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Abstract. Let G be a group and A a G -algebra. The subrepresentation
semiring of A is the set of subrepresentations of A endowed with operations
induced by the algebra operations. The introduction of these semirings was
motivated by a problem in material science. Typically, physical properties of
composite materials are strongly dependent on microstructure. However, in ex-
ceptional situations, exact relations exist which are microstructure-independent.
Grabovsky has constructed an abstract theory of exact relations, reducing the
search for exact relations to a purely algebraic problem involving the product
of SU(2)-subrepresentations in certain endomorphism algebras. We have shown
that the structure of the associated semirings can be described explicitly in terms
of Racah coefficients. In this paper, we prove an analogous relationship between
Racah coefficients for the quantum algebra Ŭq(sl2) and semirings for endomor-
phism algebras of representations of Ŭq(sl2). We generalize the construction
of subrepresentation semirings to the Hopf algebra setting. For Ŭq(sl2), we
compute these semirings for the endomorphism algebra of an arbitrary complex
finite-dimensional representation. When the representation is irreducible, we
show that the subrepresentation semiring can be described explicitly in terms of
the vanishing of q -Racah coefficients. We further show that q -Racah coefficients
can be defined entirely in terms of the multiplication of subrepresentations.

1. Introduction

Recent work of Grabovsky, Milton, and Sage has produced an unexpected appli-
cation of the quantum theory of angular momentum to material science [7, 16].
Moreover, this work has offered a new perspective on 6j -symbols. In studying a
problem in composite materials, the following situation has arisen. Let V be a
representation of SU(2), and consider the matrix algebra End(V ) consisting of
the linear operators V → V . Suppose that X and Y are subrepresentations of
End(V ). Then the subspace XY = span{xy | x ∈ X, y ∈ Y } is also a subrep-
resentation. In fact, this product makes the set E(V ) of subrepresentations of
End(V ) into a semiring, called a subrepresentation semiring. Solving the physical
problem reduces to the algebraic problem of computing the structure constants of
these semirings, which have been shown in [16] to have an intimate relationship
with Racah coefficients. This paper shows that there is an analogous relation-
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ship between Racah coefficients for the quantum algebra Ŭq(sl2) and the product
of subrepresentations in the semiring E(V ), where V is now a representation of
Ŭq(sl2).

We begin by describing how classical 6j -coefficients arise in the theory of
composite materials. Typically, physical properties of composites such as conduc-
tivity and elasticity are strongly dependent on the microstructure of the composite.
We consider the set of all possible values of a given physical property for composites
made out of fixed materials taken in fixed proportions. This will be a subset of an
appropriate tensor space, and generically this subset will have nonempty interior.
However, in exceptional circumstances, this set degenerates to a surface, called an
exact relation. These relations represent fundamental physical invariances. Find-
ing them is of great importance in both theory and applications because they
describe microstructure-independent situations. To give an illustration from elas-
ticity, Hill has shown that a mixture of isotropic materials with constant shear
modulus is isotropic and has the same shear modulus [8, 9].

The classical approach to finding exact relations has suffered from the
drawback of relying heavily on the details of the physical context. In the late
1990’s, Grabovsky and Grabovsky, Sage, and Milton developed an abstract theory
of exact relations which has been able, not only to find many new exact relations,
but also to give complete lists of rotationally invariant exact relations for three-
dimensional thermopiezoelectric composites [5, 7]. In particular, we obtain all
exact relations for conductivity, elasticity, and piezoelectricity as special cases.
This general theory has been successful by reducing the search for exact relations
to purely algebraic questions involving the representation theory of SO(3).

We briefly sketch how this is accomplished. We consider a physical prop-
erty which is described by elements of the real symmetric tensor space Sym(T),
i.e. the set of symmetric linear operators T → T where T is a representation
of SO(3). For example, T is R3 for conductivity and Sym(R3) for elasticity.
Milton has shown how to associate to any (rotationally invariant) exact relation
surface a subrepresentation of Sym(T) [14]. It turns out that conditions for a
subrepresentation Π to determine an exact relation can be given in terms of the
multiplication of subrepresentations in End(T). A necessary condition is that Π
must satisfy the equation (ΠAΠ)sym ⊂ Π, where A is a fixed subrepresentation
determined by the physical context and Xsym = (X + X t) ∩ Sym(T) [7]. Similar,
but more complicated, sufficient conditions have also been found. Thus, the search
for exact relations has been reduced in large part to understanding the product of
subrepresentations of End(T).

These considerations motivated us to introduce subrepresentation semirings
in [16] in the context of a group G acting by algebra automorphisms on an algebra
A . In section two of this paper, we generalize this construction to Hopf algebras.
Given a Hopf algebra H and an H -module algebra A (i.e. an algebra and H -
module whose H -action is compatible with the ring structure), we show that the
set of submodules of A is a semiring.

In [16], we showed how Racah coefficients arose in the computation of
the semirings E(V ) for an arbitary finite-dimensional representation of SU(2).
Consider the product of subrepresentations induced by the composition of linear
maps Hom(Vk, Vl)⊗Hom(Vj, Vk)→ Hom(Vj, Vk), where Vj denotes the irreducible
representation with total angular momentum quantum number j . We showed that
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if Va ⊂ Hom(Vj, Vk) and Vb ⊂ Hom(Vk, Vl), then Vc ⊂ VbVa if and only if the Racah
coefficient W (jkcb; al) is nonzero. The computation of the structure constants for
E(Vj) is just a special case. We also showed that Racah coefficients can be defined
entirely in terms of the multiplication of subrepresentations. Finally, we used these
results to give explicit computations of the structure constants of E(V ) for general
representations V .

It is not at all obvious a priori that Racah coefficients should arise in this
context. By definition, W (jkcb; al) = 0 means that two embeddings Vc →
Vj ⊗ Vk ⊗ Vb given by different iterations of the Clebsch-Gordan formula are
orthogonal. The fact that this is equivalent to the nonexistence of a nontrivial
intertwining map Vc → VbVa is a special property of the representation theory
of SU(2) (and also of the quantum algebras Ŭq(sl2)). This does not hold even
for simply reducible groups, whose representation theory is very similar to that of
SU(2), down to the existence of Clebsch-Gordan and Racah coefficients satisfying
the usual formal properties.

In section 3, we prove quantum group analogues of our results for SU(2).
We work with the quantum algebra Ŭq(sl2) with deformation parameter q > 0. We
show that the structure coefficients for the semiring E(V ) where V is irreducible
(or for the more general product map described below in equation (7)) are zero
or one depending on whether a certain q -Racah coefficient vanishes or not. We
prove that the q -Racah coeffients can moreover be defined entirely in terms of
the multiplication of subrepresentations. We conclude the paper by computing
the semiring E(V ), where V is an arbitrary finite-dimensional representation of
Ŭq(sl2).

2. H-module algebras and subrepresentation semirings

Let H be a Hopf algebra over a field F with comultiplication ∆, counit ε , and
antipode S , and let A be an H -module algebra. This means that the H -action on
A is compatible with the algebra structure on A ; in other words, the multiplication
map A ⊗ A → A and the inclusion F → A are H -module maps. Explicitly, we
have h · (ab) =

∑
(h′a)(h′′b) and h · (1A) = ε(h)1A for all h ∈ H and a, b ∈ A .

Here, we use Sweedler’s sigma notation for the comultiplication ∆(h) =
∑
h′⊗h′′ .

The concept of an H -module algebra generalizes two familiar algebraic
objects. If G is a group, an algebra A is called a G-algebra if the group acts
on A by algebra automorphisms. This is equivalent to A being an FG-module
algebra. Similarly, given a Lie algebra L with universal enveloping algebra U(L),
a U(L)-module algebra is just an algebra on which L acts by derivations.

Since ring multiplication in A is well-behaved with respect to the H -action,
it is natural to investigate the relationship between the submodules of A and ring
multiplication. For example, one can study the H -invariant ideals and subalgebras
of A , i.e. those submodules which are also ideals or subalgebras of A . At an even
more basic level, given submodules X and Y , if follows from the definition of an
H -algebra that the subspace XY = span{xy | x ∈ X, y ∈ Y } is also a submodule,
and we would like to better understand the product of submodules.

We now introduce the submodule semiring associated to an H -module
algebra. Let SH(A) be the set of all H -submodules of A . The usual subspace
addition together with the product defined above make this set into an additively
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idempotent semiring, with additive and multiplicative identities {0} and F = F1A
respectively. Note that the semiring multiplication is determined by the products
of indecomposable submodules. We can thus define structure constants CW

U,V for
SH(A), where U , V , and W are indecomposable, by setting CW

U,V = 1 if W ⊂ UV
and 0 otherwise. Of course, we need only consider irreducible submodules if A is
completely reducible.

Inclusion gives a partial order on the semiring SH(A), and the supremum
of a collection of submodules {Xi} is just

∑
Xi . Accordingly, SH(A) becomes a

complete idempotent semiring.

Let φ : A → B be a homomorphism of H -module algebras. It is clear
that the map SH(φ) : SH(A)→ SH(B) given by SH(φ)(X) = φ(X) is a semiring
morphism. This correspondence is a functor:

Theorem 2.1. The correspondence SH is a functor from the category of H -
module algebras to the category of complete idempotent semirings.

Although we will not discuss invariant ideals and subalgebras of H -module
algebras in the present paper, we remark that there is an intimate relationship
between them and certain classes of ideals and subsemirings of the submodule
semiring. An ideal I of a semiring is called subtractive if x ∈ I and x + y ∈ I
implies that y ∈ I . Imposing this condition eliminates various pathologies caused
by the lack of additive inverses. For example, a two-sided ideal is the kernel of a
semiring morphism if and only if it is subtractive [4]. It can be shown that there is
a bijective correspondence between H -invariant ideals (left, right, or two-sided) of
A and subtractive ideals (of the appropriate type) of SH(A) which contain their
suprema. An analogous statement is true for invariant subalgebras.

From now on, we will focus on one class of H -module algebras, endomor-
phism algebras. Let V be a finite-dimensional representation of H , and consider
the central simple algebra A = End(V ) consisting of all linear maps V → V . The
natural H -action given by the formula

(h · f)(v) =
∑

h′f(S(h′′)v) (1)

makes End(V ) into an H -module algebra [10]. We denote the semiring
SH(End(V )) by E(V ).

Let us give some examples of this construction.

Examples. 1. If V is one-dimensional, then End(V ) is the trivial H -module.
It follows that E(V ) is the Boolean semiring B = {0, 1} with 1 + 1 = 1.

2. Let V1/2 be the standard complex representation of SU(2), or equivalently,
of the universal enveloping algebra U(sl(2)). The SU(2)-algebra End(V1/2) de-
composes into the direct sum of irreducible representations C⊕ V1 , and the four
element commutative semiring E(V1/2) is determined by V 2

1 = End(V1/2).

3. Let V be a two-dimensional irreducible representation of the quantized en-
veloping algebra Ŭq(sl2), where q is not a root of unity. The semiring EŬq(sl2)(V )

is isomorphic to ESU(2)(V1/2).

These semirings have been studied in [15] and [16] in the case of group al-
gebras and universal enveloping algebras of complex semisimple Lie algebras. For
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these Hopf algebras, it is possible to say quite a lot about the invariant ideals and
subalgebras of End(V ). We briefly recall these results. There is a straightforward
bijective correspondence between the invariant left and right ideals and the sub-
representations of V . The situation is much more complicated for subalgebras,
and we restrict attention to irreducible V . With this hypothesis, the invariant
subalgebras are semisimple of a very special type. When the base field is alge-
braically closed, there is an explicit parameterization of the invariant subalgebras.
This classification (in the group algebra case) shows that the invariant subalge-
bras encapsulate complicated information about the group G and V involving
both how V can be expressed as an induced representation IndGH(W ) and how
W can be factored into a tensor product of projective representations. For more
details and examples, see [15], [16]. It seems likely that analogues of these results
hold for other Hopf algebras.

Before proceeding, we will need a more general notion of the product of
submodules. Let A , B , and C be three H -modules together with an H -map
A ⊗ B → C . We now define a multiplication map SH(A) × SH(B) → SH(C) as
before; here SH(X) is the additive monoid of submodules of X . Composition of
linear maps provides an illustration of this construction. Given finite-dimensional
representations U and V , the space Hom(U, V ) of linear maps U → V becomes
an H -module via the action (1). We call the set of its submodules H(U, V ). If W
is a third module, then composition gives an H -map Hom(V,W )⊗Hom(U, V )→
Hom(U,W ), thus inducing the product H(V,W ) ⊗ H(U, V ) → H(U,W ). We
remark that the natural map V ⊗ U∗ ∼= Hom(U, V ) is an H -isomorphism. It is
not true in general that Hom(U, V ) ∼= U∗ ⊗ V unless H is cocommutative.

3. Subrepresentation semirings for Ŭq(sl2) and q -Racah coefficients

3.1. Preliminaries.

There are several variants of the quantized enveloping algebra of sl2(C). It will
be most convenient for us to work with the quantum algebra Ŭq(sl2). However,
the results will also hold for Uq(sl2), since it can be embedded as a Hopf subal-

gebra of Ŭq(sl2). (We follow the notation of Klimyk and Schmüdgen’s book [13].)

The algebra Ŭq(sl2) is generated by E , F , K , and K−1 subject to the relations

KEK−1 = qE , KFK−1 = q−1F , and [E,F ] = K2−K−2

q−q−1 . We assume the deforma-
tion parameter q is not a root of unity. The Hopf algebra structure maps are deter-
mined by ∆(K) = K⊗K , ∆(E) = E⊗K+K−1⊗E , ∆(F ) = F ⊗K+K−1⊗F ,
ε(K) = 1, ε(E) = ε(F ) = 0, S(K) = K−1 , S(E) = −qE , and S(F ) = −q−1F .

We recall the standard facts about the representation theory of Ŭq(sl2)
[13, 12, 1]. Every finite dimensional representation is completely reducible and a
sum of weight spaces, i.e eigenspaces of K . For every j ∈ 1

2
Z≥0 , there are four

irreducible representations of dimension 2j + 1, one for each fourth root of unity
ω . We call this index set J . We use the convention that if we refer to an element
of J by an upper case letter J , then the angular momentum quantum number
will be given by the corresponding lower case letter j . Also, if J = (j, ω), then
J−1 = (j, ω−1). The irreducible Vjω has highest weight ωqj and is obviously the

tensor product of Vj
def
= Vj1 with one of the four characters of Ŭq(sl2). We say that

Vjω is of type ω . It has a basis of weight vectors vjωm for m = −j,−j+1, . . . , j with
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K · vjωm = ωqmvjωm . Since the dual space V ∗jω has highest weight ω−1qj , we see that
V ∗jω is isomorphic to Vjω−1 We also note that the tensor product of irreducibles is

multiplicity free, and the Clebsch-Gordan formula holds for Ŭq(sl2):

Vkω ⊗ Vlω′ ∼=
k+l∑

j=|k−l|

Vj(ωω′). (2)

We call the triple (klj) admissible if j satisfies the triangle inequality conditions
appearing in this sum. More generally, we say that (KLJ) is admissible if in
addition ωKωL = ωJ .

We now assume that q is a positive real number. In this case, Ŭq(sl2) is a
Hopf ∗-algebra via E∗ = F , F ∗ = E , and K∗ = K , and the representations Vjω
are ∗-representations. This means that Vjω is endowed with a scalar product under
which the action of X∗ on Vjω is just the adjoint of the action of X . The weight
vectors for Vjω can be normalized in a way entirely analogous to the situation for
SU(2). Thus, the representation is given concretely in terms of the orthonormal
basis {vjωm } by

E · vjωm = ω([j −m][j +m− 1])1/2vjωm+1,

F · vjωm = ω([j +m][j −m+ 1])1/2vjωm−1,

K · vjωm = ωqmvjωm ,

(3)

where [a] = [a]q is the q -number qa−q−a
q−q−1 . We call such a basis a Clebsch-Gordan

or CG basis.

The quantum Clebsch-Gordan coefficients (CGC’s) are the matrix elements
of the unitary map realizing the isomorphism of equation (2) for type 1 represen-
tations. Explicitly,

vam =
∑

m1+m2=m

qC
jka
m1m2m

vjm1
⊗ vkm2

. (4)

The quantum Racah coefficients are constants Wq(jkcb; al), parametrized
by six irreducibles, which encode the associativity of triple tensor products. It-
erating the Clebsch-Gordan formula gives two bases for Vj ⊗ Vk ⊗ Vb , one from
(Vj ⊗ Vk) ⊗ Vb ∼= (

∑
Va) ⊗ Vb and the other from Vj ⊗ (Vk ⊗ Vb) ∼= Vj ⊗ (

∑
Vl).

Racah coefficients are obtained from the unitary change of basis matrix. They van-
ish unless (kja), (lkb), (ljc), and (bac) are all admissible. The Racah coefficients
can be expressed in terms of products of CGC’s:

([2j + 1][2b+ 1])
1
2Wq(lkca; bj)qC

ljc
m1m2m

=
∑
s

qC
bac
(m1+s)(m2−s)mqC

lkb
m1s(m1+s)qC

kaj
s(m2−s)(m2). (5)

This does in fact define Wq(lkca; bj) because with the above admissibility condi-
tions, it is always possible to choose appropriate projection quantum numbers for
which qC

ljc
m1m2m

6= 0. The Racah coefficient Wq(jkcb; al) is nonzero precisely when

the Ŭq(sl2)-map

Vc → Va ⊗ Vb → (Vj ⊗ Vk)⊗ Vb ∼= Vj ⊗ (Vk ⊗ Vb)→ Vj ⊗ Vl → Vc (6)
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is nonzero [2].

3.2. The product of subrepresentations – the irreducible case.

In order to compute the structure constants of the semiring E(V ) for general V ,
we will need to understand the multiplication map

H(VK , VL)⊗H(VJ , VK)→ H(VJ , VL). (7)

We assume for the moment that the representations have type 1. Accord-
ingly, let Va and Vb be subrepresentations of Hom(Vj, Vk) and Hom(Vk, Vl) re-
spectively. The product VbVa is a homomorphic image of Vb ⊗ Va and is thus
multiplicity free. If the irreducible Vc is a component of VbVa , then it is simul-
taneously a component of Vb ⊗ Va and Hom(Vj, Vl) ∼= Vl ⊗ Vj . In other words,
(bac) and (ljc) are both admissible. However, the converse is not true. In fact,
analogously to the situation for SU(2), Vc is a component of VbVa if and only if a
certain 6j -coefficient is nonzero.

Theorem 3.1. The quantum Racah coefficient Wq(jkcb; al) is nonzero if and
only if Va , Vb , and Vc are subrepresentations of Hom(Vj, Vk), Hom(Vk, Vl), and
VbVa respectively. In particular, if VaωA ∈ H(VJ , VK) and VbωB ∈ H(VK , VL), then

VbωBVaωA =
⊕

{c|Wq(jkcb;al) 6=0}

Vc(ωBωA). (8)

Corollary 3.2. If Va , Vb , and Vc are subrepresentations of End(Vjωj) (whose
components automatically have type 1), then

VbVa =
⊕

{c|Wq(jjcb;aj 6=0}

Vc. (9)

Remarks. 1. In terms of 6j -coefficients, the condition of the theorem is that{
j k a
b c l

}
q

6= 0.

2. The description of a nontrivial zero of Wq(jkcb; al) (i.e. a zero that is not
caused by admissibility requirements) given by the usual definition is rather com-
plicated. It says that the two embeddings Vc → Vj ⊗ Vk ⊗ Vb given by different
iterations of the Clebsch-Gordan formula are orthogonal. The interpretation pro-
vided by the theorem is conceptually much simpler.

Corollary 3.3. The semirings E(Vjω) are commutative of order 22j+1 and
are independent of ω . Their structure constants Cc

ab are invariant under all
permutations of the indices.

Proof. The commutativity and statement about the structure constants follows
from the fact that the quantum 6j -symbol

{
j j a
b c j

}
q

for fixed j has S3 symmetry

[13]. The rest is clear.
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Before proceeding to the proof, we observe that the theorem describes a
connection between two seemingly quite different kinds of intertwining maps. By
definition, the Racah coefficient Wq(jkcb; al) is nonzero if and only if there is a
nonzero intertwiner given by the recoupling map (6). The theorem says this is the
case if and only if a nonzero intertwiner exists Vc → VbVa . This is not a general
algebraic fact, but rather a special property of SU(2) and the quantum algebras
Ŭq(sl2). Indeed, this does not hold even for groups whose representation theory
is formally similar to that of SU(2). More precisely, let G be a simply reducible
group. This means that G is a compact group with the following properties:

1. All the irreducible representations of G are self-dual.

2. If V and W are irreducible, then V ⊗W is multiplicity free.

This class of groups was introduced by Wigner, who showed that it is
possible to define 6j -coefficients in this context satisfying the customary prop-
erties [20, 21]. For example, the 6j -coefficients are symmetric under column and
triad permutation as well as satisfying the usual orthogonality relations and the
Biedenharn-Elliot identity [18]. However, the analogue of theorem 3.1 is not true
[17].

We now turn to the proof of the theorem. We will need an explicit Ŭq(sl2)-
isomorphism between Vjω and its dual. This is given by the map φjω : Vjω → V ∗jω−1

defined by vjωm 7→ (−qω2)mvjω
−1∗

−m , where {vjω−1∗
m } is the basis dual to the standard

basis for Vjω−1 .

Lemma 3.4. The map φjω is an isomorphism of Ŭq(sl2)-modules.

Proof. A direct calculation shows that
φjω(Xvjωm )(vjω

−1

n ) = (−qω2)m(vjω
−1∗

−m )(S(X)vjω
−1

n ), where X is one of the standard

generators of Ŭq(sl2).

The elements wjωm = (−qω2)mvjω
−1∗

−m are the CG basis vectors for V ∗jω−1 . For
future reference, we note that

wjωm (vjω
−1

n ) = δm,−n(−qω2)m (10)

We now restrict attention to type 1 representations. It is easy to see that
the general case will follow immediately. We use the product basis {vkm ⊗ wjs}
for Hom(Vj, Vk), where we identify Hom(Vj, Vk) and Vk ⊗ V ∗j under the canonical
isomorphism.

Let Vc be an irreducible component of Hom(Vj, Vl), and let {zcm(l, j)} be the
image of the CG basis of Vc under the composition Vc → Vl ⊗ V ∗j → Hom(Vj, Vl).
Explicitly,

zcm(l, j) =
∑

m1+m2=m

qC
ljc
m1m2m

vlm1
⊗ wjm2

. (11)

We assume without loss of generality that the four triples (kja), (lkb),
(ljc), and (bac) are all admissible; if this does not hold, then Wq(jkcb; al) is a
structural zero while VbVa either is undefined or does not contain Vc for trivial
reasons. Accordingly, we now suppose that Va , Vb , and Vc are components of
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Hom(Vj, Vk), Hom(Vk, Vl), and Hom(Vj, Vl) respectively and, in addition, Vc is a
component of Vb ⊗ Va . The image of the CG basis for Vc in Vb ⊗ Va under the
projection to VbVa is given by

ξcm =
∑

p1+p2=m

qC
bac
p1p2m

zbp1
(l, k)zap2

(k, j). (12)

The vectors {ξcm} must be related to the CG basis {zcm(l, j)} given in (11) by a
scalar multiple qR

jkl
abc independent of m , so that

ξcm = qR
jkl
abcz

c
m(l, j). (13)

Multiplying out (12) and using (10), we get

ξcm =
∑

p1,p2,s1,s2,t1,t2

δt1,−s2(−q)s2qCbac
p1p2mq

C lkb
s1s2p1q

Ckja
t1t2p2

vls1 ⊗ w
l
t2
. (14)

Equating the coefficient of the basis element vlm1
⊗wjm2

on both sides of (13) gives
the formula

qR
jkl
abcqC

ljc
m1m2m

=
∑
s

(−q)sqCbac
(m1+s)(m2−s)mqC

lkb
m1s(m1+s)qC

kja
(−s)m2(m2−s). (15)

This summation is just another form of the defining expression for quantum Racah
coefficients (5). Indeed, we have

qC
kja
(−s)m2(m2−s) = (−1)k+sq−s([2a+ 1]q/[2j + 1]q)

1
2 q−1Ckaj

(−s)(s−m2)(−m2)

= (−1)2k+s+a−jq−s([2a+ 1]q/[2j + 1]q)
1
2 qC

kaj
s(m2−s)(m2),

where we have used symmetries of the quantum CGC’s. (See for example [19] or
theorem 3.62 of [1].) Inserting in (15) and using (5) and the fact that (−1)2k+2s =
1, we obtain

qR
jkl
abcqC

ljc
m1m2m

= (−1)a−j([2a+ 1][2b+ 1])
1
2Wq(lkca; bj)qC

ljc
m1m2m

.

Consequently, we get

qR
jkl
abc = (−1)a−j([2a+ 1][2b+ 1])

1
2Wq(lkca; bj), (16)

and thus Vc is a component of VbVa precisely when Wq(lkca; bj) 6= 0. Since
Wq(jkcb; al) = (−1)l+a−j−bWq(lkca; bj), this is equivalent to Wq(jkcb; al) 6= 0.
(We state the theorem in terms of the latter Racah coefficient to make it match
the SU(2)-analogue of the theorem given in [16].)

It is an immediate consequence of (16) that we can use the coefficients

qR
jkl
abc as a starting point for defining 6j -coefficients instead of the usual procedure

involving the associativity of tensor products:

Theorem 3.5. The Racah coefficients for Ŭq(sl2) can be defined in terms of
matrix multiplication of subrepresentations.

3.3. The generic semirings.

We define a family of semirings Cj for j ∈ 1
2
Z≥0 as follows. The elements of

Cj are the set of subsets of {0, . . . , 2j} with idempotent addition given by set
union. Multiplication is determined by the triangle inequality condition {a}{b} =
{i | 0 ≤ i ≤ 2j, |a − b| ≤ i ≤ a + b} . The zero element is the empty set, and
the multiplicative identity is {0} . This is a commutative semiring of order 22j+1 .
Generically, the semirings E(VJ) are isomorphic to Cj .
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Theorem 3.6. The semiring E(V q
jω) is isomorphic to Cj for all but finitely

many q .

To prove this, we recall the connection between quantum Racah coefficients
and basic hypergeometric series. The basic hypergeometric function 4φ3 is defined
as the infinite series

4φ3(a1, a2, a3, a4; b1, b2, b3; q, z) =
∞∑
n=0

(a1, q)n(a2, q)n(a3, q)n(a4, q)n
(b1, q)n(b2, q)n(b3, q)n(q, q)n

zn,

where (a; q)n = (1−a)(1−aq) . . . (1−aqn−1); (a; q)0 = 1 is the q -shifted factorial.
We will be interested in the case when ai = qsi and bi = qti for integers si and ti .
This series terminates if si ≤ 0 with any nonpositive tj strictly smaller than the
largest nonpositive si [3].

Given the Racah coefficient Wq(jkcb; al), let us set β1 = min{j + k + c +
b, j + b+ a+ l, k + c+ a+ l} with β2 and β3 the remaining two parameters, and
(α1, α2, α3, α4) any permutation of (j + k + a, a+ b+ c, j + c+ l, k + b+ l). Then
we have the formula:

Wq(jkcb; al) = κ(jkcbal)4φ3(q2(α1−β1), q2(α2−β1), q2(α3−β1), q2(α4−β1);

q−2(β1+1), q2(β2−β1+1), q2(β3−β1+1); q2, q2), (17)

where κ(jkcbal) is a rational function of q all of whose zeros and poles are at roots
of unity or zero [11, 13, 1]. This means that the zeros of Wq(jkcb; al) are just the
positive real zeros of the rational function given by the hypergeometric factor of
(17).

It now follows from theorem 3.1 that the semiring E(V q
jω) is isomorphic to

Cj except when q is a zero of one of the hypergeometric functions appearing in
equation (17) for Wq(jjcb; aj) as a , b , and c vary over the finitely many nontrivial
possibilities. There are a finite number of such zeros, and the theorem follows.

The smallest examples in which the subrepresentation semiring E(V q
j ) is

not isomorphic to Cj occur for j = 2. (By contrast, the j = 3/2 semiring for
SU(2) is not isomorphic to C3/2 [16].) There are two exceptional cases:

1. V q
2 is not a component of V q

2 V
q

2 when q is one of the two positive roots of
the irreducible polynomial q20 − q18 − q14 − q12 + q10 − q8 − q6 − q2 + 1.

2. V q
3 is not in V q

3 V
q

3 when q is one of the two positive roots of q8−q6−q4−q2+1.

3.4. The general case.

Let V be a finite-dimensional representation of Ŭq(sl2). The representation V

can be expressed as V =
⊕

J CrJ ⊗ VJ , where CrJ is a trivial Ŭq(sl2)-module
and rJ = 0 for all but finitely many J . We have the isomorphism of H -module
algebras

End(V ) ∼=
⊕
J

Hom(CrJ ⊗ VJ ,CrK ⊗ VK)

∼=
⊕
J

Hom(CrJ ,CrK )⊗ Hom(VJ , VK),
(18)
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where again the first factor is a trivial module.

The endomorphism algebra End(V ) is no longer multiplicity free and the
number of subrepresentations isomorphic to VC is in bijective correspondence to
the projective space CPn , where n is the multiplicity of VC . To get homogeneous
coordinates for a given subrepresentation XC isomorphic to VC , we need an
analogue of equation (4) defining CGC’s for arbitrary irreducible representations:

vAm =
∑

m1+m2=m

(ωJ)2m2
qC

jka
m1m2m

vJm1
⊗ vKm2

. (19)

This follows immediately from (4) and the lemma:

Lemma 3.7. The map Vjω = Vj⊗V0ω → V0ω⊗Vj given by vjωm 7→ ω2mv0ω
0 ⊗vjm

is a Ŭq(sl2)-module isomorphism.

If VC is a subrepresentation of Hom(VJ , VL), then the corresponding CG
basis is zCm(L, J) =

∑
m1,m2

(ωL)2m2
qC

lja
m1m2m

vLm1
⊗ wJ

−1

m2
. If in addition VA , VB ,

and VC are components of Hom(VJ , VK), Hom(VK , VL), and VB⊗VA respectively,
then the image of the CG basis for VC under the projection to VBVA given by

ξCm =
∑

p1+p2=m

(ωB)2p2
qC

bac
p1p2m

zBp1
(L,K)zAp2

(K, J)

must be related to zCm(L, J) by a scalar multiple independent of m . It turns
out that this scalar is just qR

jkl
abc . The verification amounts to showing that the

additional factors of fourth roots of unity introduced by (4) and the intertwining
map V ∗K → VK−1 of Lemma 3.4 cancel each other out.

We obtain homogeneous coordinates xKJ ∈ Hom(CrJ ,CrK ) for XA in
End(V ) from the decomposition (18) by setting zAm(X) =

∑
KJ xKJ ⊗ zAm(K, J).

We can now completely determine the structure constants for E(V ).

Theorem 3.8. Let XA and YB be irreducible subrepresentations of E(V ), iso-
morphic to VA and VB respectively, with homogeneous coordinates xJK and yJK .
Then Y BXA contains a copy of VC if and only if the coefficients

zJL =
∑
K

yLKxKJqR
jkl
abc (20)

are not all zero, where qR
jkl
abc is the nonzero multiple of Wq(jkcb; al) defined in

(16). In this case, the zJL are the homogeneous coordinates for the unique subrep-
resentation isomorphic to VC .

Proof. Since YBXA is multiplicity free, it contains at most one copy of VC .
We assume without loss of generality that (BAC) is admissible.

The image of the CG basis for YB ⊗XA in Y bXa is given by the vectors

χCm =
∑
p1,p2

(ωL)2p2
qC

bac
p1p2m

(
∑
LQ

yLQ ⊗ zBp1
(L,Q))(

∑
KJ

xKJ ⊗ zAp2
(K, J)). (21)
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The only terms that contribute to the sum have Q = K . Rearranging and
substituting (12), we get

χCm = (
∑
LKJ

yLKxKJ)⊗ ξCm(L, J)

=
∑
LJ

(
∑
K

yLKxKJqR
jkl
abc)⊗ z

C
m(L, J)

(22)

as desired.
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