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Abstract. We show how to construct the simple exceptional Lie alge-
bra of type G2 by explicitly constructing its 7 dimensional representation.
Technically no knowledge of Lie theory is required. The structure constants
have a combinatorial meaning involving convex subsets of a partially or-
dered multiset of six elements. These arise from playing the Numbers and
Mutation games on a certain directed multigraph.

1. Introduction

The classification of finite dimensional simple Lie algebras over the complex num-
bers goes back to W. Killing [12] and E. Cartan [3]. Four families of ‘classical’ Lie
algebras of type A,B,C,D correspond to the special linear, odd orthogonal, sym-
plectic and even orthogonal algebras, with five exceptional Lie algebras of types
G2 , F4 , E6 , E7 and E8 of dimensions 14, 56, 78, 133 and 248 respectively. The
construction of these exceptional Lie algebras has been treated by several authors
beginning with Cartan [4]. In principle the Serre relations allow us to write down
structure constants for any simple Lie algebra from the Dynkin diagram, but for
many applications one desires to know explicit structure constants. A general con-
struction valid for all simple Lie algebras was given by Harish-Chandra [7], while
for the exceptional Lie algebras Tits [16] has given a uniform treatment. Both of
these are perhaps rather abstract.

Jacobson [10] and [11] constructs the Lie algebra g2 of type G2 as the
derivations of a certain non-associative Cayley algebra. Adams [1] shows that
the corresponding Lie group G2 is the subgroup of Spin(7) fixing a point in
S7 . Humphreys [9] shows how to explicitly write down basis elements of g2 in a
somewhat ad hoc fashion, from knowledge of the simple Lie algebra of type B3 .
Fulton and Harris [6] devote most of a chapter to a construction using detailed
facts from the representation theory of sl2 and sl3 . Harvey [8] and Baez [2] relate
G2 to the octonions.

Our goal here is to give a direct combinatorial construction of g2 , requir-
ing no knowledge of Lie theory. Indeed the entire construction is given in this
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Introduction. The rest of the paper contains relatively simple mnemonics for re-
membering the relevant pictures, a discussion of connections with Lie theory, a
sketch of the proof of the main Theorem, and an explicit table of commutation
relations.
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Consider the directed graph of Figure 1, consisting of vertices forming a
hexagon, together with its center, and certain directed edges. We adopt the
convention that an edge with two opposite arrows on it signifies two directed
edges of opposite orientation. This directed graph will be called the G2 hexagon,
and note that in Figure 1 its directed edges are labelled by integers, adjacent to
the arrows, which we call weights, where the default weight is one. Each edge of
the G2 hexagon has a direction given by one of the twelve vectors in Figure 2,
called roots.

Note that each root is an integral linear combination of the basis vectors α
and β , also called simple roots, either with all non-negative coefficients, or with
all non-positive coefficients. It will be useful to consider both Figures in the same
plane and sharing a common origin.

To each root γ we associate an operator Xγ on the complex span V of the
vertices of the G2 hexagon, defined by the rule that Xγ takes a vertex v to n
times a vertex w precisely when there is an edge of the G2 hexagon from v to w
of direction γ and weight n . If we use the labelling of the vertices shown, then
for example the operator Xα takes vβ to vβα and takes vβαββ to vβαββα , while it
sends all other vertices to 0, while the operator Xα+2β takes vφ to 2vβαβ , vβ to
−vβαββ , vβα to −vβαββα , and vβαβ to vβαββαβ , while it sends the other vertices
to 0.

The bracket [X,Y ] of two operators X and Y is given by the rule

[X, Y ]v = XY v − Y Xv.

We now define additional operators Hγ , one for each root γ , by the commutation
relation

Hγ = [Xγ, X−γ].

It is not hard to verify that each of these Hγ is a scalar operator; it multiplies
each vertex by a scalar, which in fact is the restriction of a linear function to the
G2 hexagon, assumed to be centered at the origin.

Theorem 1.1. The span of the operators {Xγ, Hγ | γ is a root} is closed under
brackets and forms a 14-dimensional Lie algebra g ' g2 . A basis of g2 consists
of {Xγ | γ is a root} ∪ {Hα, Hβ}.

With respect to the basis of vertices of the G2 hexagon, each of the operators
Xγ , Hγ can be seen to have integer matrix entries in the set {−2,−1, 0, 1, 2} , with
each row and column containing at most one nonzero entry. This implies that the
structure equations of g can be read off easily from the G2 hexagon by simply
observing how the operators compose. For example, [Xα, Xβ] = Xα+β , as the
reader may quickly verify by checking the actions on a suitable vertex, such as φ .

The remainder of the paper shows that Figures 1 and 2 are not arbitrary,
but can be systematically developed from the combinatorics of convex subsets of a
certain partially ordered multiset, which in turn arises by playing the ‘mutation and
numbers games’ on a particular graph. Ultimately all the information is contained
in the chain β < α < β < β < α < β . The numbers game was defined by
Mozes [13], and studied by Proctor [14] and Eriksson [5], while the mutation game
is in a precise sense dual to the numbers game and has its origins in the theory
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of reflection groups and root systems (see [19]). These games are of considerable
independent interest, leading quickly to deep aspects of Lie theory.

The construction presented here complements the development of [17], in
which we combinatorially constructed the minuscule representations of the simply
laced Lie algebras, also without explicit use of Lie theory. In that situation we
showed how to construct the minuscule posets defined by Proctor from combina-
torics associated to the mutation game, and how to realize the explicit action of a
basis of the Lie algebra by raising and lowering operators on the space of ideals of
minuscule posets.

Minuscule representations have the property that all weights are conjugate
under the Weyl group, so that the geometry and order structure of this orbit of
weights naturally determines much about the representation. As a consequence,
the minuscule situation does not involve chains of weight vectors of length greater
than one, so the weights involved are all ±1, although the calculation of the parities
of the weights is necessarily more involved than for G2 . So a key new ingredient
in the present paper is dealing with weight chains of length more than one.

The present work is also related to a recent construction of the irreducible
representations of sl(3) (different from Gelfand Tsetlin) utilizing the combinatorial
geometry of three dimensional polytopes which we call diamonds [18]. This model
shares the pleasant feature that matrix coefficients are always integers. Another
common aspect of all the situations described is that we represent an entire linear
basis of the Lie algebra g , not just a choice of Chevalley generators.

To agree with standard usage, we split the set of operators {Xγ | γ is a root}
into operators Xγ, Yγ for γ a positive root. These are then raising and lowering
operators in the familiar terminology of the physics literature. The paper concludes
with a list of all commutation relations.

2. The mutation and numbers games on a graph

Consider the directed graph G2 consisting of two vertices α and β with three edges
from α to β and one edge from β to α . We may encapsulate this information as
follows.

α β
Figure 3

We will now show that both Figure 1 and Figure 2 arise by playing two
remarkable graph-theoretical games on the graph G2 of Figure 3.

Given any directed graph Z , we may associate to it a distinguished col-
lection R = R(Z) of integer valued functions on the vertices of Z by playing
the mutation game. The elements of R are called roots. A root is any function
obtained by starting with a delta function, or simple root, which has value one
at some vertex and is zero elsewhere, and performing an arbitrary sequence of
mutations, defined as follows.

A mutation at a vertex z applied to a function f has the effect of leaving
the values of f at all vertices except z unchanged, while the new value at z is
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obtained by negating the current value at z and adding a copy of the function
values at each neighbour w of z , once for every directed edge from w to z . Since
a mutation at z applied to the delta function at z results in a sign change, the set
of roots is symmetric under change of sign.

With the convention that we identify the vertices α and β with the delta
functions on them, one may now check that the set R(G2) consists of the following
positive roots together with their negatives.

R+(G2) = { α, β, α + β, α + 2β, α + 3β, 2α + 3β}. (1)

Indeed as functions on G2 , these are obtained from the delta functions α
and β by mutations in the orders

α→ α + 3β → 2α + 3β

and
β → α + β → α + 2β.

Now associate α and β to two vectors in the plane whose lengths are in the ratio√
3 : 1 respectively, making an angle of 5π/6 as in Figure 2. The other roots,

which are linear combinations of α and β , then correspond to the other vectors in
the same Figure, and the mutations at the vertices α and β act on these vectors
by reflections in the lines perpendicular to α and β respectively. Thus R(G2) is
indeed a root system in the classical sense.

The numbers game is also played with integer valued functions on the
vertices of a directed graph. Given such a function g and a vertex z , we will
say that a dual mutation, or firing, at z replaces the value of g at z with its
negative, and simultaneously adds a copy of g(z) to each neighbour w of z , once
for each directed edge from z to w , and leaves all other vertices unchanged.

Of particular interest is playing the numbers game under the condition that
dual mutations only can occur at vertices where the current value of the function
is positive. The systematic study of sequences of such positive firings yields many
remarkable combinatorial structures. The minuscule posets studied by Proctor and
others in the context of Bruhat orders in Coxeter groups occur when we begin with
a Dynkin diagram and a minuscule vertex (for which the associated fundamental
representation is minuscule). However, many more fascinating objects are created
by arranging sequences starting with more general configurations into partially
ordered multisets by comparing only firings at adjacent vertices (see [19]).

The only example relevant for us here starts with a delta function at β , here
denoted by recording the function values in the ordered pair (0, 1). Proceeding
with positive dual mutations, we get the sequence

(0, 1), (1,−1), (−1, 2), (1,−2), (−1, 1), (0,−1).

If we record, using multiplicative notation, those positive function values at each
stage in this dual mutation sequence, we get what we call the ‘change sequence’
βαβ2αβ , which we write as βαββαβ .

Form a partially ordered multiset (pomset) P by linearly ordering the terms

β < α < β < β < α < β.
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This pomset is then a chain. Recall that a subset I of a poset is called an ideal if
x ∈ I and y ≤ x implies y ∈ I . Extending the notion here in the obvious way, we
will consider the seven ideals of P to be the seven initial chains of P , including
the empty chain. We associate to each of these ideals a vertex of a graph in the
plane whose edges have ‘directions’ corresponding to roots. More specifically we
will connect an ideal v to an ideal u by an edge of direction γ precisely when∑

x∈u
x−

∑
x∈v

x = γ.

This yields the G2 hexagon. For example there is an edge of direction α from
βαββ to βαββα , and an edge of direction −α− 2β from βαββ to β .

It remains to prescribe the weight w(e) of a directed edge e . A submultiset
L ⊆ P is called a layer if it is convex in the usual sense. This means here only
that L is a chain of some consecutive elements of P , such as for example ββαβ
or αββ . Such a layer L will be called a γ–layer, for some positive root γ ∈ R+ , if∑

x∈L
x = γ.

We let Lγ denote the collection of γ -layers, which itself is partially ordered
by setting L1 ≤ L2 if I(L1) ⊆ I(L2) where I(S) is the ideal generated by a
submultiset S ⊆ P , that is,

I(S) = {z| z ≤ w for some w ∈ S}.

For example if γ = α + 2β , then Lγ contains four γ -layers, namely L0 =
βαβ < L1 = αββ < L2 = ββα < L3 = βαβ , as shown in Figure 4.

β α β β α β

L0 L2

L1
L3

Figure 4

If γ′ = α + β , then Lγ′ also contains four γ′ -layers, namely L′0 = βα <
L′1 = αβ < L′2 = βα < L′3 = αβ , as shown in Figure 5.

β α β β α β

L′0 L′2

L′1 L′3

Figure 5

Note that there is some possibility for confusion here as we regard L0 and
L3 to be distinct layers, despite the fact that as sequences they appear the same.
The same holds for the pair L′0 and L′2 as well as the pair L′1 and L′3 .

For each positive root γ there is a unique minimal γ -layer which we will
denote by Lm , and a unique maximal γ -layer which we will denote by LM .

Given a γ -layer L , define the parity ε(L) (respectively dual parity ε̃(L))
of L, to be (−1)n where n is the number of α − β interchanges required in
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passing from L to the minimal γ -layer Lm (respectively maximal γ -layer LM ) by
switching adjacent α and β ’s. This is well-defined.

Thus continuing the examples above, ε(L0) = 1, ε(L1) = −1, ε(L2) = −1,
and ε(L3) = 1, while the dual parities agree with the parities since Lm and LM
have the same form. On the other hand ε(L′0) = 1, ε(L′1) = −1, ε(L′2) = 1, and
ε(L′3) = −1, while ε̃(L′0) = −1, ε̃(L′1) = 1, ε̃(L′2) = 1, and ε̃(L′3) = −1, since in
this case the minimal and maximal γ′ -layers have opposite parities.

A ladder of γ -layers will be a sequence L1 < L2 < . . . < Lk of disjoint
γ -layers such that L1 ∪ . . . ∪ Li is a layer for all i = 1, . . . , k . Such a ladder has
size k , and will be said to start at L1 and finish at Lk . For a γ -layer L let s(L)
be the maximum size of a ladder starting at L , and let f(L) be the maximum size
of a ladder finishing at L .

Thus in the first example above s(L0) = 2, s(L1) = s(L2) = s(L3) = 1,
while f(L0) = f(L1) = f(L2) = 1, f(L3) = 2. In the second example we find
s(L′0) = 1, s(L′1) = 2,s(L′2) = s(L′3) = 1, while f(L′0) = f(L′1) = 1, f(L′2) = 2,
f(L′3) = 1.

For a positive root γ and a γ -layer L , define the weight w(L) and the dual
weight w̃(L) by

w(L) = ε(L)s(L) w̃(L) = ε̃(L)f(L). (2)

Ideals in P correspond to vertices in the G2 hexagon, and for positive roots
γ , γ -layers correspond to γ -edges, so we label the γ -edge e with the weight w(L)
of the corresponding γ -layer L . A (−γ)-edge of direction the negative of a positive
root γ will be labelled with the dual weight w̃(L) of the corresponding γ -layer.
The G2 hexagon is symmetrical about the origin, and this definition produces a
pattern of weights on it which is still symmetrical about the origin.

3. Structure equations for semisimple Lie algebras

We now remind the reader about some elementary facts about the structure of a
semisimple Lie algebra g over the complex numbers. This is intended to motivate
what follows, so is not strictly necessary for the construction itself. If R is the
root system of g , then there exists a decomposition

g = h⊕
∑
γ∈R

gγ

where h is a Cartan subalgebra (maximal commutative subalgebra of semisimple
elements), and each gγ is a one dimensional root space with the property that
[H,Xγ] is always a multiple of Xγ for H ∈ h and Xγ ∈ gγ .

Suppose one chooses, perhaps arbitrarily, a nonzero element Xγ from each
root space gγ. Then from general considerations (see for example Humphreys [9])
one knows that for γ, γ′ ∈ R , [Xγ, Xγ′ ] = 0 unless γ + γ′ is also a root, in
which case [Xγ, Xγ′ ] is some multiple of Xγ+γ′ , or unless γ = −γ′ , in which case
[Xγ, X−γ] is a known element of the Cartan subalgebra h . So the problem involved
in describing g completely essentially involves two steps: to choose explicit basis
elements Xγ in each root space gγ and to determine the corresponding constants
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nγ,γ′ in the structural equations

[Xγ, Xγ′ ] = nγ,γ′Xγ+γ′ ,

one for each pair of roots (γ, γ′) whose sum is also a root. Then all other structure
constants of the Lie algebra will be given. Somewhat surprisingly, the difficulty in
this task lies not so much in finding the absolute values of the nγ,γ′ , rather it is the
signs which are difficult to determine. See Samelson [15], Tits [16] for a discussion
of this point.

4. The 7-dimensional representation of G2

The Lie algebra g2 will be realized by operators on the vector space spanned by
the vertices of the G2 hexagon, which we have seen are labelled by the ideals in the
pomset P arising from playing the numbers game on a particular initial function.
To abide by the usual conventions, we will actually associate to each positive root
γ two operators, Xγ and Yγ , called raising and lowering operators in the physics
literature. Together with two scalar operators Hα and Hβ , we get a total of 14
operators on a seven dimensional space. All of these operators are entirely encoded
in Figure 1 and we will then check that they form a Lie algebra of operators. This
will be g2 . We also observe that if we augment our set of operators to a larger set
of 18, still in the span of the original 14, then we obtain what we call a bracket
set; the bracket of any two of them is a multiple of one in the set.

Define a complex vector space

V = span{vI | I is an ideal of P}.

For any layer L ⊆ P define operators XL , YL on V by

XL(vI) =

{
vI∪L if I ∪ L is an ideal and I ∩ L = Ø
0 otherwise.

YL(vI) =

{
vI\L if L ⊆ I and I \ L is an ideal
0 otherwise.

For γ ∈ R+ define operators Xγ , Yγ and Hγ on V by the following rules.

Xγ =
∑
L∈Lγ

w(L)XL

Yγ =
∑
L∈Lγ

w̃(L)YL

Hγ = [Xγ, Yγ].

So the Xγ and Yγ operators correspond exactly to the edges of the G2 hexagon
that are in the γ and −γ directions respectively. In particular Xγ sends a vertex
u of the hexagon to n times a vertex v precisely when there is a γ -edge from u
to v of weight n , and similarly Yγ sends a vertex u of the hexagon to n times a
vertex v precisely when there is a (−γ)-edge from u to v of weight n .

A set {Zγ | γ ∈ Γ} of operators on a vector space will be defined to be a
bracket set if for all γ, γ′ ∈ Γ, [Zγ, Zγ′ ] is a multiple of some Zγ′′ , γ

′′ ∈ Γ . If
{Zγ | γ ∈ Γ} is a bracket set, clearly g = span{Zγ | γ ∈ Γ} is a Lie algebra of
operators. Our main result is the following:
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Theorem 4.1. {Xγ, Yγ, Hγ | γ ∈ R+} is a bracket set inside End(V ) spanning
a 14-dimensional Lie algebra g ' g2 . The set {Xγ, Yγ | γ ∈ R+} ∪ {Hα, Hβ} is a
basis for g.

Proof. The proof will require some careful checking involving the G2 hexagon.
Recall first that the symmetry of the edges and weights of the G2 hexagon ensures
that for any commutation relation, there is a corresponding relation with all the
X operators replaced by Y operators and all the scalar operators Hγ replaced by
their negatives. This reduces the number of relations we need check by a factor of
two. We proceed in steps.

Step 1. Let us say that {γ, γ′; γ′′} is a positive root triple if all three are positive
roots and γ + γ′ = γ′′ . The positive root triples are {α, β;α + β}, {β, α + β;α +
2β}, {β, α+ 2β;α+ 3β}, {α, α+ 3β; 2α+ 3β}, and {α+ β, α+ 2β; 2α+ 3β} . For
every such triple, there are a number of triangles in the G2 hexagon with sides
having these directions. Each of these triples leads to six commutation relations
of which we need only check three from the above remark. Checking one of these
relations involves examining all the triangles associated to that triple and checking
consistency of weights between them.

Let us illustrate this for the triple {α, β;α + β} . We need check that we
can find constants A,B,C such that [Xα, Xβ] = AXα+β , [Xα+β, Yβ] = BXα ,
and [Xα+β, Yα] = CXβ . There are four triangles associated to this triple- they
are (φ, β, βα), (β, βα, βαβ), (βαβ, βαββ, βαββα), and (βαββ, βαββα, βαββαβ).
For one of the triangles, say the first, we observe that the product of the weights
of the α and β edges is the weight of the α + β edge, and the latter edge is
the vector sum of first the β edge and second the α edge, yielding [Xα, Xβ] =
XαXβ −XβXα = Xα+β when applied to vφ .

Now we check that in the other three triangles, exactly the same commu-
tation relation holds. Then we check the same works for the other two relations
associated to this triple. Finally we check that the same procedure holds for all
positive root triples.

Step 2. There are some potential commutation relations corresponding to the three
rectangles in the G2 hexagon. These relations involve pairs of roots which are at
right angles to each other, namely {β, 2α+ 3β}, {α+ β, α+ 3β}, {α, α+ 2β} and
pairs obtained from them by negating one or both of the entries. Checking that
the commutation relations between any X or Y operators involving such a pair
is zero amounts to noting that for any one of the rectangles in the G2 hexagon,
products of weights along adjacent edges is constant.

Step 3. For each of the six positive roots γ , one checks that Hγ = [Xγ, Yγ] is a
scalar operator which multiplies each vertex by a number which is the restriction
to the hexagon of a linear function fγ in the plane. In particular, Hα corresponds
to the linear function fα which has value −1 on the vertices vβ and vβαββ , value 1
on the vertices vβα and vβαββα , and value zero on the rest, while Hβ corresponds
to the linear function fβ which has value 2 at the vertex vβαββ , value 1 on the
vertices vβ and vβαββαβ , value zero on vβαβ etc. In particular these two linear
functions are linearly independent and so any of the linear functions fγ is a linear
combination of them. ¿From this it follows that [Hγ, Xγ] is always a multiple of
Xγ for any root γ .
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Finally the Jacobi relation (valid since we are working with operators) and
the results from Step 1 show that [Xγ′ , Hγ] = [Xγ′ , [Xγ, Yγ]] = −[Xγ, [Yγ, Xγ′]] −
[Yγ, [Xγ′ , Xγ] is a multiple of Xγ′ . For example [Hβ, Xγ] = fβ(γ)Xγ , where we
consider γ as a vector in the plane. That is, we regard Figures 1 and 2 to share a
common origin in the plane, allowing linear functionals to be evaluated at roots.

This shows that altogether the set of operators {Xγ, Yγ, Hγ | γ ∈ R+} is a
bracket set of operators, so in particular spans a finite dimensional Lie algebra. It
is easy to see that all the {Xγ, Yγ | γ ∈ R+} are linearly independent, so we get
a 14 dimensional Lie algebra. Clearly the span of Hα, Hβ is a Cartan subalgebra
and the roots with respect to it are exactly R(G2), in other words, this Lie algebra
is g2 .

Here is the list of all the non-zero commutation relations, expressed in the
basis described in the Theorem.

[Xα, Xβ] = Xα+β [Xβ, Xα+β] = 2Xα+2β [Xβ, Xα+2β] = 3Xα+3β

[Xα, Xα+3β] = X2α+3β [Xα+β, Xα+2β] = 3X2α+3β

[Yα, Yβ] = Yα+β [Yβ, Yα+β] = 2Yα+2β [Yβ, Yα+2β] = 3Yα+3β

[Yα, Yα+3β] = Y2α+3β [Yα+β, Yα+2β] = 3Y2α+3β

[Xα, Yα+β] = Yβ [Xα, Y2α+3β] = Yα+3β [Xβ, Yα+3β] = Yα+2β

[Xβ, Yα+2β] = 2Yα+β [Xβ, Yα+β] = −3Yα [Xα+β, Yα] = −Xβ

[Xα+β, Yβ] = 3Xα [Xα+β, Yα+2β] = 2Yβ [Xα+2β, Yβ] = −2Xα+β

[Xα+2β, Yα+β] = −2Xβ [Xα+2β, Yα+3β] = −Yα [Xα+2β, Y2α+3β] = −Yα+β

[Xα+3β, Y2α+3β] = Yα [X2α+3β, Yα] = −Xα+3β [X2α+3β, Yα+β] = Xα+2β

[X2α+3β, Yα+2β] = Xα+β [X2α+3β, Yα+3β] = −Xα

[Xα, Yα] = Hα [Xβ, Yβ] = Hβ

[Xα+β, Yα+β] = Hα+β = 3Hα +Hβ [Xα+2β, Yα+2β] = Hα+2β = 2Hα + 3Hβ

[Xα+3β, Yα+3β] = Hα+3β = Hα +Hβ [X2α+3β, Y2α+3β] = H2α+3β = 2Hα +Hβ

[Hα, Xγ] = fα(γ)Xγ [Hα, Yγ] = −fα(γ)Yγ.
[Hβ, Xγ] = fβ(γ)Xγ [Hβ, Yγ] = −fβ(γ)Yγ

If g is a finite dimensional Lie algebra, it seems interesting to inquire about
the existence of spanning bracket sets inside g ; do finite ones necessarily exist for
example? If so, what is the minimum number of elements in a spanning bracket
set? This is perhaps a useful invariant for Lie algebras.
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