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Abstract. Let G be a complex semisimple Lie group, Q a parabolic
subgroup and G a real form of G. The flag manifold a/Q decomposes
into finitely many G -orbits; among them there is exactly one orbit of min-
imal dimension, which is compact. We study these minimal orbits from the
point of view of CR geometry. In particular we characterize those minimal
orbits that are of finite type and satisfy various nondegeneracy conditions,
compute their fundamental group and describe the space of their global CR
functions. Our main tool are parabolic CR algebras, which give an infini-
tesimal description of the CR structure of minimal orbits.
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1. Introduction

In the last decades the study of C'R manifolds grew to become an increasingly
important theme of research (see e.g. [5], [6], [9], [16], [37]). Particularly
important was the work of N.Tanaka ([35], [36]). He considered the C'R manifolds
as generalized contact manifolds carrying a partial complex structure, and showed
that under some regularity and strict nondegeneracy assumptions the study of
their differential geometrical invariants fits into the scheme of Cartan geometry.
Later Chern and Moser ([12]) deeply investigated the C'R invariants of strictly
Levi nondegenerate hypersurfaces.

More recently, there has been an increasing interest in the study of
homogeneous C' R manifolds, both of the hypersurface type and of arbitrary C'R
codimension ([1], [2], [3], [8], [23], [24], [34]). They provide the natural examples
that suggest and motivate also the directions in which it is reasonable to pursue
the analysis on the general abstract C'R manifolds. In fact the generalization in
[17] of the classical notion of (local) pseudoconcavity of [16] was largely motivated
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by the work on homogeneous models of [4], [25], [26], [27], [28], [29].

In [26] we associated to the graded Lie algebras introduced by N.Tanaka
in [36] and [37], and that we called in [26] Levi-Tanaka algebras, some standard
C'R manifolds, showing in [29] that they are characterized by special rigidity
properties. These standard C'R manifolds are compact if and only if they are
minimal orbits for the action of a real form in a complex flag manifold. In turn,
all the minimal orbits of the action of real forms in complex flag manifolds are
compact homogeneous C'R manifolds. However, not all of them are standard.
Some, which are strictly Levi nondegenerate, correspond to non compact stan-
dard models. Beside, there are others (see §12 for the complete classification)
which have an irreducible CR structure, but are not strictly Levi nondegener-
ate. These considerations led us to investigate in [30] more general objects, that
we called C'R algebras. They are canonically associated to homogeneous CR
manifolds, as will be explained in §4. Unlike the Levi-Tanaka algebras, they
are not required to be graded. Indeed, the existence of a CR compatible Z or
Zs-gradation of the C'R algebra was shown in [25] to be related to that of a
Riemannian C'R-symmetric structure (in the sense of [24]) of the associated CR
manifold. In particular in [30] we discussed weaker nondegeneracy assumptions to
ensure finite dimensionality of the Lie algebra of infinitesimal C'R isomorphism,
and hence the possibility of utilizing the homogeneous model as the 0-curvature
object of a Cartan geometry. Among the different nondegeneracy conditions for
the partial complex structure of a C'R manifold M, we discussed in [30] the
concept of weak nondegeneracy. A homogeneous C'R manifold M which is not
weakly nondegenerate is locally the product of a C'R manifold and of a complex
manifold of positive dimension. A complete classification of the minimal orbits
that are weakly nondegenerate is obtained in §11.

In this paper we concentrate on the C'R structure of the minimal orbit M
of the action of a real form G in a complex flag manifold G /Q. These orbits,
especially the open ones, have been studied in connection with representation
theory (cf. [14], [21], [22], [41], [43]). Our point of view here is strictly that of
CR geometry.

The arguments are organized as follows. In §2, 3, 4 we rehearse the
essential definitions and notions to prepare the general setting for the study of
the CR geometry of the minimal orbits.

In §5, 6 we give the notion of parabolic CR algebras and we associate
to each minimal orbit M a special parabolic C'R algebras that we call minimal.
Minimal orbits and parabolic minimal C'R algebras are in a one to one corre-
spondence. We classify parabolic minimal C'R algebras, and thus the minimal
orbits, by attaching to each of them a cross-marked Satake diagram.

In §7 we study some special morphisms of C'R algebras, which are
infinitesimal analogues of smooth G equivariant fibrations. They will be an
essential tool in the following sections.

In §8 we compute the fundamental group of M and we show that, under a
condition (F) that is shared by all minimal orbits that are fundamental, (i.e. those
in which the Cauchy-Riemann distribution generates the full tangent space), all
G-homogeneous C'R manifolds that are locally C'R-diffeomorphic to M are
simply connected and globally C'R-diffeomorphic to M .
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In §9 we read off the cross-marked Satake diagrams the property of being
fundamental and prove that every -homogeneous C'R manifolds that is locally
C R-diffeomorphic to M admits a fundamental reduction which is a C'R fibration
on a totally real base with a connected and simply connected fiber.

In §10 we characterize totally real and totally complex minimal orbits,
and in §11, 12 we read off the cross-marked Satake diagram the property of weak
and strong nondegeneracy.

In §13 we classify all minimal orbits that are essentially pseudoconcave,
justifying the experimental claim made in [HN2] that “the vast majority of them
are essentially pseudoconcave”.

Finally, in §14, we study the space of global smooth C'R functions on
M.

A Satake diagram gives a graphic representation of the conjugation de-
fined by a real form on the Dynkin diagram of the corresponding complex simple
Lie algebra. We largely utilize Satake diagrams in the presentation of our re-
sults. Thus we found expedient, to fix the notation and for identifying specific
sets of simple roots used to define special parabolic subalgebras, to add, at the
end of the paper, the table of the Satake diagrams of all the non compact real
forms of simple real Lie algebras of the real type. In all statements concerning
cross-marked Satake diagrams, we understand that the notation refers to that
table.

2. Preliminaries on C' R manifolds

We briefly rehearse some basic notions for C'R manifolds (see e.g. [5], [9], [16],
[26]).

An (abstract) almost C'R manifold of type (n, k) is a triple (M, HM, J),
consisting of a paracompact smooth manifold M of real dimension (2n+k), of a
smooth subbundle HM of TM of even rank 2n, its holomorphic tangent space,
and of a smooth partial complex structure J : HM — HM, J?> = —1, on
the fibers of HM . The integer n > 0 is the CR dimension and k the CR
codimension of (M, HM,J).

Let TY9M and T%'M be the complex subbundles of the complexifica-
tion CHM of HM , which correspond to the i- and (—i)-eigenspaces of J:

(21) T°M = {X —iJX|X e HM} , T"'M = {X +iJX|X € HM}.
We say that (M, HM,J) is a CR manifold if the formal integrability condition
(2.2) [C®(M, T%' M), €= (M, T M)] C C=(M,T%" M)

holds [we get an equivalent condition by substituting 710 for 791 in (2.2)].
When k£ =0, we have HM = T M and, via the Newlander-Nirenberg theorem,
we recover the definition of a complex manifold. A smooth real manifold of real
dimension k£ can always be considered as a totally real C R manifold, i.e. a CR
manifold of C'R dimension 0 and C'R codimension k.
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Let (My,HM,,J1), (Ms, HM,, J3) be two abstract smooth C'R mani-
folds. A smooth map f : M; — My, with differential f, : TMy; — TM>, is a
CR map if f.(HMy) C HMs, and f.(Jiv) = Jof.(v) for every v € HM;. We
say that f isa CR diffeomorphism if f : M; — My is a smooth diffeomorphism
and both f and f~! are CR maps.

A CR functionisa CR map f: M — C of a CR manifold (M, HM,J)
in C, endowed with the standard complex structure.

Let M be a CR manifold. Denote by T*°M the annihilator of T M
in the complexified cotangent bundle CT*M and by Q%M the quotient bundle
CT*M/ T*M9M | with projection mq . It is a rank n complex vector bundle on
M, dual to T%1M . The Oy -operator acts on smooth complex valued functions
by: Oy = mg od. The CR functions on M are the smooth solutions u of
Opu =0, ie of Lu =0 for all L € T%'M. We shall denote by Oy;(M) the
space of smooth C'R functions on M .

A CR embedding ¢ of an abstract C'R manifold (M, HM,J) into a
complex manifold 9, with complex structure Joyy, is a C'R map which is a
smooth embedding and satisfies ¢.(HpyM) = ¢.. (T, M) N Jon (¢4 (T, M)) for every
p € M. We say that the embedding is generic if the complex dimension of 9 is
(n+k), where (n, k) is the type of M. A real analytic C'R manifold (M, HM, J)
always admits an embedding into a complex manifold 9 (see [5]).

If : M — 90 is a smooth embedding of a paracompact smooth manifold
M into a complex manifold 91, for each point p € M we can define H,M
to be the set of tangent vectors v € T,M such that Jomo.(v) € ¢.(T,M).
For v € H,M, let Jyv be the unique tangent vector w € H,M satisfying
d«(w) = Jomp«(v). If the dimension of H,M is constant for p € M, then

HM = UpemHpM and Jp; are smooth and define the unique C'R manifold
structure on M for which (M, HM, Jy;) is a CR manifold and ¢ : M — 9N a
CR embedding.

The characteristic bundle H°M of (M,HM,J) is defined to be the
annihilator of HM in T*M . It parametrizes the Levi form: recall that the Lev:
form of M at p is defined for { € H)M and X € H,M by

(2.3) L(&X) = dE(X,JX) = (¢ [JX, X)),

where ¢ € C>®(M,H°M) and X € C>(M,HM) are smooth extensions of £ and
X . For each fixed ¢ it is a Hermitian quadratic form for the complex structure
Jp on H,M.

The map HM 3> X — (X —iJX) € TYOM yields for each p € M an
R-linear isomorphism of H,M with the complex linear space T pl’OM , in such a
way that the antiinvolution J, on H,M becomes in Tpl’OM the multiplication
by the imaginary unit ¢. In this way we associate to the Levi form L£(; ) a
unique Hermitian symmetric form TI}’O X TI}’O > (Z1,Z2) — Le(Z1,Z3) € C such
that £(&X) = $Le(X —iJX, X —iJX) for all X € H,M .

In the next sections, to shorten notation, we shall write simply M, or
M™% for a CR manifold (M, HM,.J) of type (n,k), as the CR structure will
in general be clear from the context.
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We recall that a C R manifold M is:

e of finite kind (or finite type) at p € M if the higher order commutators
of C>°(M,HM), evaluated at p, span T,M;

o strictly nondegenerate (or Levi nondegenerate) at p € M if for each
Z € C°°(M, TO*M), with Z(p) # 0, there exists Z’ € C(M,T M)
such that:

[Z', Z)(p) & Ty "M + T;' M;

This is equivalent to the following : for every Z € T,OM\ {0} there exist
£ € HIM and Z' € T,°M such that L¢(Z,Z') # 0.

o weakly nondegenerate at p € M if for each Z € C°(M,T%' M), with
Z(p) # 0, there exist m € N and Zi,...,Z,, € C>®(M,T*"°M) such
that:

21, Zun 2)(0) = (21,12, .. [ Zim, Z) .. ])(p) & THOM + TOM M.

3. The minimal orbit in a complex flag manifold

Throughout this paper, we shall consistently use the symbol V to indicate the
complexification of a real vector space V.

A complex flag manifold is a coset space M = G/Q, where G is a
connected complex semisimple Lie group and Q is parabolic in G . The manifold
I is a closed complex projective variety which only depends on the Lie algebras
g of G and g of Q: this is a consequence of the fact that the center of a
connected and simply connected complex Lie group is contained in each of its
parabolic subgroups.

A real form of G is a real subgroup G of G whose Lie algebra g is a
real form of g (i.e. § = C®g g). The real form g is the set of fixed points of an
anti-involution ¢ in g: g = Fixz(c) = {X € g|o(X) = X}.

A real form G acts on the complex flag manifold 99T by left multiplica-
tion, and 9 decomposes into a disjoint union of G-orbits. In [41] it is shown
that there are finitely many orbits, and a unique one which is closed (hence com-
pact). This orbit M has minimal dimension and is connected. In particular, the
connected component of the identity G° of G is transitive on M . Thus, while
studying M, we can as well assume that G = G° is connected.

Moreover, up to conjugation, we can arrange that the closed orbit is
M = G - o0, where 0 = eQ. We shall denote by Gy = G N Q the isotropy
subgroup of G at o and by g+ = g gq its Lie algebra.

The closed orbit M has a C'R structure induced by its embedding in
the complex manifold 9. This can also be described by using the canonical
identifications: T,9M ~ g/q and T,M ~ g/g. C T,9. We have then:

(3.1) H,M =~ (gN(q+4))/9+
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and

Jo: HoM — H,M is defined by :
(3.2)

Jo(X+X+g)=iX—iX +g, for X cq.

The bundle HM and the partial complex structure .J are defined, at all points
of M, in such a way that G acts on M as a group of CR automorphisms. By
using the identification Ty, = g/(Ad(g)q), we obtain:

Tya, M ~ g/(Ad(g)g+)
(3.3) § Hya,M = (gn(Ad(g)q+ Ad(9)a))/ Ad(g)g+
Joa, (X + X +Ad(g9)g4) =iX —iX + Ad(g)g+ for X € Ad(g)g.

Note that the embedding of M into 9 is always generic, because T, =
T,M +T,M at every p € M.

4. Homogeneous C'R manifolds and C'R algebras

To a CR manifold M, which is homogeneous for the action of a real Lie group
G of CR transformations, we associate a CR algebra (g,q). This is a pair
consisting of the real Lie algebra g of the group G and of a complex subalgebra
q of its complexification g. This subalgebra q is the inverse image of 7' M by
the complexification 7, of the differential 7, : g ~ T.G — T,M of the group
action at e. Note that the fact that g is a complex Lie subalgebra of g is a
consequence of the formal integrability condition (2.2) for C'R manifolds.

Let (g,q) be a CR algebra. The real Lie subalgebra gy = gngq is called
its isotropy. Let G be a connected and simply connected Lie group with Lie
algebra g. Assume that the analytic subgroup Gy of G corresponding to the
Lie subalgebra g, is closed in G. Then the homogeneous space M = G/G is
a smooth paracompact manifold and has a unique C'R structure such that :

o T)'M =1.(q)
e G acts on M by C'R diffeomorphisms.
We denote the CR manifold G/G, by M(g,q).

For general definitions and basic properties of C'R algebras we refer
the reader to [30]. In particular, we recall that a morphism of CR algebras
¢ :(g,9) — (¢',q') is a homomorphism ¢ : g — g’ of real Lie algebras whose
complexification ¢ satisfies ¢(q) C ¢'; it is a CR submersion if ¢(g) + g, =4¢
and ¢(q) +a'Nd =10’

We say that the C'R algebra (g,q) is:

effective if there are no ideals of g contained in g ;

fundamental if q + g generates g ;

ideal nondegenerate if there is no ideal a of g with a C q4+¢q and a ¢ g4 ;

weakly nondegenerate if there are no complex subalgebras q' C g with
aCq Ca+q;

strictly nondegenerate if for every Z € q\ q there exists Z' € q such that

(2,2'| ¢a+7.
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If (g,q) is the CR algebra associated to a G-homogeneous C'R manifold M,
these notions express geometric properties of M (see [30]) : effectiveness is equiv-
alent to almost effectiveness (i.e. discreteness of the isotropy subgroup) of the G
action; fundamental to finite kind; ideal nondegeneracy to holomorphic nonde-
generacy (see [9]); weak and strict nondegeneracy to weak and strict nondegen-
eracy as defined at the end of §2.

When (g, q) is weakly degenerate, it was proved in [30] that there is a

CR-fibration M(g,q) — M’ of the corresponding homogeneous C'R manifold
M(g,q) on a CR manifold M’ with the same CR codimension, having a non
trivial complex fiber. For homogeneous simply connected C'R manifolds, the
condition of weak degeneracy of §3 is in fact necessary and sufficient for the
existence of C'R fibrations with non trivial complex fibers. Indeed, for general
C'R manifolds, the existence of a C'R fibration with non trivial complex fibers

implies weak degeneracy, as we have:

Proposition 4.1.  Let M and M’ be CR manifolds. We assume that M’ is
locally embeddable and that there exists a CR fibration M = M’ with totally
complex fibers of positive dimension. Then M is weakly degenerate.

Proof. Let f be any smooth C'R function defined on a neighborhood U’ of
p' € M'. Then 7*f is a CR function in U = 7~1(U’), that is constant along
the fibers of 7. Then, if L € C°(M, T °M) is tangent to the fibers of m in U,
we obtain that [Zy, ..., Z,, L] (7*f) = 0 for every choice of Zy, ..., Z, €
C®(M,T%*M). Assume by contradiction that M is weakly nondegenerate at
some p with m(p) = p’. Then for some choice of Z1, ..., Z,, € C®(M,T%' M)
we would have v, = [Z1, ..., Zp, L] ¢ T,°M & T)' M. Since the fibers
of m are totally complex, m(v,) # 0. By the assumption that M’ is locally
embeddable at p, the real parts of the (locally defined) C'R functions give
local coordinates in M’ and therefore there is a CR function f defined on a
neighborhood U’ of p’ with v, (7* f) = m.(vp)(f) # 0. This gives a contradiction,
proving our statement. [ |

We can always reduce to the case of an almost effective action of G : at
the level of C'R algebras, this corresponds to substituting to (g,q) its effective
quotient, which is the CR algebra (g/a,q/a), where a is the maximal ideal of g
that is contained in g, and a its complexification in g (see [30, Lemma 4.7]).

5. Parabolic CR algebras

In the following, we shall restrict our consideration to the the case of parabolic
CR algebras, i.e. those C'R algebras (g,q) where g is finite dimensional and q
is a parabolic subalgebra of g. In this section we explain some of their simplest
properties.

Proposition 5.1. A parabolic CR algebra (g,q) is effective if and only if the
following two conditions are satisfied:

(1) g is semisimple,
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(ii) no simple ideal of § is contained in qN7q.

Proof. The statement follows by observing that: (a) for a parabolic (g,q) the
radical v of g is contained in gy; (b) if an ideal a of g is contained in qN7{,
then a + @ is the complexification of an ideal b of g contained in g . ]

To an effective parabolic C'R algebra (g,q) we associate a C'R manifold

M = M(g, q), unique modulo isomorphisms, defined as the orbit G -0 in G /Q,
where:

e G is a connected and simply connected Lie group with Lie algebra g ;

e Q= Né(q) is the parabolic subgroup of G with Lie algebra q ;

e G is the analytic real subgroup of G with Lie algebra g.
Note that for a parabolic (g,q) also M(g,q) is well defined and is the universal
cover of M(g,q).

The following proposition reduces the study of effective parabolic CR
algebras (g,q) to the case where g is a simple real Lie algebra.

Proposition 5.2. Let (g,q) be an effective parabolic CR algebra and let
g=91D - D ge be the decomposition of g into the direct sum of its simple
ideals. Then:

(i) q=q1 @ ---Dqe where q; =qNg; for j=1,...,¢;

(i3) for each j=1,...,¢, (g;,q;) is an effective parabolic CR algebra;

(iii) (g,q) is ideal (resp. weakly, strictly) nondegenerate if and only if for
each j =1,...,¢, the CR algebra (g;,q;) is ideal (resp. weakly, strictly)
nondegenerate;

(v) (g,9) is fundamental if and only if for each j =1,...,¢, the CR algebra
(95,95) is fundamental.

Proof. In fact g = @f':l g; is a decomposition of g into a direct sum of
ideals. The decomposition (i) of q follows then from the decomposition h =
@ﬁzl (6 N @j) of any Cartan subalgebra of g contained in q (see [11, Ch.VII,
§2, Prop.2]).

The proof of the other statements is straightforward. ]

We note that, with the notation of Proposition 5.2,
M(g,q) ~ M(g1,d1) x -+ x M(ge. )

M (g, q) =~ M(g1,q1) X --- x M(gs, q¢)

” means isomorphism of C'R manifolds.

where 7 ~

When q is parabolic in g, its conjugate q with respect to the real form
g is also parabolic in g. Therefore the intersection q Nq contains a Cartan
subalgebra 6 that is invariant under conjugation (see e.g. [11, Ch.VIII, §3,
Prop.10]. We observe that gy contains an element A with adqng(A) semisimple
and of maximal rank. The centralizer h of A in § is a Cartan subalgebra of §
that is contained in g N g and is invariant under conjugation). The intersection
h= hn g is a Cartan subalgebra of g. Thus we have:
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Lemma 5.3. Let (g,q) be a parabolic CR algebra. Then gy = qNg contains
a Cartan subalgebra of g. [ ]

Moreover we have:

Proposition 5.4.  Let (g,q) be an effective parabolic CR algebra. The set
ny of the elements A of the radical v(g+) of g4, for which adg(A) : g — g is
nilpotent, is a nilpotent ideal of g4+ and there exists a reductive subalgebra v of
g+ such that

(51) g+=n+€Bm.

The reductive subalgebra v is uniquely determined modulo the subgroup of inner
automorphisms of g4 generated by those of the form exp (adg+(X)) with X €
ng.

Proof. Indeed g, being parabolic, contains the semisimple and nilpotent parts
of its elements. If X € g belongs to the real form g, then also its semisimple
and nilpotent parts belong to g. Therefore g, is splittable, i.e. contains the
semisimple and nilpotent part of its elements and we can apply [11, Prop.7, §5,
Ch.VII] to obtain our statement. u

Let 3 denote the center of w and let s = [tv, tv] be its semisimple ideal.
Then

(5.2) w=;3Ds.
Thus, a Cartan subalgebra fh C g4 of g can be taken as the direct sum

(5.3) h=300

of the center 3 of v and a Cartan subalgebra b’ of s. Vice versa, every
Cartan subalgebra h of g contained in g, has the form (5.3) for some reductive
subalgebra to of g, .

Choose a Cartan subalgebra § of g, and denote by b its complexification,
which is a Cartan subalgebra of g. Fix a Cartan decomposition

(5.4) g=%tDyp

of g, where ¢ is a maximal compact subalgebra of g and p its orthogonal in g
with respect to the Killing form, such that :

(5.5) h=hteh where hT =hnet and h~ =hNp;

hT is the toroidal and h~ the vector part of b.

Set br = (ihT) @ b~. This is a real subalgebra of h and the Cartan
subalgebra of a real split form of g; we denote by bhi its dual. Let R =

R(@,h) C b be the associated root system and denote by g% C g the eigenspace
corresponding to the root a € R.
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We shall denote by W5 the Weyl group of R : it is the group of isome-
tries of hp generated by the reflections s, with respect to the elements oo € R.

We recall that it is canonically identified to the quotient NInt(@)(ﬁ) / ZInt(g)(G)-
This will be also called the algebraic Weyl group, to distinguish it from the
analytic Weyl group Wy, which is the image in WB of the composed homomor-
phism:

Nint()(h)/Zint(g)(h) — Nint(s)(0)/Zint(s) () — W;.

We also consider the group AB of all the isometries of hy that transform
R into R. The (algebraic) Weyl group W, is a normal subgroup of A;. We have

a natural isomorphism NAut(g)(B)/ZAut(ﬁ)(G) = Af)’ yielding a commutative
diagram:

1 1

l

1 —— Zmup)(h) —— Nmmg(h) —— W; —— 1

H J

1 —— ZAut(ﬁ)(G) B NAut(ﬁ)(G) Ay 1

Aut(A)

1

with exact rows and columns, in which we denoted by Aut(A) the group of
automorphisms of the Dynkin diagram A associated to R.

We finally define the group Ay as the image in Ay of Naut(g)(h),

~

identified to a subgroup of Nayu¢(g)(h), by the homomorphism described above.

Denote by €(R) the set of Weyl chambers associated to the root system
R. Choose a Weyl chamber C' C hr and let < be the corresponding partial
order in by, defined by

(5.6) a<p <= «alH)<p(H) VH € C.

Let RT =RT(C)={aeR|a=0} and R~ =R (C)={a € R|a <0} be
the set of positive and the set of negative roots with respect to C', respectively,
and denote by B = B(C) the set of simple roots in Rt . If

a=),.no, o €B, n; €,
we set

supp(a) = suppc () = {o; € B|n; # 0}.
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Let ® be a subset of B. The set ®" of those § € R~ for which
supp(8) N ® = O is a closed system of roots (31,02 € ®" and (1 + 2 € R
= (1 + P2 € @"). Then

(5.7) w=ho > o) o

is a parabolic subalgebra of g, and every parabolic subalgebra of g that contains
h can be described in this way, by a suitable choice of the Weyl chamber C' and
of the set of simple roots ® C B.

Each set :

Q =Q¢=RTUD"
(5.8) Q" =0y ={a€cQ-acQ}=0"U (-0
Q"=Q3={aecQ-agQ}=R"\ (-2
is a closed system of roots. We set :
{ ¢ =05 =0D Y ,c0r 07
0" =43 = Xacon 87

to obtain the decomposition :

(5.9)

(5.10) qg=9q9"®q",

of ¢ into the direct sum of its nil radical q" and a reductive subalgebra q".

We say that a Cartan subalgebra h of g is adapted to the parabolic
effective CR algebra (g, q) if, in the decomposition (5.3), the Cartan subalgebra
h" of s has mazimal vector part.*

A real Lie subalgebra t of g is triangular if all linear maps ady(X) €
glg(g) with X € t can be simultaneously represented by triangular matrices in a
suitable basis of g. All maximal triangular subalgebras of g are conjugate by an
inner automorphism ([31], §5.4, or [38]). A real Lie subalgebra of g containing a
maximal triangular subalgebra of g is called a t-subalgebra.

An effective parabolic CR algebra (g,q) will be called minimal if g, =
gNg is a t-subalgebra of g.

We observe that a maximal triangular subalgebra of g contains a maxi-
mal Abelian subalgebra of semisimple elements having real eigenvalues. Hence:

Proposition 5.5. An adapted Cartan subalgebra of an effective parabolic
minimal CR algebra (g,q) has mazimal vector part as a Cartan subalgebra of

g. ]

LA Cartan subalgebra of a semisimple real Lie algebra § with a maximal vector part
is obtained in the following way: Assume that § = €@ p is a Cartan decomposition of §. Take
any maximal Abelian Lie subalgebra B, of § contained in p and let b} be the centralizer
of b, in €. Then b’ = b, @ f); is a Cartan subalgebra of § with maximal vector part. All
Cartan subalgebras of § with maximal vector part are conjugate and can be obtained in this

way from a suitable Cartan decomposition of §.
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Theorem 5.6. Let g be a semisimple real Lie algebra and q a parabolic
subalgebra of its complexification g. Then, up to C'R isomorphisms, there is a
unique parabolic minimal CR algebra (g',q") with g’ isomorphic to g and ¢
1somorphic to (.

Proof. Fix a maximal triangular subalgebra t of g. Its complexification t is
solvable and therefore is contained in a maximal solvable subalgebra, i.e. a Borel
subalgebra, b of g. Modulo an inner automorphism of g, we can assume that
b C q. The CR algebra (g,q) is parabolic minimal.

Let g, q' be parabolic subalgebras of g such that g, = gNg and
g/, = q'Ng are t-subalgebras of g. By an inner automorphism of g, we can
assume that g, and g/, contain the same maximal triangular subalgebra t of
g and hence a same maximal Abelian subalgebra of g of semisimple elements
having real eigenvalues. Hence, using another inner automorphism of g, we can
assume that q and g’ contain the same maximal vectorial Cartan subalgebra b
of g.

The inner automorphism of § transforming q into g’ can now be taken
to be an element of the analytic Weyl group, leaving the Cartan subalgebra §
and hence g invariant. It defines a C'R isomorphism between (g, q) and (g,q’) .m

We recall that a C'R algebra (g, q) is totally realif q = q, or, equivalently,
if g =qnNg=Hy =gN(q+79q). This is equivalent to the fact that M(g,q)
is totally real, i.e. a C'R manifold with C'R dimension 0. For a totally real
effective parabolic CR algebra (g,q) the real subalgebra g, of g is parabolic,
hence a t-subalgebra of g. Thus we have:

Proposition 5.7. A totally real effective parabolic CR algebra is minimal. m

Effective parabolic minimal C'R algebras correspond to minimal orbits.
In fact we have:

Theorem 5.8. The C'R manifold M(g,q), associated to an effective parabolic
subalgebra (g,q), is compact if and only if (g,q) is minimal.

Proof. Indeed, since G is a linear group, a G-homogeneous space G/G is
compact if and only if G, contains a maximal connected triangular subgroup
(see [32, II, Ch.5, §1.1]), i.e. if g4 is a t-subalgebra of g. n

6. Parabolic minimal C'R algebras and cross-marked Satake diagrams

Denote by o : by — bi the involution induced by the conjugation defined by the
real form g of g. If ¥ is the complexification of the Cartan involution associated
to the decomposition (5.4), then the conjugation equals (—) on bhg, so that
o= - (19 |b]R )* .

We note that o(R) = R. A root a € R is called real if & = o(a) = «,
imaginary if & = o(a) = —a. We shall denote by R, the set of imaginary roots
in R. We recall from [7]:
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Proposition 6.1. Let o : bg — bg be the involution associated to the
conjugation induced by the real form g of g. The real Cartan subalgebra b of g
has maximal vector part if and only if g¢ C t=Cogt for all a € R, .

Let b be a Cartan subalgebra of g with maximal vector part and R =
R(§,h). Then there exists a Weyl chamber C € €(R) such that:
(i) a=o(a) =0 forall « € RT(C)\ Re;
ii) there are pairwise orthogonal roots B, ..., Bm € Re such that sg, o---0
$3,, 1 the element wc ¢y of the Weyl group that transforms C' into C;

in particular we @y 18 an involution : w(QC’é) =1;
(i) there is an involution ec € Ay, such that ec(C) = C, that commutes
with o and with w(g ¢y, such that :

O =¢&c®©° w(a@) .
The Weyl chamber C' is uniquely determined modulo the analytic Weyl group
Wf) . |

A Weyl chamber C' that satisfies conditions (i), (4i) and (i) of Propo-
sition 6.1 will be called adapted to the conjugation o .

We shall denote by Be = Bo(C) the set B(C') N Re of simple purely
imaginary roots of RT(C) and by E = Z(C) its complement in B. The
involution €¢ transforms = into itself. Moreover, from Proposition 6.1 we obtain
the conjugation formula: for every o € & there are integers n, g > 0 such that

Qi

(6.1) = ec(@) + D nagh.

BEB,

We associate to C' the Satake diagram of g. It is obtained from the Dynkin
diagram of g whose nodes correspond to the roots in B(C') by painting black
those corresponding to imaginary roots and joining by a curved arrow those
corresponding to distinct roots ai,as € E with ec(a1) = as.

We can associate to any automorphism 7 € Ay the automorphism
= nowm-1(c),c) € Ay, that leaves C fixed. We observe that 7(B(C)) = B(C),
and therefore 77 defines a permutation of the nodes of the Satake diagram S.
Thus the quotient group Ay/Wjy can be considered as the group Aut(S) of
automorphisms of the Satake diagram §.

Note that a Satake diagram is completely determined by the data of: (i)
the underlying Dynkin diagram A, (47) the color (white or black) of the nodes,
(#i7) the involution ec on the nodes of A.

The correspondence between real semisimple Lie algebras and their Sa-
take diagrams is one to one.

We list in the appendix all the connected Satake diagrams of the non
compact forms. We use the labels (AI, ..., G) devised by Cartan in his
classification of symmetric spaces. We shall also consistently employ the indices
attached to the simple roots in these diagrams throughout the paper.

We proved in Proposition 5.5 that, for a parabolic minimal C'R algebra
(g,9), the isotropy subalgebra g, contains a Cartan subalgebra h of g with
maximal vector part. First we prove:
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Proposition 6.2. If (g,q) is an effective parabolic minimal CR algebra and
b is a Cartan subalgebra of g with maximal vector part and contained in q, then
there exists a o -adapted Weyl chamber C for (g,h) such that RT(C) C Q.

Proof. Modulo an inner automorphism of g, we can assume that any given
parabolic subalgebra q of g contains a Borel subalgebra b of the form
b Y o
a€RT(C)
for a Weyl chamber C' € €(R) adapted to the conjugation o defined by the real
form g. Then b N g is contained in g, and contains a maximal triangular
subalgebra t of g (see for instance [33, 4.4, 4.5] or [39, 1.1.3, 1.1.4]). The
statement follows from the uniqueness stated in Theorem 5.6. ]

Let & be the Satake diagram of the semisimple real Lie algebra g. The
nodes of § correspond to the simple roots B(C') of a Weyl chamber C € €(R)
adapted to the conjugation o defined by g. Fix a subset ® of B(C) and consider
the diagram (8, ®) obtained from 8§ by adding a cross-mark on each node of &
corresponding to a root in ®.

We associate to the pair (§,®) the CR algebra (g,qe) with q¢ defined
by (5.7).

Two cross-marked Satake diagrams (S,®) and (S,¥) are said to be
equivalent if there exists an ¢ € Aut(S) such that ¥ = ¢(®).

Proposition 6.2 and Theorem 5.6 yield :

Theorem 6.3.  The correspondence
(S, ®) «— (9,99)

is bijective between cross-marked Satake diagrams (modulo automorphisms of
cross-marked Satake diagrams) and minimal effective parabolic CR algebras
(modulo CR isomorphisms).

Example 6.4. The diagram

corresponds to

g=sl(2,H) C sl(4,C),

q= {Z € 5[(4,@) | Z(<€1>) - <61>7 Z(<€1762v€3>) - <€1,62,63> }7
where e1, €9, €3, e4 is the canonical basis of C* with e;H = (eq,es) and e3H =
<€3, 64> .

The associated minimal orbit is the C'R manifold M = M?3? whose

points are the pairs (¢1,¢3) consisting of a complex line ¢; and a complex 3-
plane /5 of C* with ¢; -H C ¢3. It is strictly nondegenerate, of C R dimension

3 and CR codimension 2; all its nonzero Levi forms have one positive, one
negative and one zero eigenvalues (see for instance [17]).
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Example 6.5. The diagram:

corresponds to
g=su(l,3) C g=sl(4,C)
q={Z€sl(4,C)[Z({e1,€2)) C (e, €2) }

where e1, es, €3, e4 is a basis of C* such that

0001 0001
5u(1,3)={Z€5I(4,(C) ‘ (gg‘;g) Z+Z*<gégg> — o}
1000 1000

The associated minimal orbit is a C'R manifold M = M3, of hyper-
surface type, with a Levi form having one positive, one negative and one zero
eigenvalues, and is weakly nondegenerate but not strictly nondegenerate.

Example 6.6. The diagram:

corresponds to
g =su(l,5) C g =sl(6,C)

q= {Z & 5[(6,@) | Z(<61,€2,63>) - <€1,62,63>}

where eq, s, €3, €4, €5, €6 is a basis of C* such that

wit - {zeao| (1) 2oz (07) =0}

The associated minimal orbit is the C'R manifold M = M3, of hyper-
surface type, with a Levi form having two positive, two negative and four zero
eigenvalues, and is weakly nondegenerate but not strictly nondegenerate.

Example 6.7. The two diagrams:

are isomorphic. Indeed the map F (a;) = ay—; for i = 1,2,3 defines an isomor-
phism of cross-marked Satake diagrams. The corresponding effective parabolic
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minimal CR-algebras correspond to g = su(1,3) and q = q{a,}, 9 = d{as}

respectively. Let
0001
_ (o100
K= (0010)
1000

and identify g with the Lie algebra of 4 x 4 complex matrices with trace zero
that satisfy X*K + KX = 0. The CR isomorphism (g, qa,) — (8, qas) is given
by the map su(1,3) 3 X — —'X € su(l,3).

7. g-equivariant fibrations

In this section we discuss morphisms of C'R algebras of the special form (g, q) —
(g,q9), for ¢ C q’. They have been called in [30] g-equivariant fibrations and
describe at the level of C'R algebras the corresponding G-equivariant smooth
fibrations M (g,q) — M(g,q’). In this section we focus on the C'R algebra
aspects, preparing for the applications of the next sections.

We keep the notation of the previous sections. In particular, g is a
semisimple real Lie algebra, h a Cartan subalgebra of g with maximal vector
part, R = R(§,h), C a Weyl chamber adapted to the conjugation o in by
induced by the real form g of g, B = B(C) is the set of simple roots in
Rt =R (C).

Let W C ® C B. Then q¢ C qg and the identity on g defines a natural
g-equivariant morphism of C'R algebras (see [30]):

(71) T (97 q@) - (gv q\I’> .
Its fiber (see [30]) is:
g =gNqu =gNqu
(7.2) (¢',q"), where g =quNae
9 =0sNg =qgoNqguNgs =qo Nquw .

Denote by R’ and Q' the sets of roots a € R for which g is contained in g’
and g, respectively :
R =QynNQ
(7.3) { , Qv N Qv
Q — Q@ N Q\I’ )
define:
R"=R'N(-R') = Q4 N QY
(74) Ql/ — Ql m RII
A=R'\R" = (Q% N Qu) U (9% N Qu)

and set :

(7.5)
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Then R” is o-invariant, §” = qf, N gy is reductive, q” is parabolic in §” and
a= (93 Nqw) + (qw Nqy) is an ideal in g’, which is invariant with respect to
the conjugation defined by the real form g.

Lemma 7.1. aCqe.

Proof. We first show that Q% N Qg NRe = . Assume by contradiction that
there is v € Qf N QuNR,.. (From a € Qy we obtain that @ = —a € QZ},, that
is a ¢ Qg , which gives a contradiction.

Since Qy is contained in Rt and oy N Qg does not contain imaginary
roots, also its conjugate Qf N Qy = Q(}, N Qg is contained in RT. Hence
AC RT C Q@. |

Lemma 7.2. B”" =BNR" is a basis of R" .

Proof. Indeed, assume that o € R” is the sum of two positive roots: o = S+~
with 3,7 € RT. Then a € Qf, implies that also 3,7 € Qf,. If 3,7 ¢ R,, then
by the same argument applied to a = B+7 € Qy we obtain that 3,v also
belong to Qf and hence to R”.

Consider now the case where, for instance, 3 € Ro. Then 3 = —3 € QF,
implies that 8 € R” and therefore v = a — 3 € R”, showing that also in this
case « is not simple in [R”]" = RT NR”. This shows that B” is exactly the
set of simple roots in [R”]", and thus a basis of R”. n

We have obtained:

Proposition 7.3.  The CR algebra (g"”,q") is parabolic minimal. Its cross-
marked Satake diagram (8", ®") is the subdiagram of (8, ®) consisting of the
simple roots o such that:

either (i) a € Re\V, or (ii) ag Re and ({a} Usupp(a))N¥ =0.

The cross-marks are left on the nodes corresponding to roots in ®NB" .m

We say that a Satake diagram is o -connected if either it is connected or
consists of two connected components, joined by curved arrows.

Theorem 7.4.  Let (7.1) be a g-equivariant fibration. Then the effective quo-
tient of its fiber is the parabolic minimal CR algebra whose cross-marked Satake
diagram consists of the union of all o-connected components of the diagram S”
described in Proposition 7.3, containing at least one cross-marked node. ]

Example 7.5. Let g = su(1,3) and let ® = {ay,a2}, ¥ = {a1}. Then the
cross-marked Satake diagrams corresponding to the C'R algebra (g, qs), the base
(g,9w) and the corresponding effective fiber are given by:
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In the case ¥ = {3} we have instead:

631 d2 a3 aq dQ asg
X X X

The fiber is trivial and the map is a C'R morphism, but not a CR isomorphism.
The corresponding map M(g,qs) — M(g,qy) is an analytic diffeomorphism
and a CR map, but not a CR diffeomorphism.

A g-equivariant morphism of C'R algebras (7.1) is a CR-fibration if the
quotient map

(7.6) do/ (4o Ndy) — qu/ (qw N qy)

is onto. Set Mg = M(g,q¢), My = M(g,qu), and F = M(g”,q"). The
condition that (7.1) is a C'R-fibration is equivalent to the fact that every point
of Mg has an open neighborhood which is C'R diffeomorphic to the product of
an open submanifold of My and F'.

We have the criterion :

Proposition 7.6.  The following conditions are equivalent:
(i) (7.1) is a CR-fibration;
(i) Q4 \ Qo C Qu;
(197) QL NQF C QY.

Proof. First we prove the equivalence (i) < (ii). A necessary and sufficient
condition in order that (7.1) be a CR-fibration is that the sum of the CR
dimensions of (g,qy) and of the fiber (g’,q") equals the C'R-dimension of the
total space (g,qq) :
dimcqe — dimeqe N = dimcqy — dimcqy N gy
+dimcqe N gy — dimeqe N qs -
Since all subspaces considered in this formula contain 6, this is equivalent to:

(*)  |Qa| = [Qul —1Quw N Qu|+ Qs N Qu| = [Qu \ Qu| + Qs N Qul,
(where we used |A| for the number of elements of the finite set A). Since
Q¢ C Qu, we always have:

Qs C (Qu \ Qu) U (Qe N Qu) .
The two sets on the right hand side are disjoint. Hence (*) is equivalent to:
Qy \ Qv C Qs.
As QF C RT C Qg, this is equivalent to

»\ Qo C Qu.

Next we prove that (ii) = (i7i). We distinguish several cases.

If o € @y NR., then a =—a € 9y, thatis a € QQ,

If « € Q,NQ% and o € R,, then & > 0, hence o € Qg . On the other
hand —a € Qf, \ Q¢ and, by (i1), —a € Qy, thus a € QY.

Finally we prove that (iii) = (ii). Let @ € Qf \ Qp. Then —a €

Qr, N Q% and (iii) implies that —a € QF,, which is equivalent to o € QF,.
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In particular, we obtain:

Proposition 7.7. If Qu = Qu, then (7.1) is a CR-fibration.

Proof. Indeed condition (4ii) of Proposition 7.6 is trivially satisfied if Qg =
Qu . u

We recall (see [30]) that a CR algebra (g,q) is totally complex if q +
g = g. This condition is equivalent to g + q = g and to the fact that every
homogeneous C'R manifold M with associated C'R algebra (g,q) is actually a
complex manifold.

Proposition 7.8. If QyUQy = Q3 UQs, then (7.1) is a CR-fibration with
a totally complex fiber.
Proof. Indeed we obtain: Qg \ Q¢ C Qs C Oy, and hence (ii) of Proposition
7.6 follows because Qy D Qf, 9 C 9QF.

To show that the fiber is totally complex, we need to verify that quNgqy =
g N qw + quv N qe . This is obvious because q¢ C qy C o + qa - [ ]

Our next aim is to characterize g-equivariant C'R fibrations in terms of
cross marked Satake diagrams. For this we introduce some notation.

The component ¥(a) of a root o € B(C) is the set of roots 3 € B(C)
belonging to the connected component of the node corresponding to « in the
graph obtained from & by deleting those nodes that correspond to roots in
U\ {a} and the lines and arrows issuing from them.

Given a subset & of B(C), its exterior boundary 9.€ in § is the set of
roots a in B(C) \ € such that, for some f €&, a+ [ €R.

It will be convenient in the following to identify the nodes of & with the
corresponding roots in B(C'). In particular, for a connected subset £ of a Satake
diagram &, we set 6(&) = > o €R.

We recall the notation = = B(C')\ R, for the set of non imaginary simple
roots.

Lemma 7.9. If a € R\ R., then

supp(@) D (Oe(supp(r)) N Re) Uec (supp(a) \ Ra).

Proof. By inspecting the conjugation diagrams in [7], we find that, if o € =:

(7.7) supp(a) = (E(a) \ {a}) U {ec(a)}.
If a=> kia; € R\ Ra, then

supp(@) D ( U supp(ézi)> \ (SUPP(O‘) N R°)7

ki
o

in particular supp(@) contains ec (supp(c) \ Ra).
If g € 8e(supp(oz)) N Re, then, since supp(a) ¢ R,, there exists

—_—

a; € supp(a) N E such that 8 € Z(oy). This implies that supp(a) > S. [
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Theorem 7.10. A necessary and sufficient condition for (7.1) to be a CR
g-equivariant fibration is that for every a € ® \ U either one of the following
conditions hold:

(i) Wa)cRe; v
(ii) V() € Re, cc(V(a) \Re) NV =0, and 0. V(a) NRe =0 .

Proof. Condition (i) in Proposition 7.6 is equivalent to the assertion that, for
every root (3:

(7.8) supp(f)N¥ = @} _

supp(B) D £ D[ supp(3) N ¥ = 0.

Fix @ € ®\ ¥ and let 3 = 6(¥(a)). Then, according to Lemma 7.9,
cither 3 € Rq or supp(3) D ec(¥(a)\Re) U (9. ¥ () \Rs), showing that either
(i) or (i7) must be valid.

Fix again o € ®\ ¥ and let a; € ¥(a). If a; € Re then @; = —a; and
supp(a;) NV = 0. If a; & R,, formula (7.7) implies that either supp(a;) C
U(a) or a; = ec(a;). In both cases supp(a;)NV¥ = @. For a generic 3 € R\ R,
such that supp(8) C ¥(a) we have that:

supp(B) € ) supp(ay),
a;€supp(B)

hence supp(B) NV = . [

8. A rigidity theorem for minimal orbits

In this section we will discuss some topological properties of homogeneous C'R
manifolds, having an associated C'R algebra which is parabolic minimal. We
generalize here some results proved in [26], [29] in the case of parabolic minimal
CR algebras corresponding to semisimple Levi- Tanaka algebras.

Let (g,q¢) be an effective parabolic minimal C'R algebra, with associ-
ated cross-marked Satake diagram (S, ®). We say that (g,qe) has property (F)
if ® does not contain any real root.

Let (5.4) be a Cartan decomposition of g with (5.5). Denote by ¢! =
[¢, 8] the maximal semisimple ideal of ¢ and set ¢, =€¢Ngy =€Nge. We have:

Proposition 8.1.  Assume that (g,qe) has property (F). Then :

(8.1) e=¢W e, .

Proof. Let £ be the complexification of £. Since %+ =Cot, = EN qo N Qs ,
our contention (8.1) is equivalent to:

(8.2) =M 4 ¢, .
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For o ¢ R, set £ = (g ® g~®) Nk. This is a 1-dimensional subspace of §,
and we obtain the direct sum decomposition:

(8.3) E=hte ) o )y .
a€Re a0
a0

First we note that h* C ge N qe . Next we observe that, if « is not real, then
a(hT) # {0} and hence: g* = [T, g% C £V if o € R, , and & = [h, 2] C ¢V
if >0, a# +a.

By property (F), for a simple real a we have a € Q" N Q" and hence
B C b

To complete the proof, we argue by contradiction. If (8.2) is not valid,
there exists some real root a > 0, minimal with respect to ” <”, with ¢* ¢
HONY %Jr. This « is not simple, and hence @ = 3+ v, with 3,7 > 0 and we can
assume that ( is not imaginary. We consider the different cases.

If v € R., then ¢ = [g7,¢%] c ¢V

We note that, for 3,7 ¢ R., the commutator [¢°,€7] is contained in a
sum of eigenspaces §” where 7 is a root in {3+~v, —3—7, 37,7 — 3}. Hence:

If v¢ Ry and 3 —7 ¢ R, then & = [¢7,¢7] C &)

If v ¢ Re and 8 — 7 is a positive root, we have that 0 < 5 — 7 <
B < «. Thus, by the assumption that « is minimal, €*~7 C e 4 %Jr and
g c [0, 0]+ 807 c e e,

Analogously, if v ¢ Re and v — f3 is a positive root, then 0 <~y — B <
7 < «; by the assumption that « is minimal, P8 e 4 %4_ and ¢ C
(€7, 0]+ F c e+, . n

As a corollary, we obtain:

Theorem 8.2. Let M be a connected homogeneous C'R manifold whose
associated CR algebra is a parabolic minimal (g, qe) that satisfies property (F).
Then M s compact and has a finite fundamental group.

Proof. Let G denote the semisimple group with Lie algebra g that acts tran-
sitively on M. Let (5.4) be a Cartan decomposition of g and let K be the
analytic subgroup generated by €. Since £() is semisimple and compact, the
group K is semisimple and compact. By Proposition 8.1, K(!) is transitive on
M , because for each p € M the orbit K .p is open and closed in M , and hence
fore coincides with M, which, in particular, is compact. The universal covering
KW of KM is compact. If K‘ﬁ is the analytic subgroup of K(!) generated by
E(j) =t Nggp, then M = K<1>/K$) is simply connected and is the universal
covering of M. Therefore, having a compact universal covering, M has a finite
fundamental group. [ |

Example 8.3. Fix a positive integer p, and let g ~ su(p,p) be the set of
(2p) x (2p) complex matrices Z with 0 trace that satisfy:

Z*K+KZ:0,whereK=(Ip_I>.



504 ALTOMANI, MEDORI, AND NACINOVICH

Let e1,...,ea, be the canonical basis of C?*? and let q C g ~ s[(2p,C)
be the set of (2p) x (2p) matrices in s[(2p, C) such that
Z((e1+ept1,..- epte)) Cler+epr1,. .. ep+ezp).

Then (g,q) is parabolic minimal. The corresponding C'R manifold
M = M(g,q) is the Grassmannian of p-planes ¢, in C?? which are totally
isotropic for K (i.e. v*Kv =0 for all v € £,). We have

M = {t, = {(v,u(v)) € C* |v € C*} |u € U(p)} ~U(p)
where U(p) is the group of unitary p x p matrices, i.e. U(p) = {u € GL(p,C) |

w*nu = 1}. Then 7 (M) ~ Z is infinite. In this case the cross-marked Satake
diagram is:

and property (F') is not valid, since ® = {a,} consists of a real root.

Proposition 8.4.  Let (g,qs) be an effective parabolic minimal CR algebra.
Then there exists a unique minimal (with respect to inclusion) parabolic subalge-
bra q of g that is contained in qe and satisfies qe N e = qN .
The parabolic CR algebra (g,q) is minimal and we have :

(1) q=qg fora ¥ Db,

(i1) qu + qu is a Lie subalgebra of g .
Moreover, if property (F') is valid for (g,qs), then it is also valid for (g, qv).
Proof. Let A € bhr be such that:

Qo = {aeR|a(4) =0}

(for this characterization of the parabolic set of roots see for instance [39]).
Set A = A_ +1A,, with A_ € b~ and A, € h*. Fix a real positive ¢
sufficiently small, so that |a(i AL )| < e ! |a(A_)| whenever a(A_) # 0, and set
B=A_+icA;. Then B € hr. We observe that

Q ={aeR|a(B) >0}
is the the set of roots of a parabolic minimal corresponding to some ¥ C B.
Indeed a(A_) > 0 implies that a(B) > 0 and a(B) = ea(A) when a(A_) = 0.
This shows in particular that RT™ C Qg, and hence Q@ = Qy for some subset

U of simple roots of R™. This observation also yields (i), while qy + gy is the
parabolic subalgebra corresponding to the set

Q' = f{acRla(A_) > 0}.

For a real root «, we have a(A) = a(B), and hence the two parabolic sets Qg
and Qy contain the same real roots. This implies that they either both have or
both do not have property (F).

Let us prove that ® C W. Let o € Qf € RT. If a(A_) = 0, then
a(B) =ea(A) >0 and o € QF . If a(A_) # 0, then o € R \ R., and hence
a,a € RT C Qg implies that a(A_) > |a(iAy)|. Thus a(B) > 0 and again
a € Qf . Since Qg C 9, we have & C U.
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Finally we show that q = qy satisfies the minimality condition. To this
aim, we will show that every parabolic Lie subalgebra q’ of g with q’ C q¢ and
4’ N§ = qe N§e contains qy. Since q' contains h, we have q' = h @ > oacor 8¢
for a parabolic subset Q' C R.

We claim that RT C Q'. Indeed, for a € RT \ R,, we have a €
QeNQp = NQ C Q. If a € RY NR,, then either a € QF and again
a € QsNQp =9 NQ C Q,o0r a € QF and —a ¢ Q¢ DO Q' implies
a € Q' because Q' is parabolic. This implies that (g,q’) is parabolic minimal
and q' = qg for some V' D .

To prove minimality, we need to show that ¥/ C ¥, i.e. that a(B) >0
for all & € ¥'. First we observe that W NRe = VNRe = PNR,, as we showed
above that Q""NRe = Q2ZNR, for all parabolic sets Q" with @'NQ’ = QN Q.

For a € ¥\ R,, either « € ® C ¥, or a(A) =0 and @(A) > 0. This
implies that a(A_) > 0 and hence «(B) > 0.

This completes the proof. (]

Corollary 8.5. Let ® C U C B be as in the statement of the previous
proposition and let G be any connected Lie group with Lie algebra g. Denote by

Ad the complexification of the adjoint action of G in g and by
Neg(a) ={g € G|Ad(g)(a) C a}

the normalizer of a subspace a of g in G. Then

(8.4) Nc(gw) = Na(qs) -

Proof. Indeed, if g € Ng(qs), then Avd(g)(qq,) is still a parabolic subalgebra
of g, minimal among those that are contained in q¢ and satisfy qNg = qe Nqs -
Hence, by the uniqueness stated in Proposition 8.4, it coincides with qy and
therefore g € Ng(qy). Thus we proved the inclusion Ng(qe) C Na(qu)-

Note that Ad can be considered as a homomorphism G — Int(g),

—~ -1

and Ng(a) = Ad (Npng(g)(a) for every subspace a of g. Then the opposite
inclusion Ng(qu) C Ng(qe) follows from the fact that any parabolic subgroup
of a connected complex Lie group is the normalizer of its Lie algebra. ]

Theorem 8.6. Let (g,q8) be an effective parabolic minimal CR algebra,
satisfying condition (F'). Let G be any connected algebraic complex semisimple
Lie group whose Lie algebra is the complezification g of g and let Q be its
parabolic subgroup with Lie algebra q. Denote by G the analytic subgroup of G
with Lie algebra g. Then :

(1) Gy =GNQ is connected;

(it) M = G/G4 is compact and simply connected.

Proof. First we consider the case where (g,qs) is a totally real parabolic
minimal C'R algebra satisfying condition (F'). In this case g is a parabolic
real Lie subalgebra of g. Denote by N the normalizer of g, in G. Denote
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by > the real root system of g with respect to h~ and let 7 : R — X denote
the natural projection. By [40] we know that the fundamental group of G/N
is a quotient group of the free group generated by the elements of 7(®) having
multiplicity 1. But condition (F') implies that no root in 7(®) has multiplicity
1, and hence m(G/N) = 1. Thus G/N is simply connected. Since N D G,
we deduce that G4 = N is connected. By Theorem 8.2, M is also compact.
Thus the proof is complete in this case.

Consider now a general effective parabolic minimal (g, qe). Let ¥ be the
subset of B found in Proposition 8.4. Then we consider the parabolic subalgebra
qrn = qw + qu, with II C ¥ and we apply Proposition 7.8 to the g-equivariant
fibration (g,qw) — (g,qm). The fiber is a parabolic minimal totally complex
CR algebra (g/,q’). Thus, with Gy equal to Ng(qy), and Gp equal to
Nec(qn) = QuN G, we obtain a G-equivariant fibration M = G/Gy — G/Gq
whose fiber is a complex flag manifold. Since both the base space G/Gry, by the
first part of this proof, and the fiber are simply connected, also the total space
M is simply connected.

By Corollary 8.5, we have Ng(quv) = Na(qe) = GN Qg , and therefore
M is diffeomorphic to M and therefore simply connected. By Theorem 8.2, M
is also compact. [ ]

Theorem 8.6 and Theorem 8.2 yield a rigidity theorem for C'R manifolds:

Corollary 8.7. Let G be a semisimple real Lie group and M a connected G -
homogeneous C' R manifold. If the associated CR algebra (g,q) is parabolic min-
imal and has property (F'), then M is simply connected and C R -diffeomorphic
to M(g,q). n

9. Fundamental C'R algebras

We give a criterion to read off the property of being fundamental from the cross-
marked Satake diagram :

Theorem 9.1.  An effective parabolic minimal CR algebra (g,qs) is funda-
mental if and only if its corresponding cross-marked Satake diagram (S, ®) has
the property:

(9.1) ac€P\ Ry = cc(a)¢d.

Here e¢ is the involution in B(C') defined in Proposition 6.1.

Proof. Assume that a; and as = ec(a1) both belong to @, and let ¥ =
{a1,a2}. Then ¥ C & and hence q¢ C qy. To show that (g,qe) is not
fundamental, it is sufficient to check that qgy = gy . To this aim it suffices to
verify that Q% = Qy . Let B(C) = {ay, a2, a3, ...,a.}. Every root a € Q% can
be written in the form o = Zle kico; with k1 + ko > 0. Since C' is adapted to
the conjugation o, using (6.1) we obtain :
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_ ¢ ¢
a =23 o kicc(®i) + 2 pep, ) kasB = 2izy Kiu,
with k] + kS = ko + k1 > 0, showing that also & € QF . This shows that the
condition is necessary.
Assume vice versa that there exists a proper parabolic subalgebra ¢
of g with q¢ C q' = q’. Then ¢’ = qu for some ¥ C ¢, ¥ # (). Since
Qy = Q% € RT(C), we have ¥ N R, = @. Hence, again by (6.1), we obtain

that ec(a) € U for all o € V. u
Corollary 9.2. Fundamental effective parabolic minimal CR algebras have
the (F') property. [

LFrom Theorems 9.1, 7.4 and Proposition 7.7 we obtain :

Theorem 9.3.  Let (g,qs) be an effective parabolic minimal CR algebra and
let (S,®) be its corresponding cross-marked Satake diagram. Let

UV={acd®\R,|ec(a) € D}.
Then

(i) The diagram 8’ obtained from 8 by erasing all the nodes corresponding
to the roots in W and the lines and arrows issued from them is still a
Satake diagram, corresponding to a semisimple real Lie algebra g’ .

(ii) (g,qw) is a totally real effective parabolic minimal CR algebra.

(#ii) The natural map (g,q9s9) — (g,9w), defined by the inclusion qe C qu,
15 a g-equivariant CR fibration. The effective quotient of its fiber is the
fundamental parabolic minimal CR algebra (g”,qe/), associated to the
cross-marked Satake diagram (8",®"), where ® = ®\ ¥ and 8" is the
union of the o-connected components of 8’ that contain some root of
o’ ]

We call the map in (ii7) the fundamental reduction of (g,qs) and the
totally real C'R algebra (g, qy) its base.

Example 9.4. Let g ~ su(2,2) and let & = {as, a3z} (we refer to the dia-
gram below). We have ec(a;) = ay—; for i = 1,2,3 and hence ¥ = {a €
Plec(a) € @} = {az}. In particular (g,d{as,as)) is not fundamental. We
obtain by Theorem 9.3 a g-equivariant C'R fibration (g, d{as,051) — (8, d{as})
with fundamental fiber (g’,4dY,,), with g’ ~sl(2,C).

/_\X
O o
a1 a3
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Corollary 9.5. Let G be a semisimple Lie group and M a G -homogeneous
CR manifold. Assume that the CR algebra (g,qs) associated to M is parabolic
minimal. Let (g,qw) be the base of its fundamental reduction. Then there exists
a (totally real) G -homogeneous C'R manifold N, with associated CR algebra
(g,9v), and a G -equivariant submersion w : M — N such that the induced map
wy : (M) — w1 (N) is an isomorphism.

Proof. Let o be a point of M and let G the stabilizer of 0 in G. Let H
be the analytic subgroup of G generated by g N qy. Then H contains G .
We claim that H- G = G/_ is a Lie subgroup of G. Indeed, for all g € G,
we have Ad(g)(qe) = qa. Since g is real, we also have Ad(g)(qe) = qe and
therefore Ad(g)(qw) = qu because qg is generated by q¢ + qe. This implies
that ad(g)(H) = H for all g € G, and hence G/, is a subgroup of G. It is a
Lie subgroup because its Lie algebra is real parabolic. Then N = G/G!_is a G-
homogeneous manifold. By the inclusion G C G/, we obtain a G-equivariant
submersion w : M — N . By construction the fiber is connected. It has a natural
structure of CR manifold, associated to a fundamental C'R algebra (g”,qe),
as in Theorem 9.3, which is parabolic and minimal. By Corollary 8.7 the fiber is
simply connected. Hence w, : m (M) — m1(IN) is an isomorphism. L

10. Totally real and totally complex CR algebras

From the discussion in the previous section we obtain the criterion :

Theorem 10.1. A simple effective parabolic minimal CR algebra (g,qs),
with corresponding cross-marked Satake diagram (S,®), is totally real if and
only if the following conditions hold true:

(i) PNRe =0;

(it) ec(®)=o. ]

Theorem 10.2. A simple effective parabolic minimal CR algebra (g, qe) with
associated cross-marked Satake diagram (S, ®) is totally complex if and only if
either:

(1) g is compact, or
(it) g is of the compler type and all cross-marked nodes are in the same
connected component of S, or

(1i1) (S, ®) is one of the following:

(s
(o) {o i,
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Proof. The CR algebra (g,q) is totally complex if and only if g+ q = g.
This is equivalent to the fact that the standard C'R manifold G - o is open in
the complex flag manifold G/ Q. Since it is also closed, it follows that G is
transitive on G/Q. The result then follows from [42, Corollary 1.7. n

This yields also a characterization of ideal nondegenerate parabolic min-
imal C'R algebras. Indeed, for general parabolic C'R algebras, we have:

Theorem 10.3.  Let (g,q) be a simple effective parabolic CR algebra. Then
(g,q) is either totally complex or ideal nondegenerate.

Proof. We recall (see [30]) that an effective C'R algebra (g, q) is ideal nonde-
generate if Hy = (q+ q) N g does not contain a non zero ideal of g. When g is
simple, this is equivalent to the fact that Hy # g, i.e. that (g,q) is not totally
complex. [ |

11. Weak nondegeneracy

In this section we characterize those parabolic minimal (g, qe) that are weakly
nondegenerate. We recall from Proposition 4.1 that this means that there is no
nontrivial complex C'R fibration M(g,qe) — N with totally complex fibers. In
turns this is equivalent to the fact that M(g, qe) is not, locally, C R equivalent to
the product of a C'R manifold with the same C'R codimension and of a complex
manifold of positive dimension.

From Proposition 7.8 we obtain :

Lemma 11.1. A fundamental effective parabolic minimal CR algebra (g, qs)
1s weakly degenerate if and only if there is ¥ C ® such that the g-equivariant
fibration (g,qs) — (8,qw) is a CR fibration with totally complex fiber. |

Lemma 11.2. Let (g,q8) be a minimal fundamental effective parabolic CR
algebra. A necessary and sufficient condition in order that (g,qe) be weakly
degenerate is that there exists W C ® satisfying conditions in Theorem 7.10 and
such that qu C qo + 4 - ]

We now give a characterization of the pairs (®,¥) for which (7.1) is a

CR fibration with totally complex fiber in terms of properties of the roots « in
O\ W,

Lemma 11.3. Let (g,q¢) be a minimal fundamental effective parabolic CR
algebra, with g of the real type (i.e. @ is also simple). Let @ # ¥ C ® and
assume that (7.1) is a CR fibration. Then for each a € ® \ ¥ we have the
following possibilities:

(1) \If(a)vC Re; ]
(i) (a) \If(a)f] Re =0 and (b) (¥(a)) N
(1it) (a) O # ¥Y(a) NRe # ¥(a) and (a) €
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Proof. Fix a € ®\ ¥ with ¥(a) ¢ Re and let § = §(¥(a)).

If 3 € ¥(a)\Re and ec(3) € ¥(a), then 81_1pp(5_)v > ec(B). Since it
is connected and does not meet ¥, we obtain supp(d) C ¥(«). This implies
that U(a) \ Re = ec(¥(a) \ R ) In this way we have shown that either

ec(¥(@) \Re) N¥() \Re =D or ec(¥(a) \ Ra) = ¥(a) \ Ra

If ¥(a)N R, is not empty, then there exists 3 € () \ Ro such that
A NT(a)NRe # @. Hence supp(B)N¥(a) # @ and, by the same argument
as above, ec(3) € ¥(a) and we get (i4i.b).

Finally we consider the case where ¥(a) N Re = @. The boundary
Oe (\P(a)) is not empty, thus it contains a root § € ¥ and 3 ¢ R, because
of Theorem 7.10. The fact that g,q¢ is fundamental implies that ec(8) &
V. In particular ec(ﬁ) Z 0, (\if(a)) Applying again Theorem 7.10 we have

ec( (@) \ Ra) N :v @, hence ec(f) ¢ \I/(Oz)._ Sin(:,e ec(p) € 86(Supp(5))
and supp(6) N Re ¢ ¥(a), it follows that supp(d) N ¥(a) = @, thus ¥(a) N
ec(¥(a)) =0. m

Lemma 11.4. With the same hypotheses of Lemma 11.3, the effective quotient
of the fiber of the g-equivariant CR fibration (g,qe) — (g,qw) has cross-marked
Satake diagram

8= |J ¥a)Uec(¥(a)\R.)

a€P\V

and ' =dNS’.
In particular it is totally complex if and only if for each o € &\ ¥,
condition (i) or (ii) of Lemma 11.3 holds.

Proof. The effective quotient is described in [30] and at the end of §4. From
Theorem 7.4 we know that 8" C U, cq\v¢ ¥(a)Uec(¥(a) \ Rd). Equality then
follows from the observation that if 3 € ¥(a)\ Re then supp(5) NV =@ .

To prove the second statement, we can assume that there exists exactly
one root a € ®\W. In cases (i) and (i) of Lemma 11.3 the cross-marked Satake
diagram of the fiber is of the types described in Theorem 10.2 (), (i7) and is
totally complex. If we are in case (4#ii) of Lemma 11.3, then ¥(a) NR. # O,
and the fiber is totally complex if and only if (¥(a),® N ¥(a)) is one of the
diagrams in Theorem 10.2 (7i7).

Since 9. (¥(a)) NRe = @ and ec (9. ¥ (a)) N (¥(a) UD T () = B, We
have that o is not the identity, hence & must be of type AIIl, AIV, DIb,
DIIIb, EIT or EIII. We exclude types AIIl, ATV, DIb and EII because they
do not contain subdiagrams of type A Il or DII, so we are left with types D IIIb
and EIII.

Type DIIIb must be excluded because in this case we have o = a; or
g, U(a) = {a1,...,a0—2} and O, ( (« )) ={ay-1,as} —ec(a (o ))

Similarly type EIII must be excluded because we have o« = a3 or as,
U(a) = {ag, a3, a4, a5} and 0O, (\if(a)) ={a,a5} =ec (Ge\if(a)). ]
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Theorem 11.5.  Let (g,qs) be a simple fundamental effective parabolic min-
imal C'R algebra and assume that it is not totally complex. Let 11 be the set of
simple roots o in ® that satisfy either one of:

(i) ®(a) C Ra;

(i) (2(@)UdP(a)) NRe =0 and ec(P(a)) N® =0.
Then (g,qe) is weakly nondegenerate if and only if 11 = 0.

Set W =®\II. Then (g,q9¢) — (g,9w) s a g-equivariant CR fibration

with totally complex fiber and fundamental weakly nondegenerate base.

Proof. Fix a € ®\V¥. Then conditions (i) and (ii) are necessary and sufficient

for (g,90) — (8, da\{a}) to be a g-equivariant C'R fibration with totally complex

fiber. This observation, Lemma 11.4 and Lemma 11.2 yield our first statement.
To prove the last part of the Theorem, we make the following

Claim. Let o, € ® with o € II. Then 3 satisfies either (i) or (ii) for ® if
and only if 3 satisfies (i) or (ii) for ' = &\ {a}.

Assuming that this claim is true, we conclude as follows. If I =
{B1,..., 0k}, we have g-equivariant C'R fibrations with totally complex fibers:

(g,90) — (8, 90\{8,3) — (8, 0\ {81,8.}) — - — (8, da\11)-

Their composition is still a g-equivariant C'R fibration with totally complex
fiber, and the base (g, qy) is weakly nondegenerate.

Now we prove the claim. If 3 & 9. (®(a)) U decc (®(a)), then &(3) =
(), ec(®(B)) = ec(P'(8)), and there is nothing to prove.

Assume f € 0.(®()); then @(8) = ®(8) Ud(a). If ®(a) C R, then
d(B) C R, if and only if &'(8) C R..

If ®'(3)NRe =D, we need to prove that, if 3 satisfies (i) or (i), then
®(a) Nec(®(B)) = @. This is true because otherwise ec(8) € 9 (®(a)), and
this yields a contradiction because we assumed that (g, qe) is fundamental.

Finally if § € O.cc (QVJ(a)) then B ¢ Re and ec(f) € 0. (@(a)), again
contradicting the assumption that (g,qe) is fundamental. |

12. Strict nondegeneracy

In this section we give necessary and sufficient conditions for a weakly nondegen-
erate C'R algebra to be strictly nondegenerate. We recall from the introduction
that the C'R geometry of strict nondegenerate homogeneous C'R manifolds can
be related to the standard models and investigated by using the Levi-Tanaka alge-
bras (cf. [30], [35], [36]). Therefore, by classifying the weakly degenerate minimal
orbits that do not have the strict nondegeneracy property, we single out a class of
homogeneous C'R manifolds with a highly non trivial C'R structure that cannot
be discussed by using the standard Levi-Tanaka models. This also explains the
need to introduce C'R algebras, as a generalization of the Levi-Tanaka algebras,
in [30].

First we reformulate weak and strict nondegeneracy in terms of the root
system:
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Lemma 12.1. A fundamental effective parabolic minimal CR algebra (g,q) is
weakly nondegenerate if and only if for every root o € Q\ Q there exist a sequence
(Bi € Q)1<i<pn Such that

(12.1) aj=a+Y BER Vi=1,...,n, o € QUQ.
1<j
Proof. The statement is an easy consequence of [30, Theorem 6.2]. [ ]

Likewise we have:

Lemma 12.2. A fundamental effective parabolic minimal CR algebra (g,q) is
strictly nondegenerate if and only if for every root o € Q\ Q there exists € Q
such that o+ € R and a+ ¢ QU Q. n

Next we prove that it suffices to check this condition on purely imaginary
roots:

Proposition 12.3. A necessary and sufficient condition for a fundamental
effective weakly nondegenerate parabolic minimal CR algebra (g,q) to be strictly
nondegenerate is that for every root a € Re N Q\ Q there exists B € Q such
that o + BER and o+ € QU Q.

Proof. The condition is obviously necessary.

To prove sufficiency, consider a root a € Q\ Q, a & R, ; since a < 0,
we have —a € Rt \ R,. This implies that —a& € Rt ¢ Q. Then —a € Q
and o € Q". By the assumption that (g,q) is weakly nondegenerate, using
Lemma 12.1 we can find a sequence of roots (3;) satisfying (12.1). Take the
sequence (f3;)1<i<n of minimal length; we claim that for every permutation 7 of
the indices, the sequence (8, (;))1<i<n still satisfies (12.1).

Indeed, fix a Chevalley basis {X,}aer. Then, for every transposition
(4,14 1):

q+E| ﬁ [Xﬁn;--~7X6i+17XBia~"aXﬁ17Xa] =
— [X,@n7'">Xﬁi7Xﬁi+17"'7X,317Xa]+[X/&ﬂ“'7[Xﬁi+17X[3i]7"'7Xﬁ17Xa]'

The last addendum in the right hand side belongs to q 4+ g by our assumption
that (8;)1<i<n has minimal length. Thus

[X,@n7"' 7Xﬁi7Xﬁi+17"' ’XBNXOé] 6@\(q+ﬁ).

In particular o+ 3; € R for every ¢. At least one of the 3;’s, say (;,, does not
belong to Q, so a + B;, ¢ Q. Indeed, since o € Q", if a + ; € Q, then also
Bi = (a+ 3;) + (—a) € Q. By a permutation, we can take (3;, = 3,. Then we
claim that a+ 3, ¢ QU Q. Indeed we already choose 3, so that a+ 3, ¢ Q. If
a—+ B, € Q, we have [Xﬁw o 7Xﬂn_17Xﬂn7Xa] = [X/gl, o Xg, 0, [Xgn,Xa]] €
q, because X, € q for every ¢ = 1,...,n, and hence o, € Q, contradicting
(12.1). n
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Theorem 12.4.  Let (g,q¢) be an effective parabolic minimal CR algebra,
with g simple. If (g,qs) is weakly nondegenerate, but is not strictly nondegen-
erate, then ® is contained in a connected component of BNR,.

The strictly nondegenerate (g,qe) with g simple and ® C R, are those
listed below :

(BIb / BII) ® ={api1}

(Clla / IIb) ¢ ={agi—1}, 1<i<p
(DIa) ¢ ={apt1}

(DII) ® ={as}

( {aa}
{as, s}
{au, as}

\ {063,044,065}

( {as}
{as}

EIV {as, a4}
EVII ¢ =1 {as,a5}

EIX {a4,a5}
{a2, a3}

\ {OZQ, 055}

(1)

(EIII) ® =

Proof. We prove the first statement. The proof of the second will be omitted,
as it requires a straightforward case by case analysis, chasing over the different
Satake diagrams.

Suppose that (g,qs) is weakly, but not strictly, nondegenerate. Then
there is some root o € Qg \ Qs, a < 0, such that o + 3 € Qg U Qs for all
B € Qg for which ao+ 3 € R. By Proposition 12.3 we can take a € Ro. Let
B’ be the connected component of supp(a) in BN R,. Since a € Qg , we have
B'Nd+£0O.

Since we assumed that (g,qe) is weakly nondegenerate, for each v € ®
the set ®(y) is not contained in R,. As supp(a) N ® # @, this implies that
there is some ( € Qg, with # < 0, such that 5 ¢ Re and o+ 5 € R. Since
g e Qf and —a € QF, we obtain that a + 3 ¢ Qg . If B’ N ® contains some «;
which does not belong to supp(«), this «; would belong to supp(« + ). Indeed
a+ (8 ¢ Re, hence supp(a + 3) contains all simple imaginary roots 7 that are
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not in supp(a + () and such that 9,Z(y) Nsupp(a + ) # @. This shows that
B'N® = supp(a) N d.

Let A= (ReN[P®\B])Uec(®\R,). We want to show that A= Q.

Assume by contradiction that A is not empty. Then there exists a
segment S in B\ ® joining A to supp(«), i.e. such that 9.S N A # O,
0.5 Nsupp(ar) # . By taking S of minimal lenght, we can also assume that
SN (AUsupp(a)) =0.

Let 8 = —0(S). Then <0, € Qf and § ¢ R, so that a + [ €
R\ Qo .

If there is some «; in 9.SNANR, # @, then a+3 € R, supp(a + () >
a;, and o+ 3 ¢ Q¢ , contradicting our assumption.

If 0.5NANR, =D, there is a; in &\ R, with ec(a;) € 9.5 N A.
Set 3 = 38 —¢ec(a;). Then 3 € Qg, and a+ 3 € R\ (Qq> U Qq;), yielding
a contradiction; this shows that A is empty, completing the proof of our first
claim. [ ]

13. Essential pseudoconcavity for minimal orbits

Let (M,HM,J) be a CR manifold of finite kind (cf. §2). We say that
(M,HM,J) is essentially pseudoconcave (see [17]) if it is possible to define a
Hermitian symmetric smooth scalar product h on the fibers of HM such that
for each £ € H'M the Levi form L¢ has zero trace with respect to h. For a
homogeneous C'R manifold, this last condition is equivalent to the fact that for
each ¢ € H'M the Levi form L is either 0 or has at least one positive and one
negative eigenvalue.

The CR functions defined on essentially pseudoconcave C'R manifolds
enjoy some nice properties, like local smoothness and the local maximum mod-
ulus principle; C'R sections of C'R complex line bundles have the weak unique
continuation property (see [17], [18]). When M is compact and essentially pseu-
doconcave, global CR functions are constant and C R-meromorphic functions
form a field of finite transcendence degree (see [19]).

In this section we classify the essentially pseudoconcave minimal orbits
of complex flag manifolds.

We keep the notation of the previous sections. In particular, (g,qe) is
an effective parabolic minimal C'R algebra, with associated cross-marked Satake

diagram (S,®). Moreover, we introduce a Chevalley system for (g, 6), ie. a
family (Z4)aer with the properties ([11, Ch.VIIL§2]):
(i) Zo € g” for all a € R;
(1) [ZayZ—o] = —Hgs, where H, is the unique element of [g%, g~ %] such
that a(Hy) = 2;
(#i) the C-linear map that transforms each H € h into —H and Z, into
Z_ for every a € R is an automorphism of the complex Lie algebra g.

In particular, (Z,)aecr U(Ha)acn is a basis of g as a C-linear space. We denote
by (£Y)aecr U (w*)aep the corresponding dual basis in g*.
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Let 9 be the complex flag manifold G /Q and M the minimal orbit
G/Gy of G in 9. Asusual, 0o ~ e- G4 ~ e-Q is the base point. We note that

Ty'M=~g/q~(Zo| —ae Q)¢ .
Therefore a Hermitian metric in 991 is expressed at the point o by:
ho = D cap *@ET.
a,feQn

where (c, 3) is Hermitian symmetric and positive definite. For the minimal orbit
we have :

T}OM ~q/(qNg) ~ (Zo| —2€Q", a€ Q). .
Thus a Hermitian metric h in TH°M can be represented at o by:
ho = D, capt “®ET
a,3eQn\Q"
where (c, ) is again Hermitian symmetric and positive definite.
The subspace t = > acaonnon 8¢ is a nilpotent Lie subalgebra of g,
which is the complexification of a real subalgebra t = tNg of g. It can be
identified to the quotient T,M/H,M and hence its dual space t* to the stalk

HIOM of the characteristic bundle of M at o.
From this discussion we obtain the criterion :

Proposition 13.1. A necessary and sufficient condition for M to be essen-
tially pseudoconcave is that there exists a positive definite Hermitian symmetric
Matriz (Cq, 5)o geom on Such that

(13.1) > eaplZa:Zsl=0 VYyeQrnQ.

avﬁe%n\én
atB=y

Proof. Indeed (13.1) ie equivalent to the formula we obtain by changing «, 3,7y

into —a, —3, —. [ ]
Denote by T4 the C-linear subspace of g with basis (Za)acgmon - To

each v € Q"N Q" we associate a complex-valued form of type (1,1) in T"0:

(13.2) L, : S0 x M0 5 (Z, W) — L (Z, W) = (1/i)ks(Z—~,[Z,W]) € C,

where xy is the Killing form in g. When v = ¥ is real, we take Z_, in g, to
obtain a Hermitian symmetric L., .
We obviously have:

Lemma 13.2. The following are equivalent :

(1) M = M(g,q) is essentially pseudoconcave ;
(it) There exists a Hermitian symmetric positive definite form h in TLO such
that all L, for v € Q"N Q™ have zero trace with respect to h ;
(iii) For each v € Q" N Q" the Hermitian quadratic forms in Lo .

(13.3) 057 - RL,(Z,Z)€R and 237 - QL (Z,2) R

are either O or have at least one positive and one negative eigenvalue.
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Proof. The equivalence was proved in [17]. u

Proposition 13.3.  Let (g,q) be an effective parabolic minimal fundamen-
tal CR algebra. A necessary and sufficient condition for M = M/(g,q) to be
essentially pseudoconcave is that for all real roots v € Q" N Q" the Hermitian
symmetric form L. s either zero or has at least one positive and one negative
etgenvalue.

Proof. The condition is obviously necessary. We prove sufficiency. Let I' be a
subset of Q" N Q™ and let H(T") the R-linear space consisting of the Hermitian
symmetric parts of all linear combinations Zwer a,L, with ay, € C. When
v € Q"N Q" is not real, the Hermitian symmetric part h of aL., for a € C,
satisfies h(Za, Zs) = 0 for all o € Q™ \ Q™. More generally, if Ty is the set
of all v € Q" N Q" for which ZQGQ”\Q” L (Za,Zs) = 0, then the matrices
(M Zar Z8)) a,peom an corresponding to h € H(T) have zero trace and thus
every h € H(I'g) that is # 0 has at least one positive and one negative eigenvalue.

Choose I" as a maximal subset of Q"N Q™ that contains 'y and has the
property that all non zero h € H(I') have at least one positive and one negative
eigenvalue.

If I = Q"N Q", then M(g,q) is essentially pseudoconcave. Assume by
contradiction that there is v € Q" N Q" \T.

Then 7 is real, L., is Hermitian symmetric and H(T'U{~}) = H(T) +R-
L. . Moreover, there is at least one root ag € Q™ \ Q™ such that v = ag + ag.
Assume that there is another root a; € Q" \ Q" with a; + a; = v and
L, (Zay, Zao) Ly(Zay s Zay) < 0. If h € H(I), then hM(Zoy, Zay) = M Zay s Zay) =
0. Then the matrix associated in the basis (Z,) to a linear combinations h+cL,,
with ¢ € R, ¢ # 0, has two entries of opposite sign on the main diagonal and
therefore at least one negative and one positive eigenvalue. This would contradict
the maximality of I'. Hence we must assume that all terms L. (Z,, Z,) have the
same sign.

By the assumption that L, has at least one positive and one negative
eigenvalue, we deduce that there are roots 31,3, € Q" \ Q" such that 3y # 34
and B+ B2 = B1 + fBo = v, so that LW(ZﬁwZBz) #0. If h(Zﬁz,ZgQ) = 0 for
all h € H(I'), then the matrix corresponding to h + cL,, for h € H(I'), c € R,
¢ # 0 in the basis (Z,) contains a principal 2 X 2 minor matrix, corresponding
to (1, B2, of the form

a A .
(5\ 0) with a€R and AeC, A#0.
Thus it would have at least one positive and one negative eigenvalue, contradict-
ing the choice of T'.

Therefore, if I' # QF N Qg, we have :

(i) there exists ap € Q" \ Q" such that ag+ag=~v€ Q"N Q" ;

(ii) there exists aj,as € Q" \ Q" with as # oy, as # a; and
ap + oy =7
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(iii) for all o, 3 € Q™ \ Q" with a # 3, 8 # & and a+ 3 =7, we have
a+aeQ"NQ" and f+5€Q"NQ".

The roots «q, ag, a1, @1, s, @y generate a root system R’ in their span
in by, that is closed under conjugation. Since we have the relations ag + q@g =
a1 + s = ag + ag, the span of R’ has dimension < 4. Moreover, «g + ag,
a1+a1 and as+as must be three distinct roots in R’. Indeed, set oy +a; = 71,
Qg + &g = v2. By assumption v; # v # 2. Moreover we obtain a1 — as =
Y1 —7 =7Y—"2,1.e. y1+7v2 = 27, which implies that v # v when 1 # v # 5.

Thus the dimension of the span of R’ is < 4. An inspection of the
Satake diagrams corresponding to bases of at most 4 simple roots shows that no
such root system contains 3 distinct positive real roots that are sum of a root
and its conjugate. Denote by () the set of positive real roots v that are of the

form v = a + a with a € R. To verify our claim, we only need to consider the
diagrams with £ = 3,4 and Q # O :

511(1,3) : Q= {041 —|—042+Oé3}
511(2 2) : Q= {Oél + (6%) + 043}
A Illa, I1Ib ’
( % ) su(1,4) : Q={o1 +as+as+ as}
su(2,3) : Q={az+as,a1 + as + asz + ay}
(CTla) sp(1,2): Q= {a1 + 202 + a3z}
5]3(1,3) : Q= {041+2042+2043+0é4}
Thus we obtained a contradiction, proving our statement. ]

Theorem 13.4.  Let (g,q¢) be a simple effective and fundamental parabolic
minimal CR algebra. Then M (g,qe) is always essentially pseudoconcave if g is
either of the complex type, or compact, or of real type AII, AIllb, B, CIIb, DI,
DII, DIlla, EII, EIV, EVI, EVII, EIX. In the remaining cases M (g, qs)

15 essentially pseudoconcave if and only if we have one of the following :

®C R,
(ATITa-IV) {

@ C {a;|i < pyU{asli > q}

® C {agp—1 |1 <h <p}
¢ C {a; i > 2p}

(ClIIa) {
(D I1Ib) O {ap 1, =0

(1) { {ay} C P C R,

o = {(143,045}

(F II) ® C {1, 2}
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[See the table of Satake diagrams for the types and the references to the roots
in the statement.]

Proof. We exclude in the statement the split forms, because in these cases
(g,q) is not fundamental. When g is compact, (g,q) is totally complex and
thus essentially pseudoconcave, since the condition on the Levi form is trivially
fulfilled.

For g of the complex types or of the real types AII, AIllb, B, CIIb,
DI, DII, DIIla, EII, EIV, EVI, EVII, EIX the statement follows from
the fact that Q™ N Q" cannot possibly contain a root of the form a + a with
acQr\o".

To discuss the remaining cases, we shall use the following :

Lemma 13.5. Let g be a semisimple real Lie algebra, with a Cartan decom-
position, g = €D p, and b a Cartan subalgebra which is invariant with respect
to the corresponding Cartan involution ¥ and with maximal vector part. Denote
by o the conjugation of § with respect to the real form g and let 7 = o 01 the
congugation with respect the compact form €@ ip of g. Set R = R(g, 6) Then
there exists a Chevalley system {Xg}aecr with X, € g% such that:

[(Xa, X_0o]=—H, YaeR
[Ha, Xo] = B(Ho) X
[Xo, Xp] = NapXats
T(Xa) =0(Xa)=Xo=X_o Va€eR,
where the H, and the coefficients N, g satisfy:
B(Ha)=q—p
Nop==+(¢+1)
Nop Noaats=—plg+1)
if 6 —qa,...,B3+ pais the a-string through f3.
Proof. (of Lemma 13.5) For the proof of this lemma we refer the reader to [11,
Ch.VIII), or [15, Ch.III]. [

Lemma 13.6. With the notation of Lemma 13.5: let o, 8 € R, with a € R,
and o+ ER, a—F¢R, +PFER. Let

57"'7ﬁ+pa and ﬁ+B_q/a7"'7ﬂ+B+pla
be the o -strings through B and [+ (3, respectively. Then we have :

(13.4)  [Xop, Xatp) = [[XmXﬂ]:[XavXﬁ]] =p-p(1+4q)) [Xp, Xs].

Proof. (of Lemma 13.6) We observe that [X,, Xg] = £X,+3, because f—a ¢
R. We have:

[Xasps Xars] = |[Xa» Xol, Ka, Xg]| = [[Xa, Xa], [X_a, Xs]]
[[[Xa7Xﬁ]7X—a]7Xﬁ] + [X—OH HXOHXﬁ]vXﬁ]]
[[[Xa7X—a]7Xﬁ]7Xﬁ] + [X—OH [XOM [XﬁvXﬁm

(=B(Ha) + Ny gy 5N _o grgia) X5, X5],
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which, by Lemma 13.5, yields (13.4). [

Continuation of the Proof of Theorem 13.4.
We proceed by a case by case analysis of the simple real Lie algebras
containing real roots v of the form v=a + &.

ATllla — IV | The positive real roots that are of the form a+a for some a € R

are:
—h
'Yh:Z?IZ aj for h=1,...,p.

(i) Assume that ® C R,. All 43,’s belong to Qi N Qf and are sums
a+a with o € Qf \ Qf. To prove that L., has at least one positive and one
. . . —1 + —h
negative eigenvalue, we consider the roots § = > i—pajand 0 = Zfzz +1- They
both belong to Qg \ Qg and 8+ 3 =0+ 6 = y,. We have § = § +n with
neE€Re and B —n ¢ R. Since v, 1 ¢ R, by Lemma 13.6 we obtain :

[X5,X5] = HXBaXU]? [XﬁvXnH = - [X57Xﬁ]‘

(17) Assume that ® N (Re U{ap,aq}) =0 and let ¢ = {¢;,,...,q;,,
Qpyyeesap twith 1 <j1 < <jp<p<qg<h<---<hs<l=p+q—1.
We can assume that » > 1 and, if s > 1, that p—j,. < hy —q. Let b} =p+q—hy
if s > 1, and h} = 0 otherwise. The real roots in Qz N Qg are the 4 ’s with
1 <k <yj.. Al L,,’s with & < h} are 0. To show that the L., ’s with
R} < k < j, have at least one positive and one negative eigenvalues, we consider
o = g;k a; and 0 = Zf;,‘i’” ;. They both belong to Q% \ Q%, are distinct,

and o+ 3 = ;.

(4ii) When ® N {ay, oy} # O, we can assume, modulo a C'R isomor-
phism, that o, € ®. Then v, € Q4N Q% and all pairs (¢, ) of roots in OF \ OF
with a+ 3 = v, are of the form (8, Bx) with gy = Zk

imp Qi for some p < k < q.
By Lemma 13.6, we have

[Xﬁk’Xﬁk] = [Xap’ onp] )

and hence the corresponding L., is # 0 and semi-definite.

(iv)  Assume that P N1 Re # D and ¢ ¢ R,. We can assume, modulo
a CR isomorphism, that there is o; € ® with j < p and that o; ¢ ® if either
j<i<p,or q<i<p+q—j. Let r be the largest integer < ¢ such that
a, € ®. We observe that v; € Q% N Q% and that all pairs (o, 3) of roots in

Q1 \ Q% with a+ 3 =, are of the form (B, 8x) with B = Zf:j
r < k < q. As in the previous case, for all p < k < ¢

«; for some
(X5 Xp,) = [Xp,, Xp,],

and hence L., is # 0 and semi-definite.

The positive real roots that can be written a sum o+ & with a € R

are:
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yh:agh_1+a4+225;2lhai for h=1,...,p.

(i) Assume that ® = {agn,—1,- .. qop, 1} with 1 < h; <--- < h, <
p. The roots in QF N QF that are of the form a+ & are the 7, with 1 S_h < h,.
The root 7, is the only one that can be written as a+a with o € Qg \ Qg . But
this root can also be written as a + 8 with o = aap,.—1 + V4, and 8 = agp,—1,
and therefore L., has at least one positive and one negative eigenvalue.

(i) Assume that ® = {ag,,...,ar } with 2p <k < - < k. < £,
Then all «;, belong to Qg N Q. Fix 1 < h < p, and consider the roots
b= Z?i%ai + ay +225;21p+1a¢ and o = agp—1. Then f,a+ (€ QF \ 9Qf
and B+ 3= (a+B)+ (a+ ) = y. By Lemma 13.6 we have:

[Xa+8, Xatp] = [Xa, Xgl, [X-a, Xp]] = —[Xg, X5] ,
showing that L., has at least one positive and one negative eigenvalue.

(797)  Assume that ® D {agp_1,r} with 1 <h <p and k > 2p. We
can take h to be the largest integer < p with agp—1 € ® and k to be the smallest
integer > 2p with ay € ®. Then v, € Qg N Qf. The set of pairs (o, 3) of
elements of Qf \ Qf with a+ 3 = ;, consists of the pairs (3, 5,), where:

-1
Br=2ion1 @+ e+ 2300,

for r=2p+1,...,k. We observe that 3, = 3,11 + «,, and that v, £ a. ¢ R.
Hence by Lemma 13.6 we have:

[Xﬁw Xﬁr] = [[Xar’ X/Br+1]7 [X—Otw Xﬁr+1]] = [X5r+17X5r+1] )
forall r=2p+1,...,k—1. Hence L,, is # 0 and semi-definite.

DIIIb| The positive real roots that can be written as o+ a with o € R are:

’Yh:Oézh—1+az—1+az+22§;faz‘, h=1,...,p, for p=52t.

(i) Assume that ® N {ay_1,4} # @. Then 7, € QF N Q% , and the
same discussion of case AIV shows that L, is # 0 and semi-definite.
(ii) Assume that = {agn, 1, aop,. 1} with 1 <h; <.+ <h, <
p. Then v1,...,75, € QN Qg , but only 7y, can be represented as a sum a+a
with a« € Qf \ Qf. If h, = p, we reduce to the case of AIV. Assume that
h, < p. Then we consider the two distinct roots:
B = azp, -1+ Qop, and 0= 0+Yn,,, -

They both belong to QF \ Q% and 8+ = 7, , showing that L., has at least
one positive and one negative eigenvalue.

Set v1 = a1 +as+ast+as+ag, Y2 = a1+2az+2a3+3a4+ 205+ 5.
These are the real positive roots in R that can be written as a sum « + & for
aroot a € R. Note that 1,72 both belong to Q% N Q% for every choice of ®.
The discussion of the signature of L., reduces to the one we did for AIV.

(1) Assume that ®N{aq, a6} # O. In this case the discussion for A IV
shows that L., is # 0 and semi-definite.

(i) Assume that ® = {a3} (the case ® = {as} is analogous). Then
the set of pairs («, 3) of roots of Qf \ Qf such that o+ [ = 72 contains only
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the pair (o, o) with o = oy + a2 + 2a3 + 204 + 5. Hence L, has rank 1 and
is # 0 and semi-definite.

(iii) Assume that either oy € ® C Ro, or ® = {a3z,a5}. Then the
set of pairs (a,3) of roots of QF \ Qf such that a + 5 = 72 is empty, so that
L., = 0. The discussion for AIV shows that in this case L., has one positive
and one negative eigenvalue.

The real root v = a1 + 2a + 33 + 2a4 is the only positive root which
can be written in the form a 4 & for some a € R. It belongs to Qg N Qg for
every choice of ®.

(i) Assume that az € ®. Then (a4, a4) is the only pair (o, 3) of roots
in Qf \ Q¢ with o+ 8 = . Thus L, has rank 1 and hencefore is # 0 and
semi-definite.

(7i) Assume that ® C {1, a2}. Set 8=y +200+20a3+ 04 = Ay —a3
and o = a3. Then # and B+ « both belong to Qf \ Q% . With the notation of
Lemma 13.6, we have p=1, p’ =1, ¢ = 1. Thus:

[on—h@vXa—Fﬁ] = [[XomXﬁ]7 [X—OMXBH = _[X57Xﬁ] )

showing that L. has at least one positive and one negative eigenvalue. [ ]

14. CR functions on minimal orbits

Let M be a CR manifold and let Oy (M) be the space of smooth C'R functions
on M (see §2). We say that M is locally CR separable if the functions of Oy, (M)
locally separate points, and C'R separable if the functions in Oy (M) separate
points.

In this section we discuss C'R separability for the minimal orbit M =
M (g, q) associated to the parabolic minimal C'R algebra (g,q).

When g = g1 @ g2 is the product of two semisimple ideals, we set
q; = qnNg;, for i = 1,2. By Proposition 5.2 each q; is parabolic in g;, and
the (g;,q;)’s are parabolic minimal. By the remarks following Proposition 5.2,
we have M ~ M; x My and therefore Oy, (M1)® Oy, (M) is dense in Oy (M).

When M is totally real, all smooth functions in M are CR and the CR
separability is trivial. Thus the C'R separability of a general M(g, q) reduces to
that of the fibers of its fundamental reduction (cf. Theorem 9.3 and its Corollary).

Indeed, let M % N be the fundamental reduction. We have Oy (N) =
C>®(N,C). Thus the CR functions certainly separate points on distinct fibers.
Furthermore, let f be a CR function defined on a fiber p=!(x¢) (z¢9 € N). We
choose a CR trivialization U x p~1(z¢) 3 (x,y) — é(x,y) € p~1(U), where U
is an open neighborhood of zg in N and ¢ is a CR diffeomorphism. Then f
extends to a CR function F in p~Y(U), by F(¢(z,y)) = f(y). Take a cut-off
function x € C*°(U, C), with compact support in U and equal to 1 in xg. Then
f(2) = x(p(2)) - F(2) for z € p~*(U), extended by f =0 outside p~*(U), is a
CR function in M that extends f. This shows that M is (locally) C'R separable
if and only if the fiber p~!(zg) is (locally) CR separable.
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In this way we can restrain our discussion of C'R separability to the case
where (g, q) is simple, effective and fundamental.

First we indicate how C'R separability can be read off the cross-marked
Satake diagram. We have:

Theorem 14.1.  Let (g,q¢) be a simple fundamental effective parabolic min-
imal CR algebra and M = M(g,qe) its associated CR manifold. Then M is
locally C'R separable if and only if its cross-marked Satake diagram is one of the
following :
(Allla—1V) @ C {ayp, a4}
(D IHb) P C {Oégfl, Oég}
(E III) P C {Oél, 046} .

In these cases M is also CR separable by real analytic CR functions.

Proof. We prove that if there is a simple root « satisfying either:

(i) a€ PNR,, or

(ii) a € P\ Re, @€ B and a+a ¢ R,
then M is not C'R separable. Inspection of the Satake diagrams then shows that
the only possibilities left are those listed above. Finally in the examples below
we show that in those cases M has a C'R embedding into an affine complex
space E, hence is separable by analytic C'R functions (the restrictions to M of
the global holomorphic functions in F).

Let « be a simple root, satisfying either (i) or (ii). Then a+a ¢ R.
Denote by a the subalgebra generated by g® +g=“ +g*+g~%. It is semisimple,
qNa is parabolic in a and (a,qNa) is totally complex.

Let b = aN¢é (in case (i) we have b = a). Then b is compact semisimple
and (b,£ N b) is totally complex. If B C G is the analytic subgroup with
Lie algebra b then B - o0 is a compact complex submanifold of M of positive
dimension. All smooth C'R functions on M restrict to holomorphic functions in
B - o0, that are constant in B - 0 by Liouville’s Theorem, and therefore M is not
CR separable. (]

Example 14.2. Fix positive integers p < ¢ and let n = p+¢q. We identify the
simple real Lie algebra g ~ su(p, q) with the set of (n x n) complex matrices Z
with zero trace that satisfy:

Z*K+KZ:0,WhereK:<Ip_I>.

Let e1,...,e, be the canonical basis of C" and let q,, C g ~ sl(n,C)
be the set of (n x n) matrices in sl(n,C) such that
Z({e1+eptr1,.-- epte) Cler+epi1,...,ep+e2p).

Then (g,qq,) is parabolic minimal.

The corresponding C'R manifold M = M(g,qqa,) is the Grassmannian
of p-planes ¢, in C" which are totally isotropic for K (i.e. v*Kv = 0 for all
v € {,). We have

M ~ {t, = {(v,u(v)) € C"|v € CP} |u € U(CF,C?)} ~ U(CP,C)
where U(CP,C?) = {u € Myxp(C)|u*u = I,} is the set of unitary ¢ x p
matrices.
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Give U(CP,CY) the CR structure induced by the standard embedding in
M yp(C). The compact subgroup K ~ SU(p) xSU(q) of matrices of SU(p, q)

of the form (%” E?q > acts transitively by C R automorphisms on U(CP,CY), the

action being given by: (‘3 g) -u = BuA~!.

The associated CR algebra is (¢, q’) where ) ~ su(p) @ su(q) and
A, 0 0
q’ is the set of matrices in sl(p) @ sl(q) of the form < 0 A D ) .
0 0 Cyp
The group K acts transitively on M by Theorem 8.2, and the as-
sociated CR algebra is (¢ ¢ ngq) = (¢ q). Thus the diffeomorphism
M ~U(CP,C1) is in fact a C'R isomorphism.
In this way we obtain the embedding M — M;x,(C) ~ C%?. This is
a CR embedding into a Stein manifold, and therefore M is separable, since
On (M) contains the restrictions to M of all the holomorphic functions on

qup(C) ~ qu.

Example 14.3. Fix a positive integer p and let n = 2p + 1. We identify the
simple real Lie algebra g = s0*(2n) with the set of (2n x 2n) complex matrices
Z with zero trace that satisfy:

ZJ=J7,
‘7K +KZ =0,
where:

0 I, _ (01,
J:(—Ino) and K-(In()).
Let q,, be the parabolic subalgebra of matrices in g that stabilize the subspace
Vi, = <61 + €ent2p, -3 €p T Engptl; €ptl — Engpy- .5 €2p — Enl, 62p+1>-

Then (g, qq,) is parabolic minimal.
The maximal compact subgroup K ~ U(n) of G of matrices of the form :

(%" tA(ll ), A, € U(n), acts transitively by C'R isomorphisms on M(g, qa,)-

The associated CR algebra is (€, q') where £ ~ u(n) and ¢’ = £Nqq, . This is the
subalgebra of matrices in so(2n,C) of the form <A" 0 ) where A,, € gl(n,C)

0 —*A,
B, Cp, wp
is of the form (D,, —'B, wp) with B, ='B,, D, ='D,.
0 0 s
We let K act on so(n,C) by: k- X = AXU if k = ('L:)” tA071>. Let
0 —1I, 0
N be the K-orbit of 0o = <I,, 0 0> . The associated CR algebra is (¢,q') and
0 00

the isotropy is connected and contains a generator of m; (U(n)) . Thus M is CR
isomorphic to N.

The C'R manifold N is embedded in the Stein manifold so(n,C) ~
C™n=1)/2 "hence it follows that M is separable by the restrictions to M of the
holomorphic functions in so(n, C) ~ C*"=1)/2

Example 14.4. Let D be the exceptional bounded symmetric domain of type
V. Its Shilov boundary S is a real flag manifold (see [13, Part III,Ch.IV§2.8]) for
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the group EIII and is compact, hence it is a minimal orbit M (g, q) where g is of
type EIII. Furthermore it has C'R dimension 8 and C'R codimension 8 (see [24,
p. 180]), hence q = qo, Or 4 = qo,- Thus M(g,qq,) ~ S is an embedded CR
submanifold of C!¢ and it is separable, since Oy;(M) contains the restrictions
of the holomorphic functions in C6.

A similar argument could have been applied also to discuss the two
previous examples 14.2 and 14.3. Indeed the three classes of minimal orbits
of examples 14.2, 14.3 and 14.4 are exactly the Shilov boundaries of the bounded
symmetric domains that are not of tube type (and that are not totally real; see
also [15, Ch.X, Ex. D.1] and [20]).

Identify g with a complex Lie algebra of left invariant complex valued
vector fields in G. Given a C linear subspace a of g, denote by Og 4 the sheaf
of smooth complex valued functions f on G such that L(f) =0 for all L € a.

Let m : G — M be the principal fibration, Fp/(G) = 7*Op (M) and
Ty the sheaf of local smooth complex valued vector fields L on G such that
L(f) =0 for all f € Fp(G). Let ¢ = {X € g|Xc € (7Tar)e}. We note that,
since Fp(G) is invariant for the left action of G on functions, the elements of
q' define left invariant global sections of 73y .

Lemma 14.5. ¢ is a parabolic subalgebra of g and q C q'.

Proof. The sheaf 7j; is invariant for the left action of G, hence it is generated
at every point by the global left invariant complex vector fields that belong to
q'. Since 7y is involutive, ¢’ is a subalgebra. Clearly it contains q, and thus is
parabolic. [ ]

Lemma 14.6. We have: Fi(G) = Og,q(G) = Oc 4(G) .

Proof. The inclusions Fp(G) C Og,y(G) C Og,q(G) follow from the def-
inition of g’ and Lemma 14.5. To complete the proof we need to show that
Oc,q(G) C Fu(G). An f € Og,q(G) is constant on the analytic subgroup of
G that has Lie algebra gNq, i.e. on G, (recall that G is connected). By left
invariance, f is constant on the left cosets ¢G4 and hence is the pullback of a
function f defined in M. Furthermore f is CR on M because T9'M = 7,(q)
(here § is identified with the complexification of T.G) and therefore L(f) = 0
for all L € T%'M by left invariance. m

Let M' = M(g,q'), 7" : G — M' and p =7 om ! : M — M’ the
natural projection. We have the commutative diagram :

Lemma 14.7. M’ is CR separable.

Proof. Assume that M’ is not locally CR separable. Then there exists a
tangent vector X € g at e € G such that 7, (X) # 0 and 7, (X)(f) = 0 for
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every CR function f on M’. Then X € ¢’, hence X € ¢/, and 7, (X) =0,
yielding a contradiction.

By Theorem 14.1 the C'R manifold M’, being locally C'R separable, is
also C'R separable. (]

Lemma 14.8. Fu(G) = Far(G). Hence: Opn(M) = p* (Onr (M)
Proof. This follows by applying Lemma 14.6 to M’. [ ]

Lemma 14.9. The complex Lie subalgebra ¢ is minimal in the set of (not
necessarily proper) parabolic subalgebras of @, containing q, such that M (g,q)
1s CR separable.

Proof. Suppose that q” is a parabolic subalgebra of g with q C q” € ¢’ and
such that M” = M(g,q”) is CR separable. Then Fp(G) = Fu/(G) by
Lemma 14.6. This implies that q” Ngq” = q' N q’, yielding M” = M’ and thus
CI// — q/' ]

The discussion above leads to the following:

Theorem 14.10. Let (g,q9) be a simple effective fundamental parabolic
minimal CR algebra and M = M(g,qs). Then there exists ¥ C ® and a
G -equivariant fibration p: M — Mg = M(g,qy) such that My is CR separable
and O (M) = p* (O, (My)) .
Furthermore ¥ = ® N X, where X s defined according to the type of g :
Type Allla — IV : ¥ = {ap, aq};
Type DIIIb : ¥ = {ay_1,as};
Type EIIT : ¥ = {a1,06};
All other types : ¥ =0.

The space Op (M) is one dimensional when U = O, infinite dimensional when

U£0. [

Appendix: Table of noncompact real forms and Satake diagrams

Name g Satake diagram
Al sl(l+1,R) o o— — — — — — o o
a1 8%
sl(p, H) e e
A1l 1= 0 Czl o ° ° o O’z

su(p, q) /'—\
ATlla p+qg=0+1 0~ o e _ _ewg o

2<p<t)2 a1 Qp Qp_pt1  Qy
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Name g Satake diagram
su(p,p) /\
ATIIIb _ S N
1<p=((+1)/2 & o >,
ATV su(1, ) e o _ _eug
(65} Qy
so(p,20+1—p) e
BI 9<p<i o?l O?p ° .ZZJK
BII 50(1, 26) o — — — — — _ o——eo
(6751 Qy
CI sp(2¢,R) o o— — — — — — o—=—o0
(651 Qy
ClIla sp(p, ¢ —p) ° o e— -0 o — —o—<—o
2p <t a1 Qi2p Qy
CIIb p(p.p) — o e — o e—0
2p = aq oy
s50(p, 20 — p)
Dla 2<p<l-2 A
o— — —0——e— — —@
a1 ap \Oé[
o
DIb so(l—1,0+41) o
Ap
o o— — — — — — o/g
a1 \Oéf
DIc 50(2¢,R) o
o O/§£—1
a1 \Océ)e
DII s0(1,20—1) .
. ./075—1
a1 \O:e
s0%(20)
DIIIa (=2 /ﬁe.—l
[ J O o— — —O
a1 \Cée
s0%(20)
DIHb (=2p+1 P
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Name g Satake diagram
EI Qy
O 'e) 0. ) o
a1 a3 l (0751 Qg
(0]
EII Pl TN
O O O
o a3 l Qs (%5
a9
E ITI T~
O { ] o @ O
o o3 (L Qs Qg
(8%
EIV %
O L ] { { ] o]
o a3 l Qs (%5
a9
EV o7
(@]
o%1 Qs l Qs Qg
Q2
EVI (%}
o o o ° o
aq a3 l (6759 Qg
05
E VII Oy
O { ] @ { ]
o o3 l Qs Qg
Q2
E VIII Qy
O O O
o Q3 l Qs Qe oy Qg
2
EIX QY
o————00——0— O0——F—O0O—O0
Qq Qs l Qs Qe ar Qs
Q2
F I ©] O————0 O
(65} Q9 Qa3 (o7}
F II ® oO——60 o]
a1 Q2 (0% (07
G O=—=—=0

aq a2
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