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On Inverse Limits of Finite Dimensional Lie Groups
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Abstract. We give a short proof of the Hofmann—Morris Theorem
characterizing inverse limits of finite dimensional Lie groups [Hofmann, K.
H., and S. A. Morris: Projective limits of finite dimensional Lie groups,
Proc. Lond. Math. Soc. 87 (2003), 647676, Theorem 4.7]. The proof
depends on the Gleason—Palais characterization of finite dimensional Lie
groups [Gleason, A., and R. Palais: On a class of transformation groups,
Amer. J. Math. 79 (1957), 631-648, Theorem 7.2].
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In [4], Theorem 4.7, Hofmann and Morris showed that if a topological group G
is an inverse limit of finite dimensional Lie groups, then every neighborhood of
1 in G contains a closed normal subgroup of G with a finite dimensional Lie
quotient group G/N. (See also [5], Chapter 3.) The proof of this theorem is
quite involved. In this paper we obtain a short proof of this theorem using the
Gleason—Palais characterization of finite dimensional Lie groups [3], Theorem
7.2, which in turn depends on the solution of Hilbert’s Fifth Problem.

We shall use use the following basic functorial construction: For any
topological group K, we let £(K) be the set of all continuous group homomor-
phisms f:R — K equipped with the compact open topology where 0 € £(K)
denotes the trivial homomorphism. For r € R, f € £(K), let rf € £(K) be de-
fined by rf(t) = f(rt) for all t € R. Define the continuous map exp: £(K) — K
by exp(f) = f(1) for f € £(K). If K; and K, are two topological groups and
if ¢: K1 — K5 is any continuous group homomorphism, we define the continuous
map £(f): £(K1) — £(Ks) by £(6)(f) = do f. Then £(¢)(rf) = r(d)(f) for
all € R, f € £(K1) and expy, oL£(¢) = ¢ oexpy, .

Now we shall prove

Theorem.  (Hofmann-Morris [4], Theorem 4.7) For a Hausdorff topological
group G, the following two statements are equivalent:
1. G is the inverse limit of finite dimensional Lie groups.
2. G is a complete topological group that has a filter basis of closed normal
subgroups N converging to 1 € G such that all quotient groups G/N are
finite dimensional Lie groups.
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Proof. Since the implication 2=-1 is straightforward (see e.g. [2], TGIIIL. 60,
Proposition 2) we have to concentrate on the proof of the implication 1=-2.
We assume that G = lim; G; for finite dimensional Lie groups G;, i €
and we write g for £(G) and g; for £(G;). For i € I let p;: G — G; be the
canonical projection and for 7 < j, 7,5 € I, let ¢;;: G; — G; be the connecting
homomorphism. We have g = lim; g; and for each ¢ € I, the space g; has a finite
dimensional real vector space structure given by (X+Y)(t) = limy, o X(£)Y (L)
and (rX)(t) = X(rt) for all r,t € R, X,Y € g; such that expg :9; — G;
is a local homeomorphism at 0. Further, £(¢;;): £(G;) — £(G;) is a real
vector space homomorphism for all ¢« < j, 4,7 € I and g inherits a real
topological vector space structure such that £(p;) is a continuous real vector
space homomorphism for all 4 € I and expg = lim; expg, (see [6], p. 118—124

and [2], TGI.28). The proof now proceeds through several lemmas.

Lemma 1. ([4], Lemma 3.2) For all i € I there is a k; > i in I such that
L(pi)(g) = £(¢ix)(8x) for all k> k;.
Proof. Note that £(p;)(g) € (g>; £(¢ik(gr). Choose a k; > i such that
dim £(¢i, (gr,)) = min{€(dir(gx)) : k& > i}. Then £(¢u)(gr) = L(¢ik,)(9k,)
for k> k;.

Let * € £(di,)(gr,). We have to show that =z € £(p;)(g). Now
{&(pir) " L(z) : k > k;} is an inverse system of affine sets. Note that for k > k;,
the family

S ={0YU{y+M:yc (o) "(x), M < ker &(¢1)}

satisfies all the conditions of [1], p. 198, Theorem 1. Condition (ii) is the only
non-trivial condition to check. So suppose that {y, + M, € Sk : a € J}
be a family of sets with the non-trivial finite intersection property. Provide
every finite dimensional real vector space by its unique Hausdorff vector space
topology and consider the natural homomorphism v:gx — [],c;0x/Mo. We

have (Yo + Ma)acs € ¥(gr) = ¥(gk), hence (,c;(Ya + My) # @. It follows
that the inverse limit S of {£(¢;) 1 (x) : k > k;} is a nonempty subset of the
limit g of the gr. Let y € S. Then = = £(p;)(y), and this had to be shown. m

Lemma 2. For all i € I, the quotient G/ker p; is locally path connected.

Proof. Let U be an open identity neighborhood of G/kerp;. We have to
show that U contains a path connected identity neighborhood. Each morphism
pj: G — G factors in the form

G—2 G/ ker p; SEEENG]

with a quotient morphism ¢; and an injective morphism p) into a Lie group.

We may assume that there is an 5 € I, ¢« < 7 and an open identity
neighborhood V' in G; such that U = g¢; (pj_l(V)). Let k; € I be determined
as in Lemma 1 and consider any k > k;. We have a commutative diagram
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G — G

o | B
G/kerp; «—*— G/kerp

/7 /

P} Pl
Gi A Gk7
Pik,

where m;r(gkerpy) = gkerp;. Let B be an open ball around 0 in g cho-
sen so small that expg,:gx — Gx maps B homeomorphically onto an open
identity neighborhood W of the Lie group G} and that ¢, (W) C V. Then
pt(W) C pj_l(V), and thus U’ = qi(p,zl(W)) is an open identity neigh-
borhood of G/kerp; that is contained in U. The Lemma will be proved if
we show that U’ is ruled by local one-parameter subgroups. So let u € U’.
Then there is a 2z € p; ' (W) such that u = ¢;(2). Since py(z) € W =
expg, (B) there is an X € B C gp such that pi(z) = expg, X. Now we
apply Lemma 1 in order to observe that £(¢,x)(gr) = £(p;)(g), and there-
fore £(gu)(a) = £(04051)(56) = £(655)2(p;)(g) — £(pi)(g). Hence we find a
Y € g such that £(¢:)(X) = £(ps)(Y). For all ¢ € R we have ¢;(expg, tX) =
expg, tL(Pirx)(X) = expg, tL(pi)(Y) = pi(expg tY) = pigi(expg tY). For t =1
we get pl(u) = pi(2) = ¢ir(pr(2)) = dir(expg, X) = pj(gi(expg Y). Since pj is
injective, u = g;(expgY).

As B is convex, [0,1]-X C B and thus expg, [0,1]- X € W. So for
t € [0,1], we have pp(expgtY) = expg, tL(pr)Y = expg, tX € W, whence
expg tY € pi (W) and thus ¢;(expg tY) € U’. Hence t +— g;(expg tY) : [0,1] —
U’ is a path connecting the identiy and u in U’, proving our claim. [ |

Lemma 3. If C is a compact subset of G/kerp;, then dimC < dimG;.

Proof. The injective morphism p;: G/ ker p; — G; of topological groups maps
the compact space C' homeomorphically to a subspace of the Lie group G;. Thus
dim C' = dim p}(C) < dim G;. u

We now record the

Gleason—Palais Theorem. ([4], Theorem 7.2) A locally arcwise connected
topological group G in which the compact metrizable subspaces are of bounded
dimension s a Lie group. [

Finally we finish the proof of the theorem. By Lemmas 2 and 3 and the Gleason—
Palais Theorem, each G/ ker p; is a Lie group. Since the filterbasis {kerp; : ¢ € I'}
converges to 1, this completes the proof. ]

The two conditions of the Gleason—Palais Theorem characterising a Lie
group are sufficient and necessary. Neither condition alone is sufficient: The char-
acter group Q of the discrete additive group of rationals is a one dimensional
compact abelian non-Lie group (failing to be locally connected); the additive
group L'([0,1],Z) of all (equivalence classes modulo null functions of) integrally
valued Lebesgue integrable functions is a complete, contractible and locally con-
tractible metric topological abelian group that has no one parameter subgroups
whatsoever (except the constant one).
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Corollary. Let G = lim; G; be a projective limit of finite dimensional Lie
groups G;, and let p;: G — G; be the canonical limit projections. Then {ker p; :
i € 1} is a filter base of closed normal subgroups of G that converges to 1 € G,
and all quotient groups G/ ker p; are finite dimensional Lie groups. [ ]

Conjecture. For a Hausdorff topological group G, the following two state-
ments are equivalent:
1. G is the inverse limit of locally compact groups.
2. G is a complete topological group that has a filter basis of closed normal
subgroups N converging to 1 € G such that all quotient groups G/N are
locally compact.
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