## **On Inverse Limits of Finite Dimensional Lie Groups**

A. A. George Michael

Communicated by K. H. Hofmann

**Abstract.** We give a short proof of the Hofmann–Morris Theorem characterizing inverse limits of finite dimensional Lie groups [Hofmann, K. H., and S. A. Morris: Projective limits of finite dimensional Lie groups, Proc. Lond. Math. Soc. 87 (2003), 647–676, Theorem 4.7]. The proof depends on the Gleason–Palais characterization of finite dimensional Lie groups [Gleason, A., and R. Palais: On a class of transformation groups, Amer. J. Math. 79 (1957), 631–648, Theorem 7.2]. Mathematics Subject Classification: 22A05

Keywords and phrases: Finite dimensional Lie group, inverse limit

In [4], Theorem 4.7, Hofmann and Morris showed that if a topological group G is an inverse limit of finite dimensional Lie groups, then every neighborhood of 1 in G contains a closed normal subgroup of G with a finite dimensional Lie quotient group G/N. (See also [5], Chapter 3.) The proof of this theorem is quite involved. In this paper we obtain a short proof of this theorem using the Gleason-Palais characterization of finite dimensional Lie groups [3], Theorem 7.2, which in turn depends on the solution of Hilbert's Fifth Problem.

We shall use use the following basic functorial construction: For any topological group K, we let  $\mathfrak{L}(K)$  be the set of all continuous group homomorphisms  $f: \mathbb{R} \to K$  equipped with the compact open topology where  $0 \in \mathfrak{L}(K)$  denotes the trivial homomorphism. For  $r \in \mathbb{R}$ ,  $f \in \mathfrak{L}(K)$ , let  $rf \in \mathfrak{L}(K)$  be defined by rf(t) = f(rt) for all  $t \in \mathbb{R}$ . Define the continuous map exp:  $\mathfrak{L}(K) \to K$  by  $\exp(f) = f(1)$  for  $f \in \mathfrak{L}(K)$ . If  $K_1$  and  $K_2$  are two topological groups and if  $\phi: K_1 \to K_2$  is any continuous group homomorphism, we define the continuous map  $\mathfrak{L}(f): \mathfrak{L}(K_1) \to \mathfrak{L}(K_2)$  by  $\mathfrak{L}(\phi)(f) = \phi \circ f$ . Then  $\mathfrak{L}(\phi)(rf) = r\mathfrak{L}(\phi)(f)$  for all  $r \in \mathbb{R}$ ,  $f \in \mathfrak{L}(K_1)$  and  $\exp_{K_1} \circ \mathfrak{L}(\phi) = \phi \circ \exp_{K_1}$ .

Now we shall prove

**Theorem.** (Hofmann-Morris [4], Theorem 4.7) For a Hausdorff topological group G, the following two statements are equivalent:

- 1. G is the inverse limit of finite dimensional Lie groups.
- 2. G is a complete topological group that has a filter basis of closed normal subgroups N converging to  $1 \in G$  such that all quotient groups G/N are finite dimensional Lie groups.

ISSN 0949–5932 / \$2.50 © Heldermann Verlag

**Proof.** Since the implication  $2 \Rightarrow 1$  is straightforward (see e.g. [2], TGIII. 60, Proposition 2) we have to concentrate on the proof of the implication  $1 \Rightarrow 2$ .

We assume that  $G = \lim_{i} G_{i}$  for finite dimensional Lie groups  $G_{i}$ ,  $i \in I$ and we write  $\mathfrak{g}$  for  $\mathfrak{L}(G)$  and  $\mathfrak{g}_{i}$  for  $\mathfrak{L}(G_{i})$ . For  $i \in I$  let  $p_{i}: G \to G_{i}$  be the canonical projection and for i < j,  $i, j \in I$ , let  $\phi_{ij}: G_{j} \to G_{i}$  be the connecting homomorphism. We have  $\mathfrak{g} = \lim_{i} \mathfrak{g}_{i}$  and for each  $i \in I$ , the space  $\mathfrak{g}_{i}$  has a finite dimensional real vector space structure given by  $(X+Y)(t) = \lim_{n\to\infty} X(\frac{t}{n})Y(\frac{t}{n})$ and (rX)(t) = X(rt) for all  $r, t \in \mathbb{R}$ ,  $X, Y \in \mathfrak{g}_{i}$  such that  $\exp_{G_{i}}: \mathfrak{g}_{i} \to G_{i}$ is a local homeomorphism at 0. Further,  $\mathfrak{L}(\phi_{ij}): \mathfrak{L}(G_{j}) \to \mathfrak{L}(G_{i})$  is a real vector space homomorphism for all i < j,  $i, j \in I$  and  $\mathfrak{g}$  inherits a real topological vector space structure such that  $\mathfrak{L}(p_{i})$  is a continuous real vector space homomorphism for all  $i \in I$  and  $\exp_{G_{i}}$  (see [6], p. 118—124 and [2], TGI.28). The proof now proceeds through several lemmas.

**Lemma 1.** ([4], Lemma 3.2) For all  $i \in I$  there is a  $k_i > i$  in I such that  $\mathfrak{L}(p_i)(\mathfrak{g}) = \mathfrak{L}(\phi_{ik})(\mathfrak{g}_k)$  for all  $k \geq k_i$ .

**Proof.** Note that  $\mathfrak{L}(p_i)(\mathfrak{g}) \subseteq \bigcap_{k \geq i} \mathfrak{L}(\phi_{ik}(\mathfrak{g}_k))$ . Choose a  $k_i \geq i$  such that  $\dim \mathfrak{L}(\phi_{ik_i}(\mathfrak{g}_{k_i})) = \min{\{\mathfrak{L}(\phi_{ik}(\mathfrak{g}_k)) : k \geq i\}}$ . Then  $\mathfrak{L}(\phi_{ik})(\mathfrak{g}_k) = \mathfrak{L}(\phi_{ik_i})(\mathfrak{g}_{k_i})$  for  $k \geq k_i$ .

Let  $x \in \mathfrak{L}(\phi_{ik_i})(\mathfrak{g}_{k_i})$ . We have to show that  $x \in \mathfrak{L}(p_i)(\mathfrak{g})$ . Now  $\{\mathfrak{L}(\phi_{ik})^{-1}(x) : k \geq k_i\}$  is an inverse system of affine sets. Note that for  $k \geq k_i$ , the family

$$S_k = \{\emptyset\} \cup \{y + M : y \in \mathfrak{L}(\phi_{ik})^{-1}(x), M \le \ker \mathfrak{L}(\phi_{ik})\}$$

satisfies all the conditions of [1], p. 198, Theorem 1. Condition (ii) is the only non-trivial condition to check. So suppose that  $\{y_{\alpha} + M_{\alpha} \in S_k : \alpha \in J\}$ be a family of sets with the non-trivial finite intersection property. Provide every finite dimensional real vector space by its unique Hausdorff vector space topology and consider the natural homomorphism  $\psi: \mathfrak{g}_k \to \prod_{\alpha \in J} \mathfrak{g}_k/M_{\alpha}$ . We have  $(y_{\alpha} + M_{\alpha})_{\alpha \in J} \in \overline{\psi(\mathfrak{g}_k)} = \psi(\mathfrak{g}_k)$ , hence  $\bigcap_{\alpha \in J} (y_{\alpha} + M_{\alpha}) \neq \emptyset$ . It follows that the inverse limit S of  $\{\mathfrak{L}(\phi_{ik})^{-1}(x) : k \geq k_i\}$  is a nonempty subset of the limit  $\mathfrak{g}$  of the  $\mathfrak{g}_k$ . Let  $y \in S$ . Then  $x = \mathfrak{L}(p_i)(y)$ , and this had to be shown.

**Lemma 2.** For all  $i \in I$ , the quotient  $G / \ker p_i$  is locally path connected.

**Proof.** Let U be an open identity neighborhood of  $G/\ker p_i$ . We have to show that U contains a path connected identity neighborhood. Each morphism  $p_j: G \to G_j$  factors in the form

$$G \xrightarrow{q_j} G / \ker p_j \xrightarrow{p'_j} G_i$$

with a quotient morphism  $q_j$  and an injective morphism  $p'_i$  into a Lie group.

We may assume that there is an  $j \in I$ ,  $i \leq j$  and an open identity neighborhood V in  $G_j$  such that  $U = q_i(p_j^{-1}(V))$ . Let  $k_j \in I$  be determined as in Lemma 1 and consider any  $k \geq k_j$ . We have a commutative diagram



where  $\pi_{ik}(g \ker p_k) = g \ker p_i$ . Let B be an open ball around 0 in  $\mathfrak{g}_k$  chosen so small that  $\exp_{G_k}:\mathfrak{g}_k \to G_k$  maps B homeomorphically onto an open identity neighborhood W of the Lie group  $G_k$  and that  $\phi_{jk}(W) \subseteq V$ . Then  $p_k^{-1}(W) \subseteq p_j^{-1}(V)$ , and thus  $U' = q_i(p_k^{-1}(W))$  is an open identity neighborhood of  $G/\ker p_i$  that is contained in U. The Lemma will be proved if we show that U' is ruled by local one-parameter subgroups. So let  $u \in U'$ . Then there is a  $z \in p_k^{-1}(W)$  such that  $u = q_i(z)$ . Since  $p_k(z) \in W = \exp_{G_k}(B)$  there is an  $X \in B \subseteq \mathfrak{g}_k$  such that  $p_k(z) = \exp_{G_k} X$ . Now we apply Lemma 1 in order to observe that  $\mathfrak{L}(\phi_{jk})(\mathfrak{g}_k) = \mathfrak{L}(\phi_{jk})(\mathfrak{g})$ , and therefore  $\mathfrak{L}(\phi_{ik})(\mathfrak{g}_k) = \mathfrak{L}(\phi_{ij})(\mathfrak{g})$ . For all  $t \in \mathbb{R}$  we have  $\phi_{ik}(\exp_{G_k} tX) = \exp_{G_i} t\mathfrak{L}(\phi_{ik})(X) = \exp_{G_i} t\mathfrak{L}(p_i)(Y) = p_i(\exp_G tY) = p_i'(q_i(\exp_G Y))$ . Since  $p_i'$  is injective,  $u = q_i(\exp_G Y)$ .

As B is convex,  $[0,1] \cdot X \subseteq B$  and thus  $\exp_{G_k}[0,1] \cdot X \subseteq W$ . So for  $t \in [0,1]$ , we have  $p_k(\exp_G tY) = \exp_{G_k} t\mathfrak{L}(p_k)Y = \exp_{G_k} tX \in W$ , whence  $\exp_G tY \in p_k^{-1}(W)$  and thus  $q_i(\exp_G tY) \in U'$ . Hence  $t \mapsto q_i(\exp_G tY) : [0,1] \to U'$  is a path connecting the identiy and u in U', proving our claim.

**Lemma 3.** If C is a compact subset of  $G/\ker p_i$ , then  $\dim C \leq \dim G_i$ .

**Proof.** The injective morphism  $p'_i: G/\ker p_i \to G_i$  of topological groups maps the compact space C homeomorphically to a subspace of the Lie group  $G_i$ . Thus  $\dim C = \dim p'_i(C) \leq \dim G_i$ .

We now record the

**Gleason–Palais Theorem.** ([4], Theorem 7.2) A locally arcwise connected topological group G in which the compact metrizable subspaces are of bounded dimension is a Lie group.

Finally we finish the proof of the theorem. By Lemmas 2 and 3 and the Gleason–Palais Theorem, each  $G/\ker p_i$  is a Lie group. Since the filterbasis  $\{\ker p_i : i \in I\}$  converges to 1, this completes the proof.

The two conditions of the Gleason–Palais Theorem characterising a Lie group are sufficient and necessary. Neither condition alone is sufficient: The character group  $\widehat{\mathbb{Q}}$  of the discrete additive group of rationals is a one dimensional compact abelian non-Lie group (failing to be locally connected); the additive group  $L^1([0,1],\mathbb{Z})$  of all (equivalence classes modulo null functions of) integrally valued Lebesgue integrable functions is a complete, contractible and locally contractible metric topological abelian group that has no one parameter subgroups whatsoever (except the constant one). **Corollary.** Let  $G = \lim_{i} G_{i}$  be a projective limit of finite dimensional Lie groups  $G_{i}$ , and let  $p_{i}: G \to G_{i}$  be the canonical limit projections. Then  $\{\ker p_{i} : i \in I\}$  is a filter base of closed normal subgroups of G that converges to  $1 \in G$ , and all quotient groups  $G/\ker p_{i}$  are finite dimensional Lie groups.

**Conjecture.** For a Hausdorff topological group G, the following two statements are equivalent:

- 1. G is the inverse limit of locally compact groups.
- 2. G is a complete topological group that has a filter basis of closed normal subgroups N converging to  $1 \in G$  such that all quotient groups G/N are locally compact.

## References

- [1] Bourbaki, N., "Theory of Sets," Hermann, Paris, 1968.
- [2] —, "Topologie Générale," Chap. 1 à 4, Hermann, Paris, 1971.
- [3] Gleason, A., and R. Palais, On a class of transformation groups, Amer. J. Math. **79** (1957), 631–648.
- [4] Hofmann, K. H., and S. A. Morris, *Projective limits of finite dimensional Lie groups*, Proc. Lond. Math. Soc. **87** (2003), 647–676.
- [5] —, "The Lie Theory of Connected Pro-Lie groups," Europ. Math. Soc. Publ. House, 2006, xvii+665pp., to appear.
- [6] Kaplansky, I., "Lie Algebras and Locally Compact Groups," Chicago Lectures in Math., University of Chicago Press 1971.

A. A. George Michael Department of Mathematics Voorhees College Denmark, SC 29042 USA adelgeorge@yahoo.com

Received June 9, 2005 and in final form August 1, 2005