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Abstract. Let G be a simple group with an exceptional involution ¢ having
H as fixed point set. We study the embedding of G/H in the projective space
P(V) for a simple G-module V' with a line fixed by H but having no nonzero
vector fixed by H . For a certain class of such modules V' we describe the closure
of G/H proving in particular that it is a smooth variety.

Mathematics Subject Index 2000: 14M17, 14L30.

Keywords and phrases: Complete symmetric variety, exceptional involution.

Introduction

Let G be a simple and simply connected algebraic group and ¢ an involution of G
with set of fixed point G?. We denote by H the normalizer of G?. In this paper
we describe some special completions of the symmetric variety G/H .

If V is an irreducible representation of G we say that it is quasi-spherical
if there exists a line in V' stable by the action of H. If V' is quasi-spherical and
hy € P(V) is a point fixed by H we have a map from G/H to P(V) defined by
gH — g-hy. We denote the closure of the image of this map by Xy (as shown in
[2] the line hy is unique so Xy depends only on V). These varieties are of some
interest: one may ask, for example, whether they are smooth or normal (see [3]).

We say that an involution is exceptional if there exists an irreducible rep-
resentation V' of GG and a vector v in V such that H stabilizes the line through
v but v is not fixed by G?. As shown in the first section, in this situation H
is equal to G and it is a Levi corresponding to a maximal parabolic associated
to a simple root which appears with multiplicity 1 in the highest root 6. Let
w be the fundamental weight corresponding to this simple root and consider the
quasi-spherical irreducible representation V' of highest weight nw + 6, with n a
positive integer. We give a description of Xy, proving in particular that it is a
smooth variety.
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1. Exceptional involutions

Let g be a simple Lie algebra over an algebraically closed field k of characteristic
zero, and let o be an order 2 automorphism of g. Denote by § the subalgebra of
fixed points of ¢ in g.

Let G be a connected and simply connected group with Lie algebra g. The
involution ¢ induces an involution on G that we still denote by o. Let G? be the
set of points fixed by ¢ in G and H be the normalizer of G?. It is well known
that G? is reductive and connected and that H is the maximal subgroup of G
having G as identity component (see [1]).

An irreducible representation V' is called spherical if V' has a nonzero vector
fixed by G and it is called quasi—spherical if there is a point in P(V') fixed by H.
It is easy to see that if V' is spherical then the line pointwise fixed by G is unique
(see [1]). Notice also that a spherical representation V' is quasi-spherical. Indeed
if v € V is a nonzero vector fixed by G” and h € H = N(G?), then h™'ghv = v,
hence also hv is a vector fixed by G?. But, as noted, the space of vectors fixed
by G7 is at most one-dimensional, this shows that the point [v] in P(V) is fixed
by H. Hence V is quasi-spherical.

We say that the involution o is exceptional if there exists a quasi—spherical
representation which is not spherical. (There are other equivalent definitions of
exceptional involution, see for example [2].)

Let V' be such an irreducible representation and let v be a nonzero vector
which spans a line that is stable under the action of H but not pointwise fixed by
G7. In particular G° acts on kv by a one-dimensional character. This implies
that the center of G? contains a non trivial torus Z; we denote by j3 its Lie algebra
and by x the character of Z such that ¢-v = x(c)v for ¢ € Z.

Notice that g is spherical and, since we know that the vector fixed by G°
is unique up to scalar, we have that 3 is one-dimensional.

Now we want to choose a suitable positive root system, this is done in two
steps.

First step. We begin choosing a maximal toral subalgebra of h containing 3.
It is known that we can extend this subalgebra to a o—stable maximal toral
subalgebra t of g, let ® be its associated root system, and we can take a o—
stable system of positive roots. Let p¥ the sum of positive coroots and notice that
o(pY) = pY. We denote by T the torus corresponding to t and we notice that Z
is a subtorus of 7', hence we can choose a non zero element z € 3 that is real when
evaluated on the roots.

Step two. Now we can choose the positive system as the subset ®* of roots
which are positive on z 4 ep" for a small positive €. So we have o(®*) C & and
(z,8) > 0 for all positive roots (. In particular the first condition implies that
o(f) is a simple root if 3 is a simple root

The choice of ®T C @ determines simple roots, fundamental weights and
dominant weights that we will consider fixed from now on. In particular if « is
a root we denote by g, C g the root space corresponding to a and if « is a
simple root we denote by w, the corresponding fundamental weight. Also if A is a
dominant weight we denote by V) the irreducible representation of highest weight
A and we denote by v, a highest weight vector of this module. In what follows
6 will be the highest root of ®* and wy the longest element of the Weyl group
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Ne(T)/T w.rt. O,
We have the following characterization of exceptional involutions.

Proposition 1.1.  If o is exceptional then H is connected (hence it is equal
to G7) and it is the Levi subgroup of a mazximal parabolic corresponding to a
simple root o which appears with multiplicity 1 in the highest root 6, moreover
Wo(Wa) # —We -

Conversely if o is a simple root which appears with multiplicity 1 wn the
highest root 6 and wo(ws) # —wes then there exists an involution o such that H,
the normalizer of G?, is equal to the Levi of the maximal parabolic corresponding
to a; wn particular o 1s exceptional.

Proof.  We notice first that if L is a Levi of a maximal parabolic corresponding
to a simple root « then Ng(L) = L if and only if wy(ws) # —ws. Indeed if
Wo(wa) = —wq let g € Ng(T') be such that ¢T' = wy € Ng(T')/T. Then g belongs
to Ng(L) but not to L.

Conversely assume wy(w,) # —wq and let g € Ng(L). Since T is a maximal
torus of L we can assume that g € Ng(7T'). Consider the element w defined by
g in the Weyl group, since g € Ng(L) we must have that w preserves the space
orthogonal to the roots associates to L 80 w(wgy) = tws. Now if w(w,) = w, we
can assume that w permutes the simple roots different from «, up to multiplying
g by a suitable element in N (T') C L. Now by w(w,) = w, we deduce also that
w(a) € T hence w(P+) = &*. So w = id and g € L. Similarly in the case
w(wa) = —w, we see that we can assume w(®+) = —P*. So w = wy, but this is
in contradiction with wg(wy) # —wWa -

Now we prove the second claim of the Proposition, so suppose that « is a
simple root which appears with multiplicity 1 in the highest root # and let ¥ be
the root subsystem generated by the simple roots different from «. Consider the
involution o defined by

idg, if BeV;

—idg, ifB¢ V. (1)

ol¢=1id, and olg, = {

Using that a appears with multiplicity 1 in @ it is easy to see that o is a well
defined involution of Lie algebras and that it has the claimed properties. Finally
notice that the representation V,,, is quasi-spherical but not spherical since the
only line fixed by H in V,,, is the line spanned by the highest weight vector, which
is not fixed pointwise. In particular this shows that o is exceptional.

Conversely suppose that ¢ is exceptional and let V' be an irreducible module
with a nonzero vector v which spans an H —fixed line not G —pointwise fixed. We
are now going to use all objects introduced above Proposition 1.1: the subtorus
Z , it Lie algebra 3, the “real” non zero element z € 3, the positive system &% .

We begin the proof of the first claim of the Proposition by proving that
h = Z4(3); the inclusion h C Zy(3) is clear so we have to prove the other inclusion.

Notice that by our choice of @, Z;(3) is the Levi subalgebra of g generated
by the root vectors zz of weight [ for § simple root such that (z,5) = 0; so our
claim is equivalent to o(x3) = x3 for all such simple roots 3.
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Notice also that, Z4(h) being one dimensional, all the simple roots are
orthogonal to z but one that we denote with «.

Now we prove that o is the identity on the torus t. Suppose the contrary
and choose a simple root 3 as close as possible (and maybe equal) to « with
the property o(8) # (. Let ay = f,as,...,a, = « be a minimal connected
simple root string from 3 to « in the Dynkin diagram. By minimality we have
olag) =ap forall k=2,... ,m. Now let v = a3 + as + - - - + «,,, and notice that
(z,7) = (2,a) > 0, furthermore o(y) = o(8) + a2+ - - + v, # 7. Now consider a
root vector x., of weight ~, define y = z, 4+ o(x,) and notice that [z,y] # 0 and
o(y) =y, that is impossible since h C Zy(2). This proves that o is the identity
on the torus.

In particular o(zg) = x5 for all roots (3, since o is an involution.

Now assume that there exists 3 simple and different from « such that
o(zg) # xg. We may choose [ as close as possible to a and let, as above,

0 = ai,q9,...,a,,, = « be a simple root connected minimal string from [
to «; further let v be the sum of these roots. By minimality o(z,,) = 2,
for all £k = 2,...,m — 1 and also o(xz,) = —z,. But, on one hand we have
Ty = [Tays [Tags [+ [Tam_ 15 Tam) - - - ]]], hence o(z,) = x, and on the other hand

[z, 2,] # 0 and this is impossible since h C Zy(2).

So we have proved that Z,(3) = b as claimed. In particular f is the Levi
subalgebra of the maximal parabolic associated to the simple root o and ¢ must
be defined as in equations (1). Now the fact that it is a morphism of algebras
implies that « appears with multiplicity 1 in 6.

By the remark at the beginning of this proof it remains to prove only that
H is connected or equivalently that H is in the centralizer of Z. First notice
that H is the normalizer of G° and Z is the identity component of the center of
G7, hence H normalizes also Z. So if we take elements ¢ € H and c € Z we
know that gcg™! € Z, and what we want to show is gcg™' = ¢. But Z being
a one dimensional torus and x a nontrivial character, our claim is equivalent to
x(gcg™) = x(c). By our hypothesis on v we know that g~'v is in the line spanned
by v, hence x(gcg™ v = ge(g~tv) = gx(c)g v = x(c)v and the proof is finished.

[

As a direct consequence of the Proposition 1.1 above, we notice that if o is
an exceptional involution then the root system of G is simply laced since wy # —1,
hence w, is a minuscule weight since the simple root « appears with coefficient 1
in the highest root 6.

2. Exceptional symmetric varieties

From now on we fix an exceptional involution o and we denote by « the corre-
sponding simple root and P, the associated maximal parabolic as in Proposition
1.1. Also we denote by p, the Lie algebra of P, and by w the fundamental weight
wo dual to av. We also keep the notation introduced in the proof of Proposition
1.1. So 3 C b is the center of h and we recall that Ng(3) = H.

In the irreducible module V,, of highest weight w, kv, is the unique line
fixed by P,. Notice that if we take the natural G—equivariant map

Xn
g ® vu) nw+05
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the image h of the line 3 ® v®™ is a line fixed by H; we want to study the variety
Xnwro := Gh C P(V,,19) proving the following theorem:

Theorem 2.1.  If o is an exceptional involution (of a simple group) then the
variety X,oig 18 smooth and the morphism j : G/H — X,,.9 defined by
gH +— g - h is an open immersion.

We begin considering the variety P of the parabolic subalgebras in g
conjugated to p,. Let Y be the subvariety in P x P(g) consisting of pairs (p,!)
with [ a line in the solvable radical p” of p. It is clear that

Y ~ G XPQ P(F’Z&)?

so that in particular, Y is a smooth variety. We are going to show that for each
n>1, X,,19 is G-isomorphic to Y.

Let us start with some preliminary observations about the structure of
Y. First of all notice that the unipotent radical n, of p, is a hyperplane in p],
complementary to 3. Since n, is an ideal in p,, Y contains the G—stable divisor
D = G xp, P(n,) which is just the variety of pairs (p,l) with [ a line in the
nilpotent radical of p. The root space gy is contained in n, and we shall also
consider the G-orbit O C D of the pair (p,, gg)-

Lemma 2.2.
(1) Y D is the G -orbit of (pa,3);

(2) O is the unique closed G —-orbit in Y .

Proof. (1) In order to show our claim it suffices to see that P,(3) equals
{l € P(g)|l C p,and ¢ n,}, which choosing a non zero element z € 3 we
can identify with z + n,.

Notice that, since w is minuscule, [n,,n,] = 0, so that exp(ad,)z = z+|z, 2]
for each = € n,. We deduce that,

P.(2) = exp(ng)H(z) = exp(n,)(2) = 2 + [ng, 2]

Since hNn, = 0, we have [n,, z] = n, proving our claim.

(2) Notice that in n, C g there is a unique line fixed by B, namely gp;
hence the B—variety P(n,) has a unique point fixed by B. So our claim follows
at once by Borel fixed point Theorem. [ |

We now want to construct a morphism ¢ : Y — X,,,.4. As usual we identify
P with the G—orbit of the highest weight line kv, in P(V,,). It follows that
Y c G/P,xP(g) C P(V,,) xP(g) C P(V,,,,®g) where the last inclusion is given by
the Segre embedding. In this way Y is identified with the closure of the G—orbit of
the line v,,®3. Denote by W the unique G-stable complement of V,,,,.¢ in V,,,®g
and consider the rational G—equivariant projection 7 : P(V,, ® g) — P(Voui0)
which is defined on the complement U of P(W). We have
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Lemma 2.3.
(1) Y is contained in the open set U so that m is defined on Y ;
(2) m(Y) = Xuwro;

(3) D CP(Vywig) CP(Viw @), so in particular the restriction of m to D is an
isomorphism.

Proof. (1) U is a G-stable open set in P(V,,, ® g), so we only need to show
that 7 is defined on the point (p,,gs) whose orbit is the unique closed G-orbit
in Y. This point maps to v,, ® gg € P(V,, ® g) which in turn is mapped to the
point representing the highest weight line in P(V,,,14). Our claim is proved.

(2) Clearly 7(Y") is the closure of the G—orbit of 7(v,, ®3) = hnwie Which
is an_w .

(3) By the definition of D we need to show that the subspace v,, ® n, is
contained in V9. We know that v,, ® g9 C Viwie-

Since w is minuscule, it easily follows that for each gg C n, we can find
a sequence of positive roots ~i,...,%, not having « in their support with the
property that gg = f,, - -~ f+,.(8¢), f, denoting a non zero element in g_. .

On the other hand recall that for each i, f,, € p,, so that f, v,, =0. We
deduce that

Vniw @ 95 = Unw & fo * - f'ym<90> = fo fvm(vnw ® 86) C Viwto-

Let us denote by ¢ : Y — X4 the restriction of 7 to Y. We have,
Lemma 2.4. @ 1s an 1somorphism.

Proof.  First we claim that ¢(D) does not intersect the orbit (Y~ D). Indeed,
if we suppose otherwise ¢(D) would contain that orbit and, by Lemma 2.3(3),
D = G xp,P(n,) would contain a point fixed by H. Then, since the projection of
D to P(g) is contained in the projectification of the nilpotent cone, we would get
the existence of a H—fixed line consisting of nilpotent elements in g. But H D T
so that such a line is a root space gg for some root 3. Now notice that w being
minuscule immediately implies that there exists a simple root 7 # « such that
either [g,, 93] # 0 or [g_,, 93] # 0. This gives a contradiction.

Since we have seen that the restriction of ¢ to D is an isomorphism, the
fact that (D) N (Y \ D) = @ clearly implies that ¢ is finite and that it is an
isomorphism if and only if its differential dy, in the point y = (pa,g9) € O is
injective.

Notice that we can identify T,P(V,, ®g) with the unique 7'-stable comple-
ment of the line v,, ® gy in V,,, ® g and similarly we can identify 7,P(V},,4¢) with
the unique T'—stable complement of the highest weight line in V,,,, 14, i.e. with the
intersection V19 N T,P(V,,, ® g). Using these identifications we get

T,Y =n. - (Upy @ g9) B Vnp @ Pl C T,P(Voo @ g)
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where n, denotes the nilpotent radical of the parabolic opposite to p, and p., the
unique 7T'-stable complement of gy in p},. Furthermore dy, is just the restriction
to T,Y" of the natural G-equivariant projection 7 : Vy, ® Vo — Voo

Write 0, = p, N0, and p’, = 3 ® n,. Notice that

T,D =n, - (Uny @ o) ® Uy @ 1L,

and that 7,Y =T, D ® v,, ® 3. By Lemma 2.3 dy,|r,p is injective, so the only
thing we need to show is that dy,(vn, ® 3) ¢ dy,(T,D). Since the differential
is T-equivariant and 3 has weight zero, it suffices to show that dy,(v,, ® 3) ¢
dy,(T,D[nw]), where T, D[nw| denotes the subspace of weight nw in T;,. We have
TyD[nw] = g_p - (Unw @ go), so we are reduced to show that the two lines

d‘py@nw ®3) = T(vnw ®3) and d‘:py(g—@ (Vnw ® 89)) = T(g-0 * (Vnw @ g9))

are distinct.

We distinguish two cases. First of all let us assume that 6 —« is not a root.
Since the considered root systems have always rank bigger or equal to 2 (otherwise
wo = —id against the condition in Proposition 1.1) we have that § — « # 0 hence
[8-0,94] = 0. We get

gaﬁ(g—e : (Unw ®90)) = ﬁ(gag—ﬂ : (Unw ®90)) = ﬁ(g—é’ga ) (vnw ®90)) = ﬁ(g—00> =0.

On the other hand, since g, ¢ h we have [ga,3] = 9o 7# 0 so that

goﬂr(vnw X 3) = (Unw X [gaa Z]) = ﬁ(vnw ® ga) 7é 0

since we can consider 7 as the multiplication of the sections of two line bundles
on G/B.

Assume now that § = 6 — « is a root. Then it is a positive root and
[9-0,98] = 9—o. We deduce

g7 (9-0 - (0nw @ 89)) = T(Bp9-0 - (Vnw © 90))
- ﬁ—(g (Unw ® 99) +9-a- (Unw ® 90))
= 7~T<g— ' (Umu ® 90))
= g-a(Cunuyo)
# 0

since the weight nw + @ is not orthogonal to «.

On the other hand notice that, a being minuscule,  is a sum of simple
roots different from «, hence gg is contained in . From the fact that gz consists
of nilpotent elements and the line 7(v,, ® 3) is preserved by H it follows that

gﬁﬁ(vnw ®5) =0

proving our claim. [ ]

We can now prove our Theorem
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Proof. [of Theorem 2.1] The smoothness of X,,,.¢ follows by Lemma 2.4. To
prove that 7 is injective we observe that it is an equivariant morphism and that
the stabilizer of 3 € P(g) is H, hence also that of (p,,3) is H. [

As the referee pointed out to us Theorem 2.1 holds in more generality. If
GG? has a non trivial center one may replace H by G7; indeed in such case G“
has all the properties stated in Proposition 1.1 for H but now wy(ws) = —wa,
whereas in our setting wg(ws) # —w,. However all the proofs remain valid since
we have never used this last condition in Section 2.

Moreover notice that, as recalled in the Introduction, the H —fixed line in
a simple quasi-spherical module is unique whereas the line fixed by G“ is not, in
general, unique if G? has a non trivial center. However the explicit construction
of X,.1e given before the statement of Theorem 2.1, does’nt use this uniqueness

property.
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