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Abstract. We consider the problem of finding all linear algebraic group-
subgroup pairs such that the rational invariants of the group and of the
subgroup coincide. In this paper the solution will be given for the case
where both the group and the subgroup are connected complex irreducible
linear groups.

1. Introduction

Let G be an algebraic group acting on an algebraic variety X. By polynomial
invariant of G we mean a polynomial function on X that is constant on G-orbits.
Similarly, a rational invariant of G is a rational function on X that is constant
on those G-orbits where it is defined.

Suppose H is an algebraic subgroup of G. We refer to a group-subgroup
pair (H,G) as simply a pair. Any invariant of G is an invariant of H, where the
converse normally is not true if H is a proper subgroup.

Definition 1.1. We call a pair (H,G) acting on X exceptional, if the fields of
rational invariants of H and G coincide: k(X)H = k(X)G. If H = G we say that
the pair (H,G) is trivial.

A general problem is to classify exceptional pairs. We consider the following
specific situation.

Let X = V be a finite dimensional vector space over C, and suppose
G ⊂ GL(V ) is a linear algebraic group. In this paper, we classify exceptional
pairs of connected irreducible linear groups.

From now on, we talk only about linear groups (unless specified otherwise),
so the letters G, H, . . . , now stand for linear groups, and the description ”acting
on V ” is often omitted. For a detailed explanation of the notation, see section 2.

One can compare a classification of exceptional pairs to the main theorem
of the Galois theory establishing a bijection between subgroups of the Galois group
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of a field extension L/K and subfields of L containing K. In other words, a finite
group is uniquely determined by its invariants (even in the most general situation of
any action on any algebraic variety). By classifying exceptional pairs we establish
that a group is almost always uniquely determined by its invariants for other class
of groups.

To the best of our knowledge, despite the naturality and simplicity of this
problem, it has not been considered before. However, there are two classical results
that play a major role in the classification of exceptional pairs.

In his diploma thesis in 1959, E.B.Vinberg classified simple irreducible
complex linear groups G ⊂ GL(V ) acting with an orbit open in V, so-called locally
transitive groups (alternatively, V is called a prehomogeneous vector space). A
locally transitive group cannot have non-trivial polynomial or rational invariants.
Thus, any locally transitive group with a locally transitive subgroup make an
exceptional pair.

Almost 20 years later, Sato and Kimura [13], and, in a simpler way, Shpiz
[14], completed the classification of irreducible locally transitive groups.

D.Montgomery and H.Samelson [7] in 1943, and A.Borel [1] in 1950, de-
scribed real groups that act transitively on spheres. They also provided the list of
inclusions between these groups. Any pair of a group and a subgroup transitive
on a sphere is exceptional.

This work would be impossible without constant support and advice from
E.B.Vinberg. I am grateful to A.Shalev in particular and to Mathematics Depart-
ment of Hebrew University of Jerusalem in general for their patience and support,
and for creating a very special warm atmosphere. I thank D.A.Timashev for nu-
merous consultations, F.Knop and D.Panyushev for valuable remarks on the text,
and my family for continuous inspiration.

2. Notation

All groups in this paper are connected complex reductive linear algebraic groups,
unless mentioned otherwise.

For brevity, we say that a pair (H,G) is connected, irreducible, etc., if both
H and G are connected, irreducible (as linear groups), etc.

C(V )G and C[V ]G denote the field of rational invariants, and the algebra
of polynomial invariants of G on V , respectively.

A pair (H,G) is a pair of a group G and a subgroup H.

O(G) is an orbit in general position of G.

G∗ is a stationary subgroup in general position of G, see section 3.

Z(G) is the center, and G′ is the commutator subgroup of G.

V/G :=SpecC[V ]G denotes the categorical quotient.

G̃ ./ G means G̃ is a castling transform of G; Ǧ stands for an immediate
castling transform of G; (H̃, G̃) ./ (H,G) means (H̃, G̃) is a simultaneous castling
transform of (H,G), see Definition 4.1.

ν(G) := tr.deg.C(V )G .

For an exceptional pair (H,G), ν(H,G) := tr.deg.C(V )H = tr.deg.C(V )G.

Suppose Gi ⊂ GL(Vi), i = 1, 2. Then G1 ⊗G2 denotes the representation
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of the group G1 ×G2 in the vector space V1 ⊗ V2.

SLn (SOn, Sp2n , resp.) as a linear group denotes the natural representa-
tion of SLn (SOn, Sp2n, resp.) as an algebraic group.

For G ⊂ GL(V ), ΛkG (SkG) denotes the representation of G in ΛkV
(SkV ).

Spink denotes the spin (or half-spin) representation of SOk.

For A a graded algebra without zero divisors, we denote by PQA the
subfield in QA spanned by the elements f

g
, where f and g are homogeneous of

the same degree, see section 3.2.

I(G) denotes the index set of a semisimple group G , see section 6.

g, h, . . . denote the respective tangent Lie algebras of the groups G, H, . . . .

A semisimple group G (or the corresponding algebra g) is reduced if for
any G̃ ./ G we have I(G) ≤ I(G̃); similarly, a pair (H,G) is reduced if for
any (H̃, G̃) ./ (H,G) we have I(G) ≤ I(G̃), see Definition 6.1. Here, for two
(unordered) number sets, A = {a0, . . . , as}, B = {b0, . . . , bt}, we define A < B , if
s ≤ t , ai ≤ bi for all i (upon a proper renumeration) and either s < t , or ai < bi
for some i.

A triple of groups (G,H, S), where H,S ⊂ G, is called a factorization if
G = HS, see section 7.

For a reductive algebra a, denote by a′ the semisimple part of a.

A semisimple algebra a is called strongly semisimple if it contains no ideals
of type A1. For a reductive algebra a, we denote by as the maximal strongly
semisimple subalgebra of a. We say as is the strongly semisimple part of a.

3. Outlines

1. Suppose (H,G) is a semisimple pair.

Geometrically, a semisimple pair (H,G) is exceptional if and only if the
closures of orbits in general positions for H and G coincide. Indeed, Rosenlicht’s
theorem [12] states that rational invariants separate (both G- and H -) orbits
in general position. It follows that an H -orbit in general position is open in a
G-orbit.

Furthermore, for semisimple linear groups, the field of rational invariants is
the quotient field of the algebra of polynomial invariants [15]. Therefore, (H,G)
is exceptional if and only if the algebras of polynomial invariants of H and G
coincide: C[V ]H = C[V ]G.

Let Gx ⊂ G denote the stationary subgroup of a point x ∈ V.

Definition 3.1. Suppose there is a subgroup G∗ ⊂ G such that Gx is a
conjugate of G∗ for x in a Zariski open subset in V. Then we call G∗ a stationary
subgroup in general position for the action of G on V.

For a reductive (in particular, semisimple) linear group, a stationary sub-
group in general position always exists [11], [5].

A large portion of our classification relies on the fact that for any nontrivial
exceptional pair (H,G), dimG∗ > 0 (Lemma 5.6(b)). This is a strong restriction
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on the group G. In [3],[4], Elashvili classified irreducible linear groups G with
dimG∗ > 0.

We consider separately the cases G∗ is reductive (section 8.) or nonreductive
(section 9.). We will see that if G∗ is reductive, and the pair (H,G) is exceptional,
then H acts transitively on the the homogeneous space G/G∗ , i.e., G = HG∗.
This leads to a further reduction. Namely, Onishchik [8],[9] classified triples of
reductive groups (G,H, S), where H,S are subgroups of G such that G = HS.
Combining [3],[4], [8] and [9], we prove that exceptional pairs with reductive G∗
are only those listed in Table A, and their castling transforms (see Definition 4.1).

Suppose G∗ is nonreductive. This case includes all irreducible linear groups
with trivial algebra of invariants, i.e., locally transitive groups [3],[4].

Based on the classification of locally transitive groups ([13], [14]), we de-
scribe locally transitive pairs (H,G) (Table L.) After that, we only need to look
for exceptional pairs with at least one nontrivial invariant. In reality, when G∗ is
nonreductive, there is only one type of G that has nontrivial algebra of invariants,
and it requires special attention.

2. Suppose G has a nontrivial center Z(G).

Let A be a graded algebra without zero divisors. Denote by PQA the
subfield in QA spanned by the elements f

g
, where f and g are homogeneous of

the same degree.

Geometrically, for a finitely generated algebra A, PQA is the field of func-
tions on the projectivization of SpecA. In particular, tr.deg.PQA =tr.deg.QA−1
if tr.deg.QA ≥ 1, and tr.deg.PQA = 0 if tr.deg.QA = 0. Therefore, given two al-
gebras A, B, such that tr.deg.QA >tr.deg.QB, and tr.deg.PQA =tr.deg.PQB,
we conclude tr.deg.QA = 1, and tr.deg.QB = 0.

Denote the commutator subgroup of G by G′. Since G is irreducible,
Z(G) ∼= C∗. Hence, by Lemmas 5.3 and 5.11, C(V )G = PQC[V ]G

′
.

Suppose H is semisimple. Then H ⊂ G′, and C(V )H = QC[V ]H . If
tr.deg.C[V ]G

′ ≥ 1, then (H,G) is exceptional follows tr.deg.C[V ]G
′ − 1 = tr.deg.

C[V ]H , which is impossible. If tr.deg.C[V ]G
′
= 0, then we obtain tr.deg.C[V ]H =

0, i.e., (H,G′) is a locally transitive semisimple pair.

Now suppose H is not semisimple, Z(H) = Z(G) = C∗. If (H ′, G′) is
exceptional, then (H,G) is also exceptional. Suppose (H ′, G′) is not exceptional,
i.e., tr.deg.C[V ]H

′
>tr.deg.C[V ]G

′
. Then, as we saw above, (H,G) is exceptional if

and only if tr.deg.C[V ]H
′
= 1, and tr.deg.C[V ]G

′
= 0. Using [13], [14], we describe

such pairs (H ′, G′) (Table R.)

4. The main result

In order to formulate the result, we first need to introduce an equivalence rela-
tion on the set of irreducible semisimple groups, as well as pairs, called castling
transform.

Suppose G0 ⊆ SL(V ). Consider the group G = G0 ⊗ SL(W ), dimW ≤
dimV , and the group Ǧ = G0 ⊗ SL(W̌ ) that acts on V ∗ ⊗ W̌ , where dim W̌ =
dimV − dimW. Then Ǧ∗ ∼= G∗ [4].

In particular, if dimV = dimW + 1, then (G0)∗ ∼= G∗.
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Definition 4.1. We say that the group Ǧ is an immediate castling transform
of the group G, and vice versa. We say that a group G̃ is a castling transform
of G, and write G̃ ./ G, if G̃ is a result of a sequence of immediate castling
transforms of G . We write (H̃, G̃) ./ (H,G) if the pair (H̃, G̃) is a simultaneous
castling transform of the pair (H,G).

When talking about pairs, we sometimes omit the word ”simultaneous”.

For an exceptional (H,G), denote ν(H,G) =tr.deg.C(V )H =tr.deg.C(V )G.

We will see in Lemma 5.7, that if (H,G) is an exceptional irreducible pair,
and (H̃, G̃) ./ (H,G), then the pair (H̃, G̃) is also exceptional, and ν(H̃, G̃) =
ν(H,G).

Note that if (H,G), and (G,K) are exceptional pairs, then (H,K) is
exceptional. Hence, we will assume that H is a maximal subgroup in G, unless
mentioned otherwise.

The following theorem is the main result of this paper. The notation is
explained in detail in section 2.

Theorem 4.2. Let (H,G) be a connected irreducible pair, where H is maximal
in G. Denote H0 = SLs ⊗ SLt ⊗ Xk, G0 = SLst ⊗ Xk, where Xk ⊆ SLk is
irreducible, and st > k.

(i) Suppose (H,G) is exceptional semisimple. If ν(H,G) = 0 then (H,G)
is isomorphic, up to castling transform, to one of the pairs from Table L, or to
(H0, G0). If ν(H,G) > 0 then (H,G) is isomorphic, up to castling transform, to
one of the pairs from Table A.

(ii) Conversely, all pairs from Tables L and A, as well as their castling
transforms, are exceptional.

(iii) Suppose (H,G) is exceptional, H ′, G′ are the commutator subgroups
of H, G, and G 6= G′. If H = H ′ then (H,G′) is isomorphic, up to castling
transform, to one of the pairs from Table L, or to (H0, G0). If H 6= H ′ then either
(H ′, G′) is an exceptional pair, or (H ′, G′) is isomorphic, up to castling transform,
to one of the pairs from Table R, or to (H0, G0).

(iv) Conversely, suppose G 6= G′. If H = H ′ and (H,G′) is, up to castling
transform, from Table L, then (H,G) is exceptional. If H 6= H ′ and (H ′, G′) is,
up to castling transform, from Table R, then (H,G) is exceptional.

H is maximal in G in all pairs in all tables.

Remark 4.3. 1. The group H0 may have zero, one, or more invariants, de-
pending on s ,t, and k values, and also on Xk .

2. Note that all exceptional pairs except for one have one or less invariant.

3. In Table A, the third column shows ν(H,G), and the last column shows
the generators degrees for the algebra of invariants (which is always polynomial).
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Table L.
H G

1 Sp2n SL2n

2 Λ2SL2n+1 SLn(2n+1)

3 Spin10 SL16

4 SLs ⊗ SLt, s > t SLst

5 SLn ⊗ Yk, k < n SLn ⊗Xk, Yk maximal in Xk ⊆ SLk

6 Sp2n ⊗ SL2k+1, 2k < n SL2n ⊗ SL2k+1

7 Λ2SL2n+1 ⊗ SL2 SLn(2n+1) ⊗ SL2

Table A.
H G ν deg

1 G2 SO7 1 2
2 Spin7 SO8 1 2
3 Spin9 SO16 1 2
4 Spin11 Spin12 1 4
5 SLn ⊗ Yn SLn ⊗Xn, Yn maximal in Xn ⊆ SLn 1 n
6 Sp2n ⊗ SL2 SO4n 1 2
7 G2 ⊗ SL2 SO7 ⊗ SL2 1 4
8 Spin7 ⊗ SL2 SO8 ⊗ SL2 1 4
9 Spin7 ⊗ SO3 SO8 ⊗ SO3 3 2,4,6
10 Spin7 ⊗ SL3 SO8 ⊗ SL3 1 6

Table R.
H ′ G′

1 S2SLn SLn(n+1)/2

2 Λ2SL2n SLn(2n−1)

3 Λ3SLn, n = 7, 8 SLn(n−1)(n−2)/6

4 Spin14 SL64

5 E6 SL27

6 SLn ⊗ SLn SLn2

7 Λ3SL6 Sp20

8 S3SL2 Sp4

9 Spin12 Sp32

10 E7 Sp56

11 SOn ⊗ SL2 Sp2n

12 Sp2n ⊗ SO3 Sp6n

13 Spin9 Spin10

14 Spin7 ⊗ SL2 Spin10

15 Λ2SL6 ⊗ SL2 SL15 ⊗ SL2

16 Λ2SL5 ⊗ SLn, n = 3, 4 SL10 ⊗ SLn

17 S2SL3 ⊗ SL2 SL6 ⊗ SL2

18 Spin10 ⊗ SLn, n = 2, 3 SL16 ⊗ SLn

19 E6 ⊗ SL2 SL27 ⊗ SL2

20 SOn ⊗ SLk, n > k > 1 SLn ⊗ SLk

21 Sp2n ⊗ SL2k, n > k > 1 SL2n ⊗ SL2k

22 Sp2n ⊗ SO3, n > 1 SL2n ⊗ SO3

23 Sp2n ⊗ SO3 Sp2n ⊗ SL3
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5. Preliminaries

Lemma 5.1. Suppose (H,G) is an exceptional pair acting on an algebraic
variety X. Suppose G acts on another variety Y, and π : X −→ Y is a surjective
G-equivariant homomorphism. Then (H,G) acting on Y is also an exceptional
pair.

Proof. Consider π∗ : C(Y ) −→ C(X), where (π∗f)(v) = f(π(v)). Then π∗

is G-equivariant and injective. Hence, C(Y )H 6= C(Y )G would imply C(X)H 6=
C(X)G.

Lemma 5.2. Suppose (H,G) is an exceptional reductive linear pair acting on
a vector space V , U ⊂ V is a G-invariant subspace. Then (H,G) acting on U is
also an exceptional pair.

Proof. Since G is reductive, there exists a G-invariant subspace U ′ such that
V = U ⊕ U ′. Denote by π : V −→ U the projection on U parallel to U ′. Then π
is G-equivariant, and, by Lemma 5.1, (H,G) acting on U is exceptional.

Till the end of this section, assume H and G are semisimple linear groups
acting on a vector space V, unless mentioned otherwise.

Denote V/G :=SpecC[V ]G (the categorical quotient).

Lemma 5.3. Let N ⊂ G be a normal subgroup. Then C[V ]G ∼= C[V/N ]G/N .
In particular, if N ⊂ H, and (H,G) is exceptional, then the pair (H/N,G/N)
acting on V/N is exceptional.

Corollary 5.4. Suppose (H,G) is an exceptional pair, G = G1 × G2, H =
H1 × G2. Take G′ = G1 × G′

2, H
′ = H1 × G′

2, so that G ⊂ G′ ⊂ GL(V ). Then
(H ′, G′) is also exceptional.

Proof. The homomorphism π : V/G2 −→ V/G′
2 is surjective and G1 -equiv-

ariant. By Lemma 5.3 , (H1, G1) acting on V/G2 is exceptional. Hence, by
Lemma 5.1, (H1, G1) acting on V/G′

2 is also exceptional, and, therefore, (H ′, G′)
is exceptional.

For a linear group G , denote by O(G) ⊂ V a G-orbit in general position.
Also, denote ν(G) = tr.deg.C(V )G . For a semisimple G, ν(G) = tr.deg.C[V ]G .

Lemma 5.5. (a) ν(G) = codim VO(G).

(b) (H,G) is an exceptional pair if and only if dimO(H) = dimO(G), or,
equivalently, ν(G) = ν(H).

Proof. (a) By Rosenlicht’s theorem [12], there exists a finite set of rational in-
variants that separates (both G- and H -) orbits in general position. By Lemma 2.1
[15], this finite set generates the field of rational invariants. Since G is semisimple,
the field of fractions of the algebra of polynomial G− invariants coincides with the
field of rational G− invariants: QC[V ]G = C(V )G (Th. 3.3 [15]). Thus (Corollary
2.3, [15]), ν(G) = tr.deg.C[V ]G = tr.deg.C(V )G = codim VO(G).

(b) C[V ]H = C[V ]G implies O(H) = O(G), and, therefore, by (a) ν(H) =
codim VO(H) = codim VO(G) = ν(G).
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Lemma 5.6. (a) ν(G) = dimV − dimG+ dimG∗;

(b) if (H,G) is a nontrivial exceptional pair, then dimG∗ > 0.

Proof. For x ∈ O(G), Gx is a conjugate of G∗. Hence, dimG = dimO(G) +
dimG∗. Combined with Lemma 5.5, this implies (a). Also, by Lemma 5.5, (b),
dimO(H) = dimO(G), hence dimG∗ = dimG − dimO(G) > dimH −
dimO(H) = dimH∗ ≥ 0.

Lemma 5.7. If (H,G) is an exceptional irreducible pair, and (H̃, G̃) ./ (H,G),
then the pair (H̃, G̃) is also exceptional, and ν(H̃, G̃) = ν(H,G).

Proof. We use the notation introduced in Definition 4.1. We may assume
(H̃, G̃) = (Ȟ, Ǧ) is an immediate castling transform of (H,G), i.e., H̃ = Ȟ =
H0 ⊗ SL(W̌ ) ⊂ G̃ = Ǧ = G0 ⊗ SL(W̌ ), where H0 ⊂ G0. Denote dimV = n,
dimW = k, then dim W̌ = n− k.

It’s enough to prove that ν(Ǧ) = ν(G). Indeed, since ν(H) = ν(G), this
would imply ν(Ȟ) = ν(H) = ν(G) = ν(Ǧ), and, therefore, (Ȟ, Ǧ) is exceptional
by Lemma 5.5.

We have Ǧ∗ ∼= G∗. By Lemma 5.6, ν(Ǧ) = dim (V ∗⊗W̌ )−dim Ǧ+dim Ǧ∗ =
n(n − k) − dimSLn−k − dimG0 + dim Ǧ∗ = nk − (k2 − 1) − dimG0 + dim Ǧ∗ =
dim (V ⊗W )− dimG+ dimG∗ = ν(G).

Lemma 5.8. ([2]). Suppose G = G1 × . . . × Gk, where each Gi is a
simple normal subgroup. If G acts irreducibly on V, then there exist vector spaces
V1, . . . , Vk such that Gi acts irreducibly on Vi, and V ∼= V1 ⊗ . . . ⊗ Vk (as
G-representations).

Lemma 5.9. Suppose G = G1× . . .×Gn is a semisimple group, and H ⊂ G is
a maximal semisimple subgroup. Then, under a proper renumeration, either (A)
H = H1×G2× . . .×Gn, where H1 is a maximal subgroup in G1; or (B) G1

∼= G2,
and H = H1×G3× . . .×Gn, where H1

∼= G1 is embedded in G1×G2 diagonally.
In particular, if G is an irreducible linear group, and H is an irreducible subgroup,
then (A) holds.

Lemma 5.10. ([2]). (1) Any maximal irreducible linear subgroup of SLn is
either simple, or a conjugate of SLs ⊗ SLt, st = n;

(2) Any maximal irreducible linear subgroup of Sp2n is either simple, or a
conjugate of SOs ⊗ Sp2t, st = n;

(3) Any maximal irreducible linear subgroup of SOn is either simple, or a
conjugate of SOs ⊗ SOt, or Sps ⊗ Spt, st = n.

Let A be a graded algebra without zero divisors. As in section 3.2, we
denote by PQA the subfield in QA spanned by the elements f

g
, where f and g

are homogeneous of the same degree.

Lemma 5.11. Suppose C∗ acts on A so that λ(f) = λdeg(f)f. Then (QA)C∗
=

PQA.
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6. Castling transform growth

Here we are going to prove a number of technical facts regarding the dimension
growth for the representation space of a semisimple linear group under castling
transform, to be used mostly in section 9.

Suppose G = Gk0 ⊗ SLk1 ⊗ . . . ⊗ SLks , Gk0 ⊂ SLk0 , s ≥ 0, ki ≥ 2,
where Gk0 does not contain a normal subgroup isomorphic (as a linear group) to
SLk for any k. If Gk0 = {id}, let k0 = 1. Then we say that the set of numbers
I(G) = {k0, k1, . . . , ks} is the index set of G .

Denote by G0, . . . , Gs the immediate castling transforms of G. Namely,
I(G0) = {k0, k0, . . . , ks} , I(Gi) = {k0, . . . , ki−1, ki, ki+1, . . . , ks} , where k0 =
(
∏

0≤j≤s kj) − 1, ki = (
∏

j 6=i kj) − ki, i = 1 . . . s. If ki is negative, we imply that
the castling transform Gi is not defined. Note that I(Gi) \ I(G) = {ki}. We say
that ki is the new element of I(Gi), i = 0 . . . s.

Suppose we have two (unordered) number sets, A = {a0, . . . , as}, B =
{b0, . . . , bt}. Define A < B , if s ≤ t , ai ≤ bi for all i (upon a proper renumeration)
and either s < t , or ai < bi for some i.

Definition 6.1. We say that a group G (or the corresponding algebra g) is
reduced if for any G̃ such that G̃ ./ G we have I(G) ≤ I(G̃). Similarly, we say
that a pair (H,G) is reduced if for any (H̃, G̃) such that (H̃, G̃) ./ (H,G) we
have I(G) ≤ I(G̃).

Clearly, for any G there is a sequence of immediate castling transforms
G ./ . . . , such that at each step the index set decreases. Hence, there exists a
reduced G̃ such that G̃ ./ G.

Denote m(G) = maxk∈I(G) k, i(G) = {i ∈ I(G)| ki = m(G)}. Denote
A = {k0, k1}, A1 = {k0, k0 − k1}, B = {k0}, B0 = {k0, k0 − 1}.

Lemma 6.2. (a) For i /∈ i(G), the new element ki is the maximal one in
I(Gi) : ki = m(Gi), and I(G) < I(Gi), except for the case I(G) = A, I(G1) = A1,
k0 ≤ 2k1.

(b) If i(G) 3 0, then (a) also holds for i = 0, except for the case I(G) = B,
I(G0) = B0.

(c) If I(G) < I(Gi), then ki = m(Gi) with the same two exceptions.

Proof. Suppose s ≥ 2. Take any i0 ∈ i(G). For any i /∈ i(G), i 6= 0, we have
|I(G)| = |I(Gi)|, and

∏
j 6=i kj ≥ 2ki0 ≥ ki + ki0 . Hence, ki = (

∏
j 6=i kj)− ki ≥ ki0 ≥

kj for all j ≤ s, and, therefore, m(Gi) = ki ≥ m(G).

We have |I(G0)| = |I(G)|+1 for all s. If s 6= 0, then k0 = (
∏

0≤j≤s kj)−1 >
ki0 implying m(G0) = k0.

For i /∈ i(G), or i = 0, (c) is stated in (a) and (b). Consider i ∈ i(G) 6= 0.
Then |I(Gi)| = |I(G)|, and {ki} = I(Gi) \ I(G). We have ki > ki ≥ kj for all
j ∈ I(G). Hence, ki = m(Gi)

Suppose G0 ./ . . . ./ Gl is a sequence of immediate castling transforms,
where G0 is reduced. Assume that the sequence doesn’t contain a ”loop” . . . ./
S ⊗ SL(U) ./ S ⊗ SL(U ′) ./ S ⊗ SL(U) ./ . . . . In terms of index sets, this means
that at any step of the sequence, the new element of the index set stays unchanged
under the next immediate castling transform.
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Corollary 6.3. I(G0) < . . . < I(Gl).

Proof. Induction on l. Since G0 is reduced, I(G0) < I(G1). Assume l ≥ 2, and
{I(Gl−2), I(Gl−1)} 6= {A,A1}, or {B,B0} (exceptional cases from the Lemma).
Suppose, Gl−1 = Gl−2

i . By assumption, I(Gl−2) < I(Gl−1), and, therefore, by
Lemma (c), the maximal element of Gl−1 is the new one: i ∈ i(Gl−1). Since there
are no loops, Gl = Gl−1

j for some j 6= i. Hence, by Lemma (a), I(Gl) > I(Gl−1). If

{I(Gl−2), I(Gl−1)} = {A,A1}, or {B,B0}, then Gl = Gl−1
0 , and I(Gl) > I(Gl−1).

Corollary 6.4. Suppose 0 ∈ i(G), s 6= 1, and G̃ ./ G, G̃ 6= G. Then
min(I(G̃) \ I(G)) ≥ mini≤sm(Gi) = kj0 , where kj0 = max1≤j≤s kj if s ≥ 2, or
j0 = 0 if s = 0. If s = 1, and G is reduced, then min(I(G̃)\ I(G)) ≥ k1 = k0−k1.

Corollary 6.5. Let (H,G) be a reduced pair. Assume G is not reduced, and
H is maximal in G. Then (i) (H,G) ∼= (Gn⊗Hm, Gn⊗SLm), where Hm ⊂ SLm

is a maximal subgroup, Gn ⊂ SLn, m < n. (ii) In particular, H is reduced.

Proof. (i) follows from Lemma 5.9, except for the fact m < n. Take G̃ ./ G,
G̃ reduced. Consider the shortest sequence of immediate castling transforms
G̃ ./ . . . ./ G. Then Corollary 6.3 implies that m is the new element in I(G),
and, therefore, m ≤ n− 1 < n.

(ii) Take any H̃ ./ H. Suppose there exists G̃ ./ G such that (H̃, G̃) ./
(H,G). Then we have I(G) ≤ I(G̃), implying I(H) ≤ I(H̃). If there exists no
G̃ ./ G such that (H̃, G̃) ./ (H,G), then Hm = SLs ⊗ SLt (see Lemma 5.10) and
H̃ = Gn⊗SLnt−s⊗SLt. Since n > m, we have s < m < n =⇒ nt− s > nt−n >
n > s =⇒ I(H̃) > I(H).

7. Factorizations

The following facts are implications of [8],[9] that will be used in section 8.

Throughout this section, let G be a connected reductive algebraic group,
H,S ⊂ G be algebraic subgroups, and g, h, s be the respective tangent Lie alge-
bras. A triple (G,H, S) is called a factorization if G = HS , i.e., ∀g ∈ G there
exist h ∈ H and s ∈ S such that g = hs . We say that a factorization (G,H, S)
is trivial if G = H or G = S.

Correspondingly, a triple of Lie algebras (g, h, s) is called a factorization if
g = h + s.

Lemma 7.1. If (G,H, S) is a factorization, then (g, h, s) is also a factoriza-
tion. If H and S are reductive, then the converse is also true.

Proof. Follows from Lemma 1.3 [8], Th.3.1 [9].

Let g and h ⊂ g be semisimple Lie algebras, s ⊂ g be a reductive Lie
algebra.

For a reductive algebra a, denote by a′ the semisimple part of a.
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Table O.
g h s

sl2n, n > 1 sp2n sl2n−1

sl2n, n > 1 sl2n−1 sp2n

so2n, n > 1 sln ⊕ sl∗n so2n−1

so2n, n > 1 so2n−1 sln ⊕ sl∗n
so4n, n > 1 sp2n ⊕ sl2 so4n−1

so4n, n > 1 so4n−1 sp2n ⊕ sl2
so7 g2 so6

so7 so6 g2

so7 g2 so5

so8 spin7 so5

so8 spin7 so6

so8 spin7 so7

so8 so7 spin7

so8 so5 ⊕ so3 spin7

so16 spin9 so15

so16 so15 spin9

Lemma 7.2. The triple (g, h, s) is a factorization ⇐⇒ (g, h, s′) is a factoriza-
tion. In particular, if s is commutative, then the factorization (g, h, s) is trivial.

Proof. Follows from Th.1.1[8], Th.3.2 [9].

Definition 7.3. ([8], [9]). A semisimple algebra a is called strongly semisimple
if it contains no ideals of type A1. For a reductive algebra a, we write a = as⊕ar,
where as is a sum of all simple ideals not of type A1, and ar is a sum of the center,
and of all simple ideals of type A1. We call as the strongly semisimple part of a.

Suppose s is semisimple.

Lemma 7.4. Let (hr)gr , (sr)gr be the projections of hr, sr on gr . Then (g, h, s)
is a factorization if and only if both (gs, hs, ss) and (gr, (hr)gr , (sr)gr) are factor-
izations. In particular, if ss = 0 and either (a) gr = 0, or (b) sr

gr = 0, then the
factorization (g, h, s) is trivial.

Proof. Follows from Th.5.1 [8], Th.3.3 [9].

Suppose s ⊂ g are strongly semisimple algebras, and let g = g1 ⊕ . . .⊕ gk,
s = s1 ⊕ . . . ⊕ sl, where g1 . . . gk, s1 . . . sl are simple ideals. Assume h ⊂ g is a
maximal semisimple subalgebra of the form h = h1 ⊕ g2 ⊕ . . .⊕ gk. Denote by sij

the projection of si on gj.

Lemma 7.5. Suppose (g, h, s) is a nontrivial factorization. Then, for some i,
either si1 = g1, or (g1, h1, si1) is a factorization from Table O.

Proof. Follows from Th.4.3 [9].
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8. G semisimple, G∗ reductive

In this section we assume that (H,G) is a nontrivial exceptional connected irre-
ducible semisimple pair such that G∗ is reductive. The result of this section is a
list of such pairs (H,G) up to castling transform (Table A).

If G∗ is reductive, then the action of H on O(G) ∼= G/G∗ is stable
[6]. On the other hand, this action is locally transitive, since, by Lemma 5.5,
dimO(H) = dimO(G). Hence, H acts transitively on G/G∗.

It’s easy to see (Prop.5.1 [8]) that H acts transitively on a G-homogeneous
space G/G∗ if and only if the triple (G,H,G∗) is a factorization if and only if (see
Lemma 7.1) (g, h, g∗) is a factorization, where g∗ is the tangent algebra of G∗.

By Lemma 5.6(b), dim g∗ > 0. The works of Elashvili [3], [4] provide a list
of irreducible semisimple algebras g with dim g∗ > 0 (we refer to it as Elashvili
list).

In the following, we use the notation of sections 6., 7. See also section 2.

Assume (g, h, g∗) is a nontrivial factorization. We may assume H is maxi-
mal in G.

By Lemma 7.2, g∗ cannot be commutative. Lemma 7.4 in turn eliminates
algebras g where the strongly semisimple part (g∗)

s of g∗ is trivial and either (a)
g is strongly semisimple, or (b) the strongly semisimple part gs of g contains all
type A1 ideals of g∗.

Assume g∗ has a semisimple ideal not of type A1.

Lemma 8.1. Suppose (H,G) is a reduced pair. Then G is reduced.

Proof. Assume G is not reduced. By Corollary 6.5, (H,G) ∼= (Gn⊗Hm, Gn⊗
SLm), where Hm ⊂ SLm is a maximal subgroup, Gn ⊂ SLn, m < n. Note that
since G is not reduced, and G∗ is reductive, we have m > 2.

Take a reduced G̃, G̃ ./ G. Denote Lie(G̃∗) = g̃∗, Lie(Hm) = hm, s =
(g∗)

s. We have g̃∗ ∼= g∗. Let sm denote the projection of s into slm. Since (g, h, s)
is a factorization (Lemma 7.4), the triple (slm, hm, sm) is also a factorization.
Lemma 7.5 implies then that either sm = slm, or (slm, hm, sm) ∼= (sl2k, sp2k, sl2k−1)
for some k (note that h = sl2k−1 cannot hold due to (Cm)H = 0). This is only
possible if s has an ideal isomorphic to slt for some t > 2. In Table 1 we list all
reduced algebras g̃ such that s = (g̃∗)

s satisfies this condition [3],[4].

We see that t = 3 in all cases in Table 1 except for case 3, where t = 5, and
case 4, where t = 6. However, Corollary 6.4 implies that m > 6 except for cases
7 and 8, where m ≥ 6. This contradiction finishes the proof of Lemma 8.1.

Furthermore, suppose g has a simple ideal ḡ that contains (g∗)
s. Then,

unless ḡ appears in Table O (as g) together with (g∗)
s (as s), a triple (g, h, g∗)

is not a factorization by Lemma 7.5 for any h ⊂ g. Hence, we can disregard such
algebras.

Table 2 presents the remaining part of Elashvili list.
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Table 1.
g̃ (g̃∗)

s

1 Λ3sl6 sl3 ⊕ sl3
2 Λ3sl8 sl3
3 spin11 sl5
4 spin12 sl6 ⊕ sl6
5 spin13 sl3 ⊕ sl3
6 Λ3

0sp6 sl3
7 g2 sl3
8 spin7 ⊕ sl2 sl3
9 spin9 ⊕ sl2 sl3
10 f4 ⊕ sl2 sl3
11 e6 ⊕ sl3 sl3
12 e6 ⊕ sl2 sl3

Table 2.
g (g∗)

s

Λ2sl2n Λ2sp2n

so7 so6

so7 g2

so2n so2n−1

spin12 sl6 ⊕ sl∗6
sln ⊕ xn xn, xn ⊆ sln
so7 ⊕ sl2 so5

so8 ⊕ sl2 so6

so8 ⊕ so3 so5

so8 ⊕ sl3 so5

Applying Lemma 7.5 to the algebras from Table 2, we obtain the exceptional
pairs listed in Table A.

9. G semisimple, G∗ nonreductive

In this section we classify semisimple locally transitive irreducible pairs, and then
show that any nontrivial exceptional semisimple irreducible pair (H,G) with
nonreductive G∗ is a locally transitive pair.

Suppose (H,G) is a semisimple irreducible locally transitive pair.

Lemma 9.1. Up to simultaneous castling transform, (H,G) is isomorphic to
one of the pairs from Table L, or to (H0, G0) as defined in Theorem 4.2.

Proof. We may assume that (H,G) is reduced (see Definition 6.1). First,
suppose G is reduced.

Lemma 9.2. G ∼= SLn, or G ∼= SLn ⊗Xm, where Xm ⊆ SLm, m < n.

Proof. According to [14], the following is the complete list of reduced semisim-
ple irreducible locally transitive linear groups:
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(1)SLn, (2)Sp2n, (3)Λ2SL2k+1, (4)Spin10, (5)SLn ⊗ Xm, where Xm ⊆
SLm, m < n, (6)Sp2n ⊗ SL2k+1, where 2k < n, (7)Λ2SL2k+1 ⊗ SL2.

In Th.2.3 [2], Dynkin listed all inclusions A ⊂ B between irreducible linear
groups such that B is not isomorphic to SLn, Sp2n, or SOn (as a linear group).
This theorem, combined with Lemmas 5.9 and 5.10, implies that if G is isomorphic
to (2), (3), (4), (6) or (7), then it does not have a proper locally transitive subgroup.
Hence, G has to be isomorphic to (1) or (5).

Suppose G ∼= SLn. By Lemma 5.10, H is isomorphic to one of Sp2n,
Λ2SL2k+1, Spin10, SLs ⊗ SLt, s > t (entries 1− 4 of Table L). 1

Now suppose G ∼= SLn⊗Xm. By Lemma 5.9, either H ∼= SLn⊗Ym, where
Ym ⊂ Xm is maximal, or H ∼= Xn ⊗Xm, where Xn ⊂ SLn is maximal.

The group SLn ⊗ Ym is locally transitive (entry 5 of Table L). Consider
H = Xn⊗Xm. By Lemma 5.10, Xn is either simple, or Xn = SLs⊗SLt, st = n.

Suppose Xn is simple. Since SLn ⊗Xm is reduced, H is locally transitive
if and only if Xn

∼= Λ2SL2k+1, Xm
∼= SL2, or Xn

∼= Sp2l, Xm
∼= SL2k+1 (entries

6− 7 of Table L).

Now suppose Xn
∼= SLs⊗SLt. Then H may be locally transitive, and may

be not, depending on s, t,m , and, for certain s, t,m values , on Xm (see Remark
to Theorem 4.2).

The following Lemma 9.3 finishes the proof of Lemma 9.1.

Lemma 9.3. Suppose G is not reduced. Then (H,G) ./ (SLn ⊗ Xm, SLn ⊗
SLm), 2m > n > m (entry 5 of Table L).

Proof. By Corollary 6.5, (H,G) ∼= (Gn⊗Hm, Gn⊗SLm), where Hm is maximal
in SLm, Gn ⊆ SLn, n > m, and, in particular, H is reduced.

Since H is reduced, the only option is H = SLr ⊗ Xk, k < r. Suppose
I(Xk) = {k0, . . . , kt}. Then either (a) m = k0, n = k1 . . . ktr, or (b) m = k1k2,
n = k0k3 . . . ktr. Since G is not reduced, we have m > n − m, i.e., 2m > n.
This implies in case (a) 2k0 > k1 . . . ktr =⇒ k1 = . . . = kt = 1, 2m = 2k0 > r,
and in case (b), analogously, k0 = k3 = . . . = kt = 1, 2m = 2k1k2 > r. Hence,
H ∼= SLn ⊗Xm ⊂ G ∼= SLn ⊗ SLm, 2m > n.

Now we are going to look for exceptional pairs with nontrivial algebra of
invariants, i.e., with ν(H,G) > 0.

Any simple G with nonreductive G∗ is locally transitive [3]. According to
[4], there is only one type of semisimple (and not simple) reduced groups G with
nonreductive G∗ that are not locally transitive. Namely, this is G0 = X⊗Sp(W ),
where X ( SL(U), dimU < dimW, dimU is odd. Let V 0 = U ⊗W denote the
representation space.

Assume (H,G) is an exceptional pair such that G ./ G0. Lemmas 9.4 and
9.6 show that (H,G) is trivial.

Lemma 9.4. Suppose G = G0. Then H = G.

1Note that if s = t, then the group SLs ⊗ SLt has one invariant, i.e. not locally transitive.
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Proof. By Lemma 5.8, we have H = H(U) ⊗ H(W ), H(U) ⊆ X , H(W ) ⊆
Sp(W ).

Lemma 9.5. H(U) = X.

Proof. We have V 0 = U ⊗W ∼=Hom(U∗,W ). Suppose ψ ∈Hom(U∗,W ). Let
b : W×W → C denote the non-degenerate skew-symmetric bilinear form preserved
by Sp(W ).

Define a mapping µ :Hom(U∗,W ) → Λ2U∗ by µ(ψ)(x, y) = b(ψ(x), ψ(y)),
x, y ∈ U. Since dimW > dimU, µ is surjective.

The action of the group G on U ⊗W induces, by means of µ, the natural
action of X on Λ2U∗. Since (H,G) is exceptional, the pair (Λ2H(U),Λ2X) should
be also exceptional. If H(U) 6= X then dim Λ2X∗ > 0, and, by Th.7 [4], this
implies that X = SO(U∗). As follows from section 8., any exceptional pair of the
form (Λ2H(U),Λ2SO(U)) is trivial. Hence, H(U) = X.

We have (H,G) = (X ⊗ H(W ), X ⊗ Sp(W )). By Corollary 5.4, the pair
(H1, G1) = (SL(U) ⊗ H(W ), SL(U) ⊗ Sp(W )) is also exceptional. Since dimU
is odd, G1 is locally transitive. By Lemma 9.1, H1 = G1, H(W ) = Sp(W ), and
H = G.

The rest of the section is devoted to the proof of

Lemma 9.6. Suppose G 6= G0. Then H = G.

Proof. We have G∗ ∼= (G0)∗. We will show that if (H,G) is a nontrivial pair,
then this equality cannot hold.

We may assume that (H,G) is a reduced pair, and, as always, that H is a
maximal subgroup of G. Then, by Corollary 6.5, (H,G) ∼= (Gn⊗Hm, Gn⊗SLm),
where Hm is maximal in SLm, Gn ⊆ SLn, n > m, and, in particular, H is
reduced.

Denote dimU = M < dimW = 2N.

Lemma 9.7. m ≥ 1
3
(16N + 1). In particular, m ≥ 11.

Proof. We use the notation of Lemma 6.2. Since X 6= SL(U), G0 satisfies
the conditions of Corollary 6.4 with s 6= 1. If s = 0 , then Corollary 6.4 implies
m ≥ 2NM − 1 ≥ 3(2N) − 1 ≥ 1

3
(16N + 1) for all N > 1. If s ≥ 2, then,

since ki ≥ 3 for all i , we have kj0 ≤ 1
3
M and, therefore, m ≥ 2N · 3 − 1

3
M ≥

2N · 3− 1
3
(2N − 1) = 1

3
(16N + 1).

Lemma 9.8. dim (G0)∗ ≤ 2N2 − 5N + 4.

Proof. For a given N , dimG0
∗ is maximal if X = SO(U) ([4]). Hence,

dim (G0)∗ ≤ 1
2
(2N − M)2 + 1

2
(2N − 1). Since M ≥ 3, we obtain dim (G0)∗ ≤

1
2
(2N − 3)2 + 1

2
(2N − 1) = 2N2 − 5N + 4.
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Corollary 9.9. dim (G0)∗ <
1
2
m2 −m− 1.

Proof. The function 2N2 − 5N + 4 monotone increases for N ≥ 2. Since
N ≤ 1

16
(3m− 1) by Lemma 9.7, we get dim (G0)∗ ≤ 2( 1

16
(3m− 1))2− 5( 1

16
(16N +

1)) + 4 = 18
162m

2 − ( 12
162 + 15

16
)m + 2

162 + 5
16

+ 4 < 1
14
m2 − 15

16
m + 4. Since m ≥ 11,

this implies dim (G0)∗ <
1
2
m2 −m− 1.

Lemma 9.10. For all m ≥ 11, and for any proper irreducible subgroup Hm ⊂
SLm, dimHm ≤ 1

2
(m2 +m).

Proof. It’s enough to consider maximal subgroups Hm ⊂ SLm , that is, Hm

simple, or Hm = SLs ⊗ SLt, st = m.

Lemma 3.2 [8] implies that if Hm = SLk as an algebraic group (in a
representation different from the natural one), then m > 2k + 2, and, therefore,
k < 1

2
m− 1 < 1

2
m implying dimHm = k2 − 1 < (1

2
m)2 − 1 < 1

2
(m2 +m).

If Hm = Sp2k (as an algebraic group), then m ≥ 2k , and, therefore,
dimHm = 2k2 + k ≤ 1

2
(m2 +m).

If Hm = SOk (as an algebraic group), then m ≥ k , and, therefore,
dimHm = 1

2
(k2 − k) < 1

2
(m2 +m).

For Hm = E6, E7, E8, F4, and G2 (again, as an algebraic group), m ≥
27, 56, 248, 26, and 7 respectively, and, therefore, dimHm ≤ 1

2
(m2 +m) holds for

all these groups.

For Hm = SLs ⊗ SLt, we have dimHm = s2 + t2 − 2, and maxst=m(t2 +
s2 − 2) = 22 + m2

22 − 2 = m2

4
+ 2, that is, dimHm ≤ m2

4
+ 2 < 1

2
(m2 +m).

Lemma 9.11. dimHm > 1
2
m2 +m.

Proof. Since (H,G) is exceptional, we have dimH ≥ dimO(H) = dimO(G) =
dimG−dimG∗, and, therefore, dimG−dimH ≤ dimG∗ = dimG0

∗ <
1
2
m2−m−1

by Corollary 9.9. On the other hand, dimG − dimH = dimSLm − dimHm =
m2−1−dimHm. Combining, we get dimHm > m2−1−(1

2
m2−m−1) = 1

2
m2+m.

However, since 1
2
(m2 + m) < 1

2
m2 + m, Lemma 9.11 and Lemma 9.10

contradict each other.

10. G not semisimple

In this section we classify connected irreducible exceptional pairs (H,G), where
G is not semisimple.

As we saw above (section 3.2), a classification of such pairs reduces to a
classification of semisimple irreducible pairs (H ′, G′), where G′ is locally transitive,
and H ′ has exactly one invariant, i.e., ν(H ′) = 1. The latter is similar to the
classification of locally transitive pairs, section 9.

As always, we will assume H ′ is maximal in G′.
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Lemma 10.1. Up to simultaneous castling transform, (H ′, G′) is isomorphic
to one of the pairs from Table R, or to (H0, G0) as defined in Theorem 4.2.

Proof. We may assume (H ′, G′) is reduced. First, suppose G′ is reduced.

In [14],[13], we find the list of reduced semisimple irreducible linear groups
G with tr.degC[V ]G ≤ 1. Similarly to the proof of Lemma 9.1, we use [2] to find
all reduced pairs (H ′, G′) with tr.degC[V ]H

′
= 1 and tr.degC[V ]G

′
= 0, see Table

R and Remark to Theorem 4.2.

The following Lemma 10.2 (analogous to Lemma 9.3) finishes the proof of
Lemma 10.1.

Lemma 10.2. Suppose G′ is not reduced. Then (H ′, G′) ./ (Sp4 ⊗ SO3, Sp4 ⊗
SL3) (entry 23 of Table L).

Proof. By Corollary 6.5, (H ′, G′) ∼= (Gn ⊗ Hm, Gn ⊗ SLm), where Hm is
maximal in SLm, Gn ⊆ SLn, n > m, and H ′ is reduced.

We have (Lemma 5.10) either Hm
∼= SLs ⊗ SLt, st = m, or Hm is

simple. Since H ′ is reduced and n > m, the only option, according to [14], is
H ′ = Sp2k⊗SO3, k > 1. Since G′ is not reduced, we have 3 > 2k− 3, i.e., k = 2.

11. Attempt to generalize

The next step naturally would be to try to classify reducible semisimple exceptional
pairs. However, we face the phenomenon of ”blinking kernels”, which makes such
classification look unapproachable. To explain that, let us first define two ”good”
special cases of reducible pairs, namely, direct sums and locally faithful pairs.

Let G1, . . . , Gn be linear groups acting on V1, . . . , Vn respectively. Suppose
H1 ⊂ G1, . . . , Hn ⊂ Gn are subgroups. Denote G = G1 × . . . × Gn, and H =
H1 × . . .×Hn ⊂ G.

Definition 11.1. The action of the group G on the sum V = V1 ⊕ . . .⊕ Vn is
called a direct sum of the actions of G1, . . . , Gn. The pair (H,G) is called a direct
sum of pairs (Hi, Gi).

It’s easy to see that a direct sum of exceptional pairs is an exceptional
pair, and vice versa, if a direct sum of pairs is exceptional then every summand is
exceptional.

Definition 11.2. An action of G on V is called locally faithful if all invariant
irreducible subspaces U ⊆ V are faithful (as G-representations).

For a classification of locally faithful exceptional pairs, one can extend the
ideas exploited for irreducible exceptional pairs.

Now suppose (H,G) is an arbitrary semisimple exceptional pair, V =
V1 ⊕ . . . ⊕ Vn, where Vi is irreducible G-invariant for all i. By Lemma 5.2,
(H,G) acting on Vi is an exceptional pair. Denote by αi the restriction map
αi : G −→ GL(Vi), and let G ∼= Gi×Ker(αi). There exist three options:
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1) Gi∩Gj = {id} for all i 6= j. Then G is a direct sum of G1, . . . Gn. Hence,
in this case, we reduce the problem of classification for reducible exceptional pairs
to the irreducible case.

2) Gi = Gj for all i, j. Then G is locally faithful.

3) ∃i 6= j such that Gi ∩ Gj 6= {id} and Gi 6= Gj . This case is what we
call ”blinking kernels”. When it happens, the structure of the action of (H,G) on
V in general becomes hardly observable.
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