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Abstract. The Kashiwara-Vergne conjecture states that the Campbell-
Hausdorff series of a Lie algebra can be written using a certain couple of functions.
In this paper we consider universal solutions which apply to every real finite-
dimensional Lie algebra. We prove that a universal solution of the Kashiwara-
Vergne conjecture verifying a natural symmetry condition is unique up to order
one. In the Appendix by the second author, this result is used to show that the
solutions of the Kashiwara-Vergne conjecture for a quadratic Lie algebra which
exist in literature are not universal.
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1. Introduction

Let g be a Lie algebra over K = R (or K = C). Recall (see e.g. [3] Chap. 2, §6,
Thm. 2, page 56) that the Campbell-Hausdorff series

Z(X, Y ) = X + Y +
1

2
[X, Y ] + · · ·

defines an associative multiplication for X,Y ∈ g sufficiently small. Here . . .
stands for a series in multiple Lie brackets between X and Y . If g is an abelian
Lie algebra, the Campbell-Hausdorff series reduces to Z(X,Y ) = X + Y . In
the general case, there is a classical Dynkin formula [4] for Z(X, Y ) expressing
the coefficients in terms of ratios of factorials. Recently, Kathotia [6] gave a new
formula for Z(X, Y ) using Kontsevich’s diagrammatic technique [7].

In [5], Kashiwara and Vergne put forward the following conjecture on the
properties of the Campbell-Hausdorff series which sometimes is referred to as the
“combinatorial Kashiwara-Vergne conjecture” (see for instance [8]). To state it,
we introduce the notation

ϕ(t) :=
t

exp(t)− 1
= 1− 1

2
t+ o(t)
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for the generating series of Bernoulli numbers, and a separate notation for the
analytic function

ψ(t) := −(ϕ(t)− 1)/2 .

Kashiwara-Vergne conjecture. Let g be a finite dimensional Lie algebra
over K. There exists a pair of g-valued analytic functions A and B defined on
an open subset U ⊂ g× g containing (0, 0), such that A(0, 0) = B(0, 0) = 0, and
for any (X, Y ) ∈ U one has

Z(Y,X)−X − Y = (id− exp(− adX))A(X, Y ) + (exp(adY )− id)B(X, Y ), (1)

tr(adX◦δ1A(X,Y )+adY ◦δ2B(X,Y ))=tr (ψ(adX) + ψ(adY )− ψ(adZ))) , (2)

where Z = Z(X, Y ), and δ1A(X, Y ), δ2B(X, Y ) ∈ End(g) are defined as follows:

δ1A(X, Y ) : U 7→ d

dt

∣∣∣∣
t=0

A(X + tU, Y ), δ2B(X, Y ) : U 7→ d

dt

∣∣∣∣
t=0

B(X, Y + tU).

This conjecture was established for solvable Lie algebras in [5] and for quadratic
Lie algebras in [9]. Recently, the general case was settled in [2] based on the earlier
works [7, 6, 8].

We denote by K[[t]] the ring of formal power series, and we call a solution
of the Kashiwara-Vergne conjecture universal if A and B are given by series in
Lie polynomials of the variables X and Y :

A(X, Y ) = ρX + β(adX)(Y ) + o(Y )

B(X, Y ) = αX + γ(adX)(Y ) + o(Y )

with β(t), γ(t) ∈ K[[t]] , α, ρ ∈ K , and both o(Y ) are of type

o(Y ) ∈
∑
k≥2

∑
j1, ..., jk ≥ 0
jk−1 < jk

K ad(ad X)j1Y ◦ · · · ◦ ad(ad X)jk−1Y ◦(adX)jk(Y ).

If (A,B) is a universal solution, the coefficients of the Taylor expansions of A and
B are the same for all Lie algebras over K .

The set of solutions of the Kashiwara-Vergne conjecture carries a natural
Z/2Z-action,

(A(X, Y ), B(X, Y )) 7→ (B(−Y,−X), A(−Y,−X)). (3)

A solution is called symmetric if it is stable with respect to this action. Averaging
of any solution produces a symmetric solution. Hence, without loss of generality
we can restrict our attention to symmetric solutions. It is well-known (see for
instance [8]) that α, ρ and β(t) are uniquely determined by the Kashiwara-Vergne
equations and by the symmetry condition. In this note we prove the uniqueness
statement for the function γ(t) (see Theorem 5.2). Thus, the symmetric universal
solution of the Kashiwara-Vergne conjecture is unique up to order one in Y .

In the Appendix by the second author, this result is applied to show that
solutions of the Kashiwara-Vergne conjecture for quadratic Lie algebras obtained
in [9] and [1] are not universal.
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2. Preliminaries

In this section we recall some elementary properties of Lie algebras.

Remark 2.1. (Free Lie algebra with two generators). We denote by LK(x, y)
the free Lie K-algebra with generators x and y . In this section we use the Hall
basis H of LK(x, y) defined in [3] (Definition 2, page 27). Recall that H consists
of Lie words with the following order relation: x, y ∈ H and x < y ; if the number
of Lie brackets in a ∈ H is smaller than the number of Lie brackets in b ∈ H
then a < b ; and we omit the description of the order relation for a and b of equal
length. The basis H is built inductively starting with x, y, [x, y] , and one adds
the elements of the form [a, [b, c]] such that a, b, c, [b, c] ∈ H , b ≤ a ≤ [b, c] , and
b < c . In particular, one easily proves by induction that

∀n ≥ 0, (ad x)n(y) ∈ H.

Remark 2.2. (Finite-dimensional Lie algebras gN ). Let N ≥ 2, and IN be the
ideal of LK(x, y) generated by {adZ1 ◦ · · · ◦ adZN(Z);Z1, ..., ZN , Z ∈ LK(x, y)} .
Then gN := LK(x, y)/IN is an N -nilpotent Lie algebra with basis H/IN . In
particular, gN is a finite-dimensional Lie K-algebra.

Proposition 2.3. Let ξ(t) ∈ K[[t]]. The following statements are equivalent:

i) for any Lie K-algebra g and all X, Y ∈ g we have ξ(adX)(Y ) = 0,

ii) ξ(t) = 0,

iii) for any finite-dimensional Lie K-algebra g and all X, Y ∈ g we have
ξ(adX)(Y ) = 0.

Proof. First we show that i) implies ii). Let n ∈ N . By rescaling X 7→ tX
and applying dn

dtn

∣∣
t=0

we get ξn(adX)n(Y ) = 0. Choosing g = LK(x, y), X = x
and Y = y we get ξn = 0.

This proof is easily modified to get that iii) implies ii). In fact, it is sufficient
to replace the infinite-dimensional Lie algebra LK(x, y) with any gN such that
n ≤ N − 1.

3. The Campbell-Hausdorff series

In this section we derive a formula for β(t). This requires a rather standard ma-
nipulation with the Campbell-Hausdorff series which we include for completeness
of the presentation.

The free Lie algebra LK(x, y) with generators x, y is graded with degrees of
x and y equal to 1. We consider the degree completion U(LK(x, y)) of its universal
enveloping algebra. Then, for any z ∈ LK(x, y) the expression

ez =
∞∑

n=0

zn

n!
∈ U(LK(x, y))
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defines a group-like element in U(LK(x, y)). Moreover, there is an inverse function
ln mapping group-like elements to LK(x, y), and the Campbell-Hausdorff series is
the expression for

ln(exey) = x+ y +
1

2
[x, y] + . . .

Proposition 3.1. The following formula holds true in the free Lie algebra with
two generators x, y

d

dt

∣∣∣∣
t=0

Z(ty, x) = ϕ(ad x)(y).

Proof. Let’s denote zt = Z(ty, x) = ln (etyex) and introduce gs,t = eszt ∈
U(LK(x, y)). We use the identity

∂s

(
(∂tgs,t)g

−1
s,t

)
= gs,t ∂t

(
g−1

s,t (∂sgs,t)
)
g−1

s,t

and integrate over [0, 1] with respect to s :(
d
dt
ezt

)
e−zt =

(
d
dt
g1,t

)
g−1
1,t

=
∫ 1

0
∂s

(
(∂tgs,t)g

−1
s,t

)
ds

=
∫ 1

0
gs,t ∂t

(
g−1

s,t (∂sgs,t)
)
g−1

s,t ds

=
∫ 1

0

(
es ad zt dzt

dt

)
ds

= exp(ad zt)−1
ad zt

dzt

dt
.

By putting t = 0 one obtains

dzt

dt

∣∣∣∣
t=0

=
adx

exp(ad x)− 1
y,

where we have used z0 = x and(
d

dt
ezt

)
e−zt =

(
d

dt
etyex

)
e−xe−ty = y.

Proposition 3.2. In a universal solution of the Kashiwara-Vergne conjecture,

β(t) = βα(t) := ϕ(−t)
(
ϕ(t)− 1

t
+ α

)
.

Proof. In (1) we rescale Y by tY , compute the derivative at t = 0, and use
Proposition 3.1 to get a formula for d

dt

∣∣
t=0

Z(tY,X):

ϕ(adX)(Y )− Y = (id− exp(− adX)) ◦ β(adX)(Y )− α(adX)(Y ).

By definition, (id− exp(−t)) ≡ ϕ(−t)−1t , so we get

ϕ(− adX) ◦
(
ϕ(adX)− id +α adX

)
(Y ) = adX ◦ β(adX)(Y ). (4)

Equation (4) is verified for X,Y ∈ g sufficiently small. Since ϕ is an entire
function, (4) is verified for all X, Y ∈ g . As we look for a universal solution of
the Kashiwara-Vergne conjecture, (4) is verified for every finite-dimensional K-
Lie algebra g and for all X, Y ∈ g . Then Proposition 2.3 applies and we get
ϕ(−t)(ϕ(t)− 1 + αt) = tβ(t).
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4. The equation with traces

In this section we derive formulas for ρ and γ(t) from the Kashiwara-Vergne equa-
tion (2). We begin with a technical remark, where K[t] is the ring of polynomials.

Remark 4.1. Let λ, µ ∈ K \ {0} be two distinct numbers, and gλ,µ = Ka ⊕
Kb⊕Kc be the 3-dimensional Lie algebra with Lie brackets [a, b] = 0, [a, c] = λc ,
[b, c] = µc .

The expression Z(ε1a, ε2b) is well-defined if ε1, ε2 ∈ K are sufficiently close
to 0 ∈ K . As [a, b] = 0, the Campbell-Hausdorff series gives

Z(ε1a, ε2b) = ε1a+ ε2b.

Moreover, for all polynomial ξ(t, u) ∈ K[t, u] we have

tr(ξ(ad a, ad b)) = ξ(λ, µ) + 2ξ(0, 0). (5)

Proposition 4.2. In a universal solution of the Kashiwara-Vergne conjecture,

i) ρ = 0,

ii) γ(t) = γα(t) := βα(t)− βα(0) + ψ′(0)− ψ′(t).

Proof. Here we write β(t) =
∑

n≥0 βnt
n and we use the analogue notations

also for γ(t) and ψ(t). We consider Equation (2) and we rescale Y 7→ εY . Then
(adY ε) ◦ δ2B(X, Y ε) = adY ◦ γ(adX)ε+ o(ε), and

δ1A(X,Y ε) = ρ id−
∑
n≥1

βn

n−1∑
j=0

(adX)j ◦ ad
(
(adX)n−1−jY

)
ε+ o(ε).

Choosing the Lie algebra in Remark 4.1 as g , Y = b , X = a1 := ε1a with ε1 6= 0,
and ε, ε1 sufficently closed to 0 ∈ K , we get

ad a1 ◦ δ1A(a1, bε) = ρ ad a1 −
∑
n≥1

εβn(ad a1)
n ◦ ad b+ o(ε),

ψ(ad a1) + ψ(ε ad b)− ψ(ad a1 + ε ad b) = ε(ψ′(0)id− ψ′(ad a1)) ◦ ad b+ o(ε).

Then Equation (2) gives

tr(ρ ad a1) + ε tr
((

−
∑
n≥1

βn(ad a1)
n + γ(ad a1)− ψ′(0)id + ψ′(ad a1)

)
◦ ad b

)
+o(ε) = 0. (6)

i) Setting ε = 0 we get tr(ρ ad a1) = 0. Then property (5) gives ρ = 0.

ii) Applying d
dε

∣∣
ε=0

to Equation (6) we get

tr
((
− β(ad a1) + β(0) + γ(ad a1)− ψ′(0) id +ψ′(ad a1)

)
◦ ad b

)
= 0. (7)

Let n ∈ N . Applying dn

dεn
1

∣∣∣
ε1=0

to (7) and using (5) one can show that that

−βn + β(0)δn.0 + γn + ψ′n − ψ′(0)δn,0 is zero. In particular −β(t) + β(0) + γ(t) +
ψ′(t)− ψ′(0) = 0.
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5. Symmetric solutions

In the previous sections we did not determine the value of the constant α .

Proposition 5.1. In a symmetric solution of the Kashiwara-Vergne conjecture,
one has α = 1

4
.

Proof. By imposing the symmetry condition (3) on a universal solution of the
Kashiwara-Vergne conjecture, we obtain

βα(adX)Y + o(Y ) = −αY − γα(− adY )X + o(X).

Setting X = 0 gives βα(0) = −α . Since

βα(0) ≡ ϕ(0)(ϕ′(0) + α) = −1

2
+ α,

we get α− 1/2 = −α and α = 1/4.

We summarize our results in the following Theorem:

Theorem 5.2. In a universal symmetric solution of the Kashiwara-Vergne con-
jecture the lower order terms are of the following form,

A(X, Y ) = β 1
4
(adX)(Y ) + o(Y ),

B(X, Y ) =
1

4
X +

(
β 1

4
(adX)− ψ′(adX) +

1

2
id︸ ︷︷ ︸

γ 1
4
(ad X)

)
(Y ) + o(Y ).

with βα(t) given in Proposition 3.2.

6. Appendix: Comparison with quadratic solutions

by E. Petracci

Vergne and Alekseev-Meinrenken both considered a quadratic Lie algebra and
obtained symmetric solutions. We ask whether these solutions are universal. In
fact, quadratic Lie algebras have the special property that tr((adX)2n ◦ adY ) = 0
for any n ∈ N and any pair of vectors X,Y . This simplifies the Kashiwara-Vergne
equation (2).

In the following remarks we use the notation γ(t)odd := (γ(t)− γ(t))/2 for
any power series γ(t) ∈ K[[t]] .

Remark 6.1. (Vergne’s solution for quadratic Lie algebras). We denote by
BV (X, Y ) the B found by Vergne in her paper [9]. Following this article we find
BV (X, Y ) = 1

4
X + γV (adX)(Y ) + o(Y ). Let

R(t) :=
et − e−t − 2t

t2
.
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after a long calculation we find that the power series γV (t) is given by

tγV
′(t) + 2γV (t) =

1

8
t− 1

2
tϕ(−t)R(t)ϕ′(t) =

=
1

8
t+

1

12
t2 +

1

72
t3 − 1

360
t4 + o(t4).

This differential equation gives γV (t)odd = γ 1
4
(t)odd . For a symmetric universal

solution we have (see Theorem 5.2)

tγ′1
4
(t) + 2γ 1

4
(t) =

1

8
t+

1

12
t2 +

1

72
t3 − 1

480
t4 + o(t4).

In particular, the symmetric solution found by Vergne for a quadratic Lie algebra
is not universal.

Remark 6.2. (Alekseev-Meinrenken’s solution for quadratic Lie algebras). Let
BAM(X, Y ) = αAM + γAM(adX)(Y ) + o(Y ) the B found by Alekseev and Mein-
renken in [1], βAM(t) their power series β(t), etc.

Following their paper [1] and the paper [9] of Vergne, after some efforts we
find the following formulas. Let g(t) = 1

2
R(t), and let Π(t) be the power series

such that tΠ′(t) + 2Π(t) = 1
2
ϕ(t)−1 − g(t)ϕ(−t)(1− ϕ(t)). Then

βAM(t) = Π(t)− 1

4

(
g(t)ϕ(−t)− 1

2
ϕ(t)−1

)
t− 1

2
ϕ(t)−1 +

+g(t)ϕ(−t)(1− ϕ(t)),

ρAM = 0,

γAM(−t) + γV (t) = ϕ(−t)g(t)t
(
βAM(−t)− 1

4
ϕ(t)− ϕ′(t)

)
+

−1

2
ϕ(t)−1tβAM(−t)− 1

8
t,

αAM =
1

4
.

Using Maple, we get βAM(t) = β 1
4
(t), γAM(t)odd = γV (t)odd , and

tγ′AM(t) + 2γAM(t) =
1

8
t+

1

12
t2 +

1

72
t3 − 1

720
t4 + o(t4).

In particular, the symmetric solution of Alekseev and Meinrenken is not universal,
and it is different from the solution of Vergne.
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