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Abstract. Drinfeld showed that if G is a Poisson Lie group with corre-
sponding Lie bialgebra g , then the isomorphism classes of Poisson homogeneous
G -spaces are essentially in a 1-1 correspondence with the G -orbits of Lagrangian
subalgebras in g ⊕ g∗ . The main goal of this paper is to generalize this result
to the quasi-Poisson case. We also study the behavior of quasi-Poisson homo-
geneous spaces under twisting. Some examples of quasi-Poisson homogeneous
spaces and corresponding Lagrangian subalgebras are also provided.

1. Introduction

The notion of Poisson Lie group and its infinitesimal counterpart, Lie bialgebra,
was introduced by Drinfeld [4]. Later it was explained that these objects are
quasiclassical limits of Hopf QUE algebras. In [5] the more general objects, quasi-
Hopf QUE algebras, were introduced along with their quasiclassical limits, Lie
quasi-bialgebras. The corresponding geometric objects, quasi-Poisson Lie groups,
were first studied by Kosmann-Schwarzbach [8].

It is well known that Lie bialgebra structures on g are in a natural 1-1
correspondence with Lie algebra structures on D(g) = g ⊕ g∗ such that g and
g∗ are subalgebras in D(g) and the natural bilinear form on D(g) is invariant.
Respectively, in order to get a Lie quasi-bialgebra structure on g , one should drop
the condition that g∗ is a subalgebra in D(g).

Along with (quasi-)Poisson Lie groups it is natural to study their (quasi-)
Poisson actions [1, 2] and, in particular, (quasi-)Poisson homogeneous spaces.
Drinfeld in [6] presented an approach to the classification of Poisson homogeneous
spaces. Namely, he showed that if G is a Poisson Lie group, g is the corresponding
Lie bialgebra, then the isomorphism classes of Poisson homogeneous G-spaces are
essentially in a 1-1 correspondence with the G-orbits of Lagrangian subalgebras
in D(g).

The main goal of this paper is to generalize this result to the quasi-Poisson
case (see Theorem 3.2). We also study the behavior of quasi-Poisson homogeneous
spaces under twisting. Some examples of quasi-Poisson homogeneous spaces and
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corresponding Lagrangian subalgebras are also provided.

It also turns out that quasi-Poisson homogeneous spaces, as well as Poisson
ones, are related to solutions of the classical dynamical Yang-Baxter equation (see
[7, 10] for the Poisson case). This topic will be discussed in a forthcoming paper.

The authors are grateful to Alexander Stolin for useful discussions and the
referee for fruitful remarks.

2. Preliminaries

2.1. Notation. We will use the following normalization of the wedge product
of multivector fields on a smooth manifold. If v is an m-vector field, w is an
n-vector field, then

v ∧ w =
1

n!m!
Alt(v ⊗ w),

where

Alt(x1 ⊗ x2 ⊗ · · · ⊗ xk) =
∑
σ∈Sk

sign(σ)xσ(1) ⊗ xσ(2) ⊗ · · · ⊗ xσ(k).

We will denote by [[ , ]] the Schouten bracket of multivector fields.

Let G be a Lie group, g = Lie G its Lie algebra. For any v ∈
∧•

g denote
by vλ (resp. vρ ) the left (resp. right) invariant multivector field that corresponds
to v , i.e., vλ(g) = (lg)∗v , vρ(g) = (rg)∗v for all g ∈ G , where lg (resp. rg ) is the
left (resp. right) translation by g .

Suppose that G acts smoothly on a smooth manifold X . Then for any
v ∈ g we denote by vX the corresponding vector field on X , i.e.,

(vXf)(x) =
d

dt

∣∣∣
t=0

f(exp tv · x)

for any x ∈ X . Similarly, for v ∈
∧•

g one can define the multivector field vX .
For any x ∈ X consider the map ρx : G → X , ρx(g) = g ·x . Then (ρx)∗v = vX(x)
for v ∈ g .

For any point x ∈ X we denote by Hx = {g ∈ G | g · x = x} its stabilizer.
Let hx = Lie Hx ⊂ g .

Suppose now that X is a homogeneous G-space. In this case we will identify
TxX with g/hx for all x ∈ X . Fix x ∈ X and for any f ∈ C∞X define fG ∈ C∞G
by the formula fG(g) = (f ◦ρx)(g) = f(g ·x). Note that the mapping f 7→ fG is an
isomorphism between the spaces of smooth functions on X and right Hx -invariant
smooth functions on G .

2.2. Quasi-Poisson Lie groups and quasi-Poisson actions. Following [9]
and [1], we define the notions of quasi-Poisson Lie group and quasi-Poisson action.

Definition 2.1. Let G be a Lie group, g its Lie algebra, PG a bivector field
on G , and ϕ ∈

∧3
g . A triple (G, PG, ϕ) is called a quasi-Poisson Lie group if

PG is multiplicative, i.e., PG(gg′) = (lg)∗PG(g′) + (rg′)∗PG(g), (1)

1

2
[[PG, PG]] = ϕρ − ϕλ, (2)

[[PG, ϕρ]] = 0. (3)
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The notion of Poisson Lie group is a special case of the notion of quasi-
Poisson Lie group. Namely, for any Poisson Lie group (G, PG) the triple (G, PG, 0)
is a quasi-Poisson Lie group.

Consider the mapping η : G → g∧g defined by η(g) = (r−1
g )∗PG(g). It is a

g ∧ g-valued 1-cocycle of G with respect to the adjoint action of G on g ∧ g , i.e.,

η(g1g2) = η(g1) + Adg1 η(g2).

Here Adg(x⊗ y) = (Adg x)⊗ (Adg y). The fact that η is a 1-cocycle is equivalent
to the multiplicativity condition (1).

Consider δ = deη : g → g ∧ g . It is a 1-cocycle of g with respect to the
adjoint action of g on g ∧ g , i.e.,

δ([x, y]) = adx δ(y)− ady δ(x),

where adx(y ⊗ z) = [x⊗ 1 + 1⊗ x, y ⊗ z] = adx y ⊗ z + y ⊗ adx z .

Definition 2.2. Suppose (G, PG, ϕ) is a quasi-Poisson Lie group, and X is a
smooth manifold equipped with a bivector field PX . A smooth action of G on X
is called quasi-Poisson if

PX(gx) = (lg)∗PX(x) + (ρx)∗PG(g), (4)

1

2
[[PX , PX ]] = ϕX (5)

(here lg denotes the mapping x 7→ g · x).

Let us consider the case ϕ = 0, i.e., G is a Poisson Lie group. Then
condition (5) means that X is a Poisson manifold, and from (4) it follows that the
action of G on X is Poisson.

Definition 2.3. A (quasi-Poisson) isomorphism between two quasi-Poison ac-
tions of a quasi-Poisson Lie group (G, PG, ϕ) on manifolds (X, PX) and (Y, PY )
is a G-equivariant diffeomorphism u : X → Y such that u∗(PX) = PY .

Definition 2.4. Suppose that (G, PG, ϕ) is a quasi-Poisson group, G acts
smoothly on a manifold X equipped with a bivector field PX , and this action
is quasi-Poisson. We call X a quasi-Poisson homogeneous G-space if the action
of G on X is transitive.

Lemma 2.5. Suppose that (G, PG, ϕ) is a quasi-Poisson group, X is a homo-
geneous G-space, PX is a bivector field on X . Then condition (4) is equivalent
to

PX(gx) = Adg PX(x) + η(g), (6)

where Adg :
∧2(g/hx) →

∧2(g/hgx) is the isomorphism of the vector spaces

induced by the automorphism Adg : g → g, and η(g) is the image of η(g) in∧2(g/hgx).

2.3. Lie quasi-bialgebras. Recall that a Poisson Lie structure on a Lie group
G induces the structure of a Lie bialgebra on the Lie algebra g = Lie G . A quasi-
Poisson structure on a Lie group G induces a similar structure on g . We follow
[5] in defining the notion of Lie quasi-bialgebra.
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Definition 2.6. Let g be a Lie algebra, δ a g ∧ g-valued 1-cocycle of g , and
ϕ ∈

∧3
g . A triple (g, δ, ϕ) is called a Lie quasi-bialgebra if

1

2
Alt(δ ⊗ id)δ(x) = adx ϕ for any x ∈ g , (7)

Alt(δ ⊗ id⊗ id)ϕ = 0, (8)

where adx(a⊗ b⊗ c) = [x⊗ 1⊗ 1 + 1⊗ x⊗ 1 + 1⊗ 1⊗ x, a⊗ b⊗ c] .

Equation (7) is called the quasi co-Jacobi identity.

If we set ϕ = 0, then the notion of Lie quasi-bialgebra coincides with the
notion of Lie bialgebra. In this case equation (7) becomes the ordinary co-Jacobi
identity, and condition (8) is obviously satisfied.

For any quasi-Poisson Lie group (G, PG, ϕ) there exists a Lie quasi-bial-
gebra structure on g given by the 1-cocycle δ = deη and ϕ . Conversely, to any
Lie quasi-bialgebra there corresponds a unique connected and simply connected
quasi-Poisson Lie group (see [9]).

Given any linear map δ : g → g∧g ⊂ g⊗g we can define the skew-symmetric
bilinear operation on g∗ : for all l,m ∈ g∗ set [l,m]δ = δ∗(l ⊗m).

Recall that for any Lie quasi-bialgebra (g, δ, ϕ) one can construct the so-
called double Lie algebra D(g) (see [3]):

let D(g) = g⊕ g∗ as a vector space;

define the bilinear operation [ , ]D(g) on D(g) by the following conditions:

1. [a, b]D(g) = [a, b] for a, b ∈ g ;

2. [l,m]D(g) = [l,m]δ − (l ⊗m⊗ id)ϕ for l,m ∈ g∗ ;

3. [a, l]D(g) = coada l − coadl a for a ∈ g, l ∈ g∗ .

where coadl : g → g is defined by
〈
coadl a, m

〉
= −

〈
[l,m]δ, a

〉
= −

〈
l ⊗m, δ(a)

〉
,

and coada : g∗ → g∗ is defined by
〈
coada l, b

〉
= −

〈
l, [a, b]

〉
. Here and below

〈
,

〉
denotes the standard pairing between g and g∗ .

We denote by Q( , ) the following invariant symmetric bilinear form on
D(g):

Q(a + l, b + m) =
〈
l, b

〉
+

〈
m, a

〉
.

Suppose G is a quasi-Poisson Lie group, g is the corresponding Lie quasi-
bialgebra, D(g) is its double Lie algebra. Then the adjoint action of G on g can
be extended to the action of G on D(g) defined by

g · (a + l) = Adg a + (l′ ⊗ id)η(g) + l′,

where l′ = (Ad−1
g )∗l . The differential of this action is the adjoint action of g on

D(g).

3. Main results

In [6] a characterization of all Poisson homogeneous structures on a given homo-
geneous G-space in terms of Lagrangian subalgebras in D(g) is presented. We
generalize this result to the quasi-Poisson case.
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Suppose G is a quasi-Poisson Lie group, X is a quasi-Poisson homogeneous
G-space. Recall that we identify TxX and g/hx for all x ∈ X . For any x ∈ X
define

Lx =
{
a + l | a ∈ g, l ∈ (g/hx)

∗ = h⊥x ⊂ g∗, (l ⊗ id)PX(x) = a
}

, (9)

where a is the image of a in g/hx .

Recall that a subspace L ⊂ D(g) is called Lagrangian if L is a maximal
isotropic subspace with respect to Q . We will say that a subalgebra of D(g) is
Lagrangian if it is a Lagrangian subspace.

Lemma 3.1. Lx is a Lagrangian subspace in D(g), and Lx ∩ g = hx .

Denote by Λ the set of all Lagrangian subalgebras in D(g).

Theorem 3.2. Suppose (G, PG, ϕ) is a quasi-Poisson Lie group, (X, PX) is a
quasi-Poisson homogeneous G-space. Then the following statements hold:

1. Lx is a subalgebra in D(g) for all x ∈ X ;

2. Lgx = g · Lx ;

3. There is a bijection between the set of all G-quasi-Poisson structures on
X and the set of G-equivariant maps x 7→ Lx from X to Λ such that
Lx ∩ g = hx for all x ∈ X .

Corollary 3.3. There is a bijection between the set of all isomorphism classes
of quasi-Poisson homogeneous G-spaces and the set of G-conjugacy classes of pairs
(L, H), where L ⊂ D(g) is a Lagrangian subalgebra, H is a closed subgroup in
GL = {g ∈ G | g · L = L}, and L ∩ g = Lie H .

The rest of this section is devoted to the proof of Theorem 3.2. We start with a
technical lemma.

Lemma 3.4. Let P be a bivector field on a smooth manifold X . Define
{f1, f2} = P (df1, df2) for all f1, f2 ∈ C∞X . Then∮

{{f1, f2}, f3} = −1

2
[[P, P ]](df1, df2, df3), (10)

where
∮

denotes the sum over all cyclic permutations of f1, f2, f3

Proof. Straightforward computation.

Lemma 3.5. Lgx = g · Lx iff (6) holds.
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Proof. By definition,

Lx = {a + l | a ∈ g, l ∈ (g/hx)
∗, (l ⊗ id)PX(x) = a} ,

Lgx =
{

a′ + l′ | a′ ∈ g, l′ ∈ (g/hgx)
∗, (l′ ⊗ id)PX(gx) = a′

}
.

It is enough to check that

g · Lx =
{

a′ + l′ | a′ ∈ g, l′ ∈ (g/hgx)
∗, (l′ ⊗ id)

(
Adg PX(x) + η(g)

)
= a′

}
.

Consider a′ + l′ = g · (a + l), a ∈ g, l ∈ (g/hx)
∗ , that is,

l′ = (Ad−1
g )∗l, a′ = Adg a + (l′ ⊗ id)η(g).

We have

(l′ ⊗ id)
(
Adg PX(x) + η(g)

)
=

(l ⊗ id)(Ad−1
g ⊗ id)(Adg ⊗Adg)PX(x) + (l′ ⊗ id)η(g) =

Adg(l ⊗ id)PX(x) + (l′ ⊗ id)η(g).

So (l′ ⊗ id)
(
Adg PX(x) + η(g)

)
= a′ if and only if a + l ∈ Lx . This proves

the required equality.

Now we are heading for the first statement of the theorem.

Let ei form a basis in g , ∂i (resp. ∂′i ) be the right (resp. left) invariant
vector field on G that corresponds to ei .

Suppose η(g) = ηij(g)ei ∧ ej . Then PG = ηij∂i ∧ ∂j . Choose any r ∈
∧2

g

such that the image of r in
∧2(g/hx) equals PX(x). Define

CYB(r) = [r12, r13] + [r12, r23] + [r13, r23].

Lemma 3.6. Assume that (4) holds. Then the image of

ϕ− CYB(r) +
1

2
Alt(δ ⊗ id)(r)

in
∧3(g/hx) vanishes iff (5) holds.

Proof. From (4) it follows that

PX(gx)(dgxf1, dgxf2) = ((lg)∗PX(x) + (ρx)∗PG(g)) (dgxf1, dgxf2) =

PX(x)(dx(f1 ◦ lg), dx(f2 ◦ lg)) + PG(g)(dg(f1 ◦ ρx), dg(f2 ◦ ρx)) =

r(de(f1 ◦ lg)
G, de(f2 ◦ lg)

G) + PG(g)(dgf
G
1 , dgf

G
2 ) = (rλ(g) + PG(g))(dgf

G
1 , dgf

G
2 ).

For any f1, f2 ∈ C∞G define the bracket

{f1, f2}(g) = (rλ(g) + PG(g))(dgf1, dgf2).

Using Lemma 3.4 we see that∮
{{f1, f2}X , f3}X(g · x) =

∮
{{fG

1 , fG
2 }, fG

3 }(g) =

−1

2
[[PG + rλ, PG + rλ]](dfG

1 , dfG
2 , dfG

3 )(g).

Lemma 3.7. [[PG+rλ, PG+rλ]] = 2
(
ϕρ − ϕλ + CYB(r)λ − 1

2
Alt(δ ⊗ id)(r)λ

)
.
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Proof. Using the graded anticommutativity of the Schouten bracket, we get

[[PG + rλ, PG + rλ]] = [[PG, PG]] + 2[[PG, rλ]] + [[rλ, rλ]].

From (2) it follows that [[PG, PG]] = 2(ϕρ − ϕλ). We will calculate the rest
of the terms on the right-hand side using coordinates. Let r = rijei ∧ ej . Then
rλ = rij∂′i ∧ ∂′j , and

[[rλ, rλ]] = −4rµνrij[[∂′µ, ∂
′
i]] ∧ ∂′j ∧ ∂′ν =

−4rµνrij Alt
(
[[∂′µ, ∂

′
i]]⊗ ∂′j ⊗ ∂′ν

)
= −Alt

(
[r13, r12]

)λ
= 2 CYB(r)λ.

Now we prove that [[PG, rλ]] = −1
2
Alt(δ ⊗ id)(r)λ . We have

[[PG, rλ]] = [[ηµν∂µ ∧ ∂ν , r
ij∂′i ∧ ∂′j]] =

rij
(
[[∂′i, η

µν∂µ]] ∧ ∂′j ∧ ∂ν − [[∂′j, η
µν∂µ]] ∧ ∂′i ∧ ∂ν

)
=

2rij[[∂′i, η
µν∂µ]] ∧ ∂′j ∧ ∂ν = −2rij(∂′iη

µν)∂µ ∧ ∂ν ∧ ∂′j.

Using the fact that η is a 1-cocycle, we get

∂′iη
µν(g)eµ ∧ eν =

d

dt

∣∣∣
t=0

ηµν(g exp tei)eµ ∧ eν =

d

dt

∣∣∣
t=0

(ηµν(g)eµ ∧ eν + Adg(η
µν(exp tei)eµ ∧ eν)) =

d

dt

∣∣∣
t=0

ηkl(exp tei)(Adg)
µ
k(Adg)

ν
l eµ ∧ eν = ∂′iη

kl(e)(Adg)
µ
k(Adg)

ν
l eµ ∧ eν ,

where Adg ek = (Adg)
µ
keµ . So ∂′iη

µν(g) = ∂′iη
kl(e)(Adg)

µ
k(Adg)

ν
l .

Continuing our calculations, we have

[[PG, rλ]](g) = −2rij(∂′iη
µν)(g)∂µ(g) ∧ ∂ν(g) ∧ ∂′j(g) =

−2rij∂′iη
kl(e)(Adg)

µ
k(Adg)

ν
l ∂µ(g) ∧ ∂ν(g) ∧ ∂′j(g) =

−2rij∂′iη
µν(e)∂′µ(g) ∧ ∂′ν(g) ∧ ∂′j(g) =

−2rij∂′iη
µν(e) Alt

(
∂′µ(g)⊗ ∂′ν(g)⊗ ∂′j(g)

)
=

−rij Alt
(
(deη(ei))

λ(g)⊗ ∂′j(g)
)

= −rij Alt (δ(ei)⊗ ej)
λ (g) =

−1
2
(Alt(δ ⊗ id)r)λ (g).

Now we finish the proof of Lemma 3.6. From the definition of a quasi-
Poisson action it follows that∮

{{f1, f2}X , f3}X(g · x) = −ϕX(df1, df2, df3)(g · x) = −ϕρ(dfG
1 , dfG

2 , dfG
3 )(g).

It means that for all f1, f2, f3 ∈ C∞X we have(
ϕ− CYB(r) +

1

2
Alt(δ ⊗ id)r

)λ

(dfG
1 , dfG

2 , dfG
3 ) = 0.

Consequently, for all l,m, n ∈ h⊥x we get〈
ϕ− CYB(r) +

1

2
Alt(δ ⊗ id)r, l ⊗m⊗ n

〉
= 0,

which proves the statement of the lemma.
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Lemma 3.8. Assume that (4) holds. Then Lx is a subalgebra in D(g) if and
only if the image of the tensor ϕ+ 1

2
Alt(δ⊗id)(r)−CYB(r) in

∧3(g/hx) vanishes.

Proof. Consider the mapping R : g∗ → g that corresponds to r ∈
∧2

g :

R(l) = (l ⊗ id)r =
∑

i

l(r′i)r
′′
i ,

where r =
∑

i r
′
i ⊗ r′′i .

Then

Lx = {a + l | a ∈ g, l ∈ (g/hx)
∗, (l ⊗ id)r = a} ={

a + l | a ∈ g, l ∈ h⊥x , R(l) = a
}

=
{
l + R(l) | l ∈ h⊥x

}
+ hx.

From Lemma 3.5 it follows that h · Lx = Lhx = Lx for any h ∈ Hx .
Consequently, for all a ∈ hx we have ada(Lx) ⊂ Lx . So Lx is a Lie subalgebra in
D(g) if and only if [l1 + R(l1), l2 + R(l2)] ∈ Lx for any l1, l2 ∈ h⊥x .

Choose any l1, l2, l3 ∈ h⊥x . We are going to check that

Q([l1 + R(l1), l2 + R(l2)], l3 + R(l3)) =〈
l1 ⊗ l2 ⊗ l3,−ϕ + CYB(r)− 1

2
Alt(δ ⊗ id)r

〉
.

Indeed, 〈
l1 ⊗ l2 ⊗ l3, [r

12, r13]
〉

=
〈
l1 ⊗ l2 ⊗ l3,

∑
i,j

[r′i, r
′
j]⊗ r′′i ⊗ r′′j

〉
=

〈
l1,

∑
i,j

[
〈
l2, r

′′
i

〉
r′i,

〈
l3, r

′′
j

〉
r′j]

〉
= Q(l1, [R(l2), R(l3)]) = Q([l1, R(l2)], R(l3)).

Similarly, 〈
l1 ⊗ l2 ⊗ l3, [r

12, r23]
〉

= Q([R(l1), l2], R(l3)),〈
l1 ⊗ l2 ⊗ l3, [r

13, r23]
〉

= Q([R(l1), R(l2)], l3).

It is easy to see that 1
2
Alt(δ ⊗ id)r = (δ ⊗ id)r + τ(δ ⊗ id)r + τ 2(δ ⊗ id)r , where

τ(x⊗ y ⊗ z) = z ⊗ x⊗ y . We have〈
l1 ⊗ l2 ⊗ l3, (δ ⊗ id)r

〉
=

∑
i

〈
l1 ⊗ l2, δ(r

′
i)
〉〈

l3, r
′′
i

〉
=∑

i

〈
[l1, l2]δ,

〈
l3, r

′′
i

〉
r′i

〉
= −Q([l1, l2], R(l3)),

〈
l1 ⊗ l2 ⊗ l3, τ(δ ⊗ id)r

〉
= −Q([R(l1), l2], l3),〈

l1 ⊗ l2 ⊗ l3, τ
2(δ ⊗ id)r

〉
= −Q([l1, R(l2)], l3),〈

l1 ⊗ l2 ⊗ l3, ϕ
〉

= −Q([l1, l2], l3).

Adding up all the terms on the right-hand side and using the fact that
Q([R(l1), R(l2)], R(l3)) = 0 we see that

Q([l1 + R(l1), l2 + R(l2)], l3 + R(l3)) =〈
l1 ⊗ l2 ⊗ l3,−ϕ + CYB(r)− 1

2
Alt(δ ⊗ id)r

〉
.
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The right-hand side of this equality vanishes for any l1, l2, l3 ∈ (g/hx)
∗ iff

the image of ϕ− CYB(r) + 1
2
Alt(δ ⊗ id)r in

∧3(g/hx) vanishes.

The left-hand side vanishes for any l1, l2, l3 ∈ (g/hx)
∗ iff Q([l1 + R(l1), l2 +

R(l2)], Lx) vanishes, i.e., since Lx is maximal isotropic, iff [l1 +R(l1), l2 +R(l2)] ∈
Lx .

This finishes the proof of the lemma.

Suppose v ∈
∧2(g/hx). Consider the mapping v 7→ Lv , where

Lv = {a + l | a ∈ g, l ∈ g/hx, (l ⊗ id)v = a}.

This is a bijection between
∧2(g/hx) and the set of all Lagrangian subspaces

L ⊂ D(g) such that L ∩ g = hx .

Further, there is a bijection between bivector fields PX on X and smooth
maps x 7→ Lx from X to the set of all Lagrangian subspaces in D(g) such that
Lx ∩ g = hx for all x ∈ X .

From Lemmas 3.5, 3.6 and 3.8 it follows that (X, PX) is a quasi-Poisson
homogeneous G-space iff the corresponding map x 7→ Lx is G-equivariant,
subalgebra-valued, and Lx ∩ g = hx for all x ∈ X .

This finishes the proof of Theorem 3.2.

4. Twisting

Let G be a Lie group. Suppose (PG, ϕ) and (P ′
G, ϕ′) are quasi-Poisson structures

on G . According to [9], we say that (G, P ′
G, ϕ′) is obtained by twisting (by

r ∈
∧2

g) from (G, PG, ϕ) if

P ′
G = PG + rλ − rρ,

ϕ′ = ϕ +
1

2
Alt(δ ⊗ id)r − CYB(r).

There is a similar relation on Lie quasi-bialgebras. Let g be a Lie algebra,
(δ, ϕ) and (δ′, ϕ′) are Lie quasi-bialgebra structures on g . According to [5, 9], we
say that (g, δ′, ϕ′) is obtained by twisting (by r ∈

∧2
g) from (g, δ, ϕ) if

δ′(x) = δ(x) + adx r for all x ∈ g ,

ϕ′ = ϕ +
1

2
Alt(δ ⊗ id)r − CYB(r).

Twisting is an equivalence relation.

If (G, P ′
G, ϕ′) is obtained by twisting from (G, PG, ϕ) then the correspond-

ing Lie quasi-bialgebra (g, δ′, ϕ′) is obtained by twisting from (g, δ, ϕ). The con-
verse holds if G is connected.

Denote by D(g, δ, ϕ) and D(g, δ′, ϕ′) the double Lie algebras of Lie quasi-
bialgebras (g, δ, ϕ) and (g, δ′, ϕ′) respectively. The following result is obtained in
[5].

Theorem 4.1. (g, δ′, ϕ′) is obtained by twisting from (g, δ, ϕ) if and only if
there exists a Lie algebra isomorphism fr : D(g, δ, ϕ) → D(g, δ′, ϕ′) fixing all the
elements of g and preserving the canonical bilinear forms on the doubles.
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Suppose that (G, P ′
G, ϕ′) is obtained by twisting from (G, PG, ϕ). Let

r ∈
∧2

g be the corresponding bivector. Then fr : D(g, δ, ϕ) → D(g, δ′, ϕ′),
fr(a + l) = a + l + (l ⊗ id)r is the corresponding Lie algebra isomorphism.

Using fr we can identify D(g, δ, ϕ) and D(g, δ′, ϕ′). Since fr preserves the
canonical bilinear forms, the sets of Lagrangian subalgebras under this identifica-
tion are the same.

Theorem 4.2. Let (X, PX) be a homogeneous quasi-Poisson (G, PG, ϕ)-space.
Then (X, PX−rX) is a homogeneous quasi-Poisson (G, P ′

G, ϕ′)-space, and the map
PX 7→ PX − rX is a bijection between the set of all (G, PG, ϕ)- and (G, P ′

G, ϕ′)-
quasi-Poisson structures on X .

Proof. Denote by Λ (resp. Λ′ ) the set of all Lagrangian Lie subalgebras in
D(g, δ, ϕ) (resp. D(g, δ′, ϕ′)).

Theorem 3.2 gives us the G-equivariant map x 7→ Lx from X to Λ such
that Lx ∩ g = hx defined by (9). On the other hand, consider the map x 7→ L′

x

from X to the set of subspaces in D(g, δ′, ϕ′) corresponding to PX − rX :

L′
x = {a + l | a ∈ g, l ∈ h⊥x , (l ⊗ id)(PX(x)− rX) = a}.

It is easy to see that fr(Lx) = L′
x . Since fr is a Lie algebra isomorphism,

preserves the canonical bilinear forms on the doubles and commutes with the action
of G on the doubles, the map x 7→ L′

x is a G-equivariant map from X to Λ′ .
Since fr fixes all the points of g , we have L′

x ∩ g = hx . From Theorem 3.2 it
follows that PX − rX defines a (G, P ′

G, ϕ′)-quasi-Poisson structure on X .

Obviously, the map PX 7→ PX − rX from the set of all (G, PG, ϕ)-quasi-
Poisson structures on X to the set of all (G, P ′

G, ϕ′)-quasi-Poisson structures on X
is injective. Similarly, the map P ′

X 7→ P ′
X + rX transforms a (G, P ′

G, ϕ′)-structure
to a (G, PG, ϕ)-structure. Thus we have a bijection.

5. Examples

Recall that if (G, PG) is a Poisson Lie group, then the homogeneous G-spaces
X = {x} and Y = G admit the structure of Poisson homogeneous (G, PG)-spaces.
Here we consider the quasi-Poisson case.

Example 5.1. Let (G, PG, ϕ) be a quasi-Poisson Lie group, X = {x} is a ho-
mogeneous G-space, PX = 0 is the only bivector field on X . Then the (trivial)
action of G on X is quasi-Poisson. The corresponding Lagrangian subalgebra is
g .

Example 5.2. Consider the action of a connected quasi-Poisson Lie group
(G, PG, ϕ) on Y = G by left translations. By Theorem 3.2, there is a bijection
between the set of G-quasi-Poisson structures on Y and the set of G-conjugacy
classes of Lagrangian subalgebras L ⊂ D(g) such that L ∩ g = 0.

The map r 7→ Lr = {a + l ∈ D(g) | (l ⊗ id)r = a} from
∧2

g to the set of
Lagrangian subspaces in D(g) transversal to g is a bijection. On the other hand,
Lr is a Lie subalgebra iff ϕ + 1

2
Alt(δ ⊗ id)r − CYB(r) = 0.
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Thus Y can be a quasi-Poisson homogeneous G-space if and only if G
is obtained by twisting from a Poisson Lie group. In this case there is a 1-1
correspondence between the solutions of the equation CYB(r)− 1

2
Alt(δ⊗ id)r = ϕ

and (G, PG, ϕ)-quasi-Poisson structures on Y given by PY = PG + rλ .

Let us also consider the quasi-Poisson analogue of dressing orbits.

Example 5.3. Consider a connected Lie group D such that its Lie algebra
d = Lie D is equipped with a non-degenerate invariant symmetric bilinear form
( | ). Suppose that d = g ⊕ m , where g and m are isotropic subspaces and g is
a subalgebra (i.e., the triple (d, g, m) is a Manin quasi-triple, see [1]). Let G be
the connected Lie subgroup in D corresponding to g . Let {ei} form a basis in g ,
and {fi} be its dual basis in m . Set t =

∑
i ei ⊗ fi . The triple (G, PG, ϕ), where

PG = tλ − tρ , ϕ = −CYB(t), is a quasi-Poisson Lie group (see [1]).

Now consider the manifold S = D/G equipped with the bivector field

PS = −tS. (11)

It is shown in [1] that the natural (G, PG, ϕ)-action on (S, PS) is quasi-Poisson,
and its orbits are quasi-Poisson homogeneous (G, PG, ϕ)-spaces. Consider an orbit
X ⊂ S , let s ∈ X , s = dG , where d ∈ D . It is straightforward to calculate that
Ls (the Lagrangian subalgebra corresponding to s ∈ S ) equals Add g .

Example 5.4. Suppose g is a finite-dimensional Lie algebra with a non-dege-
nerate invariant symmetric bilinear form ( | ). Let G be a connected Lie group
such that Lie G = g . Consider the Manin quasi-triple (d, a1, a2), where d = g× g ,

a1 = {(x, x) | x ∈ g} ' g, a2 = {(x,−x) | x ∈ g},

and d is equipped with the non-degenerate invariant symmetric bilinear form

((a, b), (c, d)) 7→ 1

2
((a|c)− (b|d)) .

It is easy to calculate that the corresponding Lie quasi-bialgebra structure on g is
given by δ = 0, ϕ = [Ω12, Ω23] = −CYB(Ω), where Ω ∈ (S2g)g corresponds to
( | ). This Lie quasi-bialgebra gives rise to the quasi-Poisson Lie group (G, 0, ϕ).

Pick any g ∈ G , and consider the Lagrangian subalgebra

Lg = {(x, y) | y = Adg x} ⊂ d.

It can be shown that it corresponds to the quasi-Poisson homogeneous space
(Cg, P ), where Cg ⊂ G is the conjugacy class of g , and

P (g) = (rg ⊗ lg − lg ⊗ rg)(Ω). (12)

Moreover, one can show that (G, P ) is a quasi-Poisson G-manifold with respect
to the action by conjugation, and (Cg, P ) are “quasi-Poisson G-submanifolds” of
(G, P ) (see [2], where this example was introduced and studied for a compact Lie
group G).

Actually this example is a special case of the previous one. To see this, set
D = G × G , embed G diagonally into D , and identify S = D/G with G via
(x, y) ·G 7→ yx−1 . It is routine to check that, for example, under this identification
the bivector field (11) coincides with (12), etc.
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