On exceptional completions of symmetric varieties

Rocco Chirivì and Andrea Maffei

Communicated by E. B. Vinberg

Abstract. Let G be a simple group with an exceptional involution σ having H as fixed point set. We study the embedding of G/H in the projective space $\mathbb{P}(V)$ for a simple G-module V with a line fixed by H but having no nonzero vector fixed by H. For a certain class of such modules V we describe the closure of G/H proving in particular that it is a smooth variety. Mathematics Subject Index 2000: 14M17, 14L30.

Keywords and phrases: Complete symmetric variety, exceptional involution.

Introduction

Let G be a simple and simply connected algebraic group and σ an involution of G with set of fixed point G^{σ} . We denote by H the normalizer of G^{σ} . In this paper we describe some special completions of the symmetric variety G/H.

If V is an irreducible representation of G we say that it is quasi-spherical if there exists a line in V stable by the action of H. If V is quasi-spherical and $h_V \in \mathbb{P}(V)$ is a point fixed by H we have a map from G/H to $\mathbb{P}(V)$ defined by $gH \mapsto g \cdot h_V$. We denote the closure of the image of this map by X_V (as shown in [2] the line h_V is unique so X_V depends only on V). These varieties are of some interest: one may ask, for example, whether they are smooth or normal (see [3]).

We say that an involution is exceptional if there exists an irreducible representation V of G and a vector v in V such that H stabilizes the line through v but v is not fixed by G^{σ} . As shown in the first section, in this situation H is equal to G^{σ} and it is a Levi corresponding to a maximal parabolic associated to a simple root which appears with multiplicity 1 in the highest root θ . Let ω be the fundamental weight corresponding to this simple root and consider the quasi-spherical irreducible representation V of highest weight $n\omega + \theta$, with n a positive integer. We give a description of X_V proving in particular that it is a smooth variety.

1. Exceptional involutions

Let \mathfrak{g} be a simple Lie algebra over an algebraically closed field \Bbbk of characteristic zero, and let σ be an order 2 automorphism of \mathfrak{g} . Denote by \mathfrak{h} the subalgebra of fixed points of σ in \mathfrak{g} .

Let G be a connected and simply connected group with Lie algebra \mathfrak{g} . The involution σ induces an involution on G that we still denote by σ . Let G^{σ} be the set of points fixed by σ in G and H be the normalizer of G^{σ} . It is well known that G^{σ} is reductive and connected and that H is the maximal subgroup of G having G^{σ} as identity component (see [1]).

An irreducible representation V is called *spherical* if V has a nonzero vector fixed by G^{σ} and it is called *quasi-spherical* if there is a point in $\mathbb{P}(V)$ fixed by H. It is easy to see that if V is spherical then the line pointwise fixed by G^{σ} is unique (see [1]). Notice also that a spherical representation V is quasi-spherical. Indeed if $v \in V$ is a nonzero vector fixed by G^{σ} and $h \in H = N(G^{\sigma})$, then $h^{-1}ghv = v$, hence also hv is a vector fixed by G^{σ} . But, as noted, the space of vectors fixed by G^{σ} is at most one-dimensional, this shows that the point [v] in $\mathbb{P}(V)$ is fixed by H. Hence V is quasi-spherical.

We say that the involution σ is *exceptional* if there exists a quasi-spherical representation which is not spherical. (There are other equivalent definitions of exceptional involution, see for example [2].)

Let V be such an irreducible representation and let v be a nonzero vector which spans a line that is stable under the action of H but not pointwise fixed by G^{σ} . In particular G^{σ} acts on $\Bbbk v$ by a one-dimensional character. This implies that the center of G^{σ} contains a non trivial torus Z; we denote by \mathfrak{z} its Lie algebra and by χ the character of Z such that $c \cdot v = \chi(c)v$ for $c \in Z$.

Notice that \mathfrak{g} is spherical and, since we know that the vector fixed by G^{σ} is unique up to scalar, we have that \mathfrak{z} is one-dimensional.

Now we want to choose a suitable positive root system, this is done in two steps.

First step. We begin choosing a maximal toral subalgebra of \mathfrak{h} containing \mathfrak{z} . It is known that we can extend this subalgebra to a σ -stable maximal toral subalgebra \mathfrak{t} of \mathfrak{g} , let Φ be its associated root system, and we can take a σ -stable system of positive roots. Let ρ^{\vee} the sum of positive coroots and notice that $\sigma(\rho^{\vee}) = \rho^{\vee}$. We denote by T the torus corresponding to \mathfrak{t} and we notice that Z is a subtorus of T, hence we can choose a non zero element $z \in \mathfrak{z}$ that is real when evaluated on the roots.

Step two. Now we can choose the positive system as the subset Φ^+ of roots which are positive on $z + \epsilon \rho^{\vee}$ for a small positive ϵ . So we have $\sigma(\Phi^+) \subset \Phi^+$ and $(z,\beta) \geq 0$ for all positive roots β . In particular the first condition implies that $\sigma(\beta)$ is a simple root if β is a simple root

The choice of $\Phi^+ \subset \Phi$ determines simple roots, fundamental weights and dominant weights that we will consider fixed from now on. In particular if α is a root we denote by $\mathfrak{g}_{\alpha} \subset \mathfrak{g}$ the root space corresponding to α and if α is a simple root we denote by ω_{α} the corresponding fundamental weight. Also if λ is a dominant weight we denote by V_{λ} the irreducible representation of highest weight λ and we denote by v_{λ} a highest weight vector of this module. In what follows θ will be the highest root of Φ^+ and w_0 the longest element of the Weyl group $N_G(T)/T$ w.r.t. Φ^+ .

We have the following characterization of exceptional involutions.

Proposition 1.1. If σ is exceptional then H is connected (hence it is equal to G^{σ}) and it is the Levi subgroup of a maximal parabolic corresponding to a simple root α which appears with multiplicity 1 in the highest root θ , moreover $w_0(\omega_{\alpha}) \neq -\omega_{\alpha}$.

Conversely if α is a simple root which appears with multiplicity 1 in the highest root θ and $w_0(\omega_{\alpha}) \neq -\omega_{\alpha}$ then there exists an involution σ such that H, the normalizer of G^{σ} , is equal to the Levi of the maximal parabolic corresponding to α ; in particular σ is exceptional.

Proof. We notice first that if L is a Levi of a maximal parabolic corresponding to a simple root α then $N_G(L) = L$ if and only if $w_0(\omega_\alpha) \neq -\omega_\alpha$. Indeed if $w_0(\omega_\alpha) = -\omega_\alpha$ let $g \in N_G(T)$ be such that $gT = w_0 \in N_G(T)/T$. Then g belongs to $N_G(L)$ but not to L.

Conversely assume $w_0(\omega_{\alpha}) \neq -\omega_{\alpha}$ and let $g \in N_G(L)$. Since T is a maximal torus of L we can assume that $g \in N_G(T)$. Consider the element w defined by g in the Weyl group, since $g \in N_G(L)$ we must have that w preserves the space orthogonal to the roots associates to L so $w(\omega_{\alpha}) = \pm \omega_{\alpha}$. Now if $w(\omega_{\alpha}) = \omega_{\alpha}$ we can assume that w permutes the simple roots different from α , up to multiplying g by a suitable element in $N_L(T) \subset L$. Now by $w(\omega_{\alpha}) = \omega_{\alpha}$ we deduce also that $w(\alpha) \in \Phi^+$, hence $w(\Phi^+) = \Phi^+$. So w = id and $g \in L$. Similarly in the case $w(\omega_{\alpha}) = -\omega_{\alpha}$ we see that we can assume $w(\Phi^+) = -\Phi^+$. So $w = w_0$, but this is in contradiction with $w_0(\omega_{\alpha}) \neq -\omega_{\alpha}$.

Now we prove the second claim of the Proposition, so suppose that α is a simple root which appears with multiplicity 1 in the highest root θ and let Ψ be the root subsystem generated by the simple roots different from α . Consider the involution σ defined by

$$\sigma|_{\mathfrak{t}} = \mathrm{id}_{\mathfrak{t}} \quad \text{and} \ \sigma|_{\mathfrak{g}_{\beta}} = \begin{cases} \mathrm{id}_{\mathfrak{g}_{\beta}} & \text{if} \ \beta \in \Psi; \\ -\mathrm{id}_{\mathfrak{g}_{\beta}} & \text{if} \ \beta \notin \Psi. \end{cases}$$
(1)

Using that α appears with multiplicity 1 in θ it is easy to see that σ is a well defined involution of Lie algebras and that it has the claimed properties. Finally notice that the representation $V_{\omega_{\alpha}}$ is quasi-spherical but not spherical since the only line fixed by H in $V_{\omega_{\alpha}}$ is the line spanned by the highest weight vector, which is not fixed pointwise. In particular this shows that σ is exceptional.

Conversely suppose that σ is exceptional and let V be an irreducible module with a nonzero vector v which spans an H-fixed line not G^{σ} -pointwise fixed. We are now going to use all objects introduced above Proposition 1.1: the subtorus Z, it Lie algebra \mathfrak{z} , the "real" non zero element $z \in \mathfrak{z}$, the positive system Φ^+ .

We begin the proof of the first claim of the Proposition by proving that $\mathfrak{h} = Z_{\mathfrak{g}}(\mathfrak{z})$; the inclusion $\mathfrak{h} \subset Z_{\mathfrak{g}}(\mathfrak{z})$ is clear so we have to prove the other inclusion.

Notice that by our choice of Φ^+ , $Z_{\mathfrak{g}}(\mathfrak{z})$ is the Levi subalgebra of \mathfrak{g} generated by the root vectors x_β of weight β for β simple root such that $(z,\beta) = 0$; so our claim is equivalent to $\sigma(x_\beta) = x_\beta$ for all such simple roots β . Notice also that, $Z_{\mathfrak{g}}(\mathfrak{h})$ being one dimensional, all the simple roots are orthogonal to z but one that we denote with α .

Now we prove that σ is the identity on the torus \mathfrak{t} . Suppose the contrary and choose a simple root β as close as possible (and maybe equal) to α with the property $\sigma(\beta) \neq \beta$. Let $\alpha_1 = \beta, \alpha_2, \ldots, \alpha_m = \alpha$ be a minimal connected simple root string from β to α in the Dynkin diagram. By minimality we have $\sigma(\alpha_k) = \alpha_k$ for all $k = 2, \ldots, m$. Now let $\gamma = \alpha_1 + \alpha_2 + \cdots + \alpha_m$ and notice that $(z, \gamma) = (z, \alpha) > 0$, furthermore $\sigma(\gamma) = \sigma(\beta) + \alpha_2 + \cdots + \alpha_m \neq \gamma$. Now consider a root vector x_{γ} of weight γ , define $y = x_{\gamma} + \sigma(x_{\gamma})$ and notice that $[z, y] \neq 0$ and $\sigma(y) = y$, that is impossible since $\mathfrak{h} \subset Z_{\mathfrak{g}}(z)$. This proves that σ is the identity on the torus.

In particular $\sigma(x_{\beta}) = \pm x_{\beta}$ for all roots β , since σ is an involution.

Now assume that there exists β simple and different from α such that $\sigma(x_{\beta}) \neq x_{\beta}$. We may choose β as close as possible to α and let, as above, $\beta = \alpha_1, \alpha_2, \ldots, \alpha_m = \alpha$ be a simple root connected minimal string from β to α ; further let γ be the sum of these roots. By minimality $\sigma(x_{\alpha_k}) = x_{\alpha_k}$ for all $k = 2, \ldots, m-1$ and also $\sigma(x_{\alpha}) = -x_{\alpha}$. But, on one hand we have $x_{\gamma} = [x_{\alpha_1}, [x_{\alpha_2}, [\cdots [x_{\alpha_{m-1}}, x_{\alpha_m}] \cdots]]]$, hence $\sigma(x_{\gamma}) = x_{\gamma}$ and on the other hand $[z, x_{\gamma}] \neq 0$ and this is impossible since $\mathfrak{h} \subset Z_{\mathfrak{g}}(z)$.

So we have proved that $Z_{\mathfrak{g}}(\mathfrak{z}) = \mathfrak{h}$ as claimed. In particular \mathfrak{h} is the Levi subalgebra of the maximal parabolic associated to the simple root α and σ must be defined as in equations (1). Now the fact that it is a morphism of algebras implies that α appears with multiplicity 1 in θ .

By the remark at the beginning of this proof it remains to prove only that H is connected or equivalently that H is in the centralizer of Z. First notice that H is the normalizer of G^{σ} and Z is the identity component of the center of G^{σ} , hence H normalizes also Z. So if we take elements $g \in H$ and $c \in Z$ we know that $gcg^{-1} \in Z$, and what we want to show is $gcg^{-1} = c$. But Z being a one dimensional torus and χ a nontrivial character, our claim is equivalent to $\chi(gcg^{-1}) = \chi(c)$. By our hypothesis on v we know that $g^{-1}v$ is in the line spanned by v, hence $\chi(gcg^{-1})v = gc(g^{-1}v) = g\chi(c)g^{-1}v = \chi(c)v$ and the proof is finished.

As a direct consequence of the Proposition 1.1 above, we notice that if σ is an exceptional involution then the root system of G is simply laced since $w_0 \neq -1$, hence ω_{α} is a minuscule weight since the simple root α appears with coefficient 1 in the highest root θ .

2. Exceptional symmetric varieties

From now on we fix an exceptional involution σ and we denote by α the corresponding simple root and P_{α} the associated maximal parabolic as in Proposition 1.1. Also we denote by \mathfrak{p}_{α} the Lie algebra of P_{α} and by ω the fundamental weight ω_{α} dual to α^{\vee} . We also keep the notation introduced in the proof of Proposition 1.1. So $\mathfrak{z} \subset \mathfrak{h}$ is the center of \mathfrak{h} and we recall that $N_G(\mathfrak{z}) = H$.

In the irreducible module V_{ω} of highest weight ω , kv_{ω} is the unique line fixed by P_{α} . Notice that if we take the natural *G*-equivariant map

$$\mathfrak{g} \otimes V_{\omega}^{\otimes n} \longrightarrow V_{n\omega+\theta},$$

the image h of the line $\mathfrak{z} \otimes v_{\omega}^{\otimes n}$ is a line fixed by H; we want to study the variety $X_{n\omega+\theta} := \overline{Gh} \subset \mathbb{P}(V_{n\omega+\theta})$ proving the following theorem:

Theorem 2.1. If σ is an exceptional involution (of a simple group) then the variety $X_{n\omega+\theta}$ is smooth and the morphism $j : G/H \longrightarrow X_{n\omega+\theta}$ defined by $gH \mapsto g \cdot h$ is an open immersion.

We begin considering the variety \mathcal{P} of the parabolic subalgebras in \mathfrak{g} conjugated to \mathfrak{p}_{α} . Let Y be the subvariety in $\mathcal{P} \times \mathbb{P}(\mathfrak{g})$ consisting of pairs (\mathfrak{p}, l) with l a line in the solvable radical \mathfrak{p}^r of \mathfrak{p} . It is clear that

$$Y \simeq G \times_{P_{\alpha}} \mathbb{P}(\mathfrak{p}_{\alpha}^{r}),$$

so that in particular, Y is a smooth variety. We are going to show that for each $n \ge 1$, $X_{n\omega+\theta}$ is G-isomorphic to Y.

Let us start with some preliminary observations about the structure of Y. First of all notice that the unipotent radical \mathfrak{n}_{α} of \mathfrak{p}_{α} is a hyperplane in $\mathfrak{p}_{\alpha}^{r}$ complementary to \mathfrak{z} . Since \mathfrak{n}_{α} is an ideal in \mathfrak{p}_{α} , Y contains the G-stable divisor $D := G \times_{P_{\alpha}} \mathbb{P}(\mathfrak{n}_{\alpha})$ which is just the variety of pairs (\mathfrak{p}, l) with l a line in the nilpotent radical of \mathfrak{p} . The root space \mathfrak{g}_{θ} is contained in \mathfrak{n}_{α} and we shall also consider the G-orbit $\mathcal{O} \subset D$ of the pair $(\mathfrak{p}_{\alpha}, \mathfrak{g}_{\theta})$.

Lemma 2.2.

- (1) $Y \setminus D$ is the *G*-orbit of $(\mathfrak{p}_{\alpha}, \mathfrak{z})$;
- (2) \mathcal{O} is the unique closed G-orbit in Y.

Proof. (1) In order to show our claim it suffices to see that $P_{\alpha}(\mathfrak{z})$ equals $\{l \in \mathbb{P}(\mathfrak{g}) | l \subset \mathfrak{p}_{\alpha}^{r} \text{ and } l \not\subset \mathfrak{n}_{\alpha}\}$, which choosing a non zero element $z \in \mathfrak{z}$ we can identify with $z + \mathfrak{n}_{\alpha}$.

Notice that, since ω is minuscule, $[\mathfrak{n}_{\alpha}, \mathfrak{n}_{\alpha}] = 0$, so that $\exp(\operatorname{ad}_x)z = z + [x, z]$ for each $x \in \mathfrak{n}_{\alpha}$. We deduce that,

$$P_{\alpha}(z) = \exp(\mathfrak{n}_{\alpha})H(z) = \exp(\mathfrak{n}_{\alpha})(z) = z + [\mathfrak{n}_{\alpha}, z].$$

Since $\mathfrak{h} \cap \mathfrak{n}_{\alpha} = 0$, we have $[\mathfrak{n}_{\alpha}, z] = \mathfrak{n}_{\alpha}$ proving our claim.

(2) Notice that in $\mathfrak{n}_{\alpha} \subset \mathfrak{g}$ there is a unique line fixed by B, namely \mathfrak{g}_{θ} ; hence the B-variety $\mathbb{P}(\mathfrak{n}_{\alpha})$ has a unique point fixed by B. So our claim follows at once by Borel fixed point Theorem.

We now want to construct a morphism $\varphi: Y \to X_{n\omega+\theta}$. As usual we identify \mathcal{P} with the *G*-orbit of the highest weight line $\Bbbk v_{n\omega}$ in $\mathbb{P}(V_{n\omega})$. It follows that $Y \subset G/P_{\alpha} \times \mathbb{P}(\mathfrak{g}) \subset \mathbb{P}(V_{n\omega}) \times \mathbb{P}(\mathfrak{g}) \subset \mathbb{P}(V_{n\omega} \otimes \mathfrak{g})$ where the last inclusion is given by the Segre embedding. In this way Y is identified with the closure of the *G*-orbit of the line $v_{n\omega} \otimes \mathfrak{g}$. Denote by W the unique *G*-stable complement of $V_{n\omega+\theta}$ in $V_{n\omega} \otimes \mathfrak{g}$ and consider the rational *G*-equivariant projection $\pi: \mathbb{P}(V_{n\omega} \otimes \mathfrak{g}) \to \mathbb{P}(V_{n\omega+\theta})$ which is defined on the complement U of $\mathbb{P}(W)$. We have

Lemma 2.3.

- (1) Y is contained in the open set U so that π is defined on Y;
- (2) $\pi(Y) = X_{n\omega+\theta};$
- (3) $D \subset \mathbb{P}(V_{n\omega+\theta}) \subset \mathbb{P}(V_{n\omega} \otimes \mathfrak{g})$, so in particular the restriction of π to D is an isomorphism.

Proof. (1) U is a G-stable open set in $\mathbb{P}(V_{n\omega} \otimes \mathfrak{g})$, so we only need to show that π is defined on the point $(\mathfrak{p}_{\alpha}, \mathfrak{g}_{\theta})$ whose orbit is the unique closed G-orbit in Y. This point maps to $v_{n\omega} \otimes \mathfrak{g}_{\theta} \in \mathbb{P}(V_{n\omega} \otimes \mathfrak{g})$ which in turn is mapped to the point representing the highest weight line in $\mathbb{P}(V_{n\omega+\theta})$. Our claim is proved.

(2) Clearly $\pi(Y)$ is the closure of the *G*-orbit of $\pi(v_{n\omega} \otimes \mathfrak{z}) = h_{n\omega+\theta}$ which is $X_{n\omega+\theta}$.

(3) By the definition of D we need to show that the subspace $v_{n\omega} \otimes \mathfrak{n}_{\alpha}$ is contained in $V_{n\omega+\theta}$. We know that $v_{n\omega} \otimes \mathfrak{g}_{\theta} \subset V_{n\omega+\theta}$.

Since ω is minuscule, it easily follows that for each $\mathfrak{g}_{\beta} \subset \mathfrak{n}_{\alpha}$ we can find a sequence of positive roots $\gamma_1, \ldots, \gamma_m$ not having α in their support with the property that $\mathfrak{g}_{\beta} = f_{\gamma_1} \cdots f_{\gamma_m}(\mathfrak{g}_{\theta}), f_{\gamma}$ denoting a non zero element in $\mathfrak{g}_{-\gamma}$.

On the other hand recall that for each $i, f_{\gamma_i} \in \mathfrak{p}_{\alpha}$, so that $f_{\gamma_i} v_{n\omega} = 0$. We deduce that

$$v_{n\omega} \otimes \mathfrak{g}_{\beta} = v_{n\omega} \otimes f_{\gamma_1} \cdots f_{\gamma_m}(\mathfrak{g}_{\theta}) = f_{\gamma_1} \cdots f_{\gamma_m}(v_{n\omega} \otimes \mathfrak{g}_{\theta}) \subset V_{n\omega+\theta}.$$

Let us denote by $\varphi: Y \to X_{n\omega+\theta}$ the restriction of π to Y. We have,

Lemma 2.4. φ is an isomorphism.

Proof. First we claim that $\varphi(D)$ does not intersect the orbit $\varphi(Y \setminus D)$. Indeed, if we suppose otherwise $\varphi(D)$ would contain that orbit and, by Lemma 2.3(3), $D = G \times_{P_{\alpha}} \mathbb{P}(\mathbf{n}_{\alpha})$ would contain a point fixed by H. Then, since the projection of D to $\mathbb{P}(\mathbf{g})$ is contained in the projectification of the nilpotent cone, we would get the existence of a H-fixed line consisting of nilpotent elements in \mathbf{g} . But $H \supset T$ so that such a line is a root space \mathbf{g}_{β} for some root β . Now notice that ω being minuscule immediately implies that there exists a simple root $\gamma \neq \alpha$ such that either $[\mathbf{g}_{\gamma}, \mathbf{g}_{\beta}] \neq 0$ or $[\mathbf{g}_{-\gamma}, \mathbf{g}_{\beta}] \neq 0$. This gives a contradiction.

Since we have seen that the restriction of φ to D is an isomorphism, the fact that $\varphi(D) \cap \varphi(Y \setminus D) = \emptyset$ clearly implies that φ is finite and that it is an isomorphism if and only if its differential $d\varphi_y$ in the point $y = (\mathfrak{p}_{\alpha}, \mathfrak{g}_{\theta}) \in \mathcal{O}$ is injective.

Notice that we can identify $T_y \mathbb{P}(V_{n\omega} \otimes \mathfrak{g})$ with the unique T-stable complement of the line $v_{n\omega} \otimes \mathfrak{g}_{\theta}$ in $V_{n\omega} \otimes \mathfrak{g}$ and similarly we can identify $T_y \mathbb{P}(V_{n\omega+\theta})$ with the unique T-stable complement of the highest weight line in $V_{n\omega+\theta}$, i.e. with the intersection $V_{n\omega+\theta} \cap T_y \mathbb{P}(V_{n\omega} \otimes \mathfrak{g})$. Using these identifications we get

$$T_yY = \mathfrak{n}_{\alpha}^{-} \cdot (v_{n\omega} \otimes \mathfrak{g}_{\theta}) \oplus v_{n\omega} \otimes \tilde{\mathfrak{p}}_{\alpha}^r \subset T_y\mathbb{P}(V_{n\omega} \otimes \mathfrak{g})$$

where \mathbf{n}_{α}^{-} denotes the nilpotent radical of the parabolic opposite to \mathbf{p}_{α} and $\tilde{\mathbf{p}}_{\alpha}^{r}$ the unique T-stable complement of \mathbf{g}_{θ} in \mathbf{p}_{α}^{r} . Furthermore $d\varphi_{y}$ is just the restriction to $T_{y}Y$ of the natural G-equivariant projection $\tilde{\pi}: V_{n\omega} \otimes V_{\theta} \to V_{n\omega+\theta}$.

Write $\tilde{\mathfrak{n}}_{\alpha} = \tilde{\mathfrak{p}}_{\alpha} \cap \mathfrak{n}_{\alpha}$ and $\tilde{\mathfrak{p}}_{\alpha}^{r} = \mathfrak{z} \oplus \tilde{\mathfrak{n}}_{\alpha}$. Notice that

$$T_y D = \mathfrak{n}_{\alpha}^- \cdot (v_{n\omega} \otimes \mathfrak{g}_{\theta}) \oplus v_{n\omega} \otimes \tilde{\mathfrak{n}}_{\alpha}^r$$

and that $T_yY = T_yD \oplus v_{n\omega} \otimes \mathfrak{z}$. By Lemma 2.3 $d\varphi_y|_{T_yD}$ is injective, so the only thing we need to show is that $d\varphi_y(v_{n\omega} \otimes \mathfrak{z}) \notin d\varphi_y(T_yD)$. Since the differential is T-equivariant and \mathfrak{z} has weight zero, it suffices to show that $d\varphi_y(v_{n\omega} \otimes \mathfrak{z}) \notin d\varphi_y(T_yD[n\omega])$, where $T_yD[n\omega]$ denotes the subspace of weight $n\omega$ in T_y . We have $T_yD[n\omega] = \mathfrak{g}_{-\theta} \cdot (v_{n\omega} \otimes \mathfrak{g}_{\theta})$, so we are reduced to show that the two lines

 $d\varphi_y(v_{n\omega}\otimes\mathfrak{z})=\tilde{\pi}(v_{n\omega}\otimes\mathfrak{z})\quad\text{and}\quad d\varphi_y(\mathfrak{g}_{-\theta}\cdot(v_{n\omega}\otimes\mathfrak{g}_{\theta}))=\tilde{\pi}(\mathfrak{g}_{-\theta}\cdot(v_{n\omega}\otimes\mathfrak{g}_{\theta}))$

are distinct.

We distinguish two cases. First of all let us assume that $\theta - \alpha$ is not a root. Since the considered root systems have always rank bigger or equal to 2 (otherwise $w_0 = -\text{id}$ against the condition in Proposition 1.1) we have that $\theta - \alpha \neq 0$ hence $[\mathfrak{g}_{-\theta}, \mathfrak{g}_{\alpha}] = 0$. We get

$$\mathfrak{g}_{\alpha}\tilde{\pi}(\mathfrak{g}_{-\theta}\cdot(v_{n\omega}\otimes\mathfrak{g}_{\theta}))=\tilde{\pi}(\mathfrak{g}_{\alpha}\mathfrak{g}_{-\theta}\cdot(v_{n\omega}\otimes\mathfrak{g}_{\theta}))=\tilde{\pi}(\mathfrak{g}_{-\theta}\mathfrak{g}_{\alpha}\cdot(v_{n\omega}\otimes\mathfrak{g}_{\theta}))=\tilde{\pi}(\mathfrak{g}_{-\theta}0)=0.$$

On the other hand, since $\mathfrak{g}_{\alpha} \not\subset \mathfrak{h}$ we have $[\mathfrak{g}_{\alpha}, \mathfrak{z}] = \mathfrak{g}_{\alpha} \neq 0$ so that

$$\mathfrak{g}_{\alpha}\tilde{\pi}(v_{n\omega}\otimes\mathfrak{z})=\tilde{\pi}(v_{n\omega}\otimes[\mathfrak{g}_{\alpha},z])=\tilde{\pi}(v_{n\omega}\otimes\mathfrak{g}_{\alpha})\neq0$$

since we can consider $\tilde{\pi}$ as the multiplication of the sections of two line bundles on G/B.

Assume now that $\beta = \theta - \alpha$ is a root. Then it is a positive root and $[\mathfrak{g}_{-\theta}, \mathfrak{g}_{\beta}] = \mathfrak{g}_{-\alpha}$. We deduce

$$\begin{aligned} \mathfrak{g}_{\beta}\tilde{\pi}(\mathfrak{g}_{-\theta}\cdot(v_{n\omega}\otimes\mathfrak{g}_{\theta})) &= \tilde{\pi}(\mathfrak{g}_{\beta}\mathfrak{g}_{-\theta}\cdot(v_{n\omega}\otimes\mathfrak{g}_{\theta})) \\ &= \tilde{\pi}(\mathfrak{g}_{-\theta}\mathfrak{g}_{\beta}\cdot(v_{n\omega}\otimes\mathfrak{g}_{\theta}) + \mathfrak{g}_{-\alpha}\cdot(v_{n\omega}\otimes\mathfrak{g}_{\theta})) \\ &= \tilde{\pi}(\mathfrak{g}_{-\alpha}\cdot(v_{n\omega}\otimes\mathfrak{g}_{\theta})) \\ &= \mathfrak{g}_{-\alpha}(\mathbb{C}v_{n\omega+\theta}) \\ &\neq 0 \end{aligned}$$

since the weight $n\omega + \theta$ is not orthogonal to α .

On the other hand notice that, α being minuscule, β is a sum of simple roots different from α , hence \mathfrak{g}_{β} is contained in \mathfrak{h} . From the fact that \mathfrak{g}_{β} consists of nilpotent elements and the line $\tilde{\pi}(v_{n\omega} \otimes \mathfrak{z})$ is preserved by H it follows that

$$\mathfrak{g}_{\beta}\tilde{\pi}(v_{n\omega}\otimes\mathfrak{z})=0$$

proving our claim.

We can now prove our Theorem

Proof. [of Theorem 2.1] The smoothness of $X_{n\omega+\theta}$ follows by Lemma 2.4. To prove that j is injective we observe that it is an equivariant morphism and that the stabilizer of $\mathfrak{z} \in \mathbb{P}(\mathfrak{g})$ is H, hence also that of $(\mathfrak{p}_{\alpha}, \mathfrak{z})$ is H.

As the referee pointed out to us Theorem 2.1 holds in more generality. If G^{σ} has a non trivial center one may replace H by G^{σ} ; indeed in such case G^{σ} has all the properties stated in Proposition 1.1 for H but now $w_0(\omega_{\alpha}) = -\omega_{\alpha}$, whereas in our setting $w_0(\omega_{\alpha}) \neq -\omega_{\alpha}$. However all the proofs remain valid since we have never used this last condition in Section 2.

Moreover notice that, as recalled in the Introduction, the H-fixed line in a simple quasi-spherical module is unique whereas the line fixed by G^{σ} is not, in general, unique if G^{σ} has a non trivial center. However the explicit construction of $X_{n\omega+\theta}$ given before the statement of Theorem 2.1, does'nt use this uniqueness property.

References

- [1] De Concini C., and C. Procesi, Complete symmetric varieties, in: Invariant Theory, Lecture Notes in Math. **996**, Springer-Verlag, 1983, 1–44.
- [2] De Concini, C., and T. A. Springer, *Compactification of symmetric varieties*, Transform. Groups **4** (1999), 273–300.
- [3] G. Faltings, Explicit resolution of local singularities of moduli spaces, J. reine angew. Math. **483** (1997), 183–196.
- [4] T. Vust, Opération de groupes réductifs dans un type de cônes presque homogènes, Bull. Math. Soc. France **102** (1974), 317–334.

Rocco Chirivì Università di Pisa Dipartimento di Matematica via Buonarroti n. 2 56127 Pisa, Italy chirivi@dm.unipi.it Andrea Maffei Università di Roma "La Sapienza" Dipartimento di Matematica P.le Aldo Moro n. 5 00185 Roma, Italy amaffei@mat.uniroma1.it

Received January 3, 2005 and in final form April 6, 2005