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Symmetry of Arthur Parameters
under Aubert Involution
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Abstract. For a generic irreducible representation 7 of the odd orthogonal
group SO(2n+1, F) over a p-adic field F', we compute the Aubert involution #
and the corresponding L-parameter. We show that, among generic representa-
tions, only tempered representations are base points attached to A-parameters
and prove that in this case the A-parameters of 7 and 7 are symmetric. In ad-
dition, we consider A-parameters 1) of SO(2n + 1, F') corresponding to certain
nontempered representations and prove that i and 12) are symmetric.
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1. Introduction

This paper studies the effects of the duality operator on generic representations
of SO(2n + 1, F) and corresponding L-parameters and A-parameters. It also
deals with classes of nontempered representations arising from considerations of
A-parameters of a certain type (see Theorem 3.1 for more details). In accordance
with Arthur’s conjectures [1, 2|, attached to each A-parameter is a finite set of
equivalence classes of irreducible admissible representations, called an A-packet.
There is, however, a natural way to associate to each A-parameter a particular
representation; we call it a base point. We study effects of the duality opera-
tor on A-parameters via base points. The proof relies on recent fundamental
developments by Jiang-Soudry, Harris-Taylor and Henniart. It provides an inter-
esting illustration of the Langlands-Arthur functoriality formalism. Recall that
A-parameters and A-packets emerged from Arthur’s work on the question of how
nontempered representations should fit into the trace formula. There are very few
examples of nontempered parameters for larger groups, where Arthur’s formalism
has been confirmed.

The duality operator is a generalization of the Zelevinsky involution. The
Zelevinsky involution is an operator defined on the Grothendieck group of the cate-
gory of all smooth finite length representations of the general linear group GL(n, F)
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[32]. This involution has many important properties. It relates a discrete series
representation to the corresponding Langlands quotient. The Zelevinsky involu-
tion on GL(n, F') preserves unitarity. Furthermore, its action on A-parameters
can be precisely defined, as follows. Let

v Wgp x SL(2,C) x SL(2,C) — GL(n,C)

be an A-parameter of GL(n, F'). Here, W denotes the Weil group of F'. Let 7
be the representation of GL(n, F') associated to ¢. Denote by 7 the Zelevinsky
involution of 7 and by ¢ the A-parameter of 7. Then [32, 23, 29],

~

In other words, the Zelevinsky involution acts on A-parameters by interchanging
two copies of SL(2,C). We say ¢ and ¢ are symmetric.

The Zelevinsky involution allows generalizations to a connected reductive
quasi-split algebraic group G defined over F'. Aubert [3], Schneider and Stuhler
[26], and Bernstein [8] have defined duality operators on the category of all smooth
finite length representations of G and on its Grothendieck group. The involutions
defined by Aubert and Schneider-Stuhler are the same on irreducible smooth
representations, after having fixed the sign of the Aubert duality operator in order
to get a positive element in the Grothendieck group. The Bernstein involution
differs by taking contragredient.

The duality operator sends an irreducible representation to an irreducible
representation. Other questions, related to important properties of the Zelevinsky
involution, are still open. Barbasch conjectured that the duality operator sends
an A-packet to an A-packet. If Barbasch’s conjecture holds, we may consider the
A-parameter associated to an A-packet and the A-parameter associated to the
packet obtained by applying the duality operator on the original packet. This raises
the question of the action of the involution on A-parameters. It is conjectured
that, as for general linear groups, the involution acts on A-parameters of G
by interchanging two copies of SL(2,C). Although the conjecture was known
previously, a precise statement is due to Hiraga [17]. In a joint work with Zhang
[6], we proved that, for a generic discrete series representation 7 of SO(2n+1, F),
the A-parameters of 7 and 7 are symmetric.

In this paper, we consider a generic representation = of SO(2n+1, F'). Let
¢ be the L-parameter of 7 (defined by Jiang and Soudry in [19]). We compute the
Aubert involution 7 and the corresponding L-parameter (Theorem 5.3). Then we
consider the A-parameters. We say that v is the A-parameter of 7 if ¢, is the
L-parameter of 7 (see section 3. for the definition). Not all generic representations
have A-parameters in this sense. We show that, among generic representations,
only tempered representations are attached to A-parameters (Theorem 5.4). In
this case, we compare the A-parameters of # and 7 and show that they are
symmetric. This is a generalization of the work with Zhang [6] on generic discrete
series representations. Symmetry of A-parameters has further consequences; for
example, it implies that a generic tempered representation of a Levi subgroup of
SO(2n+1, F') and its involution have the same R-group, as conjectured by Arthur
(cf. [4, 5]).
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We also consider certain classes of nontempered representations. Let 7 be
the representation of SO(2¢ + 1, F') with the A-parameter

V=025 8, P ¢S S8, 2)

1€A

k>1,n=2,3. (For precise definitions, see section 2. and Theorem 3.1). Then
7 is nontempered. Let ¢ be the A-parameter of 7. We prove that

b =098, 0P ¢S5 S5,

1€A

i.e., ¢ and @@ are symmetric.

The base point associated to an L-parameter is determined from the work
of Jiang and Soudry [19]. They deal with the groups SO(2n + 1, F) and in this
paper we consider the same series of groups. In view of the recent work by Cogdell,
Kim, Piatetski-Shapiro and Shahidi [12], we expect our methods can be applied
to other series of classical p-adic groups.

We now give a short summary of the paper. In section 2., we recall some
basic definitions. The A-parameters given by equation (2) are considered in section
3. We prove that ¢ and 1& are symmetric (Theorem 3.1). In section 4., we review
Muié¢’s classification of generic representations of SO(2n+ 1, F'). In section 5., we
study the effects of the duality operator on generic representations of SO(2n+1, F')
and corresponding L-parameters and A-parameters.

Let us mention that in the paper we are not assuming any conjecture. The
conjectures described above are given to explain the motivation for the work done
in this paper.

Before closing the introduction, I would like to thank the mathematicians
who helped me during different stages of the project. Ilearned about the conjecture
on involution and A-parameters from Anne-Marie Aubert and Peter Schneider in
Luminy, 2002, and about the importance of the conjecture from James Arthur dur-
ing the Clay Mathematics Institute Summer School at the Fields Institute, 2003.
This paper has benefited from discussions with Dan Barbasch, Bob Fitzgerald,
David Goldberg, Chris Jantzen, Gordan Savin and Freydoon Shahidi. I thank
them all. Finally, I thank the referees for valuable comments.

2. Preliminaries

In this section, we recall some basic definitions. We consider the group G =
SO(2n+1,F) or G = GL(m, F') over a nonarchimedean local field F' of charac-
teristic zero. For both groups, we fix the Borel subgroup B C G consisting of all
upper triangular matrices in G and the maximal torus 7" C B consisting of all
diagonal matrices in G. Let A denote the corresponding set of simple roots.

Parabolic induction and segments Let P be a standard parabolic subgroup
of G, i.e., a parabolic subgroup containing B. Let M be the unique Levi subgroup
of P containing T'. We call such M a standard Levi subgroup of G. Denote by
ig. the functor of parabolic induction and by 73, the Jacquet functor [9, 11].
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For admissible representations p; of GL(k;, F'), i = 1,2, define

p1 X p2 = iGL(k1+k2,F),GL(k1,F)><G’L(k2,F) (Pl ® P2)-

Similarly, if p is an admissible representation of GL(k,F) and o admissible
representation of SO(2¢ + 1, F'), define

pRO= iSO(z(k+e)+1,F),GL(k,F)x50(21z+1,F)(P ®0).

Define v = |det|. We say the pair (p, o) satisfies (Ca) if v¥%p x o is reducible
and 17p x o is irreducible for 3] # «.

Let p be an irreducible supercuspidal representation of GL(k,F) and
m < n integers. The set [1™p,v"p] = {v™p,v™ p, ... V"p} is called a segment
[32]. The induced representation v"p X v 1px --- x v™p has a unique irreducible
subrepresentation, which we denote by §[v™p,v"p|, and a unique irreducible quo-
tient, which we denote by ([v"p,v"p]. A segment ¥ is called balanced if it is of
the form ¥ = [v™p,v™p|, with p unitary. The segment ¥ is balanced if and
only if §(3) is square integrable. In this paper, when we use the segment notation
[V™p, V™ p], we always assume p is unitary.

Two segments ¥; and 3y are said to be linked if 3; € ¥, ¥y € 31 and
Y1 U s is a segment.

For a representation o, we denote by & the contragredient of o.

Aubert involution Let R(G) be the Grothendieck group of the category of all
smooth finite length representations of G. The Aubert duality operator Dg is
defined on R(G) by

@ .
Dg =Y (=1)"ig, oras,c
dPCA

[3]. Here Mg denotes the standard Levi subgroup corresponding to ®. If 7 is an
irreducible admissible representation of G, we define © = +Dg(), taking the sign
+ or - so that 7 is a positive element in the Grothendieck group. We call 7 the
Aubert involution of 7. It follows from [3] that 7 is an irreducible representation.

Langlands classification for SO(2n + 1, F) Suppose 0; is a discrete series
representation of GL(n;, F), i = 1,...,k and a1 > --- > a4 > 0 are real num-
bers. Let 7 be a tempered representation of SO(2¢ 4+ 1, F'). Then the induced
representation v, X - -+ X v*¢, X 7 has a unique irreducible quotient, which we
call the Langlands quotient and denote by L,(v*'dy,...,v"d;, 7). Equivalently,
if /; < --- < B, < 0, then the induced representation v%1§; x --- x V%6, x 7
has a unique irreducible subrepresentation, which we call the Langlands sub-

representation and denote by Lg(vd;,...,v%6,7). The connection between
the two classifications is given as follows: if m = L (v*6y,...,v%0,7), then
m = Ls(v="y,...,v %0, 7). Note that we are allowed to work with square in-

tegrable representations 9; instead of tempered representations because of the
irreducibility of induced-from-unitary representations of GL(m, F’). In particular,
if p is a tempered representation of GL(m, F'), then p = 6; X --- X J4, for some
square integrable representations 4y, ..., ds.
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Irreducible representations of SL(2,C) For each integer n > 1 there exists
up to equivalence a unique n-dimensional irreducible representation of SL(2,C),
and it can be described as follows. Let V = PX [z, y] be the complex vector space
of homogeneous polynomials of degree n —1 in variables z,y. Then SL(2,C) acts
on V' by change of variables. We denote this representation by S, .

Langlands parameters and base points Let W be the Weil group of F'. We
take Wr x SL(2,C) as the Weil-Deligne group [31, 21]. A Langlands parameter,
or L-parameter, of SO(2n + 1, F') is a homomorphism

¢:Wp x SL(2,C) — Sp(2n,C)

such that ¢(Wpg) consists of semi-simple elements in Sp(2n,C) and the restriction
of ¢ to SL(2,C) is analytic [10, 22, 21]. The parameter ¢ is called tempered if the
image ¢(Wp) is bounded. Two L-parameters are equivalent if they are conjugate
in Sp(2n,C). According to the Local Langlands Conjecture, each parameter ¢
should parametrize a finite set of equivalence classes of irreducible admissible
representations of SO(2n + 1, F'), called the L-packet of ¢. Jiang and Soudry
in [19] defined a bijection

¢ —— m=Ly(v*6,...,v"d,T), T generic (3)

between the set of equivalence classes of L-parameters of SO(2n + 1, F) and
the set of equivalence classes of irreducible admissible representations of the form
m = L,(v*6y,..., 0%, 7), with 7 generic. The representation 7 is a member
of the L-packet of ¢ and plays an important role. We call it the base point
representation in the L-packet of ¢.

Note that ¢ is an arbitrary L-parameter of SO(2n + 1, F), while the
representation 7 is of specific type. If 7 is tempered, then © = 7 is generic.
In general case, 7 is a representation such that the corresponding Langlands
data are generic. Jiang and Soudry describe explicitly the bijection (3). For w
generic, the description of ¢ is based on Mui¢’s classification of irreducible generic
representations of SO(2n + 1, F). We will review the classification in section 4.
The corresponding L-parameter is given in Theorem 5.3.

Now, we describe the L-parameter ¢ associated to the representation 7 =
L, (v*6q,...,0%0, 7). For i@ = 1,...,k, the representation J; is of the form
§; = 6(%;), where ¥; is a balanced segment, so v*§; = §[v% p;, v%p;]. We have

™= Lq<5[lj61pl7 Vd1p1]7 s Jé[VCkpka depkL T)

(4)

= LS(CS[I/_dlﬁl, V_Clﬁl}a s a(s[y_dkﬁlw V_Cklak]? T)'

Let ¢(7) denote the L-parameter of 7 and ¢; the L-parameter of p;. Then, by
Theorem 6.1 and Proposition 6.1 of [19], the L-parameter of 7 is

¢=EB(|-

Observe that %1% = q; is positive.

ci+

d;
T 9 ®Sg,—c;41 D ||

—c;

T ® Siere1) ® (7). (5)
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3. Arthur parameters and Aubert involution

In this section, we first recall the definition and some properties of A-parameters.
Then we consider a certain nontempered representation 7. We compute its dual
7. We prove that the A-parameters ¢ and Qﬂ corresponding to 7 and 7 are
symmetric (Theorem 3.1).

Arthur parameters An Arthur parameter, or A-parameter, of SO(2n + 1, F)
is a homomorphism

¥ We x SL(2,C) x SL(2,C) — Sp(2n,C)

such that 1 (Wg) is bounded and included in the set of semi-simple elements
of Sp(2n,C) and the restriction of ¢ to the two copies of SL(2,C) is analytic
[1, 2, 20]. In accordance with Arthur’s conjectures, attached to each A-parameter
¥ is a finite set of equivalence classes of irreducible admissible representations,
called the A-packet of . To any A-parameter v, Arthur associates an L-
parameter ¢, by

1/2
¢¢(w,x) = w(waxa ( |w| |w|71/2 ))

We say that 7 is the base point attached to v if 7 is the base point attached
to ¢y (see page 255). Contrary to L-packets, A-packets need not to be disjoint.
A representation m may occur in more than one A-packet. An A-parameter
is called the A-parameter of 7 if ¢, is the L-parameter of 7. This definition is
justified by noticing that 1) — ¢y, is injective [2]. If ¢ is an A-parameter, we may
decompose it into a direct sum

k

v =EB(¢i @ S, @ Sy,),

i=1

where m;,n; € Z%, ¢; is a continuous homomorphism such that ¢;(Wr) is
bounded and consists of semisimple matrices and S, is the m dimensional ir-
reducible complex representation of SL(2,C). Note that

(n—1)/2

w|'/2 ;
P(w) © Sn( |1/ )= P sw)luwl.
j=—(n—-1)/2
Therefore, for ¢ = ¢ ® S, ® S,,, we have
(n—1)/2 |
bo= D [FeeS. (6)
j=—(n-1)/2

Symmetry of Arthur parameters under Aubert involution
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Theorem 3.1.  Let p be an irreducible unitary supercuspidal representation of
GL(p, F) and o an irreducible supercuspidal generic representation of SO(2q +
1,F). Assume p = p. Let @,. 4 @i ® S1 be the L-parameter of o and ¢ be the
L-parameter of p.

Let w be the base point corresponding to the A-parameter

V=025 0S, o@D ¢S ® s, (7)

€A
k>1,n=2,3. Let Qﬂ be the A-parameter of 7. Then

icA
Proof.  Suppose ¢ = ¢ ® Sp ® Sy ® P, 4 ¢ ® S1 ® S1, where k € Z*. From
(6), the corresponding L-parameter ¢, is equal to

bo=1-120050|-[ 200 S, e P ¢ s

i€A
Equations (4) and (5) implies that the base point representation attached to ¢y, is
™= L0l 5,5, 0). (®)

Next, suppose 1) = ¢® 5, @530, 4 ¢i®S1®S:. The corresponding L-parameter
Gy is equal to ¢y = |- [p @Sk D PR S, ® |- |19 ® Sk ® ;4 ¢ ® S1. By (4),(5),
the base point representation attached to ¢y, is

g_%pLTO)a (9)
where 7y is the tempered generic representation with the L-parameter ¢ ® Sy @
Dicadi ® S

Suppose 1 is given by equation (7). Then 1 is a homomorphism % :
WexSL(2,C)xSL(2,C) — GL(2¢,C). We say that v is symplectic (respectively,
orthogonal) if ¢ factors through Sp(2¢,C) (respectively, SO(2¢,C)). We will give
the conditions so that 1) is symplectic.

The L-parameter ¢ of p is a homomorphism ¢ : Wr — GL(p,C). For
some representations r of GL(p,C), local-global methods attach factors L(s, p, 7).
Conjecturally, we have L(s,ro¢) = L(s, p,r), where the left hand side is the Artin
L-function, while the right hand side is the Langlands L-function. The cases
r = A? and r = Sym? are significant, due to important results of Shahidi [28] and
Henniart [16]. The result of Shahidi proves that exactly one of the two L-functions
L(s, p, Sym?) or L(s,p,\?) has a pole at s = 0 ([28], Corollary 3.7, using p = ).
In addition, (p, o) satisfies (C3) if and only if L(s, p, Sym?) has a pole at s = 0.
This follows from [27] and [28], and it is explicitly stated in [25], Lemma 2.3. On
the other hand, Henniart proved the above equality of L-functions for r = A?
and r = Sym?. We have L(s,p, A?) = L(s,\2¢), L(s, p, Sym?) = L(s, Sym?¢).
In addition, L(s,A%¢) has a pole at s = 0 if and only if ¢ is symplectic, and
L(s, Sym?¢) has a pole at s = 0 if and only if ¢ is orthogonal. It follows that
(p,0) satisfies (C'3) if and only if ¢ is orthogonal.

If k is odd, then there is a basis of P# [z, y] such that imS, C SO(k,C). If
k is even, then there is a basis of P [z, y] such that imSy, C Sp(k,C). Therefore,
we have the following:

T = Ls(é[y_g_%p, v
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(C0),(C1) Assume ¢ factors through Sp(p,C). Then v factors through Sp(2¢,C) for
k even and n = 2, or k odd and n = 3. In this case, v*p x o is reducible
for a« =0 or 1.

(C3) Assume ¢ factors through SO(p,C). Then ¢ factors through Sp(2¢, C) for
k odd and n = 2, or k even and n = 3. In this case, v*p x ¢ is reducible

_1
foroz—Q.

1 . . . .
Suppose v2p X o is reducible. First, we consider

¢:¢®52m+1®5269@¢1®51®51’

i€A

m > 0. From (8), m = L,(6[v"""2p,1™ 2p],0). Let 7 be the representation
corresponding to the A-parameter ¢ ® Sy ® Somy1 ® @,y ¢ ® S1 ® S1. Then, by
(6), the corresponding L-parameter is

Pl loese@eoes

j=—m i€A
=P oo [60%) e SodD)é® S
j=1 i€A
and
7= L[y "2 p, v 3 p] Sl e p TR ] B[R p, v 2], 6(vE s ).

We have to prove m = 7. Let us consider the representation
IT= C[V_m_%p, l/m_%p] X 0.

We analyze II using [18]. Note that [z~ 2p,v™ 2p] = v~ 2([v""™"p,"™p]. The
representation ([v~™p,v™p] is the unique irreducible quotient of v™p x v !p x
-+ X v""p. Equivalently, it is defined as the unique irreducible subrepresentation
of v™"p x v p x ... x v"™p. Therefore, ([v~™p,v"p| is the representation
C(p,2m + 1) of [18] and we can write II = v*((p,n) x o, with a = —% and
n = 2m + 1. It follows that II has three irreducible subquotients, my, mo, 73 given

in Proposition 3.6 (2) of [18]. In particular,
73 = Ly([v™" 2 p, 772 78(p, 2), v 0(p, 2), ..., 8(p, 2);0(vE ps ),

where 0(p,2) = d[v"2p,v7p],
i,

m—

b, i) = [y
1 1

73 = Ly(v "0l p,v2p), v [T p vk p) L v o[, 3 ), 6(vE s o))

is equal to 7. Jacquet modules of 71, 1y and 73 are given in part (c) of Proposition
3.6 (2) in [18]. We observe that only w3 does not have terms of the form v~ 2p®
. in its Jacquet module.
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On the other hand, the dual of IT in the Grothendieck group is
Syt 2p, Ver%,O] X o

and it has three components, 7,7y and @3. The Theorem in the Introduc-
tion of [30] tells us that the representation d[v=™"2p, 1™ 2p] x ¢ has two irre-
ducible square-integrable subrepresentations. The third component is the Lang-
lands quotient L,(3[v="™"2p, v 3pl;0) = Ly(8[v~""2p,v™ 2p|;0). By Frobe-
nius reciprocity, the square-integrable subrepresentations have terms of the form
I/m+%p®. .. in their Jacquet modules. Therefore, 77; and 75 are square integrable.
It follows 73 = Ly(8[v~"™"2p,v™ 2p];0). In other words, 7 = 7 and 7 = 7.

Now, let 1) = ¢ ® Sor, @ S3 D P;c4 ¢ ® S1 ® S1, m > 1. By (9),

3 1

T = L3l "2 p,0"2p], 6([v2 p, ™ 2 pl; ).
Let 7 correspond to ¢ ® S3 ® Som © P4 @i ® S1 ® S1. Then
T = Ly(8([v"" "2, 2 p)), . 0([v 2 p, vEp)), o).

We will prove 7 = 7. By Theorems 6.1 and 7.1 (Case 3a) of [18], 7 is the unique
irreducible subquotient of

aremtl el 1 gl
vz p, v 2 pl ([T Ep, v R ) ).

In particular, it is the unique irreducible quotient because it contains the unique
copy of y([y_m%p, ym‘%p] ® C([V%p, ym_%p];a) in the Jacquet module of the
generalized degenerate principal series. Therefore, 7 is a subquotient of the rep-
resentation v~ 10l 2 p, ™2 p] 3 §([v2p, v 2 p]; o). In addition, it contains
vl e p 3 pl @ 0([v"zp, v ™2 p]i0) (by Théoreme 1.7 (b) of Aubert).
This forces 7 = .

Now, suppose vp x o or p x ¢ is reducible. The proofs are similar to the
case (C3). For n = 2, m = Ly(6[v~"™p,v™ 'p],0) and the proof is based on
consideration of the representation IT = ([v~""p,v™ 1p| x 0. The components of
IT are given in Proposition 3.10 of [18] in the case (C'1) and in Proposition 3.11
of [18] in the case (C0). For n = 3, however, we obtain a new supercuspidal

representation ¢’ in the Langlands data of w. Suppose vp x o is reducible. Let
¢:¢®S2m+1®5’3@@¢i®51®51,
icA

m > 1. Reducibility of vp x ¢ implies ¢ = ¢, for some k € A. Let ¢’ be the
supercuspidal generic representation of SO(2¢' + 1, F') associated by [19] to the

parameter
@ 0 ® 5.
ic A\{k}

From (9), m = L,(8[v=™ 1 p,v™1],6([p, v™p|;0")). Let T be the representation
corresponding to the A-parameter ¢ ® S3 ® So,,11 D @ZGA ¢; ® 51 ®S1. Then, by
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(6), the corresponding L-parameter is

Plleesse@ees

j=—m icA
=P oS0 17605 050250 P 6%
J=1 i€ A\{k}
and
7= L8[ p, v pl 6T p, v 2 p), 62, pl, 6([ps vpli o).

Now, the proof @ = 7 is analogous to the case (C'}), using the Theorem 3.4 (3)(d)
of [7]. In the case when p x ¢ is reducible, we have ¢ 2 ¢;, for all i € A, and o’
is the supercuspidal generic representation of SO(2¢' + 1, F') associated by [19] to
the parameter
6051 @D ¢S,
i€A

Then vp x ¢’ is reducible. We apply exactly the same arguments as in the case
(C3), based on composition factors described in Theorems 6.2 and 7.2 of [18].
This finishes the proof of Theorem 3.1. [

4. Classification

We review Muié’s classification of generic representations of the group
SO(2n + 1, F) given in [24].

(a) Let og be a generic supercuspidal representation of SO(2n’+1, F') and
Y = [v %, V0ipy], 2b; € Zy,2a; € Zyp; = pii = 1,...,k a set of segments
satisfying

(ii) If (p;, 00) satisfies (C3), then b, € $ +7Z, a; > —5.
If (pi, 00) satisfies (CO), then b; € Z, a; > 0.
If (p;,00) satisfies (C1), then b; € Z, a; > —1, a; # 0.

N

(iii) If p; = p; for i # j, then either b; < a; or b; < q;.

The representation §(X,N%;) x - - - x§(ExNEy) ¥ 0p has a unique irreducible generic
subrepresentation, denote it by 7. The representation §(31\%;)X- - -x8(2\Xk) X7
has a unique irreducible subrepresentation which we denote by §(X1,...,%; 09).
The representation 0(X,. .., X; 00) is square integrable and generic.

Conversely, if ¢ is an irreducible square integrable generic representation
of SO(2n + 1, F), then there exists a unique oy and a unique set of segments
{¥1,..., X} satistying (i) - (iii) such that o = §(34, ..., Xy; 00).

(b) Let o be an irreducible generic square integrable representation. Write
o= §(%q,...,%00) as in (a). Suppose Ygiq,...,%; is a sequence of segments
satisfying

(iv) Segments Yi1,...,%; are balanced and mutually different.
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(v) 0(%;) x o is reducible, for i = k+1,...,1.

Then, the representation §(Xjy1) X -+ x d(3;) X o has a unique irreducible generic
subrepresentation, denote it by o(¢). This representation is elliptic and tempered.
(c) Suppose that ¥;4q,...,%,, is a sequence of segments satisfying

(vi) Segments ¥;, ¥; are not linked, for all [+1 <7< j <m.
(vii) Segments X;,%; are not linked, for all [+ 1 <i < j <m.

(viii) 0(%;) x ol is irreducible, for i =1+ 1,...,m.

Then, the representation 6(X;41) x - x 0(X,,) x o is irreducible, generic.

Conversely, let 7 be an irreducible generic representation of SO(2n+1, F).
Then, there exist a square integrable representation o, a sequence of segments
Yki1, - -, 2 satisfying (iv)-(v), and a sequence of segments 341, ..., 3, satisfying
(vi)-(viii), such that 7 & §(3;11) X --- x 6(X,n) ¥ 0. The representation o is
unique, the sequence Y1, ...,%; is unique up to a permutation, and the sequence
Y41y, 2y 1S unique up to a permutation and taking contragredient.

5. Generic representations

Let m be a generic representation of SO(2n + 1, F) and ¢ the L-parameter of 7.
In this section, we compute the involution 7 (Lemma 5.1) and the L-parameter gzg
of © (Theorem 5.3). We show that ¢ = ¢y, for an A-parameter 1, if and only if
7 is tempered. In this case, 7 is attached to an A-parameter g@ The parameters
v and 1& are symmetric.

Langlands data We fix an irreducible generic representation 7 and associate
to it a square integrable representation o and segments 1, ..., 20, 211, ..., 2m
such that 7 = §(Z41) X - -+ x §(,,) x 0 as in section 4. Let

P={1,...k},Q={k+1,...)1}, R={l+1,...,m}
and T=PUQUR. For i € T, let
S = v %p;, vV py).

We may assume that b; > 0, b; > a;, for all i € T'. This condition is satisfied for
1 € PUQ@. For i € R, we can replace the segment >; by its contragredient, if
necessary. Denote by r the local Langlands reciprocity map for GL(F) [14, 15].
Let ¢; be the Langlands parameter of p;, i.e., 7(¢;) = p;- Recall that r(¢;) = p;.
For a =0, %, 1, define the following sets:
Co={i € P|(p;,00) satisfies (Ca), a; > 0},
C,lz{ieplai:—l},
PQZ{Z.GP|CLZ‘ZO}:C()UC%U01,

TO = {Z erT ’ 0e [—al,bz]}
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Let ¢(00) = pm+1 X - -+ X p, be the local Langlands functorial lift of oy (Theorem
1.1 of [19]). Define

A={m+1,...,p},
Ag=A\{j € A p; = p; for some i € C_}.

Lemma 5.1.  Let © be an irreducible generic representation of SO(2n+1, F).
Let o be the generic square integrable representation and

Ek’-i—la R ,ZZ,EZ_H,. . .,Em
the sequence of segments associated to m by section 4. For j; € [—a;, by, ji # 0,

define
1, ifj; >0,
€ = ps
-1, ifj; <O.
Let {(l1,€1),...,(ls, &)} be the multiset {(|ji|,e;;) | ¢ € T,ji € {—ai,—a; +

L,...,0;} \ {0}} written in a non-increasing order, with respect to the first co-
ordinate. For ly = |j;|, let pi, = p;. Let 19 be the unique generic component of

( X p;i | X og. Then 7 is the Langlands quotient of the induced representation
i€Tp

11 €1 l; € A
VP X XV X T,

ife=1
where p¢ is defined by p¢ = {’i’ l <=5
p, ife=—1.
Remark 5.2. The equivalence class of the irreducible representation X p;

1€Ty
does not depend on the order of p;,i € Tj.

Proof.  The proof is similar to the proof of Lemma 5.1, [6]. Let
o = (l/blp1®1/b1_lp1®- . -®y_a1p1)®- . ~®(1/bmpm®ubm_1pm®- : -®V_ampm)®ao.

Denote by M the standard Levi subgroup corresponding to my. We consider the
induced representation ig (7). Then 7 is a subrepresentation of ig y(m) and,
by Corollary 4.2 of [4], & is a quotient of iga(mp). Write 7 as a Langlands
quotient

= Ly(v*y,--- , 06, T1), (10)

a; > -+ > ay > 0 (see page 254). Then Lemma 4.2 [6] tells us that 6;, i = 1,...,¢
are supercuspidal unitary representations and 7 is a subrepresentation of

(5q+1><"'><57«><]0'0,

where 6;, i =g+ 1,...,r are supercuspidal unitary representations. Therefore, 7
is a subquotient of the representation induced from

7Tl:Va151®"'®I/aq(5q®5q+1®"‘®5r®0'0.

It follows from [11], Corollary 6.3.7 and from the description of the Weyl group
for odd-orthogonal groups that m; can be obtained from 7y by permutations and
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taking contragredients. The condition on «y,...,a, implies that the sequence
i, .0 is equal to Iy,... 0 and {d1,...,04} = {p;!,...p;}- In addition, the
sequence 0441, - ,0, is up to a permutation equal to p)*, i € Ty, with 7; = 1 or

-1. Tt follows from equation (10) that 7 is the Langlands quotient

7A-":Lq(yllplil"" 7yltpl€:>7—1) (11)

and 7 is a subrepresentation of | X p!" | X gg. We claim | X pl" | X gy =
€T 1€Tp

( X pz-) X 0p. To prove the claim, we first show that p; x o9 = p; % ¢, for all
€Ty

j€Ty. If pj = p;, this is clear. If p; 2 p;, then p; x o¢ is irreducible, which
implies p; X 09 = p; X 0g. Therefore, p;.]j X og = pj X og, for all j € Ty. Since

X pi* is irreducible and the factors commute, we have, for j € Ty,
i€To

(xp;h) xgog( X p;h) Xp?j><1002< X p?l) X pj X 0oy
i€Ty i€To\{j} i€To\{j}

and the claim follows.

Now, equation (11) implies 7 is a component of (¥ pj! x - - - x /" pi* x71)". In
the Grothendieck group, the Aubert involution commutes with parabolic induction
([3], Théoréme 1.7). Therefore, 7 is a component of v/ il x - - - x V' pit x 71. Since
7 is generic, it follows from the properties of generic representations with respect
to parabolic induction that 7y is generic (cf. Lemma 4.1 of [6]). Therefore, 7 = 7.

[

Langlands parameters
Theorem 5.3.  Let w be an irreducible generic representation of SO(2n+1, F).
Let o be the generic square integrable representation and

htly o vy 20y Dld Ty e -y 2im
the sequence of segments associated to w by section 4. Then the local Langlands
parameter of o is

p(o) = (@ i @ SQb,-—f—l) D (@ oi ®32ai+1> D (@ 0 ® 51> ,

ieP i€Py i€ Ag
where ¢; 1s the Langlands parameter of p;. The local Langlands parameter of m is

o) @ (I

i€EQUR

b,—a; a

2 i @ Say b1 D | -

i—b; ~
2 ¢Z ® Sai+bi+1> )
which is equal to

p(o) @ <@ (i ® Saytbi+1 D P ® Sai—i-bi—&-l))

1€Q

b;—

T ® Saitbi+1 @ | -

@(EB<|-

i€ER

a;—b; ~
2 QSZ ® Sal-‘rbb-l-l)) .
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The local Langlands parameter of 7 is
b i
(@ P (I-Voesiol 7o ®Sl)) o (@@- ®Sl> .
€T j=—a; €A

Proof.  The local Langlands parameter of o follows from [19], the proof of
Theorem 2.1. The description of ¢(¢) is given in [6], Theorem 5.2.

The local Langlands parameter of 7 follows from [19]. First, according to
[19], the proof of Theorem 3.1,

p(0 ) = p(o) @ (EB (9 ® Sa;+b+1 © ¢ ® Sai+bi+1)> :
i€Q

Define R* = {i € R| X;is balanced} and R*™ = R\ R*. Let
s _ (s 20) o0
i€R*

Then o*™) is a tempered generic representation and

g0<O_(temp)) — (,0(0') fan) <@ (¢z X Sa¢+b¢+1 5>, (bz ® Sai+bi+1)>
i€Q

) <@ <¢i ® Sartbit1 B G ® Sa,-+bi+1>> ;

1ER*

i€ R
Theorem 5.2, [19], tells us that the Langlands parameter of 7 is

by [19], the proof of Theorem 4.1. Now, 7 = ( X 5(&)) x gtemp) The proof of

bj—a; ai—b; ~
p(oltemP)) @ <@ <| 1T i @ Sebn @77 4 ® Sa¢+b¢+1)> ’
i€R*

which is equal to

b;j—a; a;—
o@ e @ (11768 Sunn @1

IEQUR

b; ~

Let {(l1,€1),...,(lt, &)} be the multiset {(|ji|,€;,) | i € T, ji € {—a;, —a; +
L,...,b;} \ {0}} written in a non-increasing order, with respect to the first co-
ordinate. For Iy = |j;|, let p, = p;. Let 79 be the unique generic component
of ( X p; | X 0g. According to Lemma 5.1, 7 is the Langlands quotient of the

€Ty
induced representation
yllpfll X oo X yltpzt X Tg.

In a similar way as in the proof of Theorem 5.2 [6], we prove that the

parameter of 7 is

(1) = (@(bi@)Sl) @ (@@@Sl) = (@c&,@&) .

1€y €A 1€Tp
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The representation 7y is a component of | X pi) X 0. Since the representations
pi, © € Ty and o( are supercuspidal, it follz;?s from the definition of the Aubert
involution that 7y is a component of | X pi) X 0g. Therefore, 7 and 7, are
tempered representations induced from Ztegé same discrete series representation

® pi> ® op. It follows ¢(7y) = @(70) ([6], page 340). By equations (4), (5),
thleezTﬁanglands parameter of 7 is

(@ (-t eS| - [ (5 @ 51)> & ()

s=1

b;
= @ @ <’ . ’m@ ®S1 @ yiljléi ®Sl>

€T j=—ay
7>0

b;
&5 @ @ <| : ||j|§gi RS & ‘_m@‘ & S1> ®© ¢(70)
€T j=—a;
7<0

= @ Gb; <|"j¢i®51@"’_j¢~5i®51>

i€T j=—a;
3>0

b;
o P D (I'Fbesielioes)| o).
€T j=—a;
7<0

This is equal to

b;
@ @ (’ : ‘j¢i®51@|"7j<51®51>

€T j=—ay
J#0

® (@gﬁi@&) ® (@@-@Sl) ® (@ém@&)

i€To icA i€Tp
b;
:<@@ <|'|j¢i®51@|‘|_j€gi®51>)@(@@@&). n
€T j=—a; icA

Arthur parameters Let 7 be an irreducible generic representation of SO(2n+
1, F) and 7 the Aubert involution of 7. Using the methods of Jiang and Soudry
[19], we were able to compute the L-parameters of 7 and 7 (Theorem 5.3). Now,
we would like to compare the A-parameters of 7 and 7 (if they exist). Our
methods are restricted to consideration of base point representations. We show
that, among generic representations, only tempered representations are base points
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attached to A-parameters (Theorem 5.4). Suppose 7 is tempered and let v be
the A-parameter of 7. In this case, 7 also has the A-parameter, denote it by .
We show that ¢ and 1) are symmetric.

Theorem 5.4.  Let w be an irreducible generic representation of SO(2n+1, F')
and ¢ the L-parameter of m. Suppose ¢ = ¢y, for an A-parameter ¢ : Wp X
SL(2,C)xSL(2,C) — Sp(2n,C). Then w is tempered. Let ¥ be the A-parameter
of w. Then X

v(w,z,y) = Y(w,y, ).

Proof.  We associate to m a generic supercuspidal representation oy and a
sequence segments 1, . .. 20k, Dgil, .- 20, 2041, - - - 2, as in section 4. The sets
P=A{l...0k}, Q =4k+1,...0l}, R={l+1,....m}, R* = {¢ € R |
¥, is balanced} and R** = R\ R* are defined as earlier. The sequence ¥;.1,...%,,
is unique up to a permutation and taking contragredient, so we may assume

R ={%41,...,5,}, R"={¥,1,....5.}
For the same reason, we may assume that the exponents c,, d, in the segments
Eq:[ycqpqaydqpq]u q:p+17"'7m7

satisty a, = % >0 and apyq > -+ > ayy, > 0. Then

d'm

T = Ly(8[v ™+ ppyr, v ppial, - S i, v ] T),

where the tempered representation 7 is the unique generic component of the
representation (X,epugur+9(2,)) X 0g. The exponents a,, b, in the segments

Eq = [VﬁaqpquybqpqL q = 17 st 7p7

satisfy the conditions of section 4. Let ¢, be the L-parameter of p,, ¢ =1,...,m
The L-parameter ¢ of 7 is given by equation (5) and the L-parameter (1) of 7
is given by Theorem 5.3.

Now, suppose ¢y = ¢, for the A-parameter ) = @_, (¢} @ Sy, @ Sp,). We
have

r (ni—1)/2
w= H I
i=1 ji=—(n;—1)/2
(n;—1)/2
-D D |
n; even 31_1/2
(ni—1)/2
@ P || ¢ @S ® P ¢S S

n;odd j7;=1 n; odd

T @ S,

| ¢, @ Sy @]+ |77/ ® S,

(12)

It follows from equations (5) and (12) that each ¢; is equal to some ¢, and
(1) = D, 0aq P ® Sm;- We want to show m =7, ie, n; =1, foralli=1,...,r
and R* = 0.
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Assume first, for some i, n; > 4 and n; is even. We take the terms in

equation (12) coming from j; = %, % and apply equations (4), (5) to find the corre-
sponding segments. It follows the segments [v="2 1!, b2 pl], V=2 +2p), 12 1]

are in the Langlands data of m. These two segments are linked, which contradicts
section 4. Similar arguments rule out the case n; > 4, n; odd.

Therefore, n; < 3, for all 7. Assume now, for some fixed i, 1 < n; < 3.
Assume in addition (m;,n;) # (1,3). The terms in equation (12) coming from
ji = (n; — 1)/2 correspond to a certain imbalanced segment X, = X = [1°p, v9p)
in the Langlands data of w. More precisely,

Y= [V_%—Hpa V%p]u n; =2,
3 = [y_%'i_%p, V%—F%P], n; = 3.

If ¢®S,,,®S,, is not symplectic, then 1 in addition contains the term & QS ®
S, (if ¢; =2 ¢, then ¢ ® S,,, ® Sy, appears with even multiplicity). The term
¢ @S, @S, gives the segment ¥ = [v°5, v%p]. Then ¥ and ¥/ = [v=%p, v=p] are
linked, which contradicts condition (vii) in section 4. It follows that ¢} ® S,,, ® S,
is symplectic.

Define 7y to be the tempered generic representation with the L-parameter
¢, @ S, ® @(09), for n; = 3, and 79 = 0¢, for n; = 2. Define

7o = Ly(8(3), 7).

Since @, ® Sy, ® Sy, is symplectic, the representation my is precisely the repre-
sentation considered in Theorem 3.1. In particular, it follows from the proof of
Theorem 3.1 that §(3) x o¢ is reducible.

On the other hand, we know from (viii) in section 4. that §(X) x o(¢®) is
irreducible. Then Theorem 4.2 of [24] tells us one of the following two conditions
is satisfied

(*) 0(%) x 0y is irreducible, or
(**) there exists t € C_; such that the segments [p;] and ¥ are linked.

Note that 3 and [p'] are not linked, for any unitary p'. Since §(X) %0y is reducible,
we see that the assumption 1 < n; <3, (m;,n;) # (1,3) leads to a contradiction.

It remains to consider (m;,n;) = (1,3). In this case, ¥ = [vp], so ¥ and
>’ = [v~1p] are not linked. Again, we have §(X) x o is irreducible, so one of
the conditions (*), (**) holds. In addition, Theorem 4.2 of [24] implies

(1) the segments ¥ and X, (respectively, ¥ and %), t € QU R*, are not linked,
and

(1) the segments ¥ and [V %p;, v%p], t € P, are not linked.
Notice that ¢(7) contains ¢;® .S}, because n; is odd. From Theorem 5.3, we have

p(1) = (o) ® ( @ <¢t ® Sopyr1 ® Py @ Sth+1>> ;

teQUR
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p(o) = (@ Ot @ S2bt+1> S (@ O @ SQatJrl) D (@ Ot @ Sl) :

i€EP tePy tEAO

We conclude from (1) that ¢;®.5] is a part of ¢(0); otherwise, it would correspond
to the segment [p], which is linked to ¥. Similarly, (1) implies that ¢, ® S; does
not belong to P, p, ¢ ®@ Saq,41. Finally, the assumption ¢} ® Sy is a part of
Dica, ¢+ ® 51 contradicts both (*) and (**). Therefore, (m;,n;) # (1,3).

We have proved that 7 is tempered. Next, we will show that the A-
parameters of m and 7 are symmetric. The proof is just an extension by the terms
corresponding to @ U R of the proof of Corollary 5.1 in [6]. From Theorem 5.3,
we have

Y= (@ ®i @ Sop41 @ S1> S (@ i ® S2q,41 @ 51) @ (@ P 5 ® S1>

ieEP i€Py iEAo

&> ( @ (@' ® Sapi41 ® S1 ® ¢ @ Sapy 11 ® Sl)) ;

i€EQUR

using the fact that all the segments ¥; = [v=%p;, v p;] = [v =0 p;, v0ip;], i € R are
balanced. Define

12 = (@ 0; ® 51 ® SQbﬁ-l) S (@ 0 ® 51 ® SQai—i-l) S (@ 0; ® 51 ® Sl>

ieP i€Py i€Ap

S ( @ (@ ® 51 ® Sop;+1 D ¢ ®5 ® SQbi—i-l)) .

1EQUR

Then zﬂ(w, z,y) = Y(w,y,z). We will prove that ¢ is the A-parameter of #. We
have

by = (@ é} !-V@@Sl) ® (@ 69 !-IJ’@@Sl) ® (@@@&)

i€P j:—bi i€Py j:—ai Z'GAO

@(@ o (|~|j¢i®51@|-\j<5i®51)>

i€QUR j=—b,
b;
= (@ @ (| @S @ | '|_j<2~5i®51>> & (69@@51) :
€T j=—aj; €A
We recognize this as the L-parameter of 7 given in Theorem 5.3, finishing the
proof. [ |
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