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Abstract. The principal series representations of the n -fold metaplectic cov-
ers of the general linear group GLr(F) were described in the foundational paper
“Metaplectic Forms,” by Kazhdan and Patterson (1984). In this paper, we study
the local coefficient matrices for a certain class of principal series representations
over GL2(F), where F is a nonarchimedean local field. The local coefficient
matrices can be described in terms of the intertwining operators and Whittaker
functionals associated to such representations in a standard way. We character-
ize the nonsingularity of local coefficient matrices in terms of the nonvanishing
of certain local ζ -functions by computing the determinant of the local coefficient
matrices explicitly. Using these results, it can be shown that for any divisor
d of n , the irreducibility of the given principal series representation on the n -
fold metaplectic cover of GL2(F) is intimately related to the irreducibility of its
d -fold counterpart.
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Introduction

Suppose that F is a nonarchimedean local field containing the full group of nth

roots of unity µn . One can define the n-fold metaplectic group G̃Lr(F) to be
a nontrivial central extension of GLr(F) by µn , where multiplication is defined
by a 2-cocycle in Z2(GLr(F);µn). Such a cocycle was explicitly constructed for
GL2(F) by Kubota [9] and extended to GLr(F) for r > 2 by Matsumoto [10]. In
[8], Kazhdan and Patterson described the principal series representations of the
metaplectic covers of GLr(F) and characterized their irreducibility. While such
representations do not in general have unique Whittaker models, there is a finite-
dimensional space of Whittaker functionals. The “local coefficient matrices” of this
paper are formed by considering the action of the standard intertwining operator
on a certain canonical basis of the functionals.

In the case G = GL2(F), the nonsingularity of local coefficient matrices is
shown to be equivalent to irreducibility of a particular class of representations in
the unramified principal series. By considering these representations over different
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coverings of G , it is then shown that a generalization of the local Shimura cor-
respondence preserves irreducibility. Such a local correspondence was previously
described by Flicker (Section 5.2, [7]) for genuine irreducible admissible represen-
tations of n-fold coverings of G (Shimura’s correspondence is the case n = 2). In
particular, Flicker handled the correspondence for the principal series in Section
2.1 of [7].

The paper proceeds as follows. In Section 1, the definitions and notations
to be used throughout the rest of the paper are given. For a nonzero s ∈ C and
a fixed covering n , the unramified principal series representation (πs, Vs) of G̃ is
constructed in Section 2 (we later use the notation (πs, Vs)

(n) when n is no longer
fixed). The local coefficients associated with such representations are described in
Section 3 following the derivation of Kazhdan and Patterson (Section 1.3, [8]).

The new results are contained in Section 4 and are an extension of the
results obtained in [4]. Here, we arrange the local coefficients into an n2×n2 matrix
and explicitly compute its determinant. The determinant of the local coefficient
matrix depends upon s and the covering n . In Theorem 4.2, we prove the local
correspondence: if d divides n and |n|F = 1, then

(πs, Vs)
(n) irreducible ⇐⇒ (πsn/d, Vsn/d)

(d) irreducible.

Acknowledgements: Sincere gratitude is due to William Banks for introducing
the author to the study of metaplectic groups and for recommending the problem
contained in this article. The author would also like to thank the referee for several
helpful comments that greatly improved the article’s presentation.

1. Preliminaries

Throughout this paper, F will denote a nonarchimedean local field containing µn ,
the full group of nth roots of unity. We assume that F is a finite extension of
the p−adic field Qp and fix an embedding ε : µn ↪→ C× , identifying µn with
the group of nth roots of unity in C× . For any such field, let υ : F× → Z be
a normalized valuation. As usual, we extend υ to all of F by setting υ(0) = ∞
(with the convention that ∞+ z = ∞ = z +∞ for all z ∈ Z).

Let O denote the ring of integers {x ∈ F | υ(x) ≥ 0} in F and let p denote
the (unique) maximal ideal {x ∈ F | υ(x) ≥ 1} in O . We will let $ denote a
prime element in p (that is, an element such that υ($) = 1). The order of the
residue field O/p is given by q = pf for some f ∈ N . The absolute value on F is
then given by |x|υ = q−υ(x) and the local ζ -function at υ is defined by

ζυ(s) = (1− q−s)−1.

The existence of the Hilbert symbol over F is well known (see [12], Chap.
VIII sec. 5). The nth order Hilbert symbol is a map

(·, ·)F : F× × F× −→ µn
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that satisfies the following conditions for all a, a′, b ∈ F× :

(aa′, b)F = (a, b)F (a′, b)F,

(a, b)F (b, a)F = 1,

(a,−a)F = 1 = (a, 1− a)F when a 6= 1, and

{x ∈ F× | (x, y)F = 1, for all y ∈ F×} = F×n,

where

F×n := {x ∈ F× | x = yn, for some y ∈ F×}.

For our purposes, we assume that the Hilbert symbol is unramified: (x, y)F = 1
for all x, y ∈ O× . It is known that this condition is equivalent to |n|F = 1.

For G = GL2(F), the n-fold (0−twisted) metaplectic group G̃ = G̃L2(F)
is a nontrivial central extension of G by µn :

1 −−−→ µn
i−−−→ G̃

p−−−→ G −−−→ 1. (1)

As a set, the elements of G̃ are of the form (g, ζ) where g ∈ G and ζ ∈ µn .
Multiplication is given by

(g, ζ)(g′, ζ ′) = (gg′, ζζ ′ σ(g, g′)),

where σ is a nontrivial 2-cocycle in Z2(G;µn) that satisfies the cocycle relation

σ(g, g′)σ(gg′, g′′) = σ(g, g′g′′)σ(g′, g′′), (2)

for all g, g′, g′′ ∈ G . It is an easy exercise to check that (2) is equivalent to

associativity of multiplication in G̃ . The cocycle σ was first described by Kubota
[9] and is given by

σ(g, g′) =

(
X(gg′)

X(g)
,

X(gg′)

X(g′)det(g)

)
F

where

X
(( a b

c d

))
=

{
c if c 6= 0
d if c = 0

.

In the short exact sequence (1), the projection map p : G̃ −→ G is given

by (g, ζ) 7→ g and the inclusion map i : µn −→ G̃ is given by ζ 7→ (1, ζ). We will

also use the preferred section s : G −→ G̃ , given by g 7→ (g, 1).

For every c ∈ Z/nZ , there exists a c−twisted cover G̃(c) = G̃L
(c)

2 (F),
defined by the short exact sequence

1 −−−→ µn
i−−−→ G̃(c) p(c)

−−−→ G −−−→ 1,

where the cocycle σ(c) is given by

σ(c)(g, g′) = σ(g, g′)(det(g), det(g′))cF
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Finally, we fix a nontrivial additive (unitary) character ψ : F −→ C× that
is unramified. For every i ∈ Z/nZ , the unnormalized nth order Gauss sum is
defined by

g
(i)
ψ := q

∫
x∈O×

($, x)iFψ($−1x) dx,

where dx is the unique additive Haar measure satisfying Vol(O; dx) = 1. A well
known property of Gauss sums that will be needed in Section 4 is

g
(i)
ψ g

(−i)
ψ = q($,$)iF.

2. Principal Series Representations

In this section, we describe the class of principal series representations to be
used throughout the rest of the paper. For the construction of our class of
representations, we need to consider several important subgroups of G̃ = G̃L2(F).
Let T denote the subgroup of diagonal matrices (the torus) in G and denote by

T̃ (c) := (p(c))−1(T ), the metaplectic preimage of T . Similarly, define the Borel

subgroup B of upper triangular matrices and denote by B̃(c) := (p(c))−1(B), its
metaplectic preimage. It will be convenient to leave off the superscript (c), but
its dependence should not be forgotten.

The group B can be decomposed as B = TN where N is the unipotent
radical of B (the subgroup of B with 1’s along the diagonal). The group G̃ splits
canonically over N via the p-section s . So we define N∗ := s(N) and obtain the

decomposition B̃ = T̃N∗ .

The group G̃ also splits over the maximal compact subgroup K = GL2(O)
of G (see [11]). If we let

k : K −→ G̃

denote the canonical splitting, then by Proposition 0.1.3 of [8], k satisfies the
relations

k|T∩K = s|T∩K , k|W = s|W , and k|N∩K = s|N∩K ,
where W denotes the Weyl subgroup of G consisting of the identity matrix and

w = s

(
1

1

)
.

Let K∗ := k(K) and for every m ≥ 0, define K∗
m := k(Km) where

Km := {k ∈ K | k ≡ I (mod pm)}.

The topology of G̃ is defined by taking the collection K∗
m as a basis of open,

compact neighborhoods of the identity in G̃ .

To obtain a principal series representation of G̃ , we induce from an irre-
ducible representation of a subgroup of B̃ . We begin with a quasicharacter on
the center of T̃ . As was noted in Section 1.1 of [8], the center of T̃ is given by

T̃ nZ(B̃) where

T̃ n = p−1(T n) := p−1

{(
x

y

)∣∣∣∣ x, y ∈ F×n
}
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and the center of B̃ , Z(B̃), is given by

p−1

{(
λ

λ

)∣∣∣∣ λ1+4c ∈ F×n
}
.

Let δB denote the modular (quasi)character of the Borel subgroup. We

will consider δ to be the quasicharacter δB on T̃ nZ(B̃) that is genuine. In other
words,

δ

(((
x

y

)
, ζ

))
= ζ

∣∣∣∣xy
∣∣∣∣
F
.

This quasicharacter can be extended to a maximal abelian subgroup T̃∗ of T̃ in
the obvious way.

Our choice of maximal abelian subgroup was described in [2]. It is defined
by

T̃∗ := p−1

{(
x

y

)∣∣∣∣ x, y ∈ F∗
}

where
F∗ := {x ∈ F× | υ(x) ≡ 0 (mod n)} = $nZO.

The quasicharacter δ is extended to B̃∗ := T̃∗N
∗ by making it trivial on N∗ .

For any fixed nonzero s ∈ C and any unramified quasicharacter

χ : F× −→ C×,

define the (normalized) induced representation

(πs, Vs) := IndG̃
B̃∗

((χ ◦ det ◦ p)⊗ δs)

where

Vs =
{
f ∈ C∞(G̃)

∣∣∣ f(bg)=χ(det(p(b))) · δs+1/2(b) · f(g), for all b ∈ B̃∗, g ∈ G̃
}

and πs acts by right translation:

(πs(g)f)(g′) = f(g′g).

Stone and von-Neumann’s Theorem (see [5] or [6]) guarantees that the isomorphism
class of a representation constructed in this way depends only on the central
quasicharacter (χ ◦ det ◦ p)⊗ δs , not on the choice of maximal abelian subgroup
nor on the quasicharacter’s extension.

3. Local Coefficients

To define the local coefficients of (πs, Vs), we first consider the intertwining oper-
ators and Whittaker functionals associated to such representations. The standard
intertwining operator

Is : Vs −→ V−s

satisfies
Is(πs(g)f) = π−s(g)(Isf) for all g ∈ G̃, f ∈ Vs
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and is given by the absolutely convergent integral

Isf(g) =

∫
n∈N∗

f(w−1ng) dn

where f ∈ Vs and dn is the unique Haar measure that satisfies Vol(N∗∩K∗; dn) =
1.

To define a Whittaker functional of Vs , we first fix a nontrivial additive
(unitary) character

ψ : F −→ C×.

We also assume that ψ is unramified and extend it to a multiplicative character

ψN∗ : N∗ −→ C×

by setting

ψN∗

(
s

(
1 x

1

))
= ψ(x).

It simplifies notation to denote ψN∗ by ψ and this should cause no confusion. A
ψ−Whittaker functional is a functional λ in the dual space V ′

s of Vs that satisfies

λ(πs(n)f) = ψ(n)λ(f) (3)

for all n ∈ N∗ and f ∈ Vs .
For η ∈ T̃ , let λη ∈ V ′

s be given by

ληf =

∫
n∈N∗

f(ηwn) ψ(n) dn. (4)

Kazhdan and Patterson (Lemma 1.2.3 of [8]) showed that the integral (4) is
absolutely convergent for Re(s) > 0 and extends holomorphically to all of C .
One can check that λη satisfies (3) and that

{λη | η ∈ T̃∗\T̃}

is a basis for Wh(Vs), the space of ψ−Whittaker functionals of Vs . We will use
the set

Ω :=

{
s

(
$i

$j

)∣∣∣∣ i, j ∈ Z/nZ
}

as representatives of T̃∗\T̃ .

The local coefficients τs(η, η
′) of (πs, Vs) are defined by the equation

ληIs =
∑
η′∈Ω

τs(η, η
′)λη′ . (5)

Since Ω has cardinality n2 , there are n4 local coefficients.

To evaluate the local coefficients, we follow [8], Section 1.3, starting with
an appropriate set of “test” functions in Vs . Let

fη′(g) =

{
χ(det(p(b))) · δs+1/2(b) if g = bη′lw, b ∈ B̃∗, l ∈ L
0 otherwise

where L is an open, compact subgroup of G̃ that is taken to be sufficiently small.
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Theorem 3.1. The local coefficients are given by

τs(η, η
′) =


(−1,−1)cF ·

ε1·ζυ(−2nsε1)
ζυ(1−2nsε2)

if η = η′

c1 · g(j′−j)
ψ

if η 6= η′ and
j ≡ i′ + 1 (mod n)
j′ ≡ i+ 1 (mod n)

0 otherwise

where

c1 = q(i′−i−j′+j)(s+1/2)χ($)i−i
′+j−j′(−1,−1)cF q

−2s(j−i−1)−1($,$)
j(j−i−1)
F ,

ε1 =

{
1 if j ≤ i

−1 if i < j,

ε2 =

{
1 if j ≡ i+ 1 (mod n)
0 if j 6≡ i+ 1 (mod n).

Proof. The proof of Theorem 3.1 is omitted as it is essentially the content of
the proof of Lemma 1.3.3 in [8] applied to the representation (πs, Vs).

4. Local Coefficient Matrices

So far, the nonzero complex number s and the natural number n have been
fixed. Now, we treat s as a variable and in Theorem 4.2, we will consider the
representation (πs, Vs) over different values of n ∈ N where |n|F = 1. Define the
matrix Mn(s) := (τs(η, η

′)) by placing τs(η, η
′) in the (in + j + 1)th row and the

(i′n+ j′ + 1)th column, where

η = s

(
$i

$j

)
and η′ = s

(
$i′

$j′

)
We should note some important properties of the matrix Mn(s). First, for

every nonzero off-diagonal entry τs(η, η
′), there is a symmetric (but not equal)

nonzero entry τs(η
′, η). This follows from the fact that the nonzero off-diagonal

entries only occur when the symmetric system of congruences{
j ≡ i′ + 1 (mod n)
j′ ≡ i+ 1 (mod n)

is satisfied. Also, from this system we see that no two nonzero off-diagonal entries
occur in the same row or the same column.

Theorem 4.1. The matrix Mn(s) has determinant

(−1)
n2−n

2
ζυ(2ns)

n2+n
2 ζυ(−2ns)

n2−n
2

ζυ(1− 2ns)
n2+n

2 ζυ(1 + 2ns)
n2−n

2

and this determinant is zero if and only if

s = ± 1

2n
+

iπk

n log q
, k ∈ Z.
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Proof. We begin by conjugating Mn(s) by an appropriate matrix so that the
resulting matrix has just 2× 2 and 1× 1 nonzero blocks along the diagonal. Let
Wn2 denote the subgroup of GLn2(C) consisting of matrices that contain a single
1 in every row and every column, and zeros elsewhere. Also let wr1,r2 ∈ Wn2 be
the element formed by taking the identity matrix in GLn2(C) and interchanging
the rth1 row with the rth2 row.

If Mn(s) is conjugated by win+j+1,i′n+j′+1 , the resulting matrix has(
τs(η, η) τs(η, η

′)
τs(η

′, η) τs(η
′, η′)

)
as a 2× 2 block along the diagonal.

Now let wo ∈ Wn2 be the element given by

w0 :=
∏

R(i,j,i′,j′)

win+j+1,i′n+j′+1

where

R(i, j, i′, j′) = {0 ≤ i, i′, j, j′ < n | j ≡ i′ + 1 (mod n) and j′ ≡ i+ 1 (mod n)} .

The matrix Mn(s) = w−1
0 (Mn(s))w0 has only 2×2 and 1×1 nonzero blocks along

the diagonal and has the same determinant as Mn(s).

To compute the determinant of Mn(s), it helps to define an equivalence
relation on our choice of representatives η ∈ Ω that provides a distinction between
the 2× 2 and 1× 1 blocks. Let η ∼ η′ if and only if

η = η′ or

{
j ≡ i′ + 1 (mod n)
j′ ≡ i+ 1 (mod n)

.

We will let η denote the equivalence class of η and |η| denote the cardinality of
η .

First, we take care of the cases where |η| = 1. For such an η , there are
no nonzero off-diagonal entries in the same row or column as τs(η, η

′). These are
exactly the cases in which j ≡ i+ 1(mod n) and we have the following solutions:

i : 0 1 2 . . . n− 2 n− 1
j : 1 2 3 . . . n− 1 0

.

In the one case where i = n− 1 and j = 0, there is the contribution of the factor

(−1,−1)cF
ζυ(2ns)

ζυ(1− 2ns)
(6)

to det(Mn(s)). For each of the other n− 1 cases, there is a contribution of

−(−1,−1)cF
ζυ(−2ns)

ζυ(1− 2ns)
. (7)

Now we consider the |η| = 2 blocks. We count each 2×2 block by counting
the entries in the upper triangle (i′ > i). In the first such case, we have j = 0,
i′ = n− 1, and i and j′ are given by the possibilities

i : 0 1 2 . . . n− 2
j′ : 1 2 3 . . . n− 1

.
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There are n− 1 blocks of this form and they all satisfy

det

(
τs(η, η) τs(η, η

′)
τs(η

′, η) τs(η
′, η′)

)
=

(ζυ(2ns))
2

ζv(1− 2ns)ζv(1 + 2ns)
. (8)

Note that the case j = 1 and i′ = 0 does not occur since we are counting
the entries in the upper triangle. The remaining cases are given by

j :
i′ :
i :
j′ :

2
1
0
1

∣∣∣∣∣∣∣∣
3 3
2 2
0 1
1 2

∣∣∣∣∣∣∣∣
4 4 4
3 3 3
0 1 2
1 2 3

∣∣∣∣∣∣∣∣
. . .
. . .
. . .
. . .

∣∣∣∣∣∣∣∣
n− 1 n− 1 . . . n− 1
n− 2 n− 2 . . . n− 2

0 1 . . . n− 3
1 2 . . . n− 2

and there are (n − 2)(n − 1)/2 such cases. For each of these blocks, we have a
contribution of

det

(
τs(η, η) τs(η, η

′)
τs(η

′, η) τs(η
′, η′)

)
=

−ζυ(2ns)ζυ(−2ns)

ζυ(1− 2ns)ζυ(1 + 2ns)
(9)

to the determinant of Mn(s).

Putting together (6), (7), (8), and (9), we have

det(Mn(s)) = (−1)
n2−n

2
ζυ(2ns)

n2+n
2 ζυ(−2ns)

n2−n
2

ζυ(1− 2ns)
n2+n

2 ζυ(1 + 2ns)
n2−n

2

,

and this determinant is zero if and only if q2ns−1 = 1 or q−2ns−1 = 1.

Up to this point, we have assumed that the covering n is fixed. Now we
denote our representation by (πs, Vs)

(n) and consider different values of n for which
|n|F = 1. We have the following local correspondence.

Theorem 4.2. If d is any divisor of n and |n|F = 1, then

(πs, Vs)
(n) irreducible ⇐⇒ (πsn/d, Vsn/d)

(d) irreducible.

Proof. Since both Is and I−s are intertwining operators, so is their composition
I−s ◦ Is , giving us the following commutative diagram

Vs
Is−−−→ V−s

I−s−−−→ Vs

πs(g)

y yπ−s(g)

yπs(g)

Vs −−−→
Is

V−s −−−→
I−s

Vs

for all g ∈ G̃ . By Proposition 1.2.2 of [8], the space of intertwining operators
Hom(Vs, Vs) has dimension less than or equal to 1. However, the identity map
Id : Vs −→ Vs is an intertwining operator and hence, the composition map is just

I−s ◦ Is = α · Id : Vs −→ Vs

for some constant α ∈ C . Applying Theorem 1.2.9 of [8] to our representation, we
have that the image of the map I−s ◦ Is is the unique irreducible subrepresentation
of Vs . Hence, (πs, Vs)

(n) is irreducible if and only if α 6= 0.
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For s 6= 0, we may view τs(η, η
′) as a function of s . Using all of the

Whittaker functionals Vs −→ C , we form the map ∆s,η′ : Vs −→ Cn2
given by

f 7→ (0, . . . , 0, λη′f, 0, . . . 0)

where λη′f is in the (i′n+ j′ + 1)th position. Next, we define the map

∆s : Vs −→ Cn2

by

∆s(f) :=
∑
η′∈Ω

∆s,η′(f).

The map
∆−s : V−s −→ Cn2

is defined in a similar manner.

It can be shown that the space Vs can be decomposed (see [1]) as

Vs = Span〈fη′〉 ⊕Ker〈λη′〉.

The map Im(∆s,η′) −→ Vs taking elements back to their preimages under ∆s,η′ is
not well-defined, but any two preimages of the same element differ by an element
of Ker〈λη′〉 . By property (3) of Whittaker functionals, we have that

Ker〈λη′〉 = Span〈πs(n)f − ψ(n)f〉.

The intertwining operator Is takes elements of Ker〈λη′〉 to elements of
Ker〈λη〉 since

Is(πs(n)f − ψ(n)f) = π−s(n)(Isf)− ψ(n)(Isf).

Using the linearity of the Whittaker functionals, we obtain the commutative dia-
gram

Vs
Is−−−→ V−s

I−s−−−→ Vs

∆s

y y∆−s

y∆s

Cn2 −−−→
Mn(s)

Cn2 −−−−→
Mn(−s)

Cn2

and the composition

Mn(s) ·Mn(−s) = α · Id : Cn2 −→ Cn2

,

so that α · Id and Mn(s) ·Mn(−s) have the same determinant.

If d is any divisor of n , then |n|F = 1 =⇒ |d|F = 1. Thus, the relationship
between the irreducibility of (πs, Vs) on different coverings follows from

det(Mn(s)) = 0 ⇐⇒ det(Md(sn/d)) = 0,

from which we obtain the claim of Theorem 4.2.

In particular, notice that the case d = 1 corresponds to the nonmetaplectic
group G , illustrating a generalization of the local Shimura correspondence like that
described by Flicker in Section 2.1 of [7]. With some work, these results should
extend to the metaplectic covers of GLr(F) for r > 2. However, Kubota’s cocycle
no longer applies when r > 2. Instead, the block-compatible metaplectic cocyle
described in [3] can be used and this generalization is saved for future work.
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