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Abstract. Let G be a connected Lie group with Lie algebra g , expG :
g −→ G the exponential map and E(G) its range. En(G) will denote the
set of all n -fold products of elements of E(G). G is called exponential if
E(G) = E1(G) = G . Since most real (or complex) connected Lie groups are
not exponential, it is of interest to know that the weaker conclusion E2(G) = G
is always true (Theorem 5.6). This result will be applied to prove Theorem 6.4,
a generalized version of Floquet-Lyapunov theory for Lie groups. It will then be
seen the property that a Lie group is exponential is equivalent to the existence
of a special form of Floquet-Lyapunov theory for it (Corollary 6.3). Theorem
2.8, generalizes the well-known fact that connected nilpotent Lie groups are
exponential. Our methods also provide alternative proofs of some known results
by arguments which seem simpler and more natural than the usual ones. Among
these is part of the classical Dixmier-Saito result, Theorem 5.8.

The method employed here stems from the earliest techniques of Lie
theory. It exploits connections between the exponential map and differential
equations on G , starting from the observation that the one parameter subgroup
g(t) = expG(tγ) corresponding to an element γ ∈ g satisfies the differential
equations

g ′(t) = dLg(t)γ and g ′(t) = dRg(t)γ

on G with the initial condition g(0) = eG . More generally here it will be neces-
sary to consider differential equations corresponding to certain time dependent
vector fields on G , or equivalently, certain time dependent cross-sections of the
tangent bundle of G .

1. Introduction

Let G be a Lie group with Lie algebra g and expG : g −→ G the exponential
map. The groups discussed here will usually be connected and the underlying field
is to be taken as real except in a few cases where it is explicitly stated to be
complex. We denote by eG the identity element and by E(G) the range of the
exponential map. (The subscripts on expG and eG will sometimes be omitted
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when no confusion is possible.) E(G) is a canonically defined subset of G which
is invariant under inversion and all automorphisms of G . G is called exponential
if expG is surjective, that is, if every element of G lies on a 1-parameter subgroup.
Also, En(G) will denote the set of all n-fold products of elements of G lying on
one parameter subgroups. Thus G is exponential means that E1(G) = E(G) = G .
Other notation that will be used is: Lg and Rg stand for the left and right
translations by the element g in G and the derivatives of these maps will be
written as dLg and dRg .

Compact connected Lie groups are always exponential, since exp commutes
with conjugation and any compact connected Lie group is the union of the con-
jugates of a maximal torus which is exponential. In the late fifties Dixmier [2]
and Saito [19] independently proved that for simply connected solvable groups the
exponential map is surjective (iff it is injective iff it is bijective iff it is a global
diffeomorphism) and all of these are equivalent to the condition that the adjoint
representation of the Lie algebra have no non-trivial purely imaginary roots. The
question of which connected, noncompact real Lie groups, particularly semisimple
and mixed groups, are exponential has been studied rather intensively in recent
years. For example, the main result in [14], together with [15], shows that any non-
compact, centerless, real rank 1, simple group, other than the exceptional one, is
exponential. (D. Djokovic and Nguyêñ Thăńg in [3] show that the exceptional
group fails to be exponential). In semisimple groups of higher rank and in mixed
groups the situation is less favorable. A thorough summary of the status of these
questions, as of 1997, in given in [4]. More recent results showing the complexity
of the situation can be found in [17], [18], and [24].

Since most real (or complex) connected Lie groups are not exponential, it
is of interest to know that the weaker conclusion E2(G) = G is always true, as
will be shown by one of our main results, Theorem 5.6. This will then be applied
to prove Theorem 6.4, a generalized version of Floquet-Lyapunov theory for Lie
groups. It will be seen the property that a Lie group is exponential is equivalent
to the existence of a special form of Floquet-Lyapunov theory for it (Corollary
6.3). Another result, Theorem 2.8, generalizes the well-known fact that connected
nilpotent Lie groups are exponential. Our methods also provide alternative proofs
of some known results by arguments which seem simpler and more natural than the
usual ones. Among these is part of the Dixmier-Saito result, Therorem 5.8. The
authors would like to take the opportunity here to thank the referees for pointing
out a gap in an earlier version of the paper.

The method employed here stems from the earliest techniques of Lie theory.
It exploits connections between the exponential map and differential equations on
G , starting from the observation that the one parameter subgroup g(t) = expG(tγ)
corresponding to an element γ ∈ g satisfies the differential equations

g ′(t) = dLg(t)γ and g ′(t) = dRg(t)γ

on G with the initial condition g(0) = eG . More generally here it will be necessary
to consider differential equations corresponding to time dependent vector fields on
G , or equivalently, time dependent cross-sections of the tangent bundle of G . The
cross-sections needed here are of a special form that can be represented as follows:
Let γ(t) be a C1 function of the real parameter t with values in the Lie algebra
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g . Then a cross-section is defined by dLgγ(t) or dRgγ(t) and the corresponding
differential equations are

g ′(t) = dLg(t)γ(t) (1)

and

g ′(t) = dRg(t)γ(t). (2)

The existence, uniqueness, and smoothness of solutions of such equations
present no difficulties, but usually it is not possible to give explicit formulas for
them. In the next section we discuss the choices of γ(t) that are of interest here
and the properties of the corresponding solutions.

2. Properties of Solutions

In what follows: G will denote a connected Lie group, W a closed con-
nected, normal subgroup, H = G/W the quotient group, and π : G −→ H =
G/W the projection. The corresponding map of Lie algebras is denoted by
π ′ : g −→ h = g/w. Then corresponding, for example, to equation (1) there
is the differential equation

h ′(t) = dLh(t)π
′γ(t) (3)

on H .

Proposition 2.1. If g(t) is the solution of equation (1) with g(0) = eG , then
h(t) = πg(t) is the solution to equation (3) with h(0) = eH .

Proof. Since π(gg ′) = π(g)π(g ′), holding g fixed and differentiating π at
g ′ = eG with respect to γ gives dπgdLgγ = dLπgdπeG

γ . Noting that dπeG
γ = π ′γ

and setting g = g(t) gives

dπg(t)dLg(t)γ = dLπg(t)π
′γ = dLh(t)π

′γ.

This shows that the image of the tangent to the solution to (1) is the tangent
to the solution to (3), which implies the conclusion of the proposition.

Other standing notation will be: D will denote a derivation of g . D is
then a linear map of g into itself as is Exp(tD) for any real t . Then we shall
be concerned with differential equations like (1) where γ(t) = Exp(tD)γ for γ a
fixed element of g . The next proposition is well-known and is the source of the
interest in derivations here.

Proposition 2.2. The automorphism group of g, Aut(g), is a linear Lie group
with Lie algebra Der(g), the set of derivations of g. A derivation D in Der(g)
corresponds to the one-parameter subgroup M(t) = expAut(g)(tD) = Exp(tD) of
Aut(g).

The following proposition is proved by an obvious formal argument, which
we omit.
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Proposition 2.3. If D(w) ⊆ w, a derivation Dπ of h is defined unam-
biguously by Dππ

′γ = π ′Dγ for γ ∈ g. Moreover, if γ(t) = Exp(tD)γ then
π ′(γ(t)) = Exp(tDπ)π ′γ .

Suppose that g(t) is the solution to (1) with g(0) = eG and γ(t) =
Exp(tD)γ . A map EDG : g −→ G is defined by setting EDG (γ) = g(1). When

D = 0, this is just the exponential map. If D(w) ⊆ w , there are maps EDπH
and EDW defined similarly, where it is understood that the derivation for W is the
restriction of D and for H is Dπ as in Proposition 2.3. The next proposition also
needs no proof.

Proposition 2.4. Suppose that D(w) ⊆ w and EDW and EDπH are onto. Then
G = EDG (g)EDW (w).

Theorem 2.5. Assume the hypotheses of Proposition 2.4 and that, in addition,
W is a subgroup of the center of G. Then G = EDG (g).

Remarks. Note that if W is the connected component of the identity in the
center of G , the hypothesis that D(w) ⊆ w is automatically satisfied. For
conditions to imply that EDW (w) = W when W is a vector group, see Lemma 2.7
below.

Proof. By Proposition 2.4 any any element of G is a product g = EDG (φ)EDW (ω)
for φ ∈ g and ω ∈ w . Set γ = φ + ω , and note that Exp(tD)γ = Exp(tD)φ +
Exp(tD)ω . Let w(t) and h(t) denote respectively the solutions to

w ′(t) = dLw(t)Exp(tD)ω, and h ′(t) = dLh(t)Exp(tD)φ

that pass through eG when t = 0. Since D maps w into itself, w(t) is in W ,
hence w(s)h(t) = h(t)w(s). This equality implies that w ′(t)h(t) = h(t)w ′(t), so
if g(t) = w(t)h(t),

g ′(t) = h(t)w ′(t) + w(t)h ′(t) = dLh(t)dLw(t)Exp(tD)ω+

dLw(t)dLh(t)Exp(tD)φ = dLg(t)Exp(tD)γ.

Thus, g(t) satisfies (1) with γ(t) = Exp(tD)γ . Setting t = 1, it follows that
EDG (γ) = g(1) = w(1)h(1) = EDW (ω)EDG (φ) = g . That is g is in EDG (g).

The following is an analogue of a notion by the same name given in [16]
(p. 325): An endomorphism of a real or complex vector space is said to be of type
E if it has no eigenvalues equal to 2πin , where n 6= 0 is an integer. A real Lie
algebra g is said to be of type E if the adjoint map adγ corresponding to each of
its elements γ is of type E as an endomorphism of g .

The easy proof of the next proposition is omitted.

Proposition 2.6. Assume the conditions of Proposition 2.3. Suppose that
D has eigenvalues Λ={λ1, . . . , λn} (repeated according to multiplicity) and that
{λ1, . . . , λm} are those that correspond to the ideal w. Then the eigenvalues of
Dπ are {λm+1, . . . , λn}
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Lemma 2.7. Suppose that W is a real simply connected Abelian Lie group and
D is a derivation of w. Then EDW is one-to-one and onto if D is of type E. If D
is not of type E, EDW is of codimension at least two in W .

Proof. One can verify by direct computation that for ω ∈ w , EDW (ω) =
1∫
0

Exp(tD)dtω . This equality can be written in terms of functional calculus as

EDW (ω) = F (D)γ , where F (z) is the holomorphic function
1∫
0

etzdt . The spectral

mapping theorem shows that F (D) has a zero eigenvalue if and only if D has an
eigenvalue λ such that F (λ) = 0. But F (0) = 1 and F (z) = (ez−1)z−1 otherwise,
so F (D) has a 0 eigenvalue if and only if D is of type E. Since W is real and the
non-real eigenvalues occur in conjugate pairs. Thus any zero eigenvalue of F (D)
has multiplicity at least two and EDW is of codimension at least two.

The next theorem is a generalization of the well-known result that a con-
nected nilpotent Lie group is exponential, which is the case D = 0.

Theorem 2.8. Suppose that G is a connected nilpotent group and D is a
derivation of its Lie algebra g which is of type E. Then EDG is onto. Conversely,
if D is not of type E, EDG is the image of a subspace of g of codimension at least
two.

Proof. Suppose that D is of type E, let W be the identity component of the
center of G and H = G/W . Obviously, D(w) ⊆ w so that Propositions 2.1 and
2.3 apply. The proof goes by induction on the dimension of G . Proposition 2.6
shows that the hypotheses of the theorem apply to the nilpotent Lie group H . EDW
is onto by Lemma 2.7 and EDH is onto by the induction hypothesis. Theorem 2.5
shows that EDG is onto.

If D is not of type E, Proposition 2.6, shows that either D|w or Dπ is
not of type E. In the first case, Lemma 2.7 applies to the Abelian Lie group W
and there is a subspace of codimension two of w ⊆ g that EDG maps to eG , hence
the conclusion follows. If Dπ is not type E, the argument can be applied to the
nilpotent group H and the identity component of its center. Continuing in this
way, evenually a center will not be of type E, or the quotient will be Abelian. In
either case the result follows.

The following lemma will be needed later.

Lemma 2.9. Suppose that G is a simply connected solvable Lie group and
that D is a derivation of g of type E. If W is the commutator subgroup [G,G],
G = EDG (g)EDW (w). Taking D = 0 gives E2(G) = G.

Proof. Now W and H = G/W are simply connected (cf. [10] pp. 135-
136). Clearly, w is D -stable. Theorem 2.8 shows that EDW is onto, since W
is nilpotent. Since H is abelian Proposition 2.6 and Lemma 2.7 show that EDH is
onto. Proposition 2.4 yields the conclusion.
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3. The exponential map on the semidirect product of Lie groups

The interest here in time-dependent vector fields defined, for example, by
γ(t) = Exp(tD)γ stems from the exponential map on semi-direct products of Lie
groups. Suppose W and H are connected Lie groups and A : W×H → W defines
an analytic homomorphism from H to Aut(W ), the group of automorphisms of
W . Then A satisfies the functional relations:

A(ww′, h) = A(w, h)A(w′, h); A(eW, h) = eW. (4)

A(w, hh′) = A(A(w, h′), h); A(w, eH) = w. (5)

The semidirect product Lie group structure is defined on the product man-
ifold W ×H = G by the multiplication law

(w, h)(w′, h′) = (wA(w′, h), hh′). (6)

Of course, the map A is the restriction to W of an inner automorphism
of G . Lie algebras can be viewed as the tangent spaces at the identities of the
corresponding groups. Thus, g = w⊕h as a vector space, but the bracket depends
on the map A . Suppose that (ω, η) is in w⊕ h and ω∗ = (ω, 0), η∗ = (0, η). To
view (ω, η) = ω∗ + η∗ as a left invariant vector field on G one first observes
that by (6) dL(w,h)(ω, η) = (dLw(∂WA(eW, h))(ω), dLh(η)). Here ∂W denotes
partial differentiation with respect to the W -variables. Therefore by the remarks
on one parameter subgroups in Section 1, if expG(t(ω, η)) = (w(t), h(t)), then
h(t) = expH(tη) and w(t) is the solution to the following initial value problem on
W .

w′(t) = dLw(t)(∂WA(eW, h(t))(ω); w(0) = eW. (7)

To obtain alternate expressions for w(t) = w(t, η, ω) note that (5) implies
that since h(t)h(u) = h(t+ u),

∂WA(eW, h(t+ u)) = ∂WA(eW, h(u)) ◦ ∂WA(eW, h(t)). (8)

Setting M(t, η) = ∂WA(eW, h(t)) (a map of w to itself), we see by (5)
that M(0, η) = I , the identity map. With this notation (8) becomes M(t +
u, η) = M(t, η)M(u, η). This means that M(t, η) defines a one-parameter group of
automorphisms of w and therefore by Proposition 2.2, M(t, η) = Exp(tD), where
D = d/dtM(t, η) at t = 0 is a derivation of w . Noting that M(t, η) = Adh(t) leads
to D = adη∗ . (Here it is to be understood that Adh(t) and adη∗ are restricted to
w .) Therefore (7) can be rewritten as

w′(t, η, ω) = dLw(t,η,ω)Exp(tD)ω; w(0, η, ω) = eW. (9)

The results of this section can be summarized as follows:
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Theorem 3.1. Let G = W × H be the semi-direct product of connected Lie
groups W and H . Then any element η of h determines a derivation D = adη
of g hence also of w. If (ω, η) is an element of g = w ⊕ h, the corresponding
one-parameter subgroup of G is g(t) = (w(t), h(t)), where h(t) = expH(tη) and
w(t) is the solution to the initial value problem (9). In particular, expG(ω, η) =
(EDW (ω), expH(η)).

4. Semisimple groups

A connected Lie group G is said to be of compact type if its Lie algebra, g

has a positive definite invariant symmetric bilinear form, or equivalently if G is
locally isomorphic to some compact Lie group. In this case one also says g is of
compact type.

Lemma 4.1. A connected Lie group of compact type is exponential.

Proof. If the connected Lie group G is of compact type, then (see [6]) G is the
direct product of a vector group V and a compact group C . Since V is central in G
and its Lie algebra v is central in g , it follows that expG(v+c) = expG(v) expG(c),
where v and c are, respectively, in the Lie algebras of C and V . Since these
commute, Lemma 4.1 follows from the fact that both compact and vector groups
are exponential.

Now let S be a connected semisimple Lie group and s be its Lie algebra.
The Iwasawa decomposition (see Wallach [23]) tells us s = k ⊕ a ⊕ n and as
a manifold S is a direct product of K , A and N , where K , A and N are the
subgroups of S corresponding to k , a and n respectively. Since N is normalized by
A , AN is a simply connected solvable group all of whose roots are real. Therefore
AN is of type E, that is, AN is exponential and expAN is a diffeomorphism by the
Dixmier-Saito Theorem. The Lie algebra of K is of compact type. (We remark
that if S were linear, or more generally had finite center, then K would actually
be compact). In any case by Lemma 4.1 K is exponential. Hence, E2(S) = S .

Definition: E+(G) will denote the subset of E(G) consisting of those points
g = expG(γ) such that for some choice of γ the map from γ to G is non-singular,
that is, has non-vanishing Jacobian.

We now expand the remarks just above by showing that for a semisimple
group S one has S = E(S)E+(S) = E+(S)E(S). To do so we use a result of
Harish-Chandra. It is Lemma 1 of [7] (see also Wallach [22] p. 53). Since this fact
will play an important role in our argument for completeness we give a sketch of
the proof.

Lemma 4.2. Let h be a semisimple Lie algebra of non-compact type with Iwa-
sawa decomposition h = k⊕ a⊕ n. If x = a+ n, where a ∈ a and n ∈ n, then the
characteristic polynomials of adx and ada , acting on h are the same.

Proof. First we make the following observation: Suppose T and U are block
triangular operators on the same vector space V with identical block sizes and
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with Ti and Ui , i = 1, . . . r the respective diagonal blocks. If, for each i , Ti
and Ui are equal (or even conjugate), then T and U have the same characteristic
polynomial.

Now let λ1 < . . . λr be an ordering of the roots and hλi
be the corresponding

root spaces. Put hi = Σλ>λihλ , where i = 1, . . . r . Then

h0 = h > h1 > . . . hr = (0),

these all being ada+n invariant. Since [n, hi] ⊆ hi+1 , both adx and ada give the
same endomorphism on each hi/hi+1 .

Lemma 4.3. Let S be any real semisimple Lie group. Then E(S)E+(S) =
E+(S)E(S) = S .

Proof. Now the Lie algebra s is a direct sum of a real compact semisimple Lie
algebra k0 with one of non-compact type, h . If K0 is the subgroup corresponding
to k0 and KAN is the Iwasawa decomposition of H , the subgroup corresponding
to h , then, as we saw, K0K is exponential. As is well known ada acting on h

has only real eigenvalues. It follows from Lemma 4.2 that the same is true of
adx for any x ∈ a ⊕ n . Since k0 and h commute adx acting on s also has only
real eigenvalues. Because adx acting on s has no purely imaginary eigenvalues, it
follows from Corollary 5.2 below that d(expS)x is invertible for each x ∈ a ⊕ n .
Thus not only is everything in AN on a one parameter subgroup of AN and
therefore of S , but actually AN ⊆ E+(S). Hence E(S)E+(S) = S . Taking
inverses proves the other equality in the statement of the lemma.

5. The exponential map in general

The following classical theorem will be needed later. A proof using a
connection can be found in Helgason [9]; another using a power series expansion is
in Varadarajian [21] or Wallach [23]. There is another proof, known in the folklore
of the subject, which is similar to the proof given by H. Hopf [11] for the discrete
analogue. We give this proof below because it is more consistent with the methods
used elsewhere in this paper.

Theorem 5.1. Let G be a connected real Lie group and γ and ζ ∈ g. The
derivative of expG(γ) evaluated at ζ is dLexp(γ)(

∫ 1

0
Exp(−t adγ)dt(ζ)).

Proof. Let g(t) = expG(tγ), k(s, t) = expG(t(γ + sζ)), and
F (s, t) = g(−t)k(s, t). The partial derivative of F with respect to t is

∂F/∂t(s, t) = dLg(−t)dRk(s,t)(−γ) + dLg(−t)dRk(s,t)(γ + sζ) = dLg(−t)dRk(s,t)(sζ).

Here we have used (1) for g(−t) and (2) for k(s, t). The mixed partial is then
∂2F/∂t∂s(0, t) = Adg(−t)(ζ), since k(0, t) = g(t). The map (t, ζ) 7→ Adg(−t)(ζ)
defines a one-parameter group of automorphisms of g . Proposition 2.2, then gives
Adg(−t)(ζ) = Exp(−t adγ)(ζ). Thus it has been shown that Exp(−t adγ)(ζ) is the
derivative with respect to t of the composition of dLg(−t) with the derivative of
expG(tγ) evaluated at ζ . Noting that the derivative at t = 0 is 0 determines the
antiderivative and integrating from 0 to 1 gives the formula in the statement of
the theorem.
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Corollary 5.2. The map expG is non-singular at γ if and only if adγ is of
type E.

Lemma 5.3. For any connected Lie group G, E+(G) is an open subset of G
and its intersection with any one-parameter subgroup is open and dense.

Proof. The openness is clear and the density is a consequence of Corollary 5.2,
since any ray through the origin of g contains a dense set of points γ such that
adγ is of type E.

Lemma 5.4. Let H be a connected subgroup of a Lie group G. Then
E+(H)E(H) = E(H)E+(H) = H ∩ (E+(G)E+(G)).

Proof. H ∩ (E+(G)E+(G)) ⊆ E+(H)E(H) = E(H)E+(H) is clear. Con-
versely, suppose that an element h ∈ H is a product h = h1h2 of elements
of E(H) where one factor (e.g. h1 ) is in E+(H). By Lemma 5.3 there is
h2
′ ∈ H ∩ E+(G) ⊆ E+(H) arbitrarily near h2 so that h1

′ = h(h2
′)−1 is ar-

bitrarily near h1 , in particular, in E+(H). Now the argument just given can
essentially be repeated (first picking h1

′ ′ near h1
′ ) to give h = h1

′ ′h2
′ ′ , with

both factors in H ∩ E+(G).

Lemmas 4.3 and 5.4 (taking S = H = G) give the following:

Corollary 5.5. For any real semisimple Lie group S , E+(S)E+(S) = S .

The next theorem is one of our main results.

Theorem 5.6. For any real connected Lie group G, E2(G) = G.

Proof. No generality is lost by assuming that G is simply connected. Let R
denote the radical of G . Then the Levi decomposition G = R ×H is actually a
semidirect product. The Levi factor H is semisimple, so it follows from Corollary
5.5 and Lemma 5.4 that every element h of H is a product h1h2 of two elements
of H ∩ E+(G). Now let g = (r, h) be an arbitrary element of G with h = h1h2

as above and hi = expH(ηi). By Lemma 2.9, (identifying G and W of the lemma
respectively with R and [R,R] here) it can be arranged that r = r1r2 , where
r1 = ED1

R (ρ1) and r2 = ED1

[R,R](ρ2) ∈ [R,R] , where ρ ∈ [r, r] . This means that

(r1, h1) = expG(ρ1, η1) ∈ E(G) by Theorem 3.1. Also, since [R,R] is nilpotent,
Theorem 2.8 shows that for any r ′ in [R,R] there is a ρ ′ in [r, r] such that
r ′ = ED2

[R,R](ρ
′). Again by Theorem 3.1 (r ′, h2) = expG(ρ ′, η2) ∈ E(G). But r ′ can

be chosen so that A(r ′, h1) = r2 , because for fixed h1 , A(·, h1) is an automorphism
of R . Therefore, (r, h) = (r1r2, h1h2) = (r1A(r ′, h1), h1h2) = (r1, h1)(r ′, h2).

The next Lemma is needed for the proof of Theorem 5.8. For the proof of
both these results it is assumed that the Lie algebra has a norm, but no special
properties of the norm will be needed.
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Lemma 5.7. Suppose that g is a solvable real Lie algebra of type E. Then
there exists an a > 0 such that for every γ ∈ g, all of the eigenvalues of adγ are
contained in the set Sa = {z = x + iy ∈ C : |x| ≥ a|y|}. Thus there is a constant
C such that if λ is an eigenvalue of the linear map ad, the norms of the linear
maps adγ − λI satisfy ‖(adγ − λI)k‖ ≤ C(‖γ‖k) for any γ and 0 ≤ k ≤ dim g.

Proof. By Lie’s theorem there is a basis of the complexification of g such that
the operators adγ are simultaneously in upper triangular form. So the diagonal
elements, λ1, . . . , λq , are complex-valued linear functionals on g . Now λj(γ) =
Rj(γ) + iIj(γ), where Rj and Ij are real-valued functionals. The hypothesis
that g is of type E implies that Ij(γ) = 0 whenever Rj(γ) = 0, or if Nj and
Mj are the nullspaces of Rj and Ij respectively, Nj ⊆ Mj . This means that if

R̂j and Îj are the linear functionals induced on the quotient space g/Nj , then

R̂j(γ) = 0 only if γ = 0. For ‖γ‖ = 1 the ratio |Îj(γ)/R̂j(γ)| ≤ (aj)
−1 > 0

by compactness, and by the homogeneity of the ratio the inequality holds for all
γ 6= 0. If a = min{a1, . . . , aq} > 0, then all of the eigenvalues are contained in
Sa = {z = x + iy ∈ C : |x| ≥ a|y|} . The linear maps (adγ − λ(γ)I) are uniformly
bounded for ‖γ‖ = 1 by compactness. Since they are linear as functions of γ , they
are bounded by a constant times ‖γ‖ and the required estimates can be made.

Theorem 5.8. (Dixmier-Saito [2], [19]) If G is a real simply connected solvable
group whose Lie algebra is of type E, then G is exponential.

Proof. Suppose that g is of type E. Let g be an arbitrary element of G .
We need to show that g = expG(γ) for some γ ∈ g . By Theorem 5.6, g =
expG(γ1)expG(η) for some γ1 and η in g . The idea of the proof is to use the
implicit function theorem to determine γ(t) such that

g ≡ expG(γ(t))expG(tη), (10)

where γ(1) = γ1 . If it could be shown that γ(t) can be continued until t = 0, one
would get g = expG(γ) for γ = γ(0), proving that G is exponential.

Let gC denote the complexification of g . The γ(t) constructed in the course
of the argument below might a priori wander outside of g . At the end of the proof
we shall observe that, in fact, γ(t) must stay within g for all t .

By Corollary 5.2 and the type E assumption, expG(γ) is non-singular at
every γ , so γ(t) can be determined for t near 1. Differentiating (10), using
Theorem 5.1, and (2) one gets

dLγ(t))dRh(t)[

∫ 1

0

Exp(−u adγ(t))du(γ ′(t)) + η] = 0,

where h(t) = expG(tη). Defining F (z) = (1− e−z)z−1 =
∫ 1

0
e−uzdu , this equation

is equivalent to
F (adγ(t))(γ

′(t)) = −η,
where F (adγ(t)) is to be understood in the sense of functional calculus on finite
dimensional spaces as is described in [5]. Alternatively, if f(z) = (F (z))−1 =
z(1− e−z)−1 , then
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γ′(t) = −f(adγ(t))(η).

We will prove that the solution to (5.) can be continued to any t , in particular
t = 0. According to a Theorem of Wintner (see [8] Theorem 5.1) it is sufficient to
show that

‖f(adγ)‖ = O(‖γ‖). (11)

We now establish the estimate (11).

Lemma 5.9. Let f(z) = z(1− e−z)−1 and Sa = {z = x + iy ∈ C : |x| ≥ a|y|}
for some a > 0. Then f and all of its derivatives, f (k) , are bounded on compact
subsets of Sa and as |z| −→ ∞ within Sa ,

f(z) = O(|z|), f (1)(z) = O(1), and f (k)(z) = O(|z|−n)

for k > 1 and any n > 0.

Proof. The boundedness statement is obvious because f has no singularities
in Sa apart from a removable one at the origin. Also note that for z = x + iy in
Sa , |x| ≤ |z| ≤ (1 + a)|x| , so the asymptotic statements can be proved with |z|
replaced by |x| .

If g(z) ≡ (1− e−z)−1 and z = x+ iy ∈ Sa

|g(z)|−2 = (1− e−x)2 + 4 sin2(
y

2
)e−x ≥ (1− e−x)2 and |g(−z)|−2 ≥ (ex − 1)2,

so g ′(z) ≡ g(−z)g(z) = O(e−|z|) as |z| −→ ∞ in Sa.

Since g(z) and g(−z) are uniformly bounded in the complement of any
neighborhood of the origin in Sa , the estimate for f(z) = zg(z) in the statement
of the lemma is clear. f (1)(z) = g(z) + zg ′(z) = O(1), and this is the assertion
for f (1) . An induction argument shows that the higher derivatives are linear
combinations of g(z)pg(−z)q = g ′(z)O(1) for p and q ≥ 1 and such terms
multiplied by z . But then the estimate above for g ′(z) gives the desired estimates
for the higher derivatives.

To prove (11), let γ ∈ g be given. By Lemma 5.7, the eigenvalues of adγ
lie in Sa for some a > 0 independent of γ . Then we use Theorem VII.1.8 of
[5], which shows that f(adγ) can be represented as follows: For every eigenvalue
λj = λj(γ), let Ej be the projection onto the corresponding invariant subspace.
Then f(adγ) is a linear combination of terms f(λj)Ej and (adγ − λjI)kf (k)(λj)Ej
for k no bigger than the dimension of G and λj = λj(γ) in the spectrum of adγ .
Note that ‖(adγ−λjI)kEj‖ = O(‖γ‖k) for all k ≥ 0. But then by Lemma 5.9 and
Lemma 5.7, ‖(adγ − λjI)kf (k)(λj)Ej‖ = O(‖γ‖), so (11) holds and continuation
until t = 0 is possible.

To see that γ(t) remains within g , note that −f(adγ)(η) can be regarded
by translation as an element of the tangent space to gC at γ . Then if γ and η are
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in g , −f(adγ)(η) is tangent to g . This is the case in view of the representation of
f(adγ) discussed in the preceeding paragraph because the non-real eigenvalues of
adγ occur in conjugate complex pairs, the corresponding invariant subspaces are
complex conjugates of each other, and f(z̄) = f̄(z). But a solution to a differential
equation defined by a C1 vector field that is tangent to a submanifold—in this
case g—cannot leave the submanifold. Therefore, since γ1 ∈ g , all γ(t) must lie
in g . This completes the proof that G is exponential.

6. Floquet-Lyapunov theory in Lie groups

Suppose that G is a real subgroup of GL(n,C), which here will be viewed
as a real Lie group of dimension 2n2 . Then the differential equations (1) and (2)
considered in the introduction can be written

g ′(t) = g(t)γ(t) (12)

and

g ′(t) = γ(t)g(t), (13)

where g(t) and γ(t) are n× n matrices, with g(t) nonsingular and the products
on the right sides of the equations are given by ordinary matrix multiplication.
For our purposes it suffices to consider the case where γ(t) is C1 . Then standard
theorems assure the existence of solutions satisfying g(0) = g0 for any g0 in G
and all t.

The classical Floquet-Lyapunov theory shows that if γ(t) is periodic γ(t) ≡
γ(t + 2a) and G = GL(n,C) then the solutions satisfying g(0) = eG can be
written as g(t) = expG (tη)p(t) for (12) or g(t) = q(t) expG(tζ) for (13), where
p(t) ≡ p(t + 2a), q(t) ≡ q(t + 2a) and η and ζ are constant matrices. However,
many connected Lie groups have no faithful finite dimensional representation.
Even if such a representation did exist the η or ζ obtained by the Floquet-
Lyapunov argument can fail to be in the Lie algebra g of G and then g(t) need
not remain in G . Despite these difficulties, some of the theory can be made to
work in general, as we show in this section.

There is no advantage for our purposes in adopting the point of view of
the equations (12) and (13), even when G ⊂ GL(n,C). Thus we will work with
the more general setup of equations (1) and (2). In fact, we only discuss (2) or
the “right handed” equation, since the other case follows easily from it. The next
proposition is the most obvious adaptation of the Floquet-Lyapunov theory to Lie
groups.

Proposition 6.1. Let G be a real exponential Lie group and γ(t) a piecewise
continuous map from the reals into the Lie algebra of G which is periodic, γ(t +
2a) ≡ γ(t), where a > 0. Suppose that g(t) is the solution to (2) satisfying
g(0) = eG . Then there is a periodic function q : R → G, with the same period
with the property that if η is an element of g satisfying expG( η

2a
) = g(2a), then

g(t) = q(t) expG(tη) for all t ∈ R.

We omit the proof here since the proposition is can be proved by obvious
changes in the classical argument and we shall observe below that it follows from
Theorem 6.4. There is a converse proposition:
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Proposition 6.2. Suppose for every C1 periodic map γ(t) from the reals into
the Lie algebra of G, the solution to (2) can be written in the form g(t) =
q(t)expG(tη), where q(t) is periodic of the same period and η is in the Lie algebra.
Then G is exponential.

Proof. If G is not exponential there is an element g1 of G that is not in E(G).
Let h(t) (0 ≤ t ≤ 1) be a C1 curve in G satisfying h(0) = eG , h(1) = g1 . It can
be arranged that h′(1) ≡ dRh(1)h

′(0), where h′(0) can be any element of the Lie
algebra. (This follows from the fact that a C1 curve with arbitrarily prescribed
tangents at the endpoints can be constructed connecting any pair of points in a
connected manifold. For instance, if the pair lies within a convex coordinate chart
a polygonal path is easy to construct and then it can be smoothed to become
C1 without changing the tangents at the endpoints. The general result follows
from this special case.) Define γ(t) for 0 ≤ t ≤ 1 by h′(t) = dRh(t)γ(t). With
this definition (2) is automatically satisfied for 0 ≤ t ≤ 1 (with h(t) replacing
g(t)). If γ(t) is extended periodically, it remains C1 . Since the solution to (2)
is of the form g(t) = q(t)expG(tη) with q(t) periodic, q(0) = q(1) = eG , so
g(1) = h(1) = g1 = exp(η), a contradiction.

These last two propositions taken together show that a group is exponential
if and only if the most obvious generalizaion of Floquet-Lyapunov theory applies
to it:

Corollary 6.3. Let G be a real connected Lie group. Then G is exponential if
and only if, for every C1 periodic map from the reals into the Lie algebra of G,
γ(t), the solution to (2) satisfying g(0) = eG is of the form g(t) = q(t) expG(tη),
where q(t) is periodic and η is constant.

Some more notation is needed for the proof of our final result. Let g(t, u, q)
denote the solution to (2) that satisfies g(u) = q . The right invariance of the time
dependent vector field dRg(t)γ(t) implies that the solutions are equivariant under
right translation in the sense that

g(t, s, q) = g(t, s, eG)q. (14)

The group property for solutions of differential equations combined with
(14) gives

g(t, u, q) = g(t, s, g(s, u, q)) = g(t, s, eG)g(s, u, q), (15)

for any s ,t , and u . Setting q = eG and u = 0 in (15) tells us

g(t, 0, eG) = g(t, s, eG)g(s, 0, eG). (16)

Theorem 6.4. Let G be a real connected Lie group and γ(t) be a piecewise
continuous map from the reals into the Lie algebra of G which is periodic, γ(t +
2a) ≡ γ(t), where a > 0. Suppose that g(t) is the solution of (2) satisfying
g(0) = eG . Then there is a periodic function ζ : R→ g, with the same period 2a,
where ζ is constant on the intervals (0, a) and (a, 2a) such that if h is defined by
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h′(t) = dRh(t)ζ(t); h(0) = eG (17)

and q by

q(t) = g(t)h−1(t), (18)

q(t) ≡ q(t+ 2a) is periodic and g has the form g(t) = q(t)h(t).

Remark. It will be clear from the proof that the point a in the interval (0,2a) can
be replaced by any other point of the interval in the statement of the theorem.

Proof. To simplify the notation here set e = eG . Note that by Theorem 5.6

g(2a) = g(2a, 0, e) = expG(η ′) expG(η)

for some η and η ′ ∈ g . Let ζ(t) = η
a

for 0 ≤ t < a and ζ(t) = η ′

a
for

a < t < 2a . Continue ζ(t) periodically and let h(t) be defined by (17). Clearly
h(a) = h(a, 0, e) = exp(η) and h(2a, a, e) = exp(η ′). Then by (16) applied to h ,

h(2a, 0, e) = h(2a, a, e)h(a, 0, e) = exp(η ′) exp(η) = g(2a, 0, e). (19)

Defining q(t) by (18) it remains to verify that q(t) ≡ q(t + 2a). The periodicity
ζ(t+ 2a) ≡ ζ(t) gives

g(t+ 2a, 2a, e) ≡ g(t, 0, e)

and similarly
h(t+ 2a, 2a, e) ≡ h(t, 0, e).

Then (16) combined with these relations gives

g(t+ 2a, 0, e) = g(t+ 2a, 2a, e)g(2a, 0, e) = g(t, 0, e)g(2a, 0, e)

and similarly
h(t+ 2a, 0, e) = h(t, 0, e)h(2a, 0, e).

These relations along with the definition (18) of q(t) and (19) show

q(t+ 2a) ≡ g(t+ 2a)h−1(t+ 2a) ≡ g(t)g(2a)h−1(2a)h−1(t) ≡ g(t)h−1(t) ≡ q(t),

completing the proof.

The solution h(t) = h(t, 0, e) can be written more explicitly. For 0 ≤ t <
a, h(t) = exp( tη

a
) and for a ≤ t < 2a, h(t) = exp( tη

′

a
) exp(η). More generally, if n

is any integer and 0 ≤ t < a we have

h(t+ 2na) = exp(
tη

a
)(exp(η ′) exp(η))n

and

h(t+ a+ 2na) = exp(
tη ′

a
) exp(η)(exp(η ′) exp(η))n.
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Consequently,

g(t+ 2na) = q(t) exp(
tη

a
)(exp(η ′) exp(η))n, and

g(t+ a+ 2na) = q(t) exp(
tη ′

a
) exp(η)(exp(η ′) exp(η))n for 0 ≤ t ≤ a.

Proposition 6.1 is a special case of Theorem 6.4 as one sees by defining η
by exp(2η) = g(2a) and taking η ′ = η . Then h(t) = exp( tη

a
) and one obtains the

conclusion of Proposition 6.1. In the general case where G is not exponential, the
conclusion of the proposition is weakened—η is not strictly constant, but rather
piecewise constant, assuming just two values.

The exposition here has benefited from many helpful suggestions by the
referees. One of them has called our attention to the fact many of the results
of this paper can be interpreted in terms of mathematical control theory. For
instance, the switching between η and η ′ in Theorem 6.4 can be regarded as
changing a control parameter that can take on two values. Some references that
are relevant to this point of view are: [1], [12], [13], and [20].
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