Theorem 2.3ii) implies that
Cx = Cy =: C . By part i) of that theorem there are open neighborhoods Ux , Uy
of x , y , respectively, such that ψ(Ux) and ψ(Uy) are neighborhoods of u in C .
Hence (ψ|Uy )−1(ψ(Ux)) is a neighborhood of y which is contained in ψ−1ψ(U).
This proves the assertion.

We can now derive an openness criterion for ψ :

Lemma 2.5. Let M be a Hamiltonian K -manifold such that all fibers of
ψ : M → t+ are connected. Assume moreover that every u ∈ ψ(M) has
an arbitrarily small neighborhood B such that ψ−1(B) is connected. Then
ψ : M → ψ(M) is an open map.
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Proof. Let x ∈ M and U be an open neighborhood of x . We have to show
that ψ(U) is a neighborhood of u := ψ(x) in ψ(M). For this we may assume that
ψ(U) is a neighborhood of u in Cx . Let B be a neighborhood of u in t+ such
that B ∩Cx ⊆ ψ(U) and such that ψ−1(B) is connected. Then V1 := ψ−1ψ(U)
is open in M by Proposition 2.4. Clearly, also V2 := ψ−1(t∗ \ Cx) is open in
M . Moreover, V1 and V2 are disjoint and cover ψ−1(B). Connectivity implies
ψ−1(B) ⊆ V1 , i.e., B ∩ ψ(M) ⊆ ψ(U) which proves the assertion.

Now we can complete the proof of Theorem 2.2:

Proof of “⇒”. Assume that M is convex. Then i) and ii) clearly hold.
Let u ∈ ψ(M) and B ⊆ t+ a convex neighborhood of x . Since also ψ(M)
is convex we have uv ⊆ B ∩ ψ(M) for every v ∈ B ∩ ψ(M). By assumption,
ψ−1(uv) is connected. This implies that ψ−1(B) is connected. Thus iii) holds
by Lemma 2.5.

One can express properties i)–iii) of Theorem 2.2 purely in terms of the
moment map µ :

Theorem 2.6. A Hamiltonian K -manifold is convex if and only if the following
conditions are satisfied:

i ′ ) The intersection µ(M) ∩ t+ is convex.
ii ′ ) The fibers of µ are connected.

iii ′ ) Whenever U ⊆ M is a K -invariant open subset then µ(U) is open in
µ(M) .

Proof. By construction we have ψ(M) = µ(M) ∩ t+ , whence i)⇔ i ′ ). For
x ∈ M let y := µ(x) and u := ψ(x). Then there is a K -equivariant map
ψ−1(u)→ Ky , hence ψ−1(u) = K×Lµ−1(y) where L := Kµ(x) . The equivalence
of ii) and ii ′ ) now follows from the fact that K and L are connected. Finally,
let U ⊆M be open and U ′ the union of all translates kU . Since ψ(U ′) = ψ(U)
it suffices for checking iii) that ψ(U) is open in ψ(M) for all K -invariant U .
But then iii)⇔ iii ′ ) follows from the fact that k∗ → t+ is the quotient map by
K .

Remark. In general, one cannot expect µ to be an open map. Take for example
M = T ∗(K/H) where K = SU(2) and H = U(1), the maximal torus. Then
M = K ×H h⊥ where h⊥ ⊆ k∗ is the annihilator of the Lie algebra of H . Then
µ(M) = adK · h⊥ = k∗ . On the other hand, let V0 ⊂ K/H be a small open
subset, V its preimage in K and U := V ×H t⊥ . Then U is open in M but its
image µ(U) = V h⊥ is a conical proper subset of k∗ containing 0. Thus, it is not
open.

We conclude this section with two general properties of convex Hamilto-
nian manifolds. First we show that the cone Cx can be recovered from ψ(M).

Theorem 2.7. Let M be a convex Hamiltonian K -manifold and x ∈ M .
Then Cx is the smallest cone containing ψ(M) and having ψ(x) as a vertex.
Moreover, ψ(M) forms a neighborhood of ψ(x) in Cx .

Proof. Denote this smallest cone by C . By Theorem 2.3, there is a neighbor-
hood U of x such that ψ(U) is a neighborhood of u := ψ(x) in Cx . This shows
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that Cx ⊆ C . For the converse we just have to show that ψ(M) is contained in
Cx .

Let v ∈ ψ(M). Since ψ(U) is open in ψ(M) and since uv ⊆ ψ(M) also
uv ∩ ψ(U) is open in uv . This implies uv ⊆ Cx , thus v ∈ Cx .

Corollary 2.8. Let M be a convex Hamiltonian K -manifold. Then the image
ψ(M) is locally a polyhedral cone and, in particular, locally closed and semi-
analytic in t∗ .

Remark. See Example 3.2 of the next section for a connected Hamiltonian
manifold with ψ(M) 6⊆ Cx and Example 3.3 where ψ(M) is not locally closed.

3. Pathological examples of moment maps

One can reformulate Proposition 2.4 as follows: If ψ has connected fibers then
one can factorize it as

M
α−→ S

β−→ t+ (3.1)

where α is open, surjective and β is injective. In fact, set-theoretically we let
S = ψ(M), α = ψ , and β to be the natural inclusion of S in t+ . We equip S
with the topology that V ⊆ S is open if and only if ψ−1(V ) is open in M .

How important is it that ψ has connected fibers? There is a straightfor-
ward generalization of the factorization (3.1): let S := M/ ∼ where x ∼ y if x
and y are in the same connected component of some fiber of ψ . We give S the
quotient topology. Then the proof of Proposition 2.4 shows that α is an open
map. Moreover, the map β is continuous with discrete fibers.

Example 3.1. Consider the above construction in the following setting. Let
K = T be a torus and M0 any Hamiltonian T -manifold with moment map µ0 .
Let V be a manifold and γ : V → t∗ a smooth map which is everywhere a
local isomorphism. Now consider the fiber product M = M0 ×t∗ V . Since it
is locally isomorphic to M0 , it is also Hamiltonian. Its moment map is simply
the projection to V composed with γ . Thus, if µ0 has connected fibers then
S = M/ ∼= γ−1µ0(M0). This way, one can construct Hamiltonian manifolds
with arbitrarily disconnected fibers. A concrete example is the following: take
T = (S1)2 , M0 := T ∗(T ) = T × t∗ , and identify t∗ ∼= R

2 with C . Let
S = C \ {0, 2

3} and γ : S → C = t∗ : z 7→ z3 − z2 . Then γ is a surjective
unramified map. Since γ is an open map, we have constructed a Hamiltonian
manifold M = T ×S such that ψ is open with convex image but such that most
fibers are disconnected.

Example 3.2. Using the same technique as in Example 3.1, one can also
construct a Hamiltonian manifold such that β : S → t∗ is injective but not open.
For this take again K = (S1)2 , M0 = T×t∗ and identify t∗ with C . Let for some
0 < ε < π let S′ be the set of all non-zero complex numbers with −ε < Arg z < π
(i.e., S′ is a bit larger than the upper half-plane). Let γ′ : S′ → C = t∗ : z 7→ z2
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and M ′ = T × S′ . Now we apply Lerman’s symplectic cut technique, [7], to the
preimage Y of the positive real half line which is isomorphic to S1 × S1 × R :
one can cut away the preimage of the sector −ε < Arg z < 0 and replace Y by
Y/(1×S1) ∼= S1×R . Then one gets a new Hamiltonian manifold M such that S
is the set of all z ∈ C , z 6= 0 with 0 ≤ Arg z < π , i.e., S is the upper half-plane
together with the positive real half-line. The map γ : S → C : z 7→ z2 is injective
with image C\{0} but not open: no neighborhood of the positive half-line maps
to a neighborhood of the image point. This is basically the Example 3.10 of [4]
and which is avoided by our notion of convexity.

Example 3.3. This example is the same as the preceding one but we remove
the preimage of [1,∞)× (0,∞) ⊆ t∗ . Then ψ(M) is not locally closed near the
point (1, 0).

Example 3.4. Unfortunately, S will not in general be Hausdorff. To show
this, let K = S1 and M0 := T ∗(S1) × V = S1 × R × V where V is a non-zero
symplectic vector space. The fibers of the moment map are S1 × V . Now let
H ⊆ V be a hyperplane and let M be M0 where we removed S1 ×H from one
of the fibers of the moment map. Then one of the fibers of the moment map gets
disconnected and S = M/ ∼ is a real line with one of its points doubled. In
particular, it is not Hausdorff.

Example 3.5. In the preceding example one could remedy the situation by
replacing “∼” by a coarser equivalence relation. More precisely, put S := M/ ≈
where x ≈ y if ψ(x) = ψ(y) and Cx = Cy . Then one can show that α is
still open and that β has discrete fibers. But also in this definition, S might
not be Hausdorff. To construct an example consider the two Hamiltonian S1 -
manifolds M1 := T ∗(S1) × R2 = S1 × R × R2 , and M2 := C × R2 . Here
K = S1 acts in both cases on the first factor and R2 has the standard symplectic
structure dx∧dy . The moment maps are µ(α, t, x, y) = t and µ(z, x′, y′) = |z|2 ,
respectively. Consider the open subsets M0

1 := µ−1
1 (R>0) = {t > 0} and

M0
2 := µ−1

2 (R>0) = {z 6= 0} . They are isomorphic as Hamiltonian manifolds,
the isomorphism being z =

√
t exp(2πiα). Now we twist this isomorphism by

the automorphism of M0
1

(α, t, x, y) 7→ (α− t−2y, t, x+ t−1, y) (3.2)

and glue M1 and M2 along M0
1
∼→ M0

2 . It is easily seen that the graph of the
gluing isomorphism is closed in M1 ×M2 (on the graph holds x′ = x+ t−1 and
|z|2 = t . Thus, on its closure we get t(x′ − x) = 1 and |z|2 = t which implies
t > 0 and z 6= 0, i.e., the graph is closed). Therefore, the resulting manifold M
is Hausdorff. This way we constructed a Hamiltonian S1 -manifold for which all
fibers of the moment map but one are connected (∼= S1×R2 ) and the zero fiber
is disconnected (∼= (S1 × R2) ∪̇R2 ). Moreover, for x in the first component we
have Cx = R while in the second holds Cx = R≥0 . This shows that S = M/ ≈
equals R with “doubled” origin. In particular, it is not Hausdorff.
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Problem 3.6. We have seen that convexity is equivalent to the combination
of i), the convexity of ψ(M), ii), the connectedness of the fibers of ψ , and
iii), the openness of ψ onto its image. Properties i) and ii) are well studied in
the literature. Therefore, one may wonder whether iii) is really an additional
constraint. However, the author was not able to come up with an example of
an Hamiltonian manifold where i) and ii) hold, but iii) doesn’t. Observe, that
Examples 3.2 and 3.3 have a non-convex image while in the other examples some
fibers of ψ are disconnected. In case, an example with i)∧ ii)∧¬iii) exists then
the space S would have have quite peculiar properties: it is a manifold with
non-empty boundary and possibly corners such that there exists a continuous
bijective map to a convex subset of an Euclidean space.

4. Examples of convex Hamiltonian manifolds

Let V be a unitary representation of K . Then every smooth K -stable complex
algebraic subvariety of P(V ) is in a canonical way a Hamiltonian K -manifold.
We call a Hamiltonian K -manifold projective if it arises this way but possibly
with the symplectic form and the moment map rescaled by some non-zero factor.

Proposition 4.1. Let M be a Hamiltonian K -manifold such that for every
projective Hamiltonian K -manifold X holds that ψ−1

M×X(0) is connected. Then
ψM : M → ψ(M) is an open map with connected fibers.

Proof. Let X equal X with the symplectic structure multiplied by −1.
Then we have µM×X(m,x) = µM (m)−µX(x). By choosing for X the coadjoint
orbit Ku , u ∈ t+ we obtain that ψ−1

M (u) = ψ−1

M×X
(0) is connected. Now let

X0 be projective such that ψX0(X0) is a neighborhood of 0, e.g., X0 = P(V )
where V contains stable points for the KC -action. By rescaling, we can arrange
that ψ(X0) is arbitrarily small. Let X := X0 × Ku . Then B := ψX(X) is
an arbitrarily small neighborhood of u in t+ . Moreover, projection to the first
factor induces a surjective map ψ−1

M×X
(0)� ψ−1

M (B). By assumption, the first,
hence the second set, is connected. By Lemma 2.5, we conclude that ψM is open
onto its image.

Now we can give examples of convex Hamiltonian manifolds:

Theorem 4.2. Every connected Hamiltonian K -manifold M satisfying any
one of the conditions i) through iv) below is convex.

i) M is compact.
ii) The moment map µ : M → k∗ is proper.

iii) The manifold M is a complex algebraic variety, the action of K is the
restriction of an algebraic KC -action, and the symplectic structure is
induced by a K -invariant Kähler metric.

iv) The manifold M is a complex Stein space, the action of K is the re-
striction of a holomorphic KC -action, and the symplectic structure is
induced by a K -invariant Kähler metric.
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Proof. In all cases, it is known that ψ has connected fibers and convex image
(see [3] or [8] for i), ii) and [2] for iii) and iv)). Moreover, the classes i)-iii)
are preserved by taking the product with a projective Hamiltonian K -manifold.
Thus Proposition 4.1 implies that ψ is open in these cases.

For iv) one has to argue a bit differently since the class of Stein spaces
is not stable for products with projective manifolds. But fortunately, Heinzner-
Huckleberry prove in [2] a stronger result: given a holomorphic action of G on a
complex manifold M then ψ has convex image and connected fibers whenever
the G -action is regular. Here “regular” means “each G -orbit of M has an open
dense neighborhood which is G -equivariantly the locally biholomorphic image of
an irreducible complex G -space U such that U admits a closed, holomorphic,
G -equivariant embedding into an algebraic G -variety.” It is noted in [2] that
actions on Stein spaces are regular. Clearly, the class of manifolds with regular
action is stable for taking products with algebraic G -varieties. Thus, ψ is open
also in case iv).

Note, that i) includes all projective spaces while all linear actions on unitary
vector spaces are covered by iii).

5. Local convexity

The purpose of this section is to prove the following theorem.

Theorem 5.1. Let M be a Hamiltonian K -manifold. Then every x ∈M has
an arbitrarily small K -stable open neighborhood U which is convex as Hamilto-
nian manifold and such that ψ(U) is open in Cx .

Proof. We start with some reductions. Let y := ψ(x) ∈ t+ ⊆ k∗ and L := Ky .
Assume L 6= K . It is convenient to identify k∗ with k using a K -invariant
scalar product. Then y ∈ t ⊆ l := LieL ⊆ k . Let V0 ⊆ t+ be a small open
neighborhood of y . Then VL := L · V0 is a small open neighborhood of Ly in
l . Similarly, VK := K · V0 is a small open neighborhood of Ky in k . Moreover,
VL is an orthogonal slice to Ky . This implies that K ×L VL

∼→ VK . Now let
ML := µ−1(VL) and MK := µ−1(VK). Then MK is an open neighborhood
of Kx with K ×L ML

∼→ MK . It can be shown ([1] Thm. 26.7) that ML

is a Hamiltonian L-manifold whose moment map µL is just the restriction
of µ to ML . Similarly, there is ψL which is the restriction of ψ . Suppose
the theorem is true for L instead of K . Then there is an arbitrarily small
open neighborhood UL of Lx in ML which is convex as a Hamiltonian L-
manifold. Then U := K · UL = K ×L UL is an arbitrarily small K -invariant
open neighborhood of Kx . Moreover, for the preimage of a line segment uv ⊆ t∗

holds
ψ−1(uv) ∩ U = K ×L (ψ−1

L (uv) ∩ UL). (5.1)

This shows that U is a convex Hamiltonian K -manifold.
Thus, it remains to consider the case L = K , i.e., y ∈ (k∗)K . Since

the translate µ′ := µ − y is again a moment map we may assume y = 0. Let
H := Kx . Since the orbit Kx is isotropic we have kx ⊆ (kx)⊥ ⊆ TxM . Let S be
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an H -invariant complement of kx in (kx)⊥ . Then one can show ([8] Thm. 6.3,
[1] Thm. 22.1)

• S is a unitary H -module with moment map µS : S → h∗ : v 7→ (ξ 7→
〈v, ξv〉);

• M0 := K ×H (h⊥ ⊕ S) is a Hamiltonian K -manifold with moment map
µ([k, (α, v)]) = k(α+ µS(v)).

• Let x0 := [1, (0, 0)] ∈ M0 . Then Kx ⊆ M and Kx0 ⊆ M0 have K -
invariant open neighborhoods which are isomorphic as Hamiltonian K -
manifolds.

Because of the last point we can (and will) assume M = M0 and x = x0 .
Let Dr and Dr be the open and the closed ball of radius r in S ,

respectively. Consider the natural scalar U(1)-action on S and let P = Dr/ ∼
be the space where all U(1)-orbits in Dr \ Dr are collapsed to a point. One
can show (Lerman’s symplectic cut, [7]) that P is a compact Hamiltonian H -
manifold (in fact, it is a complex projective space) whose moment map µP factors
µS :

D � P
∩ ↓ µP
S

µS→ h∗
(5.2)

Now consider

Vr := K ×H (h⊥×Dr), V r = K ×H (h⊥×Dr), Q := K ×H (h⊥×P ). (5.3)

Then Vr is an open subset of M , its closure is V r , and Q is an image of V r .
The point is now that h⊥ ×Dr → k∗ : (α, v) 7→ α+ µS(v) is proper. Therefore,
also the moment map of Q is proper. Hence, Q is convex by Theorem 4.2ii).

Now we claim that Vr is also convex. First, since Vr is an open subset
of Q , we see that the moment map on Vr is open onto its image. Furthermore,
since all fibers of V r → Q are connected (being points or circles) also V r → t+

has connected fibers. Now we use that Vr is the union of all V s with s < r .
Thus every fiber of Vr → t+ is an increasing union of connected sets and therefore
connected. The same argument shows that ψ(Vr) is an increasing union of convex
sets, hence itself convex. This proves the claim.

Let Bs ⊆ t∗ be the open disk with center 0 and radius s . From
Theorem 2.7 we know that ψ(Vr) is a neighborhood of 0 in Cx . Thus, given r ,
we may choose s so small that Bs ∩ Cx ⊆ ψ(Vr). Then U := ψ−1(Bs) ∩ Vr is
an arbitrarily small open neighborhood of Kx which is convex as Hamiltonian
manifold and whose image, Bs ∩ Cx , is open in Cx .

Remark. This proof is similar to that of [4] Prop. 3.7.

6. Some consequences of convexity

If C is a rational cone and v ∈ C we define the tangent cone TvC of C in v as
the smallest cone containing C and having v as a vertex. If u ∈ C is any vertex
then

TvC = C + R≥0(u− v). (6.1)
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In fact, to show this we may assume that u = 0. Then TvC is a homogeneous
cone containing C . The point v being a vertex means −v ∈ TvC which confirms
(6.1).

Corollary 6.1. Let M be any Hamiltonian K -manifold and x ∈ M . Then
there is a neighborhood U of x such that for all y ∈ U we have Cy = Tψ(y)Cx .

Proof. By Theorem 5.1 we may assume that M is convex and that ψ(M) is
open in Cx . But then for every u ∈ ψ(M), it holds that the cone with vertex
u spanned by ψ(M) is the same as that spanned by Cx . We conclude with
Theorem 2.7.

An application is the following well known statement.

Corollary 6.2. Let M be any connected Hamiltonian K -manifold and let
a ⊆ t∗ be the affine subspace spanned by ψ(M) . Then a is also the affine
span of every local cone Cx , x ∈ M . Moreover, the set of interior points of
ψ(M) (relative to a) is dense in ψ(M) .

Proof. Let ax be the affine span of Cx . It follows from Corollary 6.1 that
is locally constant in x . Since M is connected, ax is independent of x . From
ψ(x) ∈ Cx ⊆ ax follows ψ(M) ⊆ ax . Moreover, for every x ∈ M there is a
subset Ux ⊆ ψ(M) ∩ Cx which is open in ax and which contains ψ(x) in its
closure (Theorem 2.3). Thus ax is spanned by ψ(M) which implies ax = a .
Moreover, ψ(x) is in the closure of the relative interior points of ψ(M).

The last class of examples for convex Hamiltonian manifolds was sug-
gested to me by Tolman:

Theorem 6.3. Let X be a connected K -manifold and let M := T ∗(X) with
its natural Hamiltonian structure. Then M is convex.

Proof. Let ι : X ↪→ M be the zero-section. The map ψ : M → t∗

is homogeneous with respect to the natural scalar R>0 -action on the fibers.
Therefore, ι(X) ⊆ ψ−1(0). Since X is connected, Theorem 2.3 implies that
C = Cι(x) is independent of x ∈ X . Moreover, there is an open neighborhood U
of ι(X) in M such that ψ(U) is a neighborhood of 0 in C . From M = ∪t>0tU
we obtain ψ(M) = C . In particular, we see that ψ(M) is convex.

Let π : M → X be the projection. For m ∈ M let m0 := ιπ(m) ∈ M .
Choose a convex open neighborhood V of Km0 such that ψ(V ) is open in C .
Using the R>0 -action we may assume that m ∈ V . Now let V0 be a small
neighborhood of m which is contained in V . Using the convexity of V , we
conclude that ψ(V0) is open in ψ(V ), hence open in C . Thus, ψ : M → C is
open.

Finally, suppose that the fiber of ψ over u ∈ C is disconnected. Thus,
ψ−1(u) = F1 ∪ F2 where F1 and F2 are disjoint, non-empty, and closed. Let
W ⊆ X be open, non-empty and K -stable. Then, with X replaced by W , we
obtain as above ψ(π−1(W )) = ψ(T ∗(W )) = C . This means in particular that
π−1(W ) ∩ ψ−1(u) 6= Ø for every W . Hence, π(ψ−1(u)) is dense in X . Since
X is connected there is x ∈ π(F1) ∩ π(F2). Let V be a convex neighborhood of
Kι(x) in M . By homogeneity, we may assume that V meets both F1 and F2 .
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But this contradicts the connectedness of fibers of ψ|V . Thus, ψ has connected
fibers as well.

Remark. The fact that ψ(M) = Cx for any x ∈ X ⊆ T ∗(X) is due to Sjamaar,
[8] Thm. 7.6.
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