On Quasi-Poisson Homogeneous Spaces of Quasi-Poisson Lie Groups

Eugene Karolinsky and Kolya Muzykin

Communicated by K. Schmüdgen

Abstract. Drinfeld showed that if G is a Poisson Lie group with corresponding Lie bialgebra \mathfrak{g} , then the isomorphism classes of Poisson homogeneous G-spaces are essentially in a 1-1 correspondence with the G-orbits of Lagrangian subalgebras in $\mathfrak{g} \oplus \mathfrak{g}^*$. The main goal of this paper is to generalize this result to the quasi-Poisson case. We also study the behavior of quasi-Poisson homogeneous spaces under twisting. Some examples of quasi-Poisson homogeneous spaces and corresponding Lagrangian subalgebras are also provided.

1. Introduction

The notion of Poisson Lie group and its infinitesimal counterpart, Lie bialgebra, was introduced by Drinfeld [4]. Later it was explained that these objects are quasiclassical limits of Hopf QUE algebras. In [5] the more general objects, quasi-Hopf QUE algebras, were introduced along with their quasiclassical limits, Lie quasi-bialgebras. The corresponding geometric objects, quasi-Poisson Lie groups, were first studied by Kosmann-Schwarzbach [8].

It is well known that Lie bialgebra structures on \mathfrak{g} are in a natural 1-1 correspondence with Lie algebra structures on $\mathcal{D}(\mathfrak{g}) = \mathfrak{g} \oplus \mathfrak{g}^*$ such that \mathfrak{g} and \mathfrak{g}^* are subalgebras in $\mathcal{D}(\mathfrak{g})$ and the natural bilinear form on $\mathcal{D}(\mathfrak{g})$ is invariant. Respectively, in order to get a Lie quasi-bialgebra structure on \mathfrak{g} , one should drop the condition that \mathfrak{g}^* is a subalgebra in $\mathcal{D}(\mathfrak{g})$.

Along with (quasi-)Poisson Lie groups it is natural to study their (quasi-) Poisson actions [1, 2] and, in particular, (quasi-)Poisson homogeneous spaces. Drinfeld in [6] presented an approach to the classification of Poisson homogeneous spaces. Namely, he showed that if G is a Poisson Lie group, \mathfrak{g} is the corresponding Lie bialgebra, then the isomorphism classes of Poisson homogeneous G-spaces are essentially in a 1-1 correspondence with the G-orbits of Lagrangian subalgebras in $\mathcal{D}(\mathfrak{g})$.

The main goal of this paper is to generalize this result to the quasi-Poisson case (see Theorem 3.2). We also study the behavior of quasi-Poisson homogeneous spaces under twisting. Some examples of quasi-Poisson homogeneous spaces and

corresponding Lagrangian subalgebras are also provided.

It also turns out that quasi-Poisson homogeneous spaces, as well as Poisson ones, are related to solutions of the classical dynamical Yang-Baxter equation (see [7, 10] for the Poisson case). This topic will be discussed in a forthcoming paper.

The authors are grateful to Alexander Stolin for useful discussions and the referee for fruitful remarks.

2. Preliminaries

2.1. Notation. We will use the following normalization of the wedge product of multivector fields on a smooth manifold. If v is an m-vector field, w is an n-vector field, then

$$v \wedge w = \frac{1}{n!m!} \operatorname{Alt}(v \otimes w),$$

where

$$\operatorname{Alt}(x_1 \otimes x_2 \otimes \cdots \otimes x_k) = \sum_{\sigma \in S_k} \operatorname{sign}(\sigma) x_{\sigma(1)} \otimes x_{\sigma(2)} \otimes \cdots \otimes x_{\sigma(k)}.$$

We will denote by $[\![,]\!]$ the Schouten bracket of multivector fields.

Let G be a Lie group, $\mathfrak{g} = \operatorname{Lie} G$ its Lie algebra. For any $v \in \bigwedge^{\bullet} \mathfrak{g}$ denote by v^{λ} (resp. v^{ρ}) the left (resp. right) invariant multivector field that corresponds to v, i.e., $v^{\lambda}(g) = (l_g)_* v$, $v^{\rho}(g) = (r_g)_* v$ for all $g \in G$, where l_g (resp. r_g) is the left (resp. right) translation by g.

Suppose that G acts smoothly on a smooth manifold X. Then for any $v \in \mathfrak{g}$ we denote by v_X the corresponding vector field on X, i.e.,

$$(v_X f)(x) = \frac{d}{dt}\Big|_{t=0} f(\exp tv \cdot x)$$

for any $x \in X$. Similarly, for $v \in \bigwedge^{\bullet} \mathfrak{g}$ one can define the multivector field v_X . For any $x \in X$ consider the map $\rho_x : G \to X$, $\rho_x(g) = g \cdot x$. Then $(\rho_x)_* v = v_X(x)$ for $v \in \mathfrak{g}$.

For any point $x \in X$ we denote by $H_x = \{g \in G \mid g \cdot x = x\}$ its stabilizer. Let $\mathfrak{h}_x = \text{Lie } H_x \subset \mathfrak{g}$.

Suppose now that X is a homogeneous G-space. In this case we will identify $T_x X$ with $\mathfrak{g}/\mathfrak{h}_x$ for all $x \in X$. Fix $x \in X$ and for any $f \in C^{\infty} X$ define $f^G \in C^{\infty} G$ by the formula $f^G(g) = (f \circ \rho_x)(g) = f(g \cdot x)$. Note that the mapping $f \mapsto f^G$ is an isomorphism between the spaces of smooth functions on X and right H_x -invariant smooth functions on G.

2.2. Quasi-Poisson Lie groups and quasi-Poisson actions. Following [9] and [1], we define the notions of quasi-Poisson Lie group and quasi-Poisson action.

Definition 2.1. Let G be a Lie group, \mathfrak{g} its Lie algebra, P_G a bivector field on G, and $\varphi \in \bigwedge^3 \mathfrak{g}$. A triple (G, P_G, φ) is called a *quasi-Poisson Lie group* if

$$P_G$$
 is multiplicative, i.e., $P_G(gg') = (l_g)_* P_G(g') + (r_{g'})_* P_G(g),$ (1)

$$\frac{1}{2}\llbracket P_G, P_G \rrbracket = \varphi^{\rho} - \varphi^{\lambda}, \tag{2}$$

$$\llbracket P_G, \varphi^{\rho} \rrbracket = 0. \tag{3}$$

The notion of Poisson Lie group is a special case of the notion of quasi-Poisson Lie group. Namely, for any Poisson Lie group (G, P_G) the triple $(G, P_G, 0)$ is a quasi-Poisson Lie group.

Consider the mapping $\eta: G \to \mathfrak{g} \wedge \mathfrak{g}$ defined by $\eta(g) = (r_g^{-1})_* P_G(g)$. It is a $\mathfrak{g} \wedge \mathfrak{g}$ -valued 1-cocycle of G with respect to the adjoint action of G on $\mathfrak{g} \wedge \mathfrak{g}$, i.e.,

$$\eta(g_1g_2) = \eta(g_1) + \operatorname{Ad}_{g_1}\eta(g_2)$$

Here $\operatorname{Ad}_g(x \otimes y) = (\operatorname{Ad}_g x) \otimes (\operatorname{Ad}_g y)$. The fact that η is a 1-cocycle is equivalent to the multiplicativity condition (1).

Consider $\delta = d_e \eta : \mathfrak{g} \to \mathfrak{g} \land \mathfrak{g}$. It is a 1-cocycle of \mathfrak{g} with respect to the adjoint action of \mathfrak{g} on $\mathfrak{g} \land \mathfrak{g}$, i.e.,

$$\delta([x, y]) = \operatorname{ad}_x \delta(y) - \operatorname{ad}_y \delta(x),$$

where $\operatorname{ad}_x(y \otimes z) = [x \otimes 1 + 1 \otimes x, y \otimes z] = \operatorname{ad}_x y \otimes z + y \otimes \operatorname{ad}_x z$.

Definition 2.2. Suppose (G, P_G, φ) is a quasi-Poisson Lie group, and X is a smooth manifold equipped with a bivector field P_X . A smooth action of G on X is called *quasi-Poisson* if

$$P_X(gx) = (l_g)_* P_X(x) + (\rho_x)_* P_G(g),$$
(4)

$$\frac{1}{2}\llbracket P_X, P_X \rrbracket = \varphi_X \tag{5}$$

(here l_g denotes the mapping $x \mapsto g \cdot x$).

Let us consider the case $\varphi = 0$, i.e., G is a Poisson Lie group. Then condition (5) means that X is a Poisson manifold, and from (4) it follows that the action of G on X is Poisson.

Definition 2.3. A (quasi-Poisson) isomorphism between two quasi-Poison actions of a quasi-Poisson Lie group (G, P_G, φ) on manifolds (X, P_X) and (Y, P_Y) is a *G*-equivariant diffeomorphism $u: X \to Y$ such that $u_*(P_X) = P_Y$.

Definition 2.4. Suppose that (G, P_G, φ) is a quasi-Poisson group, G acts smoothly on a manifold X equipped with a bivector field P_X , and this action is quasi-Poisson. We call X a quasi-Poisson homogeneous G-space if the action of G on X is transitive.

Lemma 2.5. Suppose that (G, P_G, φ) is a quasi-Poisson group, X is a homogeneous G-space, P_X is a bivector field on X. Then condition (4) is equivalent to

$$P_X(gx) = \operatorname{Ad}_g P_X(x) + \overline{\eta(g)},\tag{6}$$

where $\operatorname{Ad}_g : \bigwedge^2(\mathfrak{g}/\mathfrak{h}_x) \to \bigwedge^2(\mathfrak{g}/\mathfrak{h}_{gx})$ is the isomorphism of the vector spaces induced by the automorphism $\operatorname{Ad}_g : \mathfrak{g} \to \mathfrak{g}$, and $\overline{\eta(g)}$ is the image of $\eta(g)$ in $\bigwedge^2(\mathfrak{g}/\mathfrak{h}_{gx})$.

2.3. Lie quasi-bialgebras. Recall that a Poisson Lie structure on a Lie group G induces the structure of a Lie bialgebra on the Lie algebra $\mathfrak{g} = \text{Lie } G$. A quasi-Poisson structure on a Lie group G induces a similar structure on \mathfrak{g} . We follow [5] in defining the notion of Lie quasi-bialgebra.

Definition 2.6. Let \mathfrak{g} be a Lie algebra, $\delta \neq \mathfrak{g} \wedge \mathfrak{g}$ -valued 1-cocycle of \mathfrak{g} , and $\varphi \in \bigwedge^3 \mathfrak{g}$. A triple $(\mathfrak{g}, \delta, \varphi)$ is called a *Lie quasi-bialgebra* if

$$\frac{1}{2}\operatorname{Alt}(\delta \otimes \operatorname{id})\delta(x) = \operatorname{ad}_x \varphi \quad \text{for any } x \in \mathfrak{g},$$
(7)

$$\operatorname{Alt}(\delta \otimes \operatorname{id} \otimes \operatorname{id})\varphi = 0, \tag{8}$$

where $\operatorname{ad}_x(a \otimes b \otimes c) = [x \otimes 1 \otimes 1 + 1 \otimes x \otimes 1 + 1 \otimes 1 \otimes x, a \otimes b \otimes c].$

Equation (7) is called the quasi co-Jacobi identity.

If we set $\varphi = 0$, then the notion of Lie quasi-bialgebra coincides with the notion of Lie bialgebra. In this case equation (7) becomes the ordinary co-Jacobi identity, and condition (8) is obviously satisfied.

For any quasi-Poisson Lie group (G, P_G, φ) there exists a Lie quasi-bialgebra structure on \mathfrak{g} given by the 1-cocycle $\delta = d_e \eta$ and φ . Conversely, to any Lie quasi-bialgebra there corresponds a unique connected and simply connected quasi-Poisson Lie group (see [9]).

Given any linear map $\delta : \mathfrak{g} \to \mathfrak{g} \land \mathfrak{g} \subset \mathfrak{g} \otimes \mathfrak{g}$ we can define the skew-symmetric bilinear operation on \mathfrak{g}^* : for all $l, m \in \mathfrak{g}^*$ set $[l, m]_{\delta} = \delta^*(l \otimes m)$.

Recall that for any Lie quasi-bialgebra $(\mathfrak{g}, \delta, \varphi)$ one can construct the socalled *double Lie algebra* $\mathcal{D}(\mathfrak{g})$ (see [3]):

let $\mathcal{D}(\mathfrak{g}) = \mathfrak{g} \oplus \mathfrak{g}^*$ as a vector space;

define the bilinear operation $[,]_{\mathcal{D}(\mathfrak{g})}$ on $\mathcal{D}(\mathfrak{g})$ by the following conditions:

- 1. $[a,b]_{\mathcal{D}(\mathfrak{g})} = [a,b]$ for $a,b \in \mathfrak{g}$;
- 2. $[l,m]_{\mathcal{D}(\mathfrak{g})} = [l,m]_{\delta} (l \otimes m \otimes \mathrm{id})\varphi$ for $l,m \in \mathfrak{g}^*$;
- 3. $[a, l]_{\mathcal{D}(\mathfrak{g})} = \operatorname{coad}_a l \operatorname{coad}_l a$ for $a \in \mathfrak{g}, l \in \mathfrak{g}^*$.

where $\operatorname{coad}_{l}: \mathfrak{g} \to \mathfrak{g}$ is defined by $\langle \operatorname{coad}_{l} a, m \rangle = -\langle [l, m]_{\delta}, a \rangle = -\langle l \otimes m, \delta(a) \rangle$, and $\operatorname{coad}_{a}: \mathfrak{g}^{*} \to \mathfrak{g}^{*}$ is defined by $\langle \operatorname{coad}_{a} l, b \rangle = -\langle l, [a, b] \rangle$. Here and below \langle , \rangle denotes the standard pairing between \mathfrak{g} and \mathfrak{g}^{*} .

We denote by Q(,) the following invariant symmetric bilinear form on $\mathcal{D}(\mathfrak{g})$:

$$Q(a+l,b+m) = \langle l,b \rangle + \langle m,a \rangle.$$

Suppose G is a quasi-Poisson Lie group, \mathfrak{g} is the corresponding Lie quasibialgebra, $\mathcal{D}(\mathfrak{g})$ is its double Lie algebra. Then the adjoint action of G on \mathfrak{g} can be extended to the action of G on $\mathcal{D}(\mathfrak{g})$ defined by

$$g \cdot (a+l) = \operatorname{Ad}_g a + (l' \otimes \operatorname{id})\eta(g) + l',$$

where $l' = (\mathrm{Ad}_g^{-1})^* l$. The differential of this action is the adjoint action of \mathfrak{g} on $\mathcal{D}(\mathfrak{g})$.

3. Main results

In [6] a characterization of all Poisson homogeneous structures on a given homogeneous G-space in terms of Lagrangian subalgebras in $\mathcal{D}(\mathfrak{g})$ is presented. We generalize this result to the quasi-Poisson case. Suppose G is a quasi-Poisson Lie group, X is a quasi-Poisson homogeneous G-space. Recall that we identify T_xX and $\mathfrak{g}/\mathfrak{h}_x$ for all $x \in X$. For any $x \in X$ define

$$L_x = \left\{ a + l \mid a \in \mathfrak{g}, \ l \in (\mathfrak{g}/\mathfrak{h}_x)^* = \mathfrak{h}_x^{\perp} \subset \mathfrak{g}^*, \ (l \otimes \mathrm{id})P_X(x) = \overline{a} \right\}, \tag{9}$$

where \overline{a} is the image of a in $\mathfrak{g}/\mathfrak{h}_x$.

Recall that a subspace $L \subset \mathcal{D}(\mathfrak{g})$ is called *Lagrangian* if L is a maximal isotropic subspace with respect to Q. We will say that a subalgebra of $\mathcal{D}(\mathfrak{g})$ is *Lagrangian* if it is a Lagrangian subspace.

Lemma 3.1. L_x is a Lagrangian subspace in $\mathcal{D}(\mathfrak{g})$, and $L_x \cap \mathfrak{g} = \mathfrak{h}_x$.

Denote by Λ the set of all Lagrangian subalgebras in $\mathcal{D}(\mathfrak{g})$.

Theorem 3.2. Suppose (G, P_G, φ) is a quasi-Poisson Lie group, (X, P_X) is a quasi-Poisson homogeneous G-space. Then the following statements hold:

- 1. L_x is a subalgebra in $\mathcal{D}(\mathfrak{g})$ for all $x \in X$;
- 2. $L_{gx} = g \cdot L_x$;
- 3. There is a bijection between the set of all G-quasi-Poisson structures on X and the set of G-equivariant maps $x \mapsto L_x$ from X to Λ such that $L_x \cap \mathfrak{g} = \mathfrak{h}_x$ for all $x \in X$.

Corollary 3.3. There is a bijection between the set of all isomorphism classes of quasi-Poisson homogeneous G-spaces and the set of G-conjugacy classes of pairs (L, H), where $L \subset \mathcal{D}(\mathfrak{g})$ is a Lagrangian subalgebra, H is a closed subgroup in $G_L = \{g \in G \mid g \cdot L = L\}$, and $L \cap \mathfrak{g} = \text{Lie } H$.

The rest of this section is devoted to the proof of Theorem 3.2. We start with a technical lemma.

Lemma 3.4. Let P be a bivector field on a smooth manifold X. Define $\{f_1, f_2\} = P(df_1, df_2)$ for all $f_1, f_2 \in C^{\infty}X$. Then

$$\oint \{\{f_1, f_2\}, f_3\} = -\frac{1}{2} \llbracket P, P \rrbracket (df_1, df_2, df_3), \tag{10}$$

where \oint denotes the sum over all cyclic permutations of f_1, f_2, f_3

Proof. Straightforward computation.

Lemma 3.5. $L_{qx} = g \cdot L_x$ iff (6) holds.

Proof. By definition,

$$L_x = \{a+l \mid a \in \mathfrak{g}, l \in (\mathfrak{g}/\mathfrak{h}_x)^*, (l \otimes \mathrm{id})P_X(x) = \overline{a}\},\$$
$$L_{gx} = \left\{a'+l' \mid a' \in \mathfrak{g}, l' \in (\mathfrak{g}/\mathfrak{h}_{gx})^*, (l' \otimes \mathrm{id})P_X(gx) = \overline{a'}\right\}.$$

It is enough to check that

$$g \cdot L_x = \left\{ a' + l' \mid a' \in \mathfrak{g}, l' \in (\mathfrak{g}/\mathfrak{h}_{gx})^*, (l' \otimes \operatorname{id}) \left(\operatorname{Ad}_g P_X(x) + \overline{\eta(g)} \right) = \overline{a'} \right\}.$$

Consider $a' + l' = g \cdot (a + l), a \in \mathfrak{g}, l \in (\mathfrak{g}/\mathfrak{h}_x)^*$, that is,

$$l' = (\operatorname{Ad}_g^{-1})^* l, \ a' = \operatorname{Ad}_g a + (l' \otimes \operatorname{id})\eta(g).$$

We have

$$(l' \otimes \mathrm{id}) \left(\mathrm{Ad}_g P_X(x) + \overline{\eta(g)} \right) = \\ (l \otimes \mathrm{id}) (\mathrm{Ad}_g^{-1} \otimes \mathrm{id}) (\mathrm{Ad}_g \otimes \mathrm{Ad}_g) P_X(x) + (l' \otimes \mathrm{id}) \overline{\eta(g)} = \\ \mathrm{Ad}_g (l \otimes \mathrm{id}) P_X(x) + (l' \otimes \mathrm{id}) \overline{\eta(g)}.$$

So $(l' \otimes id) (Ad_g P_X(x) + \overline{\eta(g)}) = \overline{a'}$ if and only if $a + l \in L_x$. This proves the required equality.

Now we are heading for the first statement of the theorem.

Let e_i form a basis in \mathfrak{g} , ∂_i (resp. ∂'_i) be the right (resp. left) invariant vector field on G that corresponds to e_i .

Suppose $\eta(g) = \eta^{ij}(g) e_i \wedge e_j$. Then $P_G = \eta^{ij} \partial_i \wedge \partial_j$. Choose any $r \in \bigwedge^2 \mathfrak{g}$ such that the image of r in $\bigwedge^2(\mathfrak{g}/\mathfrak{h}_x)$ equals $P_X(x)$. Define

$$CYB(r) = [r^{12}, r^{13}] + [r^{12}, r^{23}] + [r^{13}, r^{23}].$$

Lemma 3.6. Assume that (4) holds. Then the image of

$$\varphi - \operatorname{CYB}(r) + \frac{1}{2}\operatorname{Alt}(\delta \otimes \operatorname{id})(r)$$

in $\bigwedge^3(\mathfrak{g}/\mathfrak{h}_x)$ vanishes iff (5) holds.

Proof. From (4) it follows that

$$\begin{aligned} P_X(gx)(d_{gx}f_1, d_{gx}f_2) &= ((l_g)_*P_X(x) + (\rho_x)_*P_G(g))(d_{gx}f_1, d_{gx}f_2) = \\ P_X(x)(d_x(f_1 \circ l_g), d_x(f_2 \circ l_g)) + P_G(g)(d_g(f_1 \circ \rho_x), d_g(f_2 \circ \rho_x)) = \\ r(d_e(f_1 \circ l_g)^G, d_e(f_2 \circ l_g)^G) + P_G(g)(d_gf_1^G, d_gf_2^G) &= (r^\lambda(g) + P_G(g))(d_gf_1^G, d_gf_2^G). \end{aligned}$$

For any $f_1, f_2 \in C^{\infty}G$ define the bracket

$$\{f_1, f_2\}(g) = (r^{\lambda}(g) + P_G(g))(d_g f_1, d_g f_2).$$

Using Lemma 3.4 we see that

$$\oint \{\{f_1, f_2\}_X, f_3\}_X(g \cdot x) = \oint \{\{f_1^G, f_2^G\}, f_3^G\}(g) = -\frac{1}{2} \llbracket P_G + r^{\lambda}, P_G + r^{\lambda} \rrbracket (df_1^G, df_2^G, df_3^G)(g).$$

Lemma 3.7. $\llbracket P_G + r^{\lambda}, P_G + r^{\lambda} \rrbracket = 2 \left(\varphi^{\rho} - \varphi^{\lambda} + \operatorname{CYB}(r)^{\lambda} - \frac{1}{2} \operatorname{Alt}(\delta \otimes \operatorname{id})(r)^{\lambda} \right).$

Proof. Using the graded anticommutativity of the Schouten bracket, we get

$$\llbracket P_G + r^{\lambda}, P_G + r^{\lambda} \rrbracket = \llbracket P_G, P_G \rrbracket + 2\llbracket P_G, r^{\lambda} \rrbracket + \llbracket r^{\lambda}, r^{\lambda} \rrbracket$$

From (2) it follows that $\llbracket P_G, P_G \rrbracket = 2(\varphi^{\rho} - \varphi^{\lambda})$. We will calculate the rest of the terms on the right-hand side using coordinates. Let $r = r^{ij}e_i \wedge e_j$. Then $r^{\lambda} = r^{ij}\partial'_i \wedge \partial'_j$, and

$$\llbracket r^{\lambda}, r^{\lambda} \rrbracket = -4r^{\mu\nu}r^{ij}\llbracket \partial'_{\mu}, \partial'_{i} \rrbracket \wedge \partial'_{j} \wedge \partial'_{\nu} = -4r^{\mu\nu}r^{ij}\operatorname{Alt}\left(\llbracket \partial'_{\mu}, \partial'_{i} \rrbracket \otimes \partial'_{j} \otimes \partial'_{\nu}\right) = -\operatorname{Alt}\left([r^{13}, r^{12}]\right)^{\lambda} = 2\operatorname{CYB}(r)^{\lambda}.$$

Now we prove that $\llbracket P_G, r^{\lambda} \rrbracket = -\frac{1}{2} \operatorname{Alt}(\delta \otimes \operatorname{id})(r)^{\lambda}$. We have

$$\begin{bmatrix} P_G, r^{\lambda} \end{bmatrix} = \begin{bmatrix} \eta^{\mu\nu} \partial_{\mu} \wedge \partial_{\nu}, r^{ij} \partial'_i \wedge \partial'_j \end{bmatrix} = r^{ij} \left(\begin{bmatrix} \partial'_i, \eta^{\mu\nu} \partial_{\mu} \end{bmatrix} \wedge \partial'_j \wedge \partial_{\nu} - \begin{bmatrix} \partial'_j, \eta^{\mu\nu} \partial_{\mu} \end{bmatrix} \wedge \partial'_i \wedge \partial_{\nu} \right) = 2r^{ij} \begin{bmatrix} \partial'_i, \eta^{\mu\nu} \partial_{\mu} \end{bmatrix} \wedge \partial'_j \wedge \partial_{\nu} = -2r^{ij} (\partial'_i \eta^{\mu\nu}) \partial_{\mu} \wedge \partial_{\nu} \wedge \partial'_j$$

Using the fact that η is a 1-cocycle, we get

$$\partial_i' \eta^{\mu\nu}(g) e_{\mu} \wedge e_{\nu} = \frac{d}{dt} \Big|_{t=0} \eta^{\mu\nu}(g \exp te_i) e_{\mu} \wedge e_{\nu} = \frac{d}{dt} \Big|_{t=0} (\eta^{\mu\nu}(g) e_{\mu} \wedge e_{\nu} + \operatorname{Ad}_g(\eta^{\mu\nu}(\exp te_i) e_{\mu} \wedge e_{\nu})) = \frac{d}{dt} \Big|_{t=0} \eta^{kl}(\exp te_i) (\operatorname{Ad}_g)_k^{\mu} (\operatorname{Ad}_g)_l^{\nu} e_{\mu} \wedge e_{\nu} = \partial_i' \eta^{kl}(e) (\operatorname{Ad}_g)_k^{\mu} (\operatorname{Ad}_g)_l^{\nu} e_{\mu} \wedge e_{\nu},$$

where $\operatorname{Ad}_{g} e_{k} = (\operatorname{Ad}_{g})_{k}^{\mu} e_{\mu}$. So $\partial_{i}' \eta^{\mu\nu}(g) = \partial_{i}' \eta^{kl}(e) (\operatorname{Ad}_{g})_{k}^{\mu} (\operatorname{Ad}_{g})_{l}^{\nu}$. Continuing our calculations, we have

$$\begin{split} \llbracket P_G, r^{\lambda} \rrbracket(g) &= -2r^{ij} (\partial'_i \eta^{\mu\nu})(g) \partial_{\mu}(g) \wedge \partial_{\nu}(g) \wedge \partial'_j(g) = \\ &- 2r^{ij} \partial'_i \eta^{kl}(e) (\operatorname{Ad}_g)^{\mu}_k (\operatorname{Ad}_g)^{\nu}_l \partial_{\mu}(g) \wedge \partial_{\nu}(g) \wedge \partial'_j(g) = \\ &- 2r^{ij} \partial'_i \eta^{\mu\nu}(e) \partial'_\mu(g) \wedge \partial'_\nu(g) \wedge \partial'_j(g) = \\ &- 2r^{ij} \partial'_i \eta^{\mu\nu}(e) \operatorname{Alt} \left(\partial'_\mu(g) \otimes \partial'_\nu(g) \otimes \partial'_j(g) \right) = \\ &- r^{ij} \operatorname{Alt} \left((d_e \eta(e_i))^{\lambda}(g) \otimes \partial'_j(g) \right) = -r^{ij} \operatorname{Alt} \left(\delta(e_i) \otimes e_j \right)^{\lambda}(g) = \\ &- \frac{1}{2} \left(\operatorname{Alt}(\delta \otimes \operatorname{id}) r \right)^{\lambda}(g). \end{split}$$

Now we finish the proof of Lemma 3.6. From the definition of a quasi-Poisson action it follows that

$$\oint \{\{f_1, f_2\}_X, f_3\}_X(g \cdot x) = -\varphi_X(df_1, df_2, df_3)(g \cdot x) = -\varphi^{\rho}(df_1^G, df_2^G, df_3^G)(g).$$

It means that for all $f_1, f_2, f_3 \in C^{\infty}X$ we have

$$\left(\varphi - \operatorname{CYB}(r) + \frac{1}{2}\operatorname{Alt}(\delta \otimes \operatorname{id})r\right)^{\lambda} (df_1^G, df_2^G, df_3^G) = 0.$$

Consequently, for all $l,m,n\in \mathfrak{h}_x^\perp$ we get

$$\langle \varphi - CYB(r) + \frac{1}{2} Alt(\delta \otimes id)r, l \otimes m \otimes n \rangle = 0,$$

which proves the statement of the lemma.

Lemma 3.8. Assume that (4) holds. Then L_x is a subalgebra in $\mathcal{D}(\mathfrak{g})$ if and only if the image of the tensor $\varphi + \frac{1}{2} \operatorname{Alt}(\delta \otimes \operatorname{id})(r) - \operatorname{CYB}(r)$ in $\bigwedge^3(\mathfrak{g}/\mathfrak{h}_x)$ vanishes.

Proof. Consider the mapping $R : \mathfrak{g}^* \to \mathfrak{g}$ that corresponds to $r \in \bigwedge^2 \mathfrak{g}$:

$$R(l) = (l \otimes id)r = \sum_{i} l(r'_{i})r''_{i},$$

where $r = \sum_{i} r'_{i} \otimes r''_{i}$. Then

$$L_x = \{a+l \mid a \in \mathfrak{g}, l \in (\mathfrak{g}/\mathfrak{h}_x)^*, (l \otimes \mathrm{id})\overline{r} = \overline{a}\} = \{a+l \mid a \in \mathfrak{g}, l \in \mathfrak{h}_x^{\perp}, \overline{R(l)} = \overline{a}\} = \{l+R(l) \mid l \in \mathfrak{h}_x^{\perp}\} + \mathfrak{h}_x.$$

From Lemma 3.5 it follows that $h \cdot L_x = L_{hx} = L_x$ for any $h \in H_x$. Consequently, for all $a \in \mathfrak{h}_x$ we have $\mathrm{ad}_a(L_x) \subset L_x$. So L_x is a Lie subalgebra in $\mathcal{D}(\mathfrak{g})$ if and only if $[l_1 + R(l_1), l_2 + R(l_2)] \in L_x$ for any $l_1, l_2 \in \mathfrak{h}_x^{\perp}$.

Choose any $l_1, l_2, l_3 \in \mathfrak{h}_x^{\perp}$. We are going to check that

$$Q([l_1 + R(l_1), l_2 + R(l_2)], l_3 + R(l_3)) = \langle l_1 \otimes l_2 \otimes l_3, -\varphi + CYB(r) - \frac{1}{2} \operatorname{Alt}(\delta \otimes \operatorname{id})r \rangle.$$

Indeed,

$$\langle l_1 \otimes l_2 \otimes l_3, [r^{12}, r^{13}] \rangle = \langle l_1 \otimes l_2 \otimes l_3, \sum_{i,j} [r'_i, r'_j] \otimes r''_i \otimes r''_j \rangle = \langle l_1, \sum_{i,j} [\langle l_2, r''_i \rangle r'_i, \langle l_3, r''_j \rangle r'_j] \rangle = Q(l_1, [R(l_2), R(l_3)]) = Q([l_1, R(l_2)], R(l_3)).$$

Similarly,

$$\langle l_1 \otimes l_2 \otimes l_3, [r^{12}, r^{23}] \rangle = Q([R(l_1), l_2], R(l_3)),$$

 $\langle l_1 \otimes l_2 \otimes l_3, [r^{13}, r^{23}] \rangle = Q([R(l_1), R(l_2)], l_3).$

It is easy to see that $\frac{1}{2} \operatorname{Alt}(\delta \otimes \operatorname{id})r = (\delta \otimes \operatorname{id})r + \tau(\delta \otimes \operatorname{id})r + \tau^2(\delta \otimes \operatorname{id})r$, where $\tau(x \otimes y \otimes z) = z \otimes x \otimes y$. We have

$$\langle l_1 \otimes l_2 \otimes l_3, (\delta \otimes \operatorname{id})r \rangle = \sum_i \langle l_1 \otimes l_2, \delta(r'_i) \rangle \langle l_3, r''_i \rangle =$$

$$\sum_i \langle [l_1, l_2]_{\delta}, \langle l_3, r''_i \rangle r'_i \rangle = -Q([l_1, l_2], R(l_3)),$$

$$\langle l_1 \otimes l_2 \otimes l_3, \tau(\delta \otimes \operatorname{id})r \rangle = -Q([R(l_1), l_2], l_3),$$

$$\langle l_1 \otimes l_2 \otimes l_3, \tau^2(\delta \otimes \operatorname{id})r \rangle = -Q([l_1, R(l_2)], l_3),$$

$$\langle l_1 \otimes l_2 \otimes l_3, \varphi \rangle = -Q([l_1, l_2], l_3).$$

Adding up all the terms on the right-hand side and using the fact that $Q([R(l_1), R(l_2)], R(l_3)) = 0$ we see that

$$Q([l_1 + R(l_1), l_2 + R(l_2)], l_3 + R(l_3)) = \langle l_1 \otimes l_2 \otimes l_3, -\varphi + CYB(r) - \frac{1}{2} \operatorname{Alt}(\delta \otimes \operatorname{id})r \rangle.$$

The right-hand side of this equality vanishes for any $l_1, l_2, l_3 \in (\mathfrak{g}/\mathfrak{h}_x)^*$ iff the image of $\varphi - \operatorname{CYB}(r) + \frac{1}{2}\operatorname{Alt}(\delta \otimes \operatorname{id})r$ in $\bigwedge^3(\mathfrak{g}/\mathfrak{h}_x)$ vanishes.

The left-hand side vanishes for any $l_1, l_2, l_3 \in (\mathfrak{g}/\mathfrak{h}_x)^*$ iff $Q([l_1 + R(l_1), l_2 + R(l_2)], L_x)$ vanishes, i.e., since L_x is maximal isotropic, iff $[l_1 + R(l_1), l_2 + R(l_2)] \in L_x$.

This finishes the proof of the lemma.

Suppose $v \in \bigwedge^2 (\mathfrak{g}/\mathfrak{h}_x)$. Consider the mapping $v \mapsto L_v$, where

$$L_v = \{ a + l \mid a \in \mathfrak{g}, \ l \in \mathfrak{g}/\mathfrak{h}_x, \ (l \otimes \mathrm{id})v = \overline{a} \}.$$

This is a bijection between $\bigwedge^2(\mathfrak{g}/\mathfrak{h}_x)$ and the set of all Lagrangian subspaces $L \subset \mathcal{D}(\mathfrak{g})$ such that $L \cap \mathfrak{g} = \mathfrak{h}_x$.

Further, there is a bijection between bivector fields P_X on X and smooth maps $x \mapsto L_x$ from X to the set of all Lagrangian subspaces in $\mathcal{D}(\mathfrak{g})$ such that $L_x \cap \mathfrak{g} = \mathfrak{h}_x$ for all $x \in X$.

From Lemmas 3.5, 3.6 and 3.8 it follows that (X, P_X) is a quasi-Poisson homogeneous *G*-space iff the corresponding map $x \mapsto L_x$ is *G*-equivariant, subalgebra-valued, and $L_x \cap \mathfrak{g} = \mathfrak{h}_x$ for all $x \in X$.

This finishes the proof of Theorem 3.2.

4. Twisting

Let G be a Lie group. Suppose (P_G, φ) and (P'_G, φ') are quasi-Poisson structures on G. According to [9], we say that (G, P'_G, φ') is obtained by twisting (by $r \in \bigwedge^2 \mathfrak{g}$) from (G, P_G, φ) if

$$P'_G = P_G + r^{\lambda} - r^{\rho},$$
$$\varphi' = \varphi + \frac{1}{2} \operatorname{Alt}(\delta \otimes \operatorname{id})r - \operatorname{CYB}(r).$$

There is a similar relation on Lie quasi-bialgebras. Let \mathfrak{g} be a Lie algebra, (δ, φ) and (δ', φ') are Lie quasi-bialgebra structures on \mathfrak{g} . According to [5, 9], we say that $(\mathfrak{g}, \delta', \varphi')$ is obtained by twisting (by $r \in \bigwedge^2 \mathfrak{g}$) from $(\mathfrak{g}, \delta, \varphi)$ if

$$\delta'(x) = \delta(x) + \operatorname{ad}_x r \quad \text{for all } x \in \mathfrak{g},$$
$$\varphi' = \varphi + \frac{1}{2}\operatorname{Alt}(\delta \otimes \operatorname{id})r - \operatorname{CYB}(r).$$

Twisting is an equivalence relation.

If (G, P'_G, φ') is obtained by twisting from (G, P_G, φ) then the corresponding Lie quasi-bialgebra $(\mathfrak{g}, \delta', \varphi')$ is obtained by twisting from $(\mathfrak{g}, \delta, \varphi)$. The converse holds if G is connected.

Denote by $\mathcal{D}(\mathfrak{g}, \delta, \varphi)$ and $\mathcal{D}(\mathfrak{g}, \delta', \varphi')$ the double Lie algebras of Lie quasibialgebras $(\mathfrak{g}, \delta, \varphi)$ and $(\mathfrak{g}, \delta', \varphi')$ respectively. The following result is obtained in [5].

Theorem 4.1. $(\mathfrak{g}, \delta', \varphi')$ is obtained by twisting from $(\mathfrak{g}, \delta, \varphi)$ if and only if there exists a Lie algebra isomorphism $f_r : \mathcal{D}(\mathfrak{g}, \delta, \varphi) \to \mathcal{D}(\mathfrak{g}, \delta', \varphi')$ fixing all the elements of \mathfrak{g} and preserving the canonical bilinear forms on the doubles.

Suppose that (G, P'_G, φ') is obtained by twisting from (G, P_G, φ) . Let $r \in \bigwedge^2 \mathfrak{g}$ be the corresponding bivector. Then $f_r : \mathcal{D}(\mathfrak{g}, \delta, \varphi) \to \mathcal{D}(\mathfrak{g}, \delta', \varphi'),$ $f_r(a+l) = a + l + (l \otimes \mathrm{id})r$ is the corresponding Lie algebra isomorphism.

Using f_r we can identify $\mathcal{D}(\mathfrak{g}, \delta, \varphi)$ and $\mathcal{D}(\mathfrak{g}, \delta', \varphi')$. Since f_r preserves the canonical bilinear forms, the sets of Lagrangian subalgebras under this identification are the same.

Theorem 4.2. Let (X, P_X) be a homogeneous quasi-Poisson (G, P_G, φ) -space. Then $(X, P_X - r_X)$ is a homogeneous quasi-Poisson (G, P'_G, φ') -space, and the map $P_X \mapsto P_X - r_X$ is a bijection between the set of all (G, P_G, φ) - and (G, P'_G, φ') -quasi-Poisson structures on X.

Proof. Denote by Λ (resp. Λ') the set of all Lagrangian Lie subalgebras in $\mathcal{D}(\mathfrak{g}, \delta, \varphi)$ (resp. $\mathcal{D}(\mathfrak{g}, \delta', \varphi')$).

Theorem 3.2 gives us the *G*-equivariant map $x \mapsto L_x$ from *X* to Λ such that $L_x \cap \mathfrak{g} = \mathfrak{h}_x$ defined by (9). On the other hand, consider the map $x \mapsto L'_x$ from *X* to the set of subspaces in $\mathcal{D}(\mathfrak{g}, \delta', \varphi')$ corresponding to $P_X - r_X$:

$$L'_x = \{ a + l \mid a \in \mathfrak{g}, \ l \in \mathfrak{h}_x^{\perp}, \ (l \otimes \mathrm{id})(P_X(x) - r_X) = \overline{a} \}.$$

It is easy to see that $f_r(L_x) = L'_x$. Since f_r is a Lie algebra isomorphism, preserves the canonical bilinear forms on the doubles and commutes with the action of G on the doubles, the map $x \mapsto L'_x$ is a G-equivariant map from X to Λ' . Since f_r fixes all the points of \mathfrak{g} , we have $L'_x \cap \mathfrak{g} = \mathfrak{h}_x$. From Theorem 3.2 it follows that $P_X - r_X$ defines a (G, P'_G, φ') -quasi-Poisson structure on X.

Obviously, the map $P_X \mapsto P_X - r_X$ from the set of all (G, P_G, φ) -quasi-Poisson structures on X to the set of all (G, P'_G, φ') -quasi-Poisson structures on X is injective. Similarly, the map $P'_X \mapsto P'_X + r_X$ transforms a (G, P'_G, φ') -structure to a (G, P_G, φ) -structure. Thus we have a bijection.

5. Examples

Recall that if (G, P_G) is a Poisson Lie group, then the homogeneous G-spaces $X = \{x\}$ and Y = G admit the structure of Poisson homogeneous (G, P_G) -spaces. Here we consider the quasi-Poisson case.

Example 5.1. Let (G, P_G, φ) be a quasi-Poisson Lie group, $X = \{x\}$ is a homogeneous G-space, $P_X = 0$ is the only bivector field on X. Then the (trivial) action of G on X is quasi-Poisson. The corresponding Lagrangian subalgebra is \mathfrak{g} .

Example 5.2. Consider the action of a connected quasi-Poisson Lie group (G, P_G, φ) on Y = G by left translations. By Theorem 3.2, there is a bijection between the set of *G*-quasi-Poisson structures on *Y* and the set of *G*-conjugacy classes of Lagrangian subalgebras $L \subset \mathcal{D}(\mathfrak{g})$ such that $L \cap \mathfrak{g} = 0$.

The map $r \mapsto L_r = \{a + l \in \mathcal{D}(\mathfrak{g}) \mid (l \otimes \mathrm{id})r = a\}$ from $\bigwedge^2 \mathfrak{g}$ to the set of Lagrangian subspaces in $\mathcal{D}(\mathfrak{g})$ transversal to \mathfrak{g} is a bijection. On the other hand, L_r is a Lie subalgebra iff $\varphi + \frac{1}{2} \operatorname{Alt}(\delta \otimes \mathrm{id})r - \operatorname{CYB}(r) = 0$.

Thus Y can be a quasi-Poisson homogeneous G-space if and only if G is obtained by twisting from a Poisson Lie group. In this case there is a 1-1 correspondence between the solutions of the equation $\operatorname{CYB}(r) - \frac{1}{2}\operatorname{Alt}(\delta \otimes \operatorname{id})r = \varphi$ and (G, P_G, φ) -quasi-Poisson structures on Y given by $P_Y = P_G + r^{\lambda}$. Let us also consider the quasi-Poisson analogue of dressing orbits.

Example 5.3. Consider a connected Lie group D such that its Lie algebra $\mathfrak{d} = \operatorname{Lie} D$ is equipped with a non-degenerate invariant symmetric bilinear form (|). Suppose that $\mathfrak{d} = \mathfrak{g} \oplus \mathfrak{m}$, where \mathfrak{g} and \mathfrak{m} are isotropic subspaces and \mathfrak{g} is a subalgebra (i.e., the triple $(\mathfrak{d}, \mathfrak{g}, \mathfrak{m})$ is a *Manin quasi-triple*, see [1]). Let G be the connected Lie subgroup in D corresponding to \mathfrak{g} . Let $\{e_i\}$ form a basis in \mathfrak{g} , and $\{f_i\}$ be its dual basis in \mathfrak{m} . Set $t = \sum_i e_i \otimes f_i$. The triple (G, P_G, φ) , where $P_G = t^{\lambda} - t^{\rho}, \varphi = -\operatorname{CYB}(t)$, is a quasi-Poisson Lie group (see [1]).

Now consider the manifold S = D/G equipped with the bivector field

$$P_S = -t_S. \tag{11}$$

It is shown in [1] that the natural (G, P_G, φ) -action on (S, P_S) is quasi-Poisson, and its orbits are quasi-Poisson homogeneous (G, P_G, φ) -spaces. Consider an orbit $X \subset S$, let $s \in X$, s = dG, where $d \in D$. It is straightforward to calculate that L_s (the Lagrangian subalgebra corresponding to $s \in S$) equals $\operatorname{Ad}_d \mathfrak{g}$.

Example 5.4. Suppose \mathfrak{g} is a finite-dimensional Lie algebra with a non-degenerate invariant symmetric bilinear form (|). Let G be a connected Lie group such that Lie $G = \mathfrak{g}$. Consider the Manin quasi-triple $(\mathfrak{d}, \mathfrak{a}_1, \mathfrak{a}_2)$, where $\mathfrak{d} = \mathfrak{g} \times \mathfrak{g}$,

$$\mathfrak{a}_1 = \{(x,x) \mid x \in \mathfrak{g}\} \simeq \mathfrak{g}, \ \mathfrak{a}_2 = \{(x,-x) \mid x \in \mathfrak{g}\},\$$

and \mathfrak{d} is equipped with the non-degenerate invariant symmetric bilinear form

$$((a,b),(c,d))\mapsto \frac{1}{2}\left((a|c)-(b|d)\right)$$

It is easy to calculate that the corresponding Lie quasi-bialgebra structure on \mathfrak{g} is given by $\delta = 0$, $\varphi = [\Omega^{12}, \Omega^{23}] = -\operatorname{CYB}(\Omega)$, where $\Omega \in (S^2\mathfrak{g})^{\mathfrak{g}}$ corresponds to (|). This Lie quasi-bialgebra gives rise to the quasi-Poisson Lie group $(G, 0, \varphi)$.

Pick any $g \in G$, and consider the Lagrangian subalgebra

$$L_g = \{(x, y) \mid y = \operatorname{Ad}_g x\} \subset \mathfrak{d}.$$

It can be shown that it corresponds to the quasi-Poisson homogeneous space (C_g, P) , where $C_g \subset G$ is the conjugacy class of g, and

$$P(g) = (r_q \otimes l_q - l_q \otimes r_q)(\Omega).$$
(12)

Moreover, one can show that (G, P) is a quasi-Poisson *G*-manifold with respect to the action by conjugation, and (C_g, P) are "quasi-Poisson *G*-submanifolds" of (G, P) (see [2], where this example was introduced and studied for a compact Lie group *G*).

Actually this example is a special case of the previous one. To see this, set $D = G \times G$, embed G diagonally into D, and identify S = D/G with G via $(x, y) \cdot G \mapsto yx^{-1}$. It is routine to check that, for example, under this identification the bivector field (11) coincides with (12), etc.

References

- [1] Alekseev, A., and Y. Kosmann-Schwarzbach, Manin pairs and moment maps, J. Diff. Geom. 56 (2000), 133–165.
- [2] Alekseev, A., Y. Kosmann-Schwarzbach, and E. Meinrenken, *Quasi-Poisson manifolds*, Canad. J. Math. **54** (2002), 3–29.
- [3] Bangoura, M., and Y. Kosmann-Schwarzbach, *The double of a Jacobian quasi-bialgebra*, Lett. Math. Phys. **28** (1993), 13–29.
- [4] Drinfeld, V. G., Hamiltonian structures on Lie groups, Lie bialgebras, and the geometric meaning of the classical Yang-Baxter equations, Soviet Math. Dokl. **27** (1983), 68–71.
- [5] —, *Quasi-Hopf algebras*, Leningrad J. Math. **1** (1990), 114–148.
- [6] —, On Poisson homogeneous spaces of Poisson-Lie groups, Theor. Math. Phys. **95** (1993), 226–227.
- [7] Karolinsky, E., and A. Stolin, *Classical dynamical r-matrices, Poisson homogeneous spaces, and Lagrangian subalgebras*, Lett. Math. Phys. **60** (2002), 257–274.
- [8] Kosmann-Schwarzbach, Y., Quasi-bigèbres de Lie et groupes de Lie quasi-Poisson, C. R. Acad. Sci. Paris 312 (1991), 391–394.
- [9] —, Jacobian quasi-bialgebras and quasi-Poisson Lie groups, Contemp. Math. **132** (1992), 459–489.
- [10] Lu, J.-H., Classical dynamical r-matrices and homogeneous Poisson structures on G/H and K/T, Commun. Math. Phys. **212** (2000), 337–370.

Eugene Karolinsky Department of Mathematics Kharkov National University 4 Svobody Sq. Kharkov, 61077, Ukraine and Institute for Low Temperature Physics & Engineering 47 Lenin Avenue Kharkov, 61103, Ukraine eugene.a.karolinsky@univer.kharkov.ua Kolya Muzykin Department of Mathematics Kharkov National University 4 Svobody Sq. Kharkov, 61077, Ukraine

Received June 11, 2003 and in final form October 30, 2003