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Abstract. Let T be a maximal torus in a connected compact Lie group
G , and let W be the corresponding Weyl group with its natural action on T
as a reflection group. The cohomology group H1(W ;T ) is computed for all
simple Lie groups, and the general case is studied. The method is based on a
suitable interpretation of H1(W ;T ) as a group of (outer) automorphisms of the
normalizer of T .

1. Introduction

Let G be a non-abelian connected compact Lie group. Fix a maximal
torus T in G and consider its normalizer N = NG(T ) . Let W = N/T be the
associated Weyl group. Since W acts naturally on T , as a finite reflection group,
one can consider the usual cohomology group H1(W ;T ) . The purpose of this
paper is to compute this group for all simple Lie groups G and to describe the
situation in the general – non-simple – case. One of our motivations lies in the
fact that H1(W ;T ) plays a key role in the understanding of the automorphisms of
N . Indeed the first named author has shown that the outer automorphism group
Out(N) of the normalizer N canonically decomposes as the semidirect product
Out(N) ∼= H1(W ;T ) o Out(G) , where Out(G) denotes the outer automorphism
group of G (see [9, 10]). As Out(G) is well understood, and essentially given
by the group of automorphisms of the Dynkin diagram of G , the computation
of H1(W ;T ) gives an explicit description of Out(N) . This description is a key
ingredient in [9] for a generalization to the nonconnected setting of the remarkable
theorem of Curtis, Wiederhold, and Williams saying that two connected compact
Lie groups are isomorphic if and only if the normalizers of their maximal tori are
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isomorphic (see [4] and the papers by Notbohm [19] and by Osse [20] for a general
proof, valid in the non-semisimple case; see also Dwyer-Wilkerson [5, 6, 8, 7],
Andersen [1] and Møller [14, 15, 16] for related ideas for p-compact groups). This
generalization provides a new proof in the nonconnected case of the fact that a
compact Lie group is, up to isomorphism, characterized by its classifying space
[9, 11]. Another motivation has its origin in the work of the second named author
[17, 18], which gives a detailed analysis of the cohomology groups H∗(W ; T )
in degree 0 , 1 and 2 , together with their close relationships to normalizers of
maximal tori.

We prove that H1(W ;T ) is a finite elementary abelian 2-group, i.e. a finite
F2 -vector space (see Proposition 2.6 (iv) below). The results of our computations
for all simple Lie groups are collected in the following theorem. When referring to
a specific group G , we denote H1(W ;T ) by H1(WG) to keep track of the group.

Main Theorem.

Type A` , ` > 1 :

Let G be a group of type A` such that G 6∼= SU(2) and G 6∼= PSU(4) .
Then H1(WG) ∼= Z/2 if the center of G contains an element of order 2 , and
H1(WG) = 0 otherwise. One has :

(i) H1(WSU(2)) = 0 (ii)H1(WSU(2n+1)) = 0 , n > 1

(iii) H1(WSU(2n))∼= Z/2 , n > 2 (iv) H1(WPSU(4))∼= Z/2

(v)H1(WPSU(n)) = 0 , n 6= 4

Type B` , ` > 2 :

(i)H1(WSpin(4n+1))∼= Z/2 , n > 1 (ii)H1(WSpin(4n+3))∼= Z/2⊕ Z/2 , n > 1

(iii) H1(WSO(5))∼= Z/2 (iv) H1(WSO(2n+1))∼= Z/2⊕ Z/2 , n > 3

Type C` , ` > 3 :

(i) H1(WSp(n))∼= Z/2⊕ Z/2 , n > 3 (ii) H1(WPSp(3))∼= Z/2

(iii)H1(WPSp(4))∼= Z/2 (iv)H1(WPSp(n)) = 0 , n > 5

Type D` , ` > 4 :

(i)H1(WSpin(4n))∼= Z/2⊕ Z/2 , n > 2 (ii)H1(WSpin(4n+2))∼= Z/2 , n > 2

(iii) H1(WSO(2n))∼= Z/2 , n > 4 (iv) H1(WsSpin(4n))∼= Z/2 , n > 3

(v) H1(WPSO(8))∼= Z/2⊕ Z/2 (vi) H1(WPSO(2n)) = 0 , n > 5

Types G2 , F4 , E6 , E7 and E8 :

One has H1(WE7)
∼= Z/2 , and H1(WG) = 0 for G = G2 , F4 , E6 , PE6 ,

PE7 and E8 .
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Remark 1.1. In [17], the center Z(N) of N is computed for all Lie groups
G in terms of Z(G) , namely Z(N) ∼= Z(G) ⊕ (Z/2)u , where u denotes the
number of direct factors of G isomorphic to an odd orthogonal group. Explicitly,
for G = SO(2n+ 1) with its usual upper-left maximal torus, the diagonal matrix
diag(−1, −1, . . . , −1, 1) lies in the center of N . We also quote from [17] that
Z(N) = TW . Now, we observe from the Main Theorem that for G simple,
H1(WG) is non-trivial if and only if Z(N) contains an element of order 2 , with
only five exceptions (all of rank 6 4), namely G isomorphic to one of SU(2) ,
PSO(6) ∼= PSU(4) , PSp(3) , PSp(4) and PSO(8) . (Compare with Theorem 1.2,
and with Propositions 5.6 and 5.11 below.)

We briefly describe the method used for these computations. Even though
the group H1(W ;T ) has an intrinsic definition, independent from the normalizer
N , we will use their close relationship to carry out the computations for the
classical groups. Namely we will consider H1(W ;T ) as a subgroup of Out(N) ,
as mentioned above and more precisely recalled in Section 2. Our main tool will
then be a famous theorem of Tits giving a presentation of the group N , which
relies on the fact that N sits in the ambient group G . This presentation will
allow us to actually compute the automorphisms of N that correspond to classes
in H1(W ;T ) ⊆ Out(N) , and to determine when two such automorphisms produce
the same class. This method is well suited to direct calculations and to treating the
infinite classical families. For the case of exceptional Lie groups the method will
be different. We will use an intrinsic description of H1(W ;T ) as the kernel of a
homomorphism described in [17] (see Proposition 2.6 below for a simplified version,
which is sufficient for our purpose). The former method can also be applied to
perform computations for the exceptional Lie groups, as illustrated in [9] for E6 .

Eventually, every non-trivial class in H1(W ;T ) will be explicitly realized by
an automorphism of N , for every simple connected compact Lie group G.

By the well-known classification theorem, for a compact connected Lie group
G , there exists a 1-connected (i.e. connected and simply connected) compact

Lie group G̃ , a torus Tk (possibly k = 0) and a finite central subgroup K of

G̃ × Tk , such that G ∼= (G̃ × Tk)/K . The semisimple group G̃ admits the

product decomposition G̃ ∼= G̃1× . . .×G̃r , where each G̃j is a simple 1-connected
compact Lie group. Recall also that Spin(6) ∼= SU(4) . In Section 5, we establish
the following result.

Theorem 1.2. Let G ∼= (G̃×Tk)/K be a connected compact Lie group. Denote
by Z2(N) the subgroup of elements of order dividing 2 in the center Z(N) of N .
Then, there is a canonical homomorphism

ϑ : Hom(W,Z2(N)) −→ H1(W ;T )

satisfying the following properties :

(i) it is injective if G̃ does not contain direct factors isomorphic to Spin(2n+1)
with n > 1 ; in this case, Z(N) = Z(G) ;

(ii) it is surjective if G̃ does not contain direct factors isomorphic to SU(4) ,
Sp(3) , Sp(4) , Spin(8) nor Spin(2n+ 1) with n > 1 .
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In Section 5, the homomorphism ϑ is explicitly constructed (cf. Remark 5.3)
and finer results related to surjectivity are established, see in particular Proposi-
tions 5.5, 5.6 and 5.11. Theorem 5.16 provides an explicit computation of the
kernel of ϑ for all Lie groups G . Note that to prove Theorem 1.2, we first need
to know the situation for the simple Lie groups, that is, the proof relies on the
Main Theorem. Letting Z2(G) denote the group of elements of order dividing 2 in
Z(G) , and Wab the abelianization of W , Theorem 1.2 has the following immediate
corollary.

Corollary 1.3. If G̃ does not contain direct factors isomorphic to SU(4) ,
Sp(3) , Sp(4) , Spin(8) nor Spin(2n+ 1) with n > 1 , then

H1(W ;T ) ∼= Hom(Wab , Z2(G)) .

As is readily checked, the abelianization Wab of a Weyl group is a finite
elementary abelian 2-group of rank |π0(Codd(W ))| , where Codd(W ) denotes the
“odd Coxeter diagram of W ”, namely the graph obtained from the Coxeter di-
agram C(W ) by removing the multiple edges, i.e. those connecting two simple
roots α and β with `αβ even (and > 4). Thus Corollary 1.3 allows the explicit
determination of H1(W ;T ) for every group G satisfying the hypothesis.

Let us mention that our results are used in Møller’s article [16].

We end up this introduction with a brief overview of the contents of the
paper. Although it should really be seen as a companion paper of [9, 10, 17],
Section 2 gives the necessary material to make the present work reasonably self-
contained. It also explains in details the strategy for the computations of H1(W ;T )
for the classical groups. Section 3 describes the actual computations for these
groups, focusing on the type A` and then explaining how to adapt this case to the
types B` , C` and D` . Section 4 treats the case of exceptional Lie groups. Finally,
Section 5 explains how to deal with the semisimple and general cases and presents
some examples, particularly the unitary groups.

Acknowledgements : The authors wish to express their deep gratitude to Jesper
Michael Møller for pointing out an error in an earlier version of the paper and for
generously providing very helpful comments and examples.

2. Description of H1(W ;T ) and strategy for the computations

This section blends materials from [9], [10], [17] and [18], in order to explain
the strategy of our computations. It also highlights the importance of Tits’
presentation of N . For a more detailed analysis and more precise results, we
refer to [17, 18].

We start by briefly recalling how H1(W ;T ) can be seen as a subgroup of
the outer automorphism group of the normalizer. Let Aut(N, T ) be the subgroup
of the automorphism group of N consisting of elements ψ that are the identity on
T (as the action of W on T is faithful, such automorphisms automatically induce
the identity on the quotient W = N/T ). Since T is a maximal abelian normal
subgroup of N , a result established in [21] implies that the cohomology group
H1(W ;T ) can be identified with a subgroup of Out(N) as follows :

H1(W ;T ) ∼= Aut(N, T )/ Inn(N, T ) ,
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where Inn(N, T ) consists of the conjugations of N by elements in T (see [9, 10]
for details). We make this identification for the rest of the paper.

Before recalling a remarkable theorem of Tits, we introduce some notations.
Let LT denote the Lie algebra of the maximal torus T and exp: LT −→ T
designate the exponential homomorphism. Let R = R(G, T ) ⊂ LT ∗ be the root
system of G associated to T , and R∨ ⊂ LT the corresponding coroot system.
The Weyl group W acts on LT and is generated by the reflections sα (α ∈ R),
explicitly given by

sα(X) = X − 2 (X, α∨)
(α∨, α∨)

· α∨ ,

for X ∈ LT (we have fixed a W -invariant inner product (. , .) on LT ). For a root
α of G , define Tα := exp(R ·α∨) ; this is a closed subgroup of T isomorphic to
the circle S1 and it is easily seen to be the connected component of the subgroup
Qα := {t ∈ T | sα(t) = t−1} . We also define hα := exp(α∨

2
) ∈ Tα . Later, we will

need other subgroups of T , namely Fα := {t ∈ T | sα(t) = t} , the fixed point set
of sα in T , and the subgroup S := {t ∈ T | t2 = e} of elements of order dividing 2 .
For a root α , let Uα be the kernel of the associated global root ρα : T −→ S1 ,
characterized by Lρα = 2π · α ; denote the centralizer of Uα in G by ZG(Uα) .
Consider the group S3 of quaternions of unit norm; the normalizer of its ‘standard’
maximal torus S1 is given by NS3(S1) = S1 q jS1 . Denote by π : N � W the
projection map. Recall that there exists a homomorphism να : S3 −→ G satisfying
the following properties :

• να(S3) ⊆ ZG(Uα) • να(S1) = Tα

• να(jS1) ⊆ π−1(sα) • να(−1) = hα ;

it is unique up to composition with a conjugation by an element of S1 q jS1 (see
[3, §4, N0 5]). Note that the set Cα := να(jS1) does not depend on the choice of
να . Fix a basis B of R ; for α, β ∈ B , denote by `αβ the order of the product
sαsβ in W (recall that for two distinct roots α 6= β , the only possible values are
`αβ = 2 , 3 , 4 or 6). Finally, we let ` denote the rank of G .

Theorem 2.1. Tits For every root α ∈ B , let qα be a fixed element in Cα .
Then for all α, β ∈ B , with α 6= β , and for all t ∈ T , the following relations
hold in N :

(R1) q2
α = hα

(R2) qαqβqα · · ·︸ ︷︷ ︸
`αβ factors

= qβqαqβ · · ·︸ ︷︷ ︸
`αβ factors

(R3) qαtq
−1
α = sα(t) .

Furthermore, the group N is generated by the set T ∪ {qα}α∈B and is defined by
relations (R1) , (R2) and (R3), added to the fact that T is a subgroup of N .
More precisely, any relation between elements of N is a consequence of (R1) ,
(R2) , (R3) and of relations among elements of T .

Tits proved this theorem for split reductive semisimple algebraic groups in
his original papers [22, 23], however his proof adapts to compact Lie groups (see
[4] and [17]). Related to this theorem, we introduce some definitions that will play
a crucial role in our approach.
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Definition 2.2. (i) A subset A = {qα}α∈B of N such that qα ∈ Cα for all
α ∈ B is called a Tits configuration, and each coset Cα = qαTα a Tits circle.

(ii) A subset Ã = {q̃α}α∈B of N such that

• q̃α ∈ π−1(sα) , for all α ∈ B

• q̃2
α = hα , for all α ∈ B

• q̃β /∈ Cβ , for some β ∈ B
is called a fake Tits configuration and the corresponding coset q̃βTβ a fake
Tits circle.

Next lemma shows that, for a fixed root α , the union of the corresponding
Tits circle and of the fake ones is in bijection with the subgroup Qα .

Lemma 2.3. Let α ∈ B and t ∈ T . Then t · Cα is a fake Tits circle if and
only if t ∈ Qα \ Tα .

Proof. Let qα ∈ Cα and suppose that tqα is on a fake Tits circle. Then

hα = (tqα)2 = tqαtqα = tsα(t)q2
α = tsα(t)hα ,

which amounts to sα(t) = t−1 . As qαTα = Tαqα = Cα , the result follows.

Next, we show that the number of fake Tits circles is finite.

Lemma 2.4. Let α ∈ R . Every coset in Qα/Tα has a representative element
in Fα ∩ S and there is an isomorphism

Qα/Tα
∼=
Fα ∩ S

Z/2
.

In particular Qα/Tα is a finite elementary abelian 2-group.

Proof. As clearly Fα ∩ S ⊂ Qα and |Fα ∩ S ∩ Tα| = 2 , it is enough to show
that Fα ∩ S intersects every connected component of Qα . Let tTα be such a
component. Considering the situation in the Lie algebra of T , it is easy to see
that T = Tα · Fα . So, we can write t = ru with r ∈ Tα and u ∈ Fα ; thus
uTα = tTα ⊆ Qα and u ∈ Fα ∩ Qα . We deduce that u ∈ Fα ∩ S . The final
statement follows from the isomorphism S ∼= (Z/2)` , where ` is the rank of G .

We will also need the following lemma.

Lemma 2.5. (i) Let A = {qα}α∈B and A′ = {q′α}α∈B be two Tits configura-
tions. Then A and A′ are termwise conjugate by an element of the maximal
torus, i.e. there exists t ∈ T such that tqαt

−1 = q′α for all α ∈ B .

(ii) Let Ã = {q̃α}α∈B and Ã′ = {q̃′α}α∈B be two fake Tits configurations such
that q̃α and q̃′α lie on the same Tits or fake Tits circle for all α ∈ B . Then
Ã and Ã′ are termwise conjugate by an element of T .

Before the proof, and for the rest of the paper, we fix a linear ordering “<” on
the basis B , i.e. we write B = {α1 < α2 < . . . < α

S̀
} , where S̀ is the semisimple

rank of G , in other words, the rank of W . For α, β ∈ B , the relation α < β
will always understand that α and β are distinct. Now we begin the proof of
Lemma 2.5.
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Proof. Obviously, by Lemma 2.3, (ii) is implied by (i). Now, it is enough to
check (i) in the semisimple case (then, ` = S̀ ). By definition there exist elements
r1 ∈ Tα1 , . . . , r` ∈ Tα`

such that q′α1
= r1qα1 , . . . , q

′
α`

= r`qα`
. We have to

construct an element t ∈ T such that, for all j , tqαj
t−1 = rjqαj

, or equivalently
such that

t·sαj
(t)−1 = rj . (∗)

We show that there exists an element X ∈ LT such that t = exp(X) has the
desired property. Fix elements λj ∈ R such that exp(λjα

∨
j ) = rj . Equality (∗) is

then successively equivalent to

exp(X) exp
(
sαj

(X)
)−1

= exp(λjα
∨
j ) ⇐⇒ exp

(
X − sαj

(X)
)

= exp(λjα
∨
j ) .

As sαj
(X) = X − 2

(X, α∨
j )

(α∨
j , α∨

j )
· α∨j , the latter expression becomes

exp
(
2

(X, α∨
j )

(α∨
j , α∨

j )
· α∨j − λj · α∨j

)
= e

for all j . Since B∨ = {α∨1 , . . . , α∨` } is a basis of LT , the ` scalars defined by

(X, α∨j ) =
λj ·(α∨

j , α∨
j )

2

determine the covariant coordinates of a vector X ∈ LT , and, by construction,
t = exp(X) satisfies (∗) for all j .

We are almost ready to present a description of H1(W ;T ) that will allow
explicit computations. We fix once and for all a Tits configuration A = {qα}α∈B .
Let ψ ∈ Aut(N, T ) . From Tits’ presentation 2.1, it is clear that ψ is completely
determined by the images ψ(qα) for α ∈ B , and these are of the form tα·qα , with
tα ∈ T . Relations (R1) and (R3) imply that tα· qα is on a Tits or fake Tits circle
and therefore, by Lemma 2.3, tα ∈ Qα . From relation (R2) , for α 6= β , one has
successively

ψ(qαqβqα · · · ) = ψ(qβqαqβ · · · )
⇐⇒ ψ(qα)ψ(qβ)ψ(qα) · · · = ψ(qβ)ψ(qα)ψ(qβ) · · ·
⇐⇒ tαqαtβqβtαqα · · · = tβqβtαqαtβqβ · · ·
⇐⇒ tα ·sα(tβ)·sαsβ(tα)·qαqβqα · · · = tβ ·sβ(tα)·sβsα(tβ)·qβqαqβ · · ·
⇐⇒ tα ·sα(tβ)·sαsβ(tα) · · · = tβ ·sβ(tα)·sβsα(tβ) · · · (♠)
⇐⇒ tα ·sβ(tα)−1 ·sαsβ(tα) · · · = tβ ·sα(tβ)−1 ·sβsα(tβ) · · ·
⇐⇒ wαβ(tα) = wβα(tβ) (♣)

where wαβ is the element in the integral group algebra ZW defined by

wαβ = 1− sβ + sαsβ −+ . . .+ (−1)`αβ−1 · · · sβsαsβ︸ ︷︷ ︸
`αβ−1 factors

with its obvious action on T (this element was already defined in [4]). Consider
the injective map

Λ̄ : Aut(N, T ) −→ Ker(Θ̄) ⊆
⊕
α∈B

Qα , ψ 7−→
(
ψ(qα)q−1

α

)
α
.
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It follows from the above computation that its image coincides with the subgroup
of elements (tα)α satisfying wαβ(tα) ·wβα(tβ)−1 = e for all α 6= β in the basis B .
For indices 1 6 i, j, k 6 S̀ , we write ti = tαi

, wij = wαiαj
and Tjk = T . The

preceding consideration leads to the introduction of the following homomorphism

Θ̄:
⊕

16i6 S̀

Qαi
−→

⊕
16j<k6 S̀

Tjk , (ti)i 7−→ (wjk(tj)·wkj(tk)
−1)(j<k) .

We can now state an important result for the sequel. It is proved in [17], but, for
sake of completeness and the ease of the reader, we provide a proof that differs
slightly from that of [17] and suits perfectly in the framework that has just been
settled.

Proposition 2.6. (i) The following map is an isomorphism :

Λ̄ : Aut(N, T )
∼=−→ Ker(Θ̄) ⊆

⊕
16i6 S̀

Qαi
, ψ 7−→

(
ψ(qαi

)q−1
αi

)
i
.

(ii) The homomorphism Θ̄ factorizes through the map

Θ:
⊕

16i6 S̀

Qαi
/Tαi

−→
⊕

16j<k6 S̀

Tjk , (tiTαi
)i 7−→

(
wjk(tj)·wkj(tk)

−1
)
(j<k)

.

(iii) The following map is an isomorphism :

Λ: H1(W ;T )
∼=−→ Ker(Θ) ⊆

⊕
16i6 S̀

Qαi
/Tαi

, [ψ] 7−→
(
ψ(qαi

)q−1
αi
· Tαi

)
i
.

(iv) The cohomology group H1(W ;T ) is an elementary abelian 2-group.

Proof. By straightforward computation, Λ̄ is a homomorphism. It is clearly
into, and it is onto by the very definition of Θ̄ , establishing (i). For (ii), consider
first an arbitrary element (ri)i ∈

⊕
Tαi

. Note that the set A′ := {riqαi
}i is a Tits

configuration. By Lemma 2.5, we find t ∈ T such that for the conjugation ct , we
have ct(qαi

) = riqαi
. We get (ri)i = Λ̄(ct) and

⊕
Tαi

⊆ Λ̄(Inn(N, T )) ⊆ Ker(Θ̄) .
In particular, Θ̄ factors through Θ , proving (ii). Conversely, conjugation by
any element t ∈ T preserves the Tits circles, which means that Λ̄(ct) ∈

⊕
Tαi

.
It follows, with part (i), that Λ̄ maps Inn(N, T ) isomorphically onto

⊕
Tαi

.
Therefore,

Λ: H1(W ;T ) ∼= Aut(N, T )/ Inn(N, T ) −→ Ker(Θ̄)/
⊕

Tαi
= Ker(Θ)

is an isomorphism. This proves (iii). Part (iv) follows from Lemma 2.4.

Note. ¿From now on, we always identify an automorphism ψ ∈ Aut(N, T ) with
the element (tα)α :=

(
ψ(qα)q−1

α

)
α

in Ker(Θ̄) , via Λ̄ .
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Remark 2.7. In their famous work on maps between classifying spaces of
connected compact Lie groups [12, 13], Jackowski, McClure and Oliver encounter
the cohomology group H1(W ;T ) and mention in [13] that it is a 2-group. The
fact that this group is a finite F2 -vector space was already established by the first
named author in [9] by a slightly different method.

Proposition 2.6 and its proof show that non-trivial elements in H1(W ;T )
arise from the existence of fake Tits circles. Roughly speaking, an element in
H1(W ;T ) is given by a ‘compatible choice’ of a Tits or fake Tits circle in each
component of N corresponding to a root in B . Proposition 2.6 also gives a
precise, intrinsic description of the cohomology group H1(W ;T ) in terms of the
W -module T only. In the case of classical simple Lie groups, we will however
not directly compute Ker(Θ) , but rather use a method that we now describe.
¿From Proposition 2.6, we know that an element ψ ∈ Aut(N, T ) corresponds to
a tuple (tα)α ∈

⊕
Qα satisfying the compatibility condition (♣) . As we want to

compute H1(W ;T ) , we are only interested in the class [ψ] ∈ H1(W ;T ) and can
thus replace each component tα by the coset tαTα (in other words, we use the
isomorphism Λ in place of Λ̄). By Lemma 2.4, we know that each representative
tα can be chosen in Fα ∩ S , and that in each coset tαTα , there are exactly two
such elements. To compute H1(W ;T ) , we will thus compute automorphisms
in Aut(N, T ) corresponding to (tα)α ∈

⊕
Fα ∩ S , and identify those for which

t′α = kαtα for some α ∈ B , where kα denotes the unique element of order 2
in Tα . We will write t′α ∼ tα if t′α = kαtα . Choosing for every α ∈ B a
homomorphic cross-section s(α) of the projection Fα ∩ S � Qα/Tα of F2 -vector
spaces produces a homomorphism

⊕
s(α) :

⊕
Qα/Tα −→

⊕
Fα ∩ S ⊆

⊕
Qα .

As is readily checked, the restricted homomorphism (
⊕

s(α))|Ker(Θ) maps Ker(Θ)
into Ker(Θ̄) . Therefore it corresponds, via the isomorphisms Λ and Λ̄ , to a
homomorphism

s : H1(W ;T ) −→ Aut(N, T ) , [ψ] 7−→ s([ψ]) = ϕ ,

with ϕ being identified with an element (tα)α ∈ Ker(Θ̄) and satisfying [ϕ] = [ψ] in
H1(W ;T ) . To remain concise, abusing notation, we will often write s([ψ]) = ψ .
From this discussion, we deduce a proposition.

Proposition 2.8. The canonical projection pN : Aut(N, T ) −→ H1(W ;T ) is
split by the homomorphism s (for every choice of {s(α)}α∈B ). In particular, there
is a (non-canonical) isomorphism.

Aut(N, T ) ∼= Inn(N, T )×H1(W ;T ) .

Proof. After what has just been said, it only remains to show that the semi-
direct product Inn(N, T ) o H1(W ;T ) is a direct one. But this is clear, since
Aut(N, T ) is isomorphic to the group Z1(W ;T ) of 1-cocycles , and is therefore
abelian (see Remark 3.4 in [10]).

Summarizing, in the classical cases our strategy for computing H1(W ;T )
consists in finding the image of such a splitting s of pN : Aut(N, T ) −→ H1(W ;T ) .
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3. Computations for the classical Lie groups

In the present section, we follow the strategy described in the previous
one. We will simultaneously perform our computations in the simply connected
group and its quotients by (finite) central subgroups working with representative
elements, a strategy that will prove especially useful for the A` family. In this
section, except where otherwise stated, for each type, G denotes the correspond-
ing simply-connected group, T the ‘standard’ maximal torus in G , and N its
normalizer; ` is the rank of G . Let K be a (possibly trivial) subgroup of the
center Z = Z(G) , which is finite, and let

p : G −→ Ḡ = G/K , g 7−→ p(g) = ḡ =
[
g
]

denote the canonical projection. In Ḡ , the image T̄ = p(T ) is a maximal torus,
and N̄ = p(N) is its normalizer. Identifying the Weyl group N̄/T̄ with W ,
note that p is W -equivariant. We identify the Lie algebras of G and Ḡ , the
exponential map exp for Ḡ being obtained by composing that of G with p .
Let B = {α1, . . . , α`} be a fixed basis of the root system of G , and thus of
Ḡ , and let us specify a Tits configuration A := {q1 = qα1 , . . . , q` = qα`

} of G
(we will not need to make it explicit). By ‘uniqueness’ of the homomorphism
ναj

, p takes the Tits circle Cαj
onto the corresponding Tits circle in N̄ , so that

Ā = {q̄1 = p(q1), . . . , q̄` = p(q`)} is a Tits configuration of Ḡ . The subgroup
Tj = Tαj

is mapped onto the subgroup T̄j = exp(R ·α∨j ) . For each family, we
will start by recalling the standard maximal torus of G , its center, its Dynkin
diagram, and the way sαj

acts on T , the subgroup Tj , and the non-trivial element
k̄αj

∈ F̄αj
∩ S̄ ∩ T̄j , with the obvious notations (note that in general, F̄αj

⊆ p(Fαj
)

and p(S) ⊆ S̄ ). Then, we will determine a section s (as in Proposition 2.8), and,
for every class [ψ] ∈ H1(W ; T̄ ) , determine ψ = s([ψ]) explicitly, in order to prove
the Main Theorem. Recall that ψ is entirely determined by ψ(q̄j) = t̄j · q̄j , with
j = 1, . . . , ` , for suitable elements t̄j ∈ F̄αj

∩ S̄ . We write `i,j = `αiαj
(the order

of the product sαi
sαj

in W ). The trivial element in G is denoted by e and in Ḡ
by ē .

Proof of the Main Theorem for the type A` , ` > 1 .

Put n = ` + 1 . The standard maximal torus T in G = SU(n) consists of
the subgroup of diagonal matrices of determinant 1 , namely

T =
{

diag(z1, . . . , zn)
∣∣ zk ∈ S1 , ∀ k , and z1 · · · zn = 1

}
.

We denote an element of T simply by t = (z1, . . . , zn) . The center is given by

Z =
{
(ζ, . . . , ζ)

∣∣ ζn = 1
} ∼= Cn ,

where Cn denotes the cyclic group of n-th roots of unity, and the isomorphism is
the obvious one. To the subgroup K ⊆ Z corresponds a subgroup CK ⊆ Cn . The
Dynkin diagram is

��	�
�� ��	�
�� ��	�
�� ��	�
��···
α1 α2 αn−2 αn−1

and the reflection sαj
exchanges the entries zj and zj+1 on the diagonal. The

subgroup Tj is given by

Tj =
{
(1, . . . , 1, zj = z, zj+1 = z−1, 1, . . . , 1)

∣∣ z ∈ S1
}
.
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Therefore, for n > 3 , the non-trivial element in F̄αj
∩ S̄ ∩ T̄j is

k̄αj
=
[
1, . . . , zj = −1, zj+1 = −1, 1, . . . , 1

]
for all j = 1, . . . , n− 1 .

Let us start with an easy, but useful observation. Given two elements
t = (z1, . . . , zn) and s = (w1, . . . , wn) in T , one obviously has t̄ = s̄ if and only
if there exists ζ ∈ CK such that zk = ζwk for all k ; in particular, if t̄ = s̄ and
zk = wk for some k , then t = s . Clearly t̄ 2

j = ē implies that t2j = (ζ, . . . , ζ) ∈ K
and thus tj = (µ1, . . . , µn) ; here, ζ = ζ(j) , and µk = µk(j) satisfies µ2

k = ζ ,
that is, µk = ±µ for all k , for a choice of µ = µ(j) such that µ2 = ζ . Since
t̄j ∈ F̄αj

∩ S̄ , one has

ē = sαj
(t̄j)t̄j =

[
µ1, . . . , µj−1, µj+1, µj, µj+2, . . . , µn

]
·

·
[
µ1, . . . , µj−1, µj, µj+1, µj+2, . . . , µn

]
=
[
µ2

1, . . . , µ
2
j−1, µjµj+1, µjµj+1, µ

2
j+2, . . . , µ

2
n

]
=
[
ζ, . . . , ζ, µjµj+1, µjµj+1, ζ, . . . , ζ] ,

and therefore µjµj+1 = ζ = µ2
j , yielding µj = µj+1 . Now, supposing that n > 5 ,

let t̄1 =
[
λ, λ, λ3, . . . , λn

]
and t̄3 =

[
ω1, ω2, ω, ω, ω5, . . . , ωn

]
. Since `1,3 = 2 ,

condition (♠) gives[
λ, λ, λ3, λ4, λ5, . . . , λn

]
·
[
ω2, ω1, ω, ω, ω5, . . . , ωn

]
=

=
[
ω1, ω2, ω, ω, ω5, . . . , ωn

]
·
[
λ, λ, λ4, λ3, λ5, . . . , λn

]
and consequently,[
λω2, λω1, λ3ω, λ4ω, λ5ω5, . . . , λnωn

]
=
[
λω1, λω2, λ4ω, λ3ω, λ5ω5, . . . , λnωn

]
,

which implies λ3ω = λ4ω and λ3 = λ4 . In the same way, with `1,j = 2 for
j > 4 , we get t̄1 =

[
λ, λ, λ3, . . . , λ3

]
with λ3 = ±λ . We proceed by considering

t̄2 =
[
ν1, ν, ν, ν4, . . . , νn

]
. Since `1,2 = 3 , condition (♠) now yields[

λλ3ν, λ
2ν1, λλ3ν, λ

2
3ν4, . . . , λ

2
3ν4

]
=
[
λνν1, λ3ν

2, λνν1, λ3ν
2
4 , . . . , λ3ν

2
4

]
.

In particular, we extract λλ3νζ = λνν1 and λ2
3ν4ζ = λ3ν

2
4 for some ζ ∈ CK , and

therefore ν1 = λ3ζ = ν4 . So, we conclude that t̄2 =
[
ν1, ν, ν, ν1, . . . , ν1

]
. More

generally, by the same arguments, we get

t̄j =
[
µ, . . . , µ, µj = εjµ, µj+1 = εjµ, µ, . . . , µ

]
with µ = µ(j) such that µ2 ∈ CK , and εj = ±1 , for all j . Finally, from the
explicit description of k̄αj

, choosing a section s (as in Proposition 2.8) amounts
to selecting εj for each j (up to replacing µ = µ(j) by −µ). So, setting εj = 1 ,
we get, for every j , t̄j =

[
µ, . . . , µ

]
and t̄ 2

j = ē ; therefore, t̄j is a central element.
As a final step, applying condition (♠) with `j,j+1 = 3 yields t̄j t̄j+1t̄j = t̄j+1t̄j t̄j+1 ,
so that t̄j = t̄j+1 =: z̄ for all j 6 n− 1 , where z̄ ∈ Ḡ is a central element of order
dividing 2 . Summarizing, we have constructed a section s , whose image consists
precisely of all the automorphisms ψ ∈ Aut(N̄ , T̄ ) determined by

ψ(q̄j) = z̄ ·q̄j , z̄ ∈ Z(Ḡ) , z̄2 = ē , for all j . (A`)
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This establishes the theorem for n > 5 .

The low dimensional cases are treated case-by-case. The absence of fake
Tits circle in SU(2) , SU(3) and their quotients, implies that H1(WḠ) is trivial.
For PSU(4) , one gets precisely one non-trivial element in H1(WPSU(4)) with an
explicit representative described in Corollary 3.1 (ii) below. This automorphism
cannot be lifted to SU(4) and SU(4)/Z/2 , for which (A`) also holds.

Keeping the same ordering for B , from this proof, we deduce the next
corollary.

Corollary 3.1. (i) For ` > 1 , let G be a Lie group of type A` such that
G 6∼= PSU(4) , and possessing a central element z of order 2 . Then the only
non-trivial class [ψ] ∈ H1(WG) has a representative ψ ∈ Aut(N, T ) defined
by

ψ(qj) = z ·qj , for all j = 1, . . . , ` .

(ii) The unique non-trivial class [ψ] ∈ H1(WPSU(4)) has a representative element
ψ ∈ Aut(N̄ , T̄ ) defined by

ψ(q̄1) =
[
ζ, ζ, ζ, −ζ

]
· q̄1

ψ(q̄2) =
[
−ζ, ζ, ζ, ζ

]
· q̄2

ψ(q̄3) =
[
ζ, −ζ, ζ, ζ

]
· q̄3 ,

where ζ := e2πi/8 and the 4-tuples indicate diagonal matrices.

Proof of the Main Theorem for the type B` , ` > 2 .

Put n = ` . The standard maximal torus in G = Spin(2n+ 1) , considered,
as usual, as a subset of the Clifford algebra Cliff(R2n+1) , is

T =
{
(cosx1 + e1e2 sin x1) · · · (cosxn + e2n−1e2n sin xn)

∣∣ xk ∈ R for all k
}
.

The center is given by Z = {±1} ∼= Z/2 . The Dynkin diagram is

��	�
�� ��	�
�� ��	�
��< ��	�
��···
α1 α2 αn−1 αn

The reflection sα1 changes the sign of x1 ; for j > 2 , the reflection sαj
permutes

xj−1 and xj . The subgroup Tj is given by

T1 =
{
(cosx+ e1e2 sinx)

∣∣ x ∈ R
}

for j = 1 , and, for j > 2 , by

Tj =
{
(cosx+ e2j−3e2j−2 sin x)·(cosx− e2j−1e2j sin x)

∣∣ x ∈ R
}
.

Therefore the non-trivial element in F̄αj
∩ S̄ ∩ T̄j , is, for j = 1 ,

k̄α1 =

{
−1 , if K = {e} , that is, Ḡ = G = Spin(2n+ 1)[
e1e2

]
, if K = Z , that is, Ḡ ∼= SO(2n+ 1)
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and k̄αj
=
[
−e2j−3e2j−2e2j−1e2j

]
, for j = 2, . . . , n . This dichotomy will force us

to distinguish both cases in the determination of the image under ψ of the first
element of the Tits configuration. Let

TI =
{
t ∈ T

∣∣ t2 = ±1
}

=
{
t = ±

∏
k∈J

e2k−1e2k

∣∣∣ J ⊆ {1, 2, . . . , n}
}

denote the subgroup of elements in T whose square is central. An element t ∈ TI

is a (reduced) word in the e2k−1e2k ’s; we denote it as t = µ(µ1, . . . , µn) = µx ,
where µ = ±1 , and, for k = 1, . . . , n ,

µk =

{
1 , if e2k−1e2k does not appear in t

−1 , if e2k−1e2k does appear in t .

For example, t = −e1e2e5e6 is encoded by t = −(−1, 1, −1, 1, 1, . . . , 1) . In this
notation, the product of two elements µx, λy ∈ TI , with y = (λ1, . . . , λn) , reads

(µx) · (λy) = (−1)|xy|µλxy ,

where |xy| :=
∣∣{k |µk = λk = −1}

∣∣ , and all the products on the right-hand
side are performed in the cyclic group with two elements. The action of W is
then as follows : sα1 changes the leading sign of elements in which e1e2 appears
(in particular it acts trivially on S̄ for Ḡ ∼= SO(2n + 1)); for j > 2 , sαj

permutes the (j − 1)-st and the j -th coordinates. Let t̄ =
[
µ(µ1, . . . , µn)

]
and

s̄ =
[
λ(λ1, . . . , λn)

]
be two elements with s, t ∈ TI . Obviously, if t̄ = s̄ and

µk = λk for some k , then µk = λk for all k , that is, t = s for G = Spin(2n+ 1) ,
and t = ±s otherwise.

We are now ready to start the computations. To be able to mimic the
arguments for the type A` , we suppose that n > 5 . For j = 2, . . . , n , the
situation is almost the same as that for SU(n) (for Spin(2n+1) , the only possible
non-trivial K is the whole center, but the rank is n = rank(SU(n)) + 1 , which
does not alter the argument), and our encoding of elements in TI allows to follow
the argument for the type A` . We immediately get that

t̄j =
[
µ(µ1, . . . , µ1)

]
and t̄ 2

j = ē , (?)

with µ = µ(j) and µ1 = µ1(j) , for all j > 2 . From here on, it is easier to treat
Spin(2n + 1) and SO(2n + 1) separately. (It might seem to be a waste to have
tried to treat both together, but the encoding we have introduced here will also
be useful for the type D` , where we will be able to treat all groups together more
efficiently.)

We start with Spin(2n + 1) . First, from (?), we deduce, for j > 2 ,
that tj = t and t ∈ {±1, ±a = ±e1e2 · · · e2n−1e2n} for n even; and tj = t and
t ∈ Z(G) = {±1} for n odd . Now, let t1 = ν(ν1, . . . , νn) be such that t21 = 1
(that is, an even number of νk ’s are equal to −1). The condition t1 = sα1(t1)
implies that e1e2 cannot appear in t1 , so that t1 = ν(1, ν2, . . . , νn) . Applying
condition (♣) with `1,3 = 2 yields

±1 = t·(±t) = ν(1, ν2, ν3, ν4, . . . , νn) · ν(1, ν3, ν2, ν4, . . . , νn)

= (1, ν2ν3, ν2ν3, 1, . . . , 1) ,
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which implies the equality ν2 = ν3 . Repeating the argument successively for
j = 4, . . . , n , we get t1 = ν(1, ν2, . . . , ν2) , and therefore, t1 ∈ Z(G) = {±1} for
n even, and t1 ∈ {±1, ±b = ±e3e4 · · · e2n−1e2n} for n odd. We then distinguish
two subcases according to the parity of n . Suppose first that n is even. If
tj = t = ±a for all j > 2 , then, condition (♣) with `1,3 = 2 gives

1 = t1 ·sα3(t1) = t3 ·sα1(t3) = t·(−t) = −1 ,

a contradiction showing that we have necessarily tj = ±1 for j > 2 . Since we
have t1 = 1 ∼ −1 , and as (♠) for `1,2 = 4 holds even for t2 = −1 (in contrast
to the A` case), we have in fact constructed a section s , whose image consists
precisely of all the automorphisms ψ ∈ Aut(N, T ) determined by

ψ(q1) = q1 and ψ(qj) = z ·qj , for j = 2, . . . , n ,

with z ∈ Z(Spin(2n+ 1)) . Secondly, suppose that n is odd. Then tj = ±1 holds
for j > 2 . Two straightforward computations, for `1,2 = 4 and `1,j = 2 with
j > 3 , show that (♣) holds for all possible values of t1 . Since t1 = b ∼ −b ,
we have a section s , whose image consists precisely of all the automorphisms
ψ ∈ Aut(N, T ) determined by

ψ(q1) = t1 ·q1 and ψ(qj) = z ·qj , for j = 2, . . . , n ,

with t1 ∈ {1, e3e4 · · · e2n−1e2n} , and z ∈ Z(Spin(2n + 1)) . This completes the
proof for Spin(2n+ 1) , with n > 5 .

We next treat SO(2n + 1) . Since t̄ =
[
µ(µ1, . . . , µn)

]
= ±µ(µ1, . . . , µn) ,

we can drop the leading sign and write t̄ =
[
µ1, . . . , µn

]
(which is a diagonal

matrix diag(d1, . . . , d2n, 1) in SO(2n+1) , with each pair (d2k−1, d2k) either equal
to (1, 1) or to (−1, −1) ; for example

[
1, . . . , 1, µk = −1, 1, . . . , 1

]
designates

the matrix diag(1, . . . , 1, d2k−1 = −1, d2k = −1, 1, . . . , 1) . From (?) , we know
that

t̄j = t̄ and t̄ ∈
{

1̄, ā =
[
e1e2 · · · e2n−1e2n

]
=
[
−1, . . . , −1

]}
for j > 2 . For t̄1 =

[
ν1, . . . , νn

]
, the equality t̄1 = sα1(t̄1) does not impose

any condition, because sα1 acts trivially on t̄1 . Then, following the argument for
Spin(2n+ 1) , condition (♣) for `1,j = 2 with j 6= 2 implies that

t̄1 =
[
ν1, ν2, . . . , ν2

]
∼
[
ν2, ν2, . . . , ν2

]
,

in other words, we can choose t̄1 ∈ {1̄, ā} . Finally, the same argument as the one
used for Spin(2n + 1) with n odd, shows that there is a section s , whose image
consists precisely of the automorphisms ψ ∈ Aut(N̄ , T̄ ) determined by

ψ(q̄1) = t̄1 ·q̄1 and ψ(q̄j) = t̄·q̄j , for j = 2, . . . , n ,

with t̄1, t̄ ∈ {1̄, ā} . This establishes the theorem for n > 5 .

The low dimensional cases are treated case-by-case. The previous results
hold except for SO(5) . In this case, as t̄2 = 1̄ ∼ ā =

[
e1e2e3e4

]
, we only get one

non-trivial element in H1(WSO(5)) , with a representative automorphism ψ defined
by ψ(q̄1) =

[
e1e2e3e4

]
· q̄1 and ψ(q̄2) = q̄2 .

Before we state a direct corollary of this proof, recall, for Ḡ = SO(2n+ 1) ,
that the center of the normalizer N̄ is Z(N̄) = {1I2n+1, diag(−1, . . . , −1, 1)} , see
for instance [17]. (In the statement, we order B as in the proof above, and still
consider Spin(2n+ 1) as a subset of the Clifford algebra Cliff(R2n+1) .)
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Corollary 3.2. (i) For 4m + 1 > 5 , every class [ψ] ∈ H1(WSpin(4m+1)) has
a representative element ψ ∈ Aut(N, T ) defined by{

ψ(q1) = q1 ,
ψ(qj) = z ·qj , for j = 2, . . . , 2m,

where z is a central element in Spin(4m+ 1) .

(ii) For 4m + 3 > 7 , every class [ψ] ∈ H1(WSpin(4m+3)) has a representative
element ψ ∈ Aut(N, T ) defined by{

ψ(q1) = t·q1 ,
ψ(qj) = z ·qj , for j = 2, . . . , 2m+ 1 ,

where z is central in Spin(4m+ 1) , and t ∈ {1, e3e4 · · · e4m+1e4m+2} .

(iii) The only non-trivial class [ψ] ∈ H1(WSO(5)) has a representative element
ψ ∈ Aut(N̄ , T̄ ) defined by {

ψ(q̄1) = z̄ ·q̄1
ψ(q̄2) = q̄2 ,

where z̄ = diag(−1, −1, −1, −1, 1) is the central element of order 2 in N̄ .

(iv) For n > 3 , every class [ψ] ∈ H1(WSO(2n+1)) has a representative element
ψ ∈ Aut(N̄ , T̄ ) defined by{

ψ(q̄1) = z̄1 ·q̄1
ψ(q̄j) = z̄ ·q̄j , for j = 2, . . . , n ,

where z̄1 and z̄ are central elements in N̄ .

Proof of the Main Theorem for the type C` , ` > 3 .

Put n = ` . The standard maximal torus T in G = Sp(n) ⊂ GLn(H)
consists of the subgroup of diagonal matrices

T =
{

diag(z1, . . . , zn)
∣∣ zk ∈ S1

}
.

We denote an element of T simply by t = (z1, . . . , zn) . The center is given by
Z = {±(1, . . . , 1)} ∼= C2 . The Dynkin diagram is

��	�
�� ��	�
�� ��	�
��> ��	�
��···
α1 α2 αn−1 αn

The reflection sα1 takes z1 to z−1
1 ; for j > 2 , the reflection sαj

exchanges the
entries zj−1 and zj on the diagonal. The subgroup Tj is given by

T1 =
{
(z, 1, . . . , 1)

∣∣ z ∈ S1
}

for j = 1 , and, for j > 2 , by

Tj =
{
(1, . . . , 1, zj = z, zj+1 = z−1, 1, . . . , 1)

∣∣ z ∈ S1
}
.

Therefore, the non-trivial element in F̄αj
∩ S̄ ∩ T̄j is k̄α1 =

[
−1, 1, . . . , 1

]
for

j = 1 , and
k̄αj

=
[
1, . . . , zj−1 = −1, zj = −1, 1, . . . , 1

]
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for j = 2, . . . , n .

For t, s ∈ T , one obviously has t̄ = s̄ if and only if t = s for Ḡ = Sp(n) ,
and t = ±s for Ḡ = PSp(n) . For j = 2, . . . , n , the situation is almost the
same as that of SU(n) (for Sp(n) , the only possible non-trivial K is the whole
center, but the rank is n = rank(SU(n)) + 1 , which does not alter the argument).
Consequently, for n > 5 , we immediately deduce that

t̄j = z̄ , z̄ ∈ Z(Ḡ) , z̄2 = ē , for j > 2 .

It remains to determine the possible values of t̄1 =
[
ν1, . . . , νn

]
. Now, from

t̄1 ∈ F̄α1 ∩ S̄ , we easily deduce that νk = ±1 , for all k . Applying condition
(♠) with `1,j = 2 and j > 3 , we get t̄1 =

[
ν1, ν, . . . , ν

]
. We then check

that (♠) for `1,2 = 4 holds, imposing no further conditions on t̄1 (in contrast to
the A` case). Finally, from the explicit description of k̄α1 given above, we have[
ν1, ν, . . . , ν

]
∼
[
ν, ν, . . . , ν

]
, and therefore, we can choose t̄1 =

[
ν, . . . , ν

]
, that

is, the element t̄1 is central. For n > 5 , we have constructed a section s , whose
image consists precisely of all the automorphisms ψ ∈ Aut(N̄ , T̄ ) determined by

ψ(q̄1) = z̄1 ·q̄1 and ψ(q̄j) = z̄ ·q̄j , for j = 2, . . . , n , (C`)

with z̄1, z̄ ∈ Z(Ḡ) . This gives the conclusion of the theorem for n > 5 .

The low dimensional cases are treated case-by-case. One gets a non-trivial
element in H1(WPSp(3)) , respectively H1(WPSp(4)) , with an explicit representative
given as in Corollary 3.3 (ii) below. These automorphisms cannot be lifted to
Sp(3) , respectively Sp(4) , for which equation (C`) also holds.

Keeping the same ordering for B , from this proof, we deduce the next
corollary.

Corollary 3.3. (i) For n > 3 , every class [ψ] ∈ H1(WSp(n)) has a represen-
tative element ψ ∈ Aut(N, T ) defined by{

ψ(q1) = z1 ·q1 ,
ψ(qj) = z ·qj , for j = 2, . . . , n ,

where z1 and z are central elements in Sp(n) .

(ii) The only non-trivial class [ψ] in H1(WPSp(3)) and in H1(WPSp(4)) has a
representative ψ ∈ Aut(N̄ , T̄ ) defined by


ψ(q̄1) =

[
1, 1, −1

]
· q̄1

ψ(q̄2) =
[
i, i, i

]
· q̄2

ψ(q̄3) =
[
i, i, i

]
· q̄3

and


ψ(q̄1) = q̄1

ψ(q̄2) =
[
1, 1, 1, −1

]
· q̄2

ψ(q̄3) =
[
−1, 1, 1, 1

]
· q̄3

ψ(q̄4) =
[
−1, 1, 1, 1

]
· q̄4

respectively, where the 3- and 4-tuples indicate diagonal matrices over H .

Remark 3.4. There is a more efficient way to prove the Main Theorem for
the group Sp(n) (but not for PSp(n)) : it is well-known that the W -modules T
for Sp(n) and SO(2n + 1) are isomorphic (see [4]); as a consequence, one has an
isomorphism H1(WSp(n)) ∼= H1(WSO(2n+1)) .
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Proof of the Main Theorem for the type D` , ` > 4 .

Put n = ` . The standard maximal torus in G = Spin(2n) , considered, as
usual, as a subset of the Clifford algebra Cliff(R2n) , is

T =
{
(cosx1 + e1e2 sinx1) · · · (cosxn + e2n−1e2n sin xn)

∣∣ xk ∈ R , ∀ k
}
.

The center is given by

Z =
{
± 1, ±a = ±e1e2 · · · e2n−1e2n

} ∼= {Z/2⊕ Z/2 , n even
Z/4 , n odd.

The Dynkin diagram is ��	�
��
��	�
��

��	�
�� ��	�
�� ��	�
��MMM
MM

qqqqq
···

α1

α2

α3 αn−1 αn

The reflection sα1 permutes x1 and x2 , changing both signs; for j > 2 , the
reflection sαj

permutes xj−1 and xj . The subgroup Tj is given by

T1 =
{
(cosx+ e1e2 sin x)·(cosx+ e3e4 sin x)

∣∣ x ∈ R
}

for j = 1 , and, for j > 2 , by

Tj =
{
(cosx+ e2j−3e2j−2 sinx)·(cosx− e2j−1e2j sin x)

∣∣ x ∈ R
}
.

Therefore, the non-trivial element in F̄αj
∩ S̄ ∩ T̄j is k̄α1 =

[
e1e2e3e4

]
for j = 1 ,

and
k̄αj

=
[
−e2j−3e2j−2e2j−1e2j

]
, for j = 2, . . . , n .

We start with some easy observations about the possible elements tj such
that t̄ 2

j = 1̄ . We will consider two different cases for tj . We first define

TI :=
{
t ∈ T

∣∣ t2 = ±1
}

=
{
t = ±

∏
k∈J e2k−1e2k

∣∣∣ J ⊆ {1, 2, . . . , n}
}

TII :=
{
t ∈ T

∣∣ t2 = ±a
}

=
{
t = ± 1√

2
(1± e1e2) · · · 1√

2
(1± e2n−1e2n)

}
.

Clearly TI is a subgroup, and so is TIqTII . Since TI and TII are both stable under
multiplication by a central element, we can define the type of t̄ saying that t̄ is
of type TI , respectively of type TII , if t ∈ TI , respectively t ∈ TII . It is obvious
that the action of W preserves the type and, for t̄j, t̄

′
j ∈ F̄αj

∩ S̄ , that t̄j ∼ t̄ ′j if
and only if t̄j and t̄ ′j have the same type.

Claim. The elements t̄j , with j = 1, . . . , n , are all of the same type.

It suffices to check this for the representative elements tj ’s. By connected-
ness of the Dynkin diagram, it is enough to check that elements corresponding to
two neighboring roots αj and αj+1 have the same type. Now `j,j+1 = 3 , so that

wαjαj+1
(tj) = tj ·sαj+1

(tj)·sαj
sαj+1

(tj)

has the same type as tj , because TII is of index 2 in TI q TII . Symmetrically
wαj+1αj(tj+1) has the same type as tj+1 . Therefore, condition (♣) tells that tj
and tj+1 have the same type, proving the claim.
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We proceed with the description of an encoding of the elements in TI and
TII , which will allow to reduce the present proof to mimicking that for the type A` .
For TI , we keep the one introduced in the proof for the type (B`) . The action of
W is then as follows : sα1 permutes the first two coordinates, but we loose control
of the leading sign if the element is not given explicitly (this minor drawback has
no effect on the forthcoming computations); for j > 2 , sαj

permutes the (j−1)-st
and the j -th coordinates. Let t̄ =

[
µ(µ1, . . . , µn)

]
and s̄ =

[
λ(λ1, . . . , λn)

]
be

two elements in TI . A quick checking shows that the following useful property still
holds : if t̄ = s̄ and µk = λk for some k , then µk = λk for all k , so that t = ±s .

For the second type, an element

t = ε 1√
2
(1 + ε1e1e2) · · · 1√

2
(1 + εne2n−1e2n) ∈ TII ,

with ε, εk = ±1 for k = 1, . . . , n , is written as t = ε(ε1, . . . , εn) = εu . Not
bothering about the leading sign, the product

(εu) · (δv) = ±(ε1 ∗ δ1, . . . , εn ∗ δn)

of two elements in TII is an element in TI , with

εk ∗ δk :=

{
1 , if εk 6= δk

−1 , if εk = δk .

The reflection sα1 permutes the first two coordinates, and changes both signs; for
j > 2 , as before, sαj

permutes the (j − 1)-st and the j -th coordinates.

We are now ready to start the computations; we suppose that n > 5 .
According to the above claim, we begin with the case in which all tj ’s are of
type TI . For t̄j with j > 2 , our encoding of elements in TI allows to follow the
arguments for the type A` , with only minor modifications. We get that

t̄j = z̄ , z̄ ∈ Z(Ḡ) , z̄2 = ē , for j > 2 .

Now let t̄1 =
[
ν(ν1, . . . , νn)

]
. Then t̄1 = sα1(t̄1) is equivalent to[

ν(ν1, ν2, ν3, . . . , νn)
]

=
[
±ν(ν2, ν1, ν3, . . . , νn)

]
,

which implies that ν1 = ν2 . Applying condition (♠) with `1,4 = 2 yields

ē = z̄2 =
[
ν(ν1, ν1, ν3, ν4, . . . , νn)

]
·
[
ν(ν1, ν3, ν1, ν4, . . . , νn)

]
=
[
1, ν1ν3, ν1ν3, 1, . . . , 1

]
,

from which we deduce that ν3 = ν1 . Repeating the argument for j = 5, . . . , n ,
we get that t̄1 =

[
ν(ν1, . . . , ν1)

]
, so that t̄1 is central. Finally, condition (♠) with

`1,3 = 3 implies that t̄1 = t̄3 = z̄ , and therefore

t̄j = z̄ , z̄ ∈ Z(Ḡ) , z̄2 = ē , for all j .

This concludes the first case.

Still for n > 5 , it remains to treat the second case, in which all t̄j ’s are of
type TII ; we show that this case is in fact impossible. Let t̄1 =

[
ε(ε1, . . . , εn)

]
,
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t̄2 =
[
δ(δ1, . . . , δn)

]
and t̄4 =

[
θ(θ1, . . . , θn)

]
be all of type TII . Then t̄1·sα1(t̄1) = ē

is equivalent to

ē =
[
−1, . . . , −1

]
=
[
ε(ε1, ε2, ε3, . . . , εn)

]
·
[
ε(−ε2, −ε1, ε3, . . . , εn)

]
=
[
±(−ε1 ∗ ε2, −ε1 ∗ ε2, −1, −1, . . . , −1)

]
,

so that ε1 ∗ ε2 = 1 , that is, ε2 = −ε1 . Applying (♣) with `1,4 = 2 gives[
±(−1, −1, ε3 ∗ ε4, ε3 ∗ ε4, −1, . . . , −1)

]
=

=
[
±(−θ1 ∗ θ2, −θ1 ∗ θ2, −1, −1, −1, . . . , −1)

]
,

and thus, in particular, θ2 = θ1 . Now, applying (♣) with `2,4 = 2 yields[
±(−1, −1, δ3 ∗ δ4, δ3 ∗ δ4, −1, . . . , −1)

]
=
[
±(1, 1, −1, −1, −1, . . . , −1)

]
,

which is impossible, and rules out the second case.

Summarizing, for n > 5 , we have constructed a section s , whose image
consists precisely of all the automorphisms ψ ∈ Aut(N̄ , T̄ ) determined by

ψ(q̄j) = z̄ ·q̄j , for all j , (D`)

with z̄ ∈ Z(Ḡ) , of order dividing 2 . This completes the proof for n > 5 .

The case n = 4 is treated separately. For PSO(8) , we get three non-trivial
elements with explicit representative automorphisms given as in Corollary 3.5 (ii)
below. These automorphisms cannot be lifted to Spin(8) and SO(8) , for which
equation (D`) also holds.

Keeping the same ordering for B , from this proof, we deduce the next
corollary.

Corollary 3.5. (i) For a Lie group G of type D` , ` > 4 , with G 6∼= PSO(8) ,
every non-trivial class [ψ] ∈ H1(WG) has a representative ψ ∈ Aut(N, T )
defined by

ψ(qj) = z ·qj , for all j = 1, . . . , ` ,

where z is a non-trivial central element of order 2 in G .

(ii) The three non-trivial elements [ψk] ∈ H1(WPSO(8)) , with 1 6 k 6 3 , have,
up to reordering, a representative element ψk ∈ Aut(N̄ , T̄ ) defined by

ψ1(q̄1) =
[
e7e8

]
· q̄1

ψ1(q̄2) =
[
e7e8

]
· q̄2

ψ1(q̄3) =
[
e1e2

]
· q̄3

ψ1(q̄4) =
[
e1e2

]
· q̄4 ,

and


ψ2(q̄1) = ū·q̄1
ψ2(q̄2) = v̄ ·q̄2
ψ2(q̄3) = v̄ ·q̄3
ψ2(q̄4) = v̄ ·q̄4 ,

and ψ3 = ψ2 ◦ ψ1 , respectively, where

ū :=
[

1
4
(1 + e1e2)(1− e3e4)(1− e5e6)(1 + e7e8)

]
v̄ :=

[
1
4
(1 + e1e2)(1 + e3e4)(1 + e5e6)(1 + e7e8)

]
.
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Remark 3.6. The elements
[
e1e2

]
,
[
e7e8

]
, ū and v̄ occurring in part (ii)

above are explicitly given by the following classes of diagonal-by-block matrices in
PSO(8) viewed as SO(8)/{±1I8} :

[
e1e2

]
=± diag

(
(-1 0

0 -1 ) , ( 1 0
0 1 ) , ( 1 0

0 1 ) , ( 1 0
0 1 )

)[
e7e8

]
=± diag

(
( 1 0

0 1 ) , ( 1 0
0 1 ) , ( 1 0

0 1 ) , (-1 0
0 -1 )

)
ū=± diag

(
( 0 -1

1 0 ) , ( 0 1
-1 0 ) , ( 0 1

-1 0 ) , ( 0 -1
1 0 )

)
v̄=± diag

(
( 0 -1

1 0 ) , ( 0 -1
1 0 ) , ( 0 -1

1 0 ) , ( 0 -1
1 0 )

)
.

4. Computations for the exceptional Lie groups

In this section, we present our computation of the group H1(W ;T ) for the
seven exceptional Lie groups. The method adopted is to calculate the kernel of the
map Θ:

⊕
α∈B Qα/Tα −→

⊕
α<β T of Proposition 2.6, invoking the isomorphism

H1(W ;T ) ∼= Ker(Θ) of this proposition.

We let ` be the rank of G and write B = {α1 < α2 < . . . < α`} with the
same ordering as in the tables of Bourbaki [2]. We will work in the Lie algebra
of T , modulo the integral lattice Ker(exp) . The latter coincides with the coroot
lattice

⊕
16j6` Z · α∨j for simply connected groups, and in the other two cases,

we will indicate a Z-basis of it. We will also express the chosen F2 -basis of
Qαj

/Tαj
(ordered as indicated) in terms of the fixed Z-basis of Ker(exp) ; recall,

by Lemma 2.4, that Qαj
/Tαj

indeed is an F2 -vector space. In each case, we have
computed that the F2 -dimension of Qαj

/Tαj
is `−2 (see [18] for a general result).

Since the range of Θ consists only of elements of order dividing 2 , we work in
the F2 -basis

{
1
2
α∨1 , . . . ,

1
2
α∨`
}

of S for all the copies of T , that we order by the
lexicographical ordering, that is,{

(α1, α2), (α1, α3), . . . , (α1, α`), (α2, α3), . . . , (α`−1, α`)
}
.

We finally indicate the corresponding matrix of Θ , as an
(

`(`−1)
2

× `
)
-by block-

matrix. Each block is an
(
`×(`−2)

)
-matrix. To simplify the notations, we denote

by O the zero
(
`×(`−2)

)
-matrix, and by Eij the ‘elementary

(
`×(`−2)

)
-matrix’

with all entries zero, except the (i, j)-th, which is 1 . We also let Ekl
ij , Est

ij,kl and

Est,uv
ij,kl denote Eij + Ekl , Eij + Ekl + Est and Eij + Ekl + Est + Euv respectively.

The matrix of Θ for the E-family has been obtained using a very simple algorithm
written for Mathematica (see also [18]).

1) Type G2 :

The Dynkin diagram is ��	�
�� ��	�
��<
α1 α2

. We have Qα1/Tα1 = 0 and Qα2/Tα2 = 0 ,
so that Θ is an operator with the zero vector space as domain, and Ker(Θ) = 0 .

2) Type F4 :

The Dynkin diagram is

��	�
�� ��	�
�� ��	�
�� ��	�
��>
α1 α2 α3 α4
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The chosen basis of Qαj
/Tαj

is

j = 1 : 1
2
· {α∨3 , α∨4 } ;

j = 2 : 1
2
· {α∨3 , α∨4

}
;

j = 3 : 1
2
·
{
α∨1 , α

∨
2 + α∨4 } ;

j = 4 : 1
2
· {α∨1 , α∨2 } .

The matrix of Θ is 
E42

31 E42
31 O O

E32 O E12 O
E41 O O E12

O O O O
O E41 O E21

O O E42
11,22 E42

11,22


Row reduction (over F2 ) yields Ker(Θ) = 0 .

3) Type E6 :

The Dynkin diagram is

��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
��
��	�
��

α1 α3 α4 α5 α6

α2

The chosen basis of Qαj
/Tαj

is

j = 1 : 1
2
· {α∨2 , α∨4 , α∨5 , α∨6 } ;

j = 2 : 1
2
· {α∨1 , α∨3 , α∨5 , α∨6 } ;

j = 3 : 1
2
· {α∨1 + α∨4 , α

∨
2 , α

∨
5 , α

∨
6 } ;

j = 4 : 1
2
· {α∨1 , α∨2 + α∨3 , α

∨
2 + α∨5 , α

∨
6 } ;

j = 5 : 1
2
· {α∨1 , α∨2 , α∨3 , α∨4 + α∨6 } ;

j = 6 : 1
2
· {α∨1 , α∨2 , α∨3 , α∨4 } .

The matrix of Θ is 

E22 E12 O O O O
A O B O O O

E43
41 O O E12 O O

E54
52 O O O E13 O

E63 O O O O E13

O E31 E21 O O O
O C O C O O
O E54 O O E24 O
O E63 O O O E24

O O D E O O
O O E54

51 O E34
31 O

O O E63 O O E34
31

O O O F G O
O O O E63 O E43

42

O O O O H H


where

A =

( 0 1 0 0
1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
B =

( 1 0 0 0
0 1 0 0
0 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1

)
C =

( 1 0 0 0
0 1 1 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

)
D =

( 1 0 0 0
0 1 0 0
0 1 1 0
1 0 0 0
0 0 1 0
0 0 0 1

)
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E =

( 1 0 0 0
0 1 1 1
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

)
F =

( 1 0 0 0
0 1 1 0
0 1 0 0
0 0 0 1
0 0 1 0
0 0 0 1

)
G =

( 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 0
0 0 0 1

)
H =

( 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 1

)

Row reduction yields Ker(Θ) = 0 .

4) Type PE6 :

The Dynkin diagram is as for E6 . The integral lattice Ker(exp) is obtained

from the coroot lattice by adjoining the vector
2α∨

1

3
+α∨2 +

4α∨
3

3
+ 2α∨4 +

5α∨
5

3
+

4α∨
6

3
;

its selected basis is

ν∨1 =
α∨

1

3
+

2α∨
3

3
+

α∨
5

3
− α∨

6

3
ν∨2 = α∨2

ν∨3 = α∨4 ν∨4 = −α∨
1

3
+

α∨
3

3
+

2α∨
5

3
+

α∨
3

3

ν∨5 = −α∨
1

3
+

α∨
3

3
− α∨

5

3
+

α∨
6

3
ν∨6 = −α∨

1

3
+

α∨
3

3
− α∨

5

3
− 2α∨

6

3
.

The chosen basis of Qαj
/Tαj

is

j = 1 : 1
2
· {ν∨2 , ν∨3 , ν∨4 + ν∨5 , ν

∨
4 + ν∨6 } ;

j = 2 : 1
2
· {ν∨1 , ν∨4 , ν∨5 , ν∨6 } ;

j = 3 : 1
2
· {ν∨1 + ν∨3 , ν

∨
1 + ν∨4 , ν

∨
1 + ν∨6 , ν

∨
2 } ;

j = 4 : 1
2
· {ν∨1 + ν∨2 , ν

∨
1 + ν∨4 , ν

∨
5 , ν

∨
6 } ;

j = 5 : 1
2
· {ν∨1 + ν∨3 , ν1 + ν∨5 , ν

∨
2 , ν

∨
6 } ;

j = 6 : 1
2
· {ν∨1 + ν∨6 , ν

∨
2 , ν

∨
3 , ν

∨
4 } .

The matrix of Θ is 

E22 A O O O O
B O C O O O

E34
31,33 O O A O O

E52,54
42,44 O O O D O

E63,64
53,54 O O O O E

O F E21 O O O
O G O H O O
O I O O E21 O
O J O O O E23

O O K L O O
O O E53

43 O E54
14 O

O O E61,62
51,52 O O E53,54

13,14

O O O M N O
O O O P O E34

31,32

O O O O Q R


where

A =

( 0 1 1 1
0 0 0 0
0 0 0 0
0 1 1 1
0 0 0 0
0 1 1 1

)
B =

( 0 1 0 0
1 0 0 0
0 1 0 0
0 1 1 1
0 0 1 0
0 1 0 1

)
C =

( 1 0 0 0
0 0 0 1
1 0 0 0
0 1 0 0
0 1 1 0
0 0 1 0

)
D =

( 0 1 0 1
0 0 0 0
0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

)
E =

( 1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1
0 0 0 0
1 0 0 1

)

F =

( 1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1
0 0 0 0

)
G =

( 1 0 0 0
1 1 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
H =

( 1 1 0 0
1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
I =

( 0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 0
1 1 1 0
0 0 0 0

)
J =

( 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 1 1
1 0 1 1

)



Hämmerli, Matthey and Suter 605

K =

( 0 1 0 1
0 0 0 1
1 0 0 0
0 1 0 0
1 0 1 1
0 0 1 0

)
L =

( 1 1 0 0
1 0 0 0
1 0 1 1
0 1 0 0
0 0 1 0
0 0 0 1

)
M =

( 1 1 0 0
1 0 0 0
1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

)
N =

( 1 1 0 0
0 0 1 0
1 0 0 0
1 1 1 0
1 0 1 0
0 0 0 1

)
P =

( 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1
1 1 1 1

)

Q =

( 1 1 0 0
0 0 1 0
1 0 0 0
1 0 0 1
1 1 0 1
0 0 0 1

)
R =

( 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 1
0 0 1 1

)
Row reduction yields Ker(Θ) = 0 . In this case, another method consists

in applying the long exact cohomology sequence associated to the short exact
sequence of W -modules 0 −→ Z/3 −→ TE6 −→ TPE6 −→ 0 and then use the fact
that H1(W ;TPE6) is an F2 -vector space, to get an isomorphism between the latter
and H1(W ;TE6) = 0 .

5) Type E7 :

The Dynkin diagram is

��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
��
��	�
��

α1 α3 α4 α5 α6 α7

α2

The chosen basis of Qαj
/Tαj

is

j = 1 : 1
2
· {α∨2 , α∨4 , α∨5 , α∨6 , α∨7 } ;

j = 2 : 1
2
· {α∨1 , α∨3 , α∨5 , α∨6 , α∨7 } ;

j = 3 : 1
2
· {α∨1 + α∨4 , α

∨
2 , α

∨
5 , α

∨
6 , α

∨
7 } ;

j = 4 : 1
2
· {α∨1 , α∨2 + α∨3 , α

∨
2 + α∨5 , α

∨
6 , α

∨
7 } ;

j = 5 : 1
2
· {α∨1 , α∨2 , α3, α

∨
4 + α∨6 , α

∨
7 } ;

j = 6 : 1
2
· {α∨1 , α∨2 , α∨3 , α∨4 , α∨5 + α∨7 } ;

j = 7 : 1
2
· {α∨1 , α∨2 , α∨3 , α∨4 , α∨5 } .

The matrix of Θ is

E22 E12 O O O O O
A O B O O O O

E43
41 O O E12 O O O

E54
52 O O O E13 O O

E65
63 O O O O E13 O

E74 O O O O O E13

O E31 E21 O O O O
O C O C O O O
O E54 O O E24 O O
O E65

63 O O O E24 O
O E74 O O O O E24

O O D E O O O
O O E54

51 O E34
31 O O

O O E65
63 O O E34

31 O

O O E74 O O O E34
31

O O O F G O O
O O O E65

63 O E45
42,43 O

O O O E74 O O E45
42,43

O O O O H H O
O O O O E74 O E54

O O O O O I I
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where

A =

 0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 B =

 1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 C =

 1 0 0 0 0
0 1 1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



D =

 1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 E =

 1 0 0 0 0
0 1 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 F =

 1 0 0 0 0
0 1 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



G =

 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

 H =

 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 1

 I =

 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 1


One computes that the kernel of Θ is of F2 -dimension one, with generator

having the following components in the specified basis :

1
2
·
(
1, 0, 1, 0, 1|0, 0, 1, 0, 1|0, 1, 1, 0, 1|0, 0, 1, 0, 1|0, 1, 0, 0, 1|0, 1, 0, 0, 1|0, 1, 0, 0, 1

)
.

This means that the non-trivial element in H1(W ;T ) ↪→ Out(N) is represented
by the automorphism ψ̃ of N uniquely determined by ψ̃|T = idT and taking the
elements of a prescribed Tits configuration A := {q1, . . . , q7} of E7 to

z0 ·q1 , h5h7 ·q2 , z0 ·q3 , z0 ·q4 , h2h7 ·q5 , z0 ·q6 , h2h5 ·q7 ,

respectively, where hj := exp
(α∨

j

2

)
and z0 := h2h5h7 . Since

A′ := {q1, h2 ·q2, q3, q4, h5 ·q5, q6, h7 ·q7}

is also a Tits configuration of E7 , it is termwise conjugate to A by an element
of T (see Proposition 2.5 (i)), so that the non-trivial element in H1(W ;T ) is also
represented by the automorphism uniquely determined by

ψ : N −→ N , ψ|T = idT and qαj
7−→ z0 ·qαj

, for all j = 1, . . . , 7 .

Note that since Z0 :=
α∨

2 +α∨
5 +α∨

7

2
is an element of the co-weight lattice of E7 ,

i.e. β(Z0) ∈ Z for all β ∈ B (as is readily checked), z0 = exp(Z0) is the only
non-trivial central element of E7 .

6) Type PE7 :

The Dynkin diagram is as for E7 . The integral lattice is obtained from the

coroot lattice by adjoining the vector α∨1 +
3α∨

2

2
+ 2α∨3 + 3α∨4 +

5α∨
5

2
+ 2α∨6 +

3α∨
7

2
;

its selected basis is

ν∨1 = α∨1 ν∨2 =
α∨

2

2
+

α∨
5

2
+

α∨
7

2
ν∨3 = α∨3 ν∨4 = α∨4

ν∨5 = α∨6 ν∨6 = −α∨
2

2
+

α∨
5

2
− α∨

7

2
ν∨7 = −α∨

2

2
− α∨

5

2
+

α∨
7

2
.
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The chosen basis of Qαj
/Tαj

is

j = 1 : 1
2
· {ν∨2 , ν∨4 , ν∨5 , ν∨6 , ν∨7 } ;

j = 2 : 1
2
· {ν∨1 , ν∨2 + ν∨4 , ν

∨
2 + ν∨7 , ν

∨
3 , ν

∨
5 } ;

j = 3 : 1
2
· {ν∨1 + ν∨4 , ν

∨
2 , ν

∨
5 , ν

∨
6 , ν

∨
7 } ;

j = 4 : 1
2
· {ν∨1 , ν∨2 + ν∨3 , ν

∨
2 + ν∨7 , ν

∨
5 , ν

∨
6 } ;

j = 5 : 1
2
· {ν∨1 , ν∨2 + ν∨4 , ν

∨
2 + ν∨5 , ν

∨
2 + ν∨7 , ν

∨
3 } ;

j = 6 : 1
2
· {ν∨1 , ν∨3 , ν∨4 , ν∨6 , ν∨7 } ;

j = 7 : 1
2
· {ν∨1 , ν∨2 + ν∨5 , ν

∨
2 + ν∨6 , ν

∨
3 , ν

∨
4 } .

The matrix of Θ is

A E14 O O O O O
B O C O O O O

E45
41 O O E12 O O O
D O O O E15 O O

E51 O O O O E12 O
E O O O O O E14

O E32
31 A O O O O

O F O G O O O
O E65

25 O O E73
63 O O

O E53
52 O O O H O

O E72,75
22,25 O O O O E72,75

62,65

O O I J O O O
O O K O E32

31 O O

O O E52 O O E33
31 O

O O L O O O E35
31

O O O M N O O
O O O E53

52 O E45
42 O

O O O P O O E44
42,43

O O O O Q R O
O O O O E72

22 O E65
25

O O O O O S T


where

A =

 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 1 1
1 1 0 1 1

 B =

 0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 C =

 1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 D =

 0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0



E =

 0 0 0 0 0
1 0 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 1 1 1

 F =

 1 0 0 0 0
0 1 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 1 0 1 0
0 1 1 1 0

 G =

 1 0 0 0 0
0 1 1 0 0
0 1 0 0 0
0 1 0 0 1
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

 H =

 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 1 1
0 0 1 1 1



I =

 1 0 0 0 0
0 1 0 0 0
0 1 0 0 1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 J =

 1 0 0 0 0
0 1 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

 K =

 0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0

 L =

 0 0 0 0 0
0 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 1 1 1



M =

 1 0 0 0 0
0 1 1 0 0
0 1 0 0 0
0 1 0 1 1
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

 N =

 1 0 0 0 0
0 0 0 1 1
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 1 1 0 1
0 0 0 1 0

 P =

 0 0 0 0 0
0 1 0 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 1 1

 Q =

 1 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 1 1 1 0
0 0 0 1 0
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R =

 1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 1 1
0 0 0 1 0
0 0 0 0 1

 S =

 1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 1 0
0 0 0 0 1

 T =

 1 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 1 1 0 0


One computes that the kernel of Θ is zero.

7) Type E8 :

The Dynkin diagram is

��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
��
��	�
��

α1 α3 α4 α5 α6 α7 α8

α2

The chosen basis of Qαj
/Tαj

is

j = 1 : 1
2
· {α∨2 , α∨4 , α∨5 , α∨6 , α∨7 , α∨8 } ;

j = 2 : 1
2
· {α∨1 , α∨3 , α∨5 , α∨6 , α∨7 , α∨8 } ;

j = 3 : 1
2
· {α∨1 + α∨4 , α

∨
2 , α

∨
5 , α

∨
6 , α

∨
7 , α

∨
8 } ;

j = 4 : 1
2
· {α∨1 , α∨2 + α∨3 , α

∨
2 + α∨5 , α

∨
6 , α

∨
7 , α

∨
8 } ;

j = 5 : 1
2
· {α∨1 , α∨2 , α∨3 , α∨4 + α∨6 , α

∨
7 , α

∨
8 } ;

j = 6 : 1
2
· {α∨1 , α∨2 , α∨3 , α∨4 , α∨5 + α∨7 , α

∨
8 } ;

j = 7 : 1
2
· {α∨1 , α∨2 , α∨3 , α∨4 , α∨5 , α∨6 + α∨8 } ;

j = 8 : 1
2
· {α∨1 , α∨2 , α∨3 , α∨4 , α∨5 , α∨6 } .

The matrix of Θ is

E22 E12 O O O O O O
A O B O O O O O

E43
41 O O E12 O O O O

E54
52 O O O E13 O O O

E65
63 O O O O E13 O O

E76
74 O O O O O E13 O

E85 O O O O O O E13

O E31 E21 O O O O
O C O C O O O O
O E54 O O E24 O O O
O E65

63 O O O E24 O O

O E76
74 O O O O E24 O

O E85 O O O O O E24

O O D E O O O O
O O E54

51 O E34
31 O O O

O O E65
63 O O E34

31 O O

O O E76
74 O O O E34

31 O

O O E85 O O O O E34
31

O O O F G O O O
O O O E65

63 O E45
42,43 O O

O O O E76
74 O O E45

42,43 O

O O O E85 O O O E45
42,43

O O O O H H O O
O O O O E76

74 O E56
54 O

O O O O E85 O O E56
54

O O O O O I I O
O O O O O E85 O E65

O O O O O O J J
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where

A =


0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 B =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 C =


1 0 0 0 0 0
0 1 1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 D =


1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



E =


1 0 0 0 0 0
0 1 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 F =


1 0 0 0 0 0
0 1 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 G =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 H =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



I =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 1

 J =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 1


One checks that the equality Ker(Θ) = 0 holds. Finally, this completes the

proof of the Main Theorem.

Let us single out the following consequence of the above computations
for the group E7 (we still number the simple roots as in 5) above and write

hj = exp
(α∨

j

2

)
).

Corollary 4.1. The unique non-trivial class [ψ] ∈ H1(WE7) has a representa-
tive element ψ ∈ Aut(N, T ) defined by

ψ(qj) = z0 ·qj , for all j = 1, . . . , 7 ,

where z0 = h2h5h7 is the non-trivial central element (of order 2) in E7 .

5. On the general case

In this final section, we treat the semisimple and the general cases. As
before, G denotes a non-abelian connected compact Lie group, T a fixed maximal
torus, N its normalizer, and π : N � W the canonical map. Otherwise, we
assume the notations previously introduced. We show that ‘in most cases’, the
group H1(W ;T ) is a quotient of the group of homomorphisms from the Weyl
group to the subgroup Z2(N) = Z(N) ∩ S of central elements of order dividing 2
in the normalizer. Finally, we prove Theorem 1.2.

Definition 5.1. (i) An automorphism ψ ∈ Aut(N, T ) is called special if the
corresponding element (tα)α =

(
ψ(qα)q−1

α

)
α
∈
⊕

Qα lies in
⊕

Fα∩S (i.e. if
there exists, in the procedure described before Proposition 2.8, a choice for
the maps {s(α)}α∈B such that ψ ∈ Im(s) ⊆ Aut(N, T ) for the corresponding
section s : H1(W ;T ) −→ Aut(N, T )).

(ii) We say that two automorphisms in Aut(N, T ) are T -conjugate if they rep-
resent the same class in H1(W ;T ) ⊆ Out(N) , that is, if they differ by a
conjugation with an element in T .

Let τ : W −→ Z(N) be a group homomorphism and consider the composi-
tion τ̄ := τ ◦π : N −→ Z(N) . Note that the Weyl group W being generated by el-
ements of order 2 , τ factorizes (uniquely) through the inclusion Z2(N) ↪→ Z(N) ;
in particular, Hom(W,Z(N)) = Hom(W,Z2(N)) .
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Lemma 5.2. (i) Every automorphism in Aut(N, T ) is T -conjugate to a spe-
cial one.

(ii) For τ ∈ Hom(W,Z2(N)) , the map ψτ : N −→ N , x 7−→ τ̄(x)·x is a special
automorphism of N .

(iii) For every automorphism ψ ∈ Aut(N, T ) with tα ∈ Z(N) for all α ∈ B ,
there exists a homomorphism τ ∈ Hom(W,Z2(N)) such that ψ = ψτ .

Proof. ¿From the discussion preceding Proposition 2.8, (i) follows. Part (ii)
is obvious. For (iii), first note that for every α ∈ B , q2

α = ψ(q2
α) = t2αq

2
α , i.e.

tα ∈ Z2(N) . Recall that the Weyl group admits the Coxeter presentation

W =
〈
{sα}α∈B

∣∣ s2
α = 1, sαsβsα · · ·︸ ︷︷ ︸

`αβ factors

= sβsαsβ · · ·︸ ︷︷ ︸
`αβ factors

〉
.

Now, as tα is central for all α ∈ B , relation (♠) of Section 2 gives

tαtβtα · · ·︸ ︷︷ ︸
`αβ factors

= tβtαtβ · · ·︸ ︷︷ ︸
`αβ factors

.

Therefore, the map {sα |α ∈ B} −→ Z2(N) , sα 7−→ tα uniquely extends to
a group homomorphism τ : W −→ Z2(N) . Clearly, ψ = ψτ and the proof is
complete.

Remark 5.3. Assigning to τ ∈ Hom(W,Z2(N)) the special automorphism ψτ

depicted in Lemma 5.2 (ii) defines a group homomorphism

ϑ : Hom(W,Z2(N)) −→ H1(W ;T ) , τ 7−→ [ψτ ] .

Definition 5.4. (i) A special automorphism ψ is called regular if ψ = ψτ

for some τ ∈ Hom(W,Z2(N)) .

(ii) The Lie group G is called regular if every automorphism in Aut(N, T ) is
T -conjugate to a regular automorphism.

Lemma 5.2 (i) and the isomorphism H1(W ;T ) ∼= Aut(N, T )/ Inn(N, T )
directly imply the following characterization.

Proposition 5.5. The Lie group G is regular if and only if ϑ is surjective.

An immediate consequence of the computations performed in Sections 3
and 4 is the classification of regular simple Lie groups; before we state the result,
recall that PSO(6) ∼= PSU(4) .

Proposition 5.6. Let G be a simple connected compact Lie group. Then, G is
regular if and only if G is not isomorphic to PSU(4) , PSp(3) , PSp(4) , PSO(8)
nor to Spin(4n+ 3) with n > 1 .
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As before, we write B = {α1, . . . , α S̀
} with S̀ the semisimple rank of G ,

and similarly for a second connected compact Lie group G′ . Let N = NG(T )
and N ′ = NG′(T ′) be normalizers of maximal tori in G and G′ , with Tits
configurations A = {q1, . . . , q S̀

} ⊂ N and A′ = {p1, . . . , p`′S
} ⊂ N ′ . Let

ϕ ∈ Aut(N, T ) and ρ ∈ Aut(N ′, T ′) be special automorphisms. Consider two
group homomorphisms γ ∈ Hom(W,Z2(N

′)) and δ ∈ Hom(W ′, Z2(N)) , and set
γ̄ := γ ◦ π and δ̄ := δ ◦ π′ . Then, the map

ψ = ψϕ, ρ, γ, δ : N ×N ′ −→ N ×N ′ , (x, y) 7−→
(
δ̄(y)·ϕ(x), γ̄(x)·ρ(y)

)
is a special automorphism of N ×N ′ , which is completely determined by

ψ(qi, e) =
(
ϕ(qi), γ(qi)

)
and ψ(e, pj) =

(
δ(pj), ρ(pj)

)
with i = 1, . . . , S̀ and j = 1, . . . , `′S .

Note that to take the general case into account, we allow G′ to be a torus,
namely G′ = Tk . In this case, N ′ = Tk , A′ is empty, ρ is the identity, W ′ is
trivial, and both δ and δ̄ are zero. By convention, G′ = Tk is regular.

Lemma 5.7. Any special automorphism of N × N ′ is given by ψϕ, ρ, γ, δ , for
some ϕ , ρ , γ and δ as above.

Proof. Let ψ be a special automorphism of N × N ′ . This implies that for
all i and j , we can write ψ(qi, e) = (tiqi, t

′
i) and ψ(e, pj) = (uj, u

′
jpj) , with

ti, uj ∈ S and t′i, u
′
j ∈ S ′ . Since the elements ψ(qi, e) and ψ(e, pj) commute,

we get qiuj = ujqi and t′ipj = pjt
′
i for all i and j . This implies that uj ∈ Z(N)

for all j , and t′i ∈ Z(N ′) for all i . Now, let ι(′) : N (′) ↪→ N × N ′ denote the
canonical inclusion, and p(′) : N × N ′ � N (′) the canonical projection. Let us
define ϕ := p ◦ ψ ◦ ι , ρ := p′ ◦ ψ ◦ ι′ , γ̄ := p′ ◦ ψ ◦ ι and δ̄ := p ◦ ψ ◦ ι′ . Then,
ψ = ψϕ, ρ, γ, δ holds.

We get the following corollary.

Corollary 5.8. The product G×G′ is regular if and only if so are G and G′ .

Proof. Let us first suppose that G and G′ are regular. Let ψ be a special
automorphism of N × N ′ ; by Lemma 5.7, we have ψ = ψϕ, ρ, γ, δ . By hypothesis,
and as conjugation is carried out in each factor separately, we can suppose that ϕ
and ρ are regular, that is ϕ = ϕσ for some σ ∈ Hom(W,Z2(N)) , and ρ = ρν for
some ν ∈ Hom(W ′, Z2(N

′)) . Explicitly, ψ is thus given by

ψ(x, y) =
(
δ̄(y)·ϕ(x), γ̄(x)·ρ(y)

)
=
(
δ̄(y)·σ̄(x)·x, γ̄(x)·ν̄(y)·y

)
=
(
δ̄(y)·σ̄(x), γ̄(x)·ν̄(y)

)
·(x, y) .

Then, noting that Z2(N ×N ′) = Z2(N)× Z2(N
′) , one checks that the map

τ̄ : N ×N −→ Z2(N ×N ′) , (x, y) 7−→
(
δ̄(y)·σ̄(x), γ̄(x)·ν̄(y)

)
is a homomorphism that factorizes through τ : W ×W ′ −→ Z2(N × N ′) . Since
we clearly have ψ = ψτ , the automorphism ψ is regular, and therefore G × G′

is regular. To prove the converse, let ϕ : N −→ N be a special automorphism.
Then the special automorphism ψ(x, y) := (ϕ(x), y) of N × N ′ is easily seen to
be regular if and only if ϕ is regular. This concludes the proof.
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Example 5.9. Let G and G′ be both equal to SU(2) , so that their product
G × G′ is SU(2) × SU(2) ∼= Spin(4) . We easily deduce from Lemma 5.7 that
H1(WSU(2)×SU(2)) ∼= Z/2 ⊕ Z/2 (even though H1(WSU(2)) = 0). More generally,
for n > 1 , H1(WSU(2)n) ∼= (Z/2)n(n−1) holds.

We now discuss the quotients of Spin(4) .

Example 5.10. For G = SU(2)× SU(2) , SU(2)× SO(3) and SO(3)× SO(3)
(all having isomorphic W -modules T ), we have H1(WG) ∼= Z/2 ⊕ Z/2 . On the
other hand, for G = SO(4) , we have computed that H1(WSO(4)) = 0 .

For a connected compact Lie group G , there exists, by classical Lie theory,
a minimal central subgroup K ′ of G (not necessarily finite) such that Ḡ′ := G/K ′

is the (largest) quotient of G that decomposes as a product of simple connected
compact Lie groups and of a torus; let Ḡ′ ∼= Ḡ′

1 × · · · × Ḡ′
r × Tm denote this

decomposition. Recall that the quotient N̄ ′ := N/K ′ is the normalizer of the
maximal torus T̄ ′ := T/K ′ in Ḡ′ . We are now ready for one of the main results
of the present section.

Proposition 5.11. Let G be a connected compact Lie group such that all the
factors Ḡ′

j of Ḡ′ as above are regular. Suppose further that every Ḡ′
j which is

isomorphic to an odd orthogonal group lifts to a direct factor of G. Then, G is
regular and in particular, ϑ is onto :

ϑ : Hom(W,Z2(N)) � H1(W ;T ) .

For the proof, we need the following result that explains the origin of the second
assumption on the factors Ḡ′

j .

Lemma 5.12. Keep notations as above and let π̄ : G � Ḡ′ = G/K ′ be the
projection map. Then π̄−1(Z(N̄ ′)) = Z(N) if and only if every direct factor Ḡ′

j of
Ḡ′ which is isomorphic to an odd orthogonal group lifts to a direct factor of G .

Proof. Clearly, the result for those Lie groups G having no direct factor iso-
morphic to an odd orthogonal group implies the result for the general case. We
therefore make this assumption. In particular, Z(N) = Z(G) holds by Remark 1.1.

We start with the “if” part. By our assumptions, no Ḡ′
j is isomorphic to

an odd orthogonal group. So, by Remark 1.1, we have Z(N̄ ′) = Z(Ḡ′) , and from
the equality Z(Ḡ′) = Z(G)/K ′ , we deduce that π̄−1(Z(N̄ ′)) = Z(G) = Z(N) .

We pass to the “only if” part. By our assumptions and by surjectivity of π̄
onto Ḡ′ , we have

Z(N̄ ′) = π̄
(
π̄−1(Z(N̄ ′))

)
= π̄(Z(N)) = π̄(Z(G)) = Z(Ḡ′) .

Applying Remark 1.1 to Ḡ′ , we see that none of its direct factors Ḡ′
j is isomorphic

to an odd orthogonal group.

Now we enter the proof of Proposition 5.11.
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Proof. Let ψ ∈ Aut(N, T ) ; we can suppose that ψ is special. As ψ is the
identity on T , it preserves K ′ and therefore induces a special automorphism ψ̄ of
N̄ ′ . By the first hypothesis on the Ḡ′

j ’s and by Corollary 5.8, Ḡ′ is regular, so that
ψ̄(q̄j) = z̄j · q̄j with z̄j ∈ Z(N̄ ′) for all j . One readily deduces that ψ(qj) = zj · qj
with zj ∈ π̄−1(z̄j) ⊆ π̄−1(Z(N̄ ′)) for all j . By our second assumption on the Ḡ′

j ’s,
Lemma 5.12 applies to give that zj ∈ Z(N) for all j . By Lemma 5.2, ψ is regular.
The statement about surjectivity follows from Proposition 5.5.

The following example is due to J.M. Møller (private communication).

Example 5.13. Here is an example of a non-regular Lie group G , for which
all direct factors of Ḡ′ are regular. Consider G =

(
SO(4)× SO(4)

)
/∆Z/2 , where

∆Z/2 designates the diagonal central copy of Z/2, that is, the central subgroup
generated by (−1I4,−1I4) . One has Ḡ′ = Ḡ ∼= SO(3)4 , and therefore Ḡ′ has only
regular direct factors, see Proposition 5.6. In this case, TW = Z(N) = Z(G) ∼= Z/2
holds by Remark 1.1, so that T/TW = T̄ . One has

H1(W ;T/TW ) ∼= H1(WSO(3)4) ∼= H1(WSU(2)4) ∼= (Z/2)12 ,

by Example 5.9, and, using the Künneth Theorem, one computes that

H2(W ;TW ) ∼= H2((Z/2)4; Z/2) ∼= (Z/2)10 .

It follows from the long exact sequence presented in Remark 5.15 below that ϑ is
not surjective, so that G is not regular. In fact, both (T/TW )W and Hom(W ;TW )
are isomorphic to (Z/2)4 and, by computer computations performed by Møller,
one has H1(W ;T ) ∼= (Z/2)3 . (This example also shows that one cannot re-
place “odd orthogonal group” by “odd orthogonal group different from SO(3)”
in the statement of Proposition 5.11, even though H1(WSO(3)) = 0 .) Møller
has performed other computations and showed in particular that the Lie groups(
SO(6)×SO(8)

)
/∆Z/2 and

(
SO(6)×SO(10)

)
/∆Z/2 are regular, although PSO(6)

and PSO(8) are not regular by Proposition 5.6, so that Proposition 5.11 does not
apply in either cases.

Next, we discuss injectivity of ϑ . We begin with an example.

Example 5.14. As the computations performed in Section 3 show, for the odd
orthogonal group SO(2n + 1) , the homomorphism ϑ is injective if and only if
n > 3 . For SO(3) and for SO(5) , the kernel of ϑ is isomorphic to Z/2 .

The regular automorphisms form a subgroup of Aut(N, T ) which we denote
by Reg(N, T ) . The injective homomorphism

% : Hom(W,Z2(N)) −→ Aut(N, T ) , τ 7−→ ψτ

identifies Hom(W,Z2(N)) with Reg(N, T ) . Under this identification, the kernel
of the map ϑ of Remark 5.3 corresponds to the subgroup Reg(N, T )∩ Inn(N, T ) :

% : Ker(ϑ)
∼=−→ Reg(N, T ) ∩ Inn(N, T ) .

Let Ḡ = G/Z(G) be the adjoint group of G , whose center is trivial. Suppose
that Ḡ does not contain direct factors isomorphic to an odd orthogonal group.
Then, the center Z(N̄) is trivial (see Remark 1.1) and it is not difficult to deduce
that the latter intersection is reduced to {idN} , so that ϑ is injective in this case.
We will however get a better result by exploiting the following interpretation of ϑ
kindly brought to our attention by J.M. Møller.
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Remark 5.15. The homomorphism ϑ has the following interpretation in usual
cohomological terms. First, consider the short exact sequence

0 −→ TW −→ T −→ T/TW −→ 0

of W -modules. This sequence induces the usual long exact sequence in cohomol-
ogy. Recall that there is an isomorphism of functors H0(W ;−) ∼= (−)W and that
H1(W ;TW ) ∼= Hom(W,TW ) , because TW is a trivial W -module. Recall also
from Remark 1.1 that TW = Z(N) . Finally, W being generated by reflections,
we have Hom(W,Z(N)) = Hom(W,Z2(N)) . Now, we see that this long exact
sequence leads to the following exact sequence :

0→(T/TW )W →Hom(W,Z2(N)) ϑ′→H1(W ;T )→H1(W ;T/TW )→H2(W ;TW )→ . . .

Tracing back the above identifications, one easily checks that ϑ′ = ϑ . It follows
in particular that

Ker(ϑ) ∼= (T/TW )W = (T/Z(N))W .

As a special case, if G has no direct factor isomorphic to an odd orthogonal group,
then Z(N) = Z(G) (see Remark 1.1), so that Ker(ϑ) ∼= T̄W ∼= Z(N̄) ∼= (Z/2)ū ,
where T̄ is the maximal torus in the adjoint group Ḡ of G , N̄ is its normalizer,
and ū is the number of direct factors of Ḡ isomorphic to an odd orthogonal group
(for the last two indicated isomorphisms, see Remark 1.1).

Theorem 5.16. Let G be a connected compact Lie group. Let d be the number
of direct factors of G isomorphic either to SO(3) or to SO(5) . Let d′ be the
number of direct factors of the adjoint group Ḡ = G/Z(G) that are isomorphic to
an odd orthogonal group and that do not lift to a direct factor of G. Then, one
has

Ker(ϑ) ∼= (Z/2)d+d′ .

In particular, ϑ is injective if and only if G has no direct factor isomorphic to
SO(3) nor to SO(5) and every direct factor of Ḡ that is isomorphic to an odd
orthogonal group lifts to a direct factor of G .

Proof. Up to isomorphism, we can suppose that G = G1 ×G2 , where G1 has
no direct factor isomorphic to an odd orthogonal group, and G2 is a product of
odd orthogonal groups, d of which are SO(3) or SO(5) . We correspondingly write
T = T1 × T2 and similarly for N , W , and for the adjoint group Ḡ . We have

(T/TW )W = (T1/T
W1
1 )W1 × (T2/T

W2
2 )W2 .

To compute both factors, we apply Remark 1.1 to see that TWi
i = Z(Ni) and also

to compare Z(Ni) with Z(Gi), with i = 1, 2 . We first get

(T1/T
W1
1 )W1 = (T1/Z(G1))

W1 = T̄W1
1 = Z(N̄1) ∼= (Z/2)d′ ,

since the number of direct factors of Ḡ1 isomorphic to an odd orthogonal group
is d′ by definition. Now, to treat the other factor, it suffices to verify that when
G = SO(2n+ 1), the group (T/TW )W is trivial if n > 3 and isomorphic to Z/2 if
n = 1, 2. One can either compute this directly or invoke Example 5.14 combined
with the isomorphism Ker(ϑ) ∼= (T/TW )W of Remark 5.15.
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Proposition 5.11 and Theorem 5.16 show that Hom(W,Z2(N)) completely
controls the group H1(W ;T ) , except if very specific factors of Ḡ′ or of Ḡ occur
as in Proposition 5.6 and Theorem 5.16. In the latter case, Lemma 5.7 may still
provide some information.

Example 5.17. For G = SU(2) , one has Z2(N) ∼= Z/2 (see Remark 1.1) and
W ∼= Z/2 . It follows that Hom(W,Z2(N)) ∼= Z/2 , whereas H1(WSU(2)) = 0 , by
the Main Theorem. So, in this case, ϑ is not injective. One checks similarly that
neither it is for G = SO(5) and Spin(4n+ 1) with n > 1 .

We now prove Theorem 1.2 of the introduction.

Proof. OfTheorem 1.2 Write G = (G̃ × Tk)/K as in the statement. If G̃
contains no direct factor of type Bn , the same holds for the adjoint group Ḡ ,
and then, Theorem 5.16 implies injectivity of ϑ . If G̃ contains no direct factor
isomorphic to SU(4) , Sp(3) , Sp(4) , Spin(8) and Spin(4n + 3) (n > 1), then,
by Proposition 5.6, all the factors Ḡ′

j mentioned in Proposition 5.11 are regular
and it follows from the latter proposition that ϑ is onto. For the equality between
Z(N) and Z(G) under the hypothesis of (i), see Remark 1.1. This establishes the
theorem.

We conclude with the most familiar examples of non-semisimple groups :
the unitary groups.

Example 5.18. For n > 2 , one has an isomorphism U(n) ∼= (S1×SU(n))/Z/n ,
with Wab

∼= Z/2 and Z2(N) = Z2(G) ∼= Z/2 . We can apply Corollary 1.3 for
n 6= 2, 4 , so that U(n) is regular for n 6= 2, 4 ; treating the two remaining cases
separately, we obtain

H1(WU(2)) = 0 and H1(WU(n)) ∼= Z/2 , for n > 3 .

By Propositions 5.6 and 5.11, U(2) is regular. Our explicit computation shows
that U(4) regular as well, although Proposition 5.11 does not apply in this case.
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