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Kazhdan and Haagerup Properties
in algebraic groups over local fields
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Abstract. Given a Lie algebra s , we call Lie s-algebra a Lie algebra endowed
with a reductive action of s . We characterize the minimal s-Lie algebras with a
nontrivial action of s , in terms of irreducible representations of s and invariant
alternating forms.
As a first application, we show that if g is a Lie algebra over a field of char-
acteristic zero whose amenable radical is not a direct factor, then g contains a
subalgebra which is isomorphic to the semidirect product of sl2 by either a non-
trivial irreducible representation or a Heisenberg group (this was essentially due
to Cowling, Dorofaeff, Seeger, and Wright). As a corollary, if G is an algebraic
group over a local field K of characteristic zero, and if its amenable radical is
not, up to isogeny, a direct factor, then G(K) has Property (T) relative to a
noncompact subgroup. In particular, G(K) does not have Haagerup’s property.
This extends a similar result of Cherix, Cowling and Valette for connected Lie
groups, to which our method also applies.
We give some other applications. We provide a characterization of connected Lie
groups all of whose countable subgroups have Haagerup’s property. We give an
example of an arithmetic lattice in a connected Lie group which does not have
Haagerup’s property, but has no infinite subgroup with relative Property (T). We
also give a continuous family of pairwise non-isomorphic connected Lie groups
with Property (T), with pairwise non-isomorphic (resp. isomorphic) Lie alge-
bras.
Mathematics Subject Classification: Primary 22E50; Secondary 22D10, 20G25,
17B05.
Key Words and Phrases: Kazhdan’s Property (T), Haagerup Property, a-T-
menability.

1. Introduction

In the sequel, all Lie algebras are finite-dimensional over a field of characteristic
zero, denoted by K , or K when it is a local field. If g is a Lie algebra, denote
by rad(g) its radical and Z(g) its centre, Dg its derived subalgebra, and Der(g)
the Lie algebra of all derivations of g . If h1, h2 are Lie subalgebras of g , [h1, h2]
denotes the Lie subalgebra generated by the brackets [h1, h2] , (h1, h2) ∈ h1 × h2 .
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Let g be a Lie algebra with radical rad(g) = r and semisimple Levi factor s

(so that g ' sn r). We focus here on aspects of g related to the action of s . This
suggests the following definitions.

If s is a Lie algebra, we define a Lie s-algebra to be a Lie algebra n endowed
with a morphism i : s → Der(n), defining a completely reducible action of s on n .
(This latter technical condition is empty if s is semisimple.)

A Lie s-algebra naturally embeds in the semidirect product s n n , so that
we write i(s)(n) = [s, n] for s ∈ s , n ∈ n .

By the trivial irreducible module of s we mean a one-dimensional space
vector space endowed with a trivial action of s . We say that a module (over a Lie
algebra or over a group) is full if is is completely reducible and does not contain
the trivial irreducible module.

Definition 1.1. Let s be a Lie algebra. We say that a Lie s-algebra n is
minimal if [s, n] 6= 0, and for every s-subalgebra n′ of n , either n′ = n or [s, n′] = 0.

It is clear that a Lie s-algebra n satisfying [s, n] 6= 0 contains a minimal
s-subalgebra. We begin by a characterization of minimal s-algebras:

Theorem 1.2. Let s be a Lie algebra. A solvable Lie s-algebra n is minimal
if and only if it satisfies the following conditions 1), 2), 3), and 4):

1) n is 2-nilpotent (that is, [n, Dn] = 0).

2) [s, n] = n.

3) [s, Dn] = 0.

4) n/Dn is irreducible as a s-module.

Definition 1.3. We call a solvable Lie s-algebra n almost minimal if it satisfies
conditions 1), 2), and 3) of Theorem 1.2.

This definition has the advantage to be invariant under field extensions. Note that
an almost minimal solvable Lie s-algebra n satisfies Condition 4’): n/Dn is a full
s-module.

The classification of (almost) minimal solvable Lie s-algebras can be de-
duced from the classification of irreducible s-modules. Let v be a full s-module
(equivalently, an abelian Lie s-algebra satisfying [s, v] = v). Recall that a bilinear
form ϕ on v is called s-invariant if it satisfies ϕ([s, v], w) +ϕ(v, [s, w]) = 0 for all
s ∈ s , v, w ∈ v . Let Bils(v) (resp. Alts(v)) denote the space of all s-invariant
bilinear (resp. alternating bilinear) forms on v .

Definition 1.4. We define the Lie s-algebra h(v) as follows: as a vector space,
h(v) = v⊕ Alts(v)∗ ; it is endowed with the following bracket:

[(x, z), (x′, z′)] = (0, ex,x′) x, x′ ∈ v z, z′ ∈ Alts(v)∗ (1)

where ex,x′ ∈ Alts(v)∗ is defined by ex,x′(ϕ) = ϕ(x, x′).

This is a 2-nilpotent Lie s-algebra under the action [s, (x, z)] = ([s, x], 0),
which is almost minimal. Other almost minimal Lie s-algebras can be obtained
by taking the quotient by a linear subspace of the centre. The following theorem
states that this is the only way to construct almost minimal solvable Lie s-algebras.
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Theorem 1.5. If n is an almost minimal solvable Lie s-algebra, then it is iso-
morphic (as a s-algebra) to h(v)/Z , for some full s-module v and some subspace Z
of Alts(v)∗ . It is minimal if and only if v is irreducible.

Moreover, the almost minimal s-algebras h(v)/Z and h(v)/Z ′ are isomor-
phic if and only if Z ′ and Z are in the same orbit for the natural action of Auts(v)
on the Grassmannian of Alts(v)∗ .

Remark 1.6. If s is semisimple, s n h(v) is the universal central extension of
the perfect Lie algebra s n v.

The case of sl2 is essential, and there is a simple description for it. Recall
that if s = sl2 , then, up to isomorphism, there exists exactly one irreducible s-
module vn of dimension n for every n ≥ 1. If n = 2m is even, it has a central
extension by a one-dimensional subspace, giving a Heisenberg Lie algebra, on which
sl2 acts naturally (see 2. for details), denoted by h2m+1 . Theorem 1.5 thus reduces
as:

Proposition 1.7. Up to isomorphism, the minimal solvable Lie sl2 -algebras
are vn and h2n−1 (n ≥ 2).

Let g be a Lie algebra, r its radical and s a semisimple factor. Write
s = sc ⊕ snc by separating K -anisotropic and K -isotropic factors1. The ideal
sc n r is sometimes called the amenable radical of g .

Definition 1.8. We call g M-decomposed if [snc, r] = 0. Equivalently, g is
M-decomposed if the amenable radical is a direct factor of g .

Proposition 1.9. Let g be a Lie algebra, and keep notation as above. Suppose
that g is not M-decomposed. Then there exists a Lie subalgebra h of g which is
isomorphic to sl2 n vn or sl2 n h2n−1 for some n ≥ 2.

This result is essentially due to Cowling, Dorofaeff, Seeger and Wright [6],
where it is not explicitly stated, but it is actually proved in the proof of Proposition
8.2 there (under the assumption K = R , but their argument generalizes to any
field of characteristic zero). This was a starting point for the present paper.

Let G be a locally compact, σ -compact group. Recall that G has the
Haagerup Property if it has a metrically proper isometric action on a Hilbert
space; in contrast, G has Kazhdan’s Property (T) if every isometric action of G
on a Hilbert space has a fixed point. See 4. for a short reminder about Haagerup
and Kazhdan Properties.

We provide corresponding statements for Proposition 1.9 in the realm of
algebraic groups and connected Lie groups. As a consequence, we get the following
theorem, which was the initial motivation for the results above. It was already
proved, in a different way, for connected Lie groups by Cherix, Cowling and Valette
[5, Chap. 4].

1 c and nc respectively stand for “non-compact” and “compact”; this is related to the fact
that if S is a simple algebraic group defined over the local field K , then its Lie algebra is
K -isotropic if and only if S(K) is not compact.
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Theorem 1.10. Let G be either a connected Lie group, or G = G(K), where
G is a linear algebraic group over the local field K of characteristic zero. Let g

be its Lie algebra. The following are equivalent.

(i) G has Haagerup’s property.

(ii) For every noncompact closed subgroup H of G, (G,H) does not have relative
Property (T).

(iii) The following conditions are satisfied:

– g is M-decomposed.

– All simple factors of g have K-rank ≤ 1.

– (in the case of Lie groups or when K = R) No simple factor of g is
isomorphic to sp(n, 1) (n ≥ 2) or f4(−20) .

(iv) g contains no isomorphic copy of any one of the following Lie algebras

– sl2 n vn or sl2 n h2n−1 for some n ≥ 2,

– (in the case of Lie groups or when K = R) sp(2, 1).

Remark 1.11. The notion of M-decomposed (real) Lie algebras also appears
in other contexts: heat kernel on Lie groups [12], Rapid Decay Property [7], weak
amenability [6].

We derive some other results with the help of Theorem 1.5.

Proposition 1.12. There exists a continuous family (gt) of pairwise non-
isomorphic real (or complex) Lie algebras satisfying the following properties:

(i) gt is perfect, and

(ii) the simply connected Lie group corresponding to gt has Property (T).

Note that Proposition 1.12 with only (i) may be of independent interest; we
do not know if it had already been observed. On the other hand, it is well-known
that there exist continuously many pairwise non-isomorphic complex n-dimensional
nilpotent Lie algebras if n ≥ 7.

Proposition 1.13. There exists a continuous family of pairwise non-isomorphic
connected Lie groups with Property (T), and with isomorphic Lie algebras.

We also give the classification, when K = R , of the minimal so3 -algebras
(Proposition 2.3). We use it to prove (ii)⇒(i) in the following result (while
the reverse implication is essentially due to Guentner, Higson and Weinberger
[9, Theorem 5.1]).

Theorem 1.14. Let G be a connected Lie group. Then the following are equiv-
alent:
(i) G is locally isomorphic to SO3(R)a × SL2(R)b × SL2(C)c × R , for a solvable
Lie group R and integers a, b, c.
(ii) Every countable subgroup of G has Haagerup’s property (when endowed with
the discrete topology).
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Remark 1.15. Assertion (i) of Theorem 1.14 is equivalent to: (ii’) The com-
plexification gC of g is an M-decomposed complex Lie algebra, and its semisimple
part is isomorphic to sl2(C)n for some n.

For instance, SO3(R) n R3 has a countable subgroup which does not have
Haagerup’s property. An explicit example is given by SO3(Z[1/p]) n Z[1/p]3 . It
can also be shown that this group has no infinite subgroup with relative Prop-
erty (T). This answers an open question in [5, Section 7.1], and is in contrast with
Theorem 1.10. This group is not finitely presented (this is a consequence of [1,
Theorem 2.6.4]); we give a similar example in Remark 4.10 which is, in addition,
finitely presented.

2. Lie algebras

2.1. Minimal subalgebras.

Proposition 2.1. Let n be a solvable Lie s-algebra.

1) The Lie s-subalgebra [s, n] is an ideal in n (and also in snn), and [s, [s, n]] =
[s, n].

2) If, moreover, [s, Dn] = 0, then [s, n] is an almost minimal Lie algebra
(see Definition 1.3).

Proof. 1) Let v be the subspace generated by the brackets [s, n] , (s, n) ∈ s×n .
Since the action of s is completely reducible (see the definition of Lie s-algebra),
it is immediate that [s, n] and [s, [s, n]] both coincide with the Lie subalgebra
generated by v . Then, using Jacobi identity,

[n, [s, n]] = [n, [s, [s, n]]] ⊆ [s, [n, [s, n]]] + [[s, n], [s, n]] ⊆ [s, [n, n]] + [s, n] ⊆ [s, n].

2) Let z be the linear subspace generated by the commutators [v, w] ,
v, w ∈ v . By Jacobi identity,

[v, z] = [[s, v], z] ⊆ [[s, z], v] + [s, [v, z]] ⊆ [[s, Dn], v] + [s, Dn] = 0.

Thus, the subspace n′ = v⊕ z is a 2-nilpotent Lie s-subalgebra of n . The
Lie subalgebra [s, n′] contains v , hence also contains z , so [s, n′] is equal to n′ .
Thus Conditions 1) and 2) of Definition 1.3 are satisfied, while Condition 3) follows
immediately from the hypothesis [s, Dn] = 0.

Proof of Theorem 1.2. Suppose (ii). Condition 4 implies n 6= 0. Then
Condition 2 implies [s, n] = n 6= 0. Let n′ ⊆ n be a s-subalgebra. Then, by
irreducibility (Condition 4), either Dn+n′ = Dn or Dn+n′ = n . In the first case,
n′ centralizes s . In the second case, n = [s, n] = [s, n′ + Dn] = [s, n′] ⊆ n′ , using
Conditions 1 and 2, and the fact that n′ is a s-subalgebra.

Conversely, suppose that (i) holds. Since n is solvable, Dn is a proper
s-subalgebra, so that, by minimality, [s, Dn] = 0. By Proposition 2.1, [s, n] is
a nonzero almost minimal Lie s-subalgebra of n , hence satisfies 1), 2), 3). The
minimality implies that 4) is also satisfied.
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Proof of Theorem 1.5. Let n be an almost minimal solvable Lie s-algebra. Let
v be the subspace generated by the brackets [s, n] , (s, n) ∈ s×n . Since n is almost
minimal, v is a complementary subspace of Dn , and is a full s-module. If u ∈ Dn∗ ,
consider the alternating bilinear form φu on v defined by φu(x, y) = u([x, y]).
This defines a mapping Dn∗ → Alts(v) which is immediately seen to be injective.
By duality, this defines a surjective linear map Alts(v)∗ → Dn , whose kernel we
denote by Z . It is immediate from the definition of h(v) that this map extends
to a surjective morphism of Lie s-algebras h(v) → n with kernel Z . This proves
that n is isomorphic to h(v)/Z .

The second assertion is immediate.

The third assertion follows from the proof of the first one, where we made
no choice. Namely, take an isomorphism ψ : h(v)/Z → h(v)/Z ′ . It gives by
restriction an s-automorphism ϕ of v , which induces a unique automorphism ϕ̃
of h(v). Let p and p′ denote the natural projections in the following diagram of
Lie s-algebras:

h(v)
p−−−→ h(v)/Z

ϕ̃

y yψ

h(v) −−−→
p′

h(v)/Z ′

This diagram is commutative: indeed, p′◦ϕ̃ and ψ◦p coincide in restriction
to v , and v generates h(v) as a Lie algebra. This implies Z = Ker(ψ ◦ p) =
Ker(p′ ◦ ϕ̃) = ϕ̃−1(Z ′).

2.2. The example sl2 .

If s = sl2(K), then, up to isomorphism, there exists exactly one irreducible
s-module vn of dimension n for every n ≥ 1.

Since vn is absolutely irreducible for all n , by Schur’s Lemma, Bils(vn)
is at most one dimensional for all n . In fact, it is one-dimensional. Indeed,
take the usual basis (H,X, Y ) of sl2 satisfying [H,X] = 2X , [H, Y ] = −2Y ,
[X, Y ] = H , and take the basis (e0, . . . , en−1) of vn so that H.ei = (n− 1− 2i)ei ,
X.ei = (n − i)ei−1 , and Y.ei = (i + 1)ei+1 , with the convention e−1 = en = 0.
Then Bils(vn) is generated by the form ϕn defined by

ϕn(ei, en−1−i) = (−1)i
(

i
n− 1

)
; ϕ(ei, ej) = 0 if i+ j 6= n− 1.

For odd n , ϕn is symmetric so that Alts(vn) = 0; for even n , ϕn is symplectic
and generates Alts(vn). For even n , denote by hn+1 the one-dimensional central
extension h(vn), well-known as the (n+ 1)-dimensional Heisenberg Lie algebra.

Proof of Proposition 1.9. Since snc is semisimple and isotropic, it is generated
by its subalgebras K -isomorphic to sl2 . Since [snc, r] 6= 0, this implies that
there exists some subalgebra s′ of snc which is K -isomorphic to sl2 and such
that [s′, r] 6= 0. Then the result is clear from Proposition 1.7. Notice that the proof
gives the following slight refinement: h can be chosen so that rad(h) ⊆ rad(g).
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2.3. The example so3 .

We now study a more specific example. Let us deal with the field R of real
numbers, and with s = so3 .

Since the complexification of so3 is isomorphic to sl2(C), the irreducible
complex s-modules make up a family (un) (n ≥ 1); dim(un) = n , which are the
symmetric powers of the natural action of su2 = so3 on C2 .

If n = 2m+1 is odd, then this is the complexification of a real so3 -module
dR

2m+1 (of dimension n). If n = 2m is even, dn is irreducible as a 4m-dimensional
real so3 -module, we call it u4m .

These two families (dR
2n+1) and (u4n) make up all irreducible real so3 -

modules.

Proposition 2.2. The irreducible real so3 -modules make up two families: a
family (dR

2n+1) of (2n + 1)-dimensional modules (n ≥ 0), absolutely irreducible,
and a family (u4n) of 4n-dimensional modules (n ≥ 1), not absolutely irreducible,
preserving a quaternionic structure.

Since (dR
2n+1) is absolutely irreducible, the space of invariant bilinear forms on

(dR
2n+1) is generated by a scalar product, so that Altso3(d

R
2n+1) = 0

On the other hand, Altso3(u4n) is three-dimensional, and is given by the
imaginary part of an invariant quaternionic hermitian form.

In order to classify the minimal solvable so3 -algebras, we must determine
the orbits of the natural action of Autso3(u4n) on Altso3(u4n). It is a standard
fact that Autso3(u4n) is isomorphic to the group of nonzero quaternions, that
Altso3(u4n) naturally identifies with the set of imaginary quaternions, and that the
action of Autso3(u4n) on Altso3(u4n) is given by conjugation of quaternions. This
implies that it acts transitively on each component of the Grassmannian.

For i = 0, 1, 2, 3, let Zi be a fixed (3 − i)-dimensional linear subspace
of Alts(v)∗ . Denote by hui4n the minimal Lie so3 -algebra h(u4n)/Zi ; of course,
hu0

4n = u4n and hu3
4n = h(u4n).

Proposition 2.3. Up to isomorphism, the minimal solvable Lie so3(R)-algebras
are dR

2n+1 (n ≥ 1) and hui4n (n ≥ 1, i = 0, 1, 2, 3).

There is an analogous statement to Proposition 1.9.

Proposition 2.4. Let g be a Lie algebra over R. Suppose that [sc, r] 6= 1.
Then g has a Lie subalgebra which is isomorphic to either so3ndR

2n+1 or so3nhui4n
for some i = 0, 1, 2, 3 and some n ≥ 1.

3. Corresponding results for algebraic groups and connected Lie
groups

3.1. Minimal algebraic subgroups.

We now give the corresponding statements and results for algebraic groups.

Let S be a reductive K -group. A K -S -group means a linear K -group
endowed with a K -action of S by automorphisms.
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Recall that the Lie algebra functor gives an equivalence of categories be-
tween the category of unipotent K -groups and the category of nilpotent Lie K -
algebras. If S is semisimple and simply connected with Lie algebra s , it induces
an equivalence of categories between the category of unipotent K -S -groups and
the category of nilpotent Lie S -algebras over K . If S is not simply connected
(in particular, if S is not semisimple), this is no longer an essentially surjective
functor, but it remains fully faithful.

A minimal (resp. almost minimal) solvable S -group N is defined similarly
as in the case of Lie algebras; it is automatically unipotent (since it satisfies
[S,N ] = N ). Moreover, N is a minimal (resp. almost minimal) solvable K -
S -group if and only if its Lie algebra n is a minimal (resp. almost minimal)
solvable Lie s-algebra. Proposition 2.1 and Theorem 1.2 also immediately carry
over into the context of algebraic groups.

If S is reductive and V is a K -S -module, we define the unipotent K -S -
group H(V ) as follows: as a variety, H(V ) = V ⊕ AltS(V )∗ ; it is endowed with
the following group law:

(x, z)(x′, z′) = (x+ x′, z + z′ + ex,x′) x, x′ ∈ V z, z′ ∈ AltS(V )∗ (2)

where ex,x′ ∈ AltS(V )∗ is defined by ex,x′(ϕ) = ϕ(x, x′). This is a K -S -group
under the action s.(x, z) = (s.x, z). It is clear that its Lie algebra is isomorphic
as a Lie K -S -algebra to h(v), where V = v viewed as a s-module. Here is the
analog of Theorem 1.5.

Theorem 3.1. If N is an almost minimal solvable K -S -group, then it is
isomorphic (as a K -S -group) to H(V )/Z , for some full K -S -module V and
some K -subspace Z of AltS(V )∗ . It is minimal if and only if V is irreducible.

Moreover, the almost minimal K -S -groups H(V )/Z and H(V )/Z ′ are
isomorphic if and only if Z ′ and Z are in the same orbit for the natural action of
AutS(V ) on the Grassmannian of AltS(V )∗ .

3.2. The example SL2 .

The simply connected K -group with Lie algebra sl2 is SL2 . Denote by Vn
and H2n−1 the SL2 -groups corresponding to vn and h2n−1 . These are the solvable
minimal SL2 -groups over K . The only non-simply connected K -group with Lie
algebra sl2 is the adjoint group PGL2 ; thus the minimal solvable PGL2 -groups
over K are V2n−1 for n ≥ 2.

Remark 3.2. It is convenient, in algebraic groups, to deal with the unipotent
radical rather than with the radical. It is straightforward to see that a reductive
subgroup S of a linear algebraic group centralizes the radical if and only if it
centralizes the unipotent radical. Indeed, suppose [S,Ru] = 1. We always have
[S,R/Ru] = 1 since R/Ru is central in G0/Ru and S is connected (G0 denoting
the unit component of G). This easily implies that S acts trivially2.

2Write, for s ∈ S and r ∈ R , s.r = ru(s, r), where u(s, r) ∈ Ru and u(s, r) = 1 if r ∈ Ru .
Then, for all s, t ∈ S and r ∈ R st.r = s.ru(t, r) = (s.r)(s.u(t, r)) = ru(s, r)u(t, r), so that
u(st, r) = u(s, r)u(t, r). This implies that if s ∈ DnS = S , then u(s, r) ∈ DnRu . Taking n
sufficiently large, we obtain u(s, r) = 1 for all s ∈ S and r ∈ R , that is, [S, R] = 1.
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Let G be a linear algebraic group over the field K of characteristic zero, R
its radical, S a Levi factor, decomposed as SncSc by separating K -isotropic and
K -anisotropic factors.

Proposition 3.3. Suppose that [Snc, R] 6= 1. Then G has a K -subgroup which
is K -isomorphic to either SL2nVn , PGL2nV2n−1 , or SL2nH2n−1 for some n ≥ 2.

Let us mention the translation into the context of connected Lie groups,
which is immediate from the Lie algebraic version.

Proposition 3.4. Let G be a real Lie group. Suppose that [Snc, R] 6= 1. Then
there exists a Lie subgroup H of G which is locally isomorphic to SL2(R)nVn(R)
or SL2(R) nH2n−1(R) for some n ≥ 2.

Remark 3.5. 1) An analogous result holds with complex Lie groups.

2) The Lie subgroup H is not necessarily closed; this is due to the fact that

S̃L2(R) and H2n−1(R) have noncompact centre. For instance, take an element z
of the centre of H that generates an infinite discrete subgroup, and take the image
of H in the quotient of H ×R/Z by (z, α), where α is irrational.

3) It can be easily be shown that, if the Lie group G is linear, then the
subgroup H is necessarily closed. In a few words, this is because the derived
subgroup of the radical is unipotent, hence simply connected, and the centre of
the semisimple part is finite.

3.3. The example SO3 . We go on with the notation of Proposition 2.2.

In the context of algebraic R-groups as in the context of connected Lie
groups, the simply connected group corresponding to so3(R) is SU(2). The only
non-simply connected corresponding group is SO3(R).

The irreducible SU(2)-modules corresponding to dR
2m+1 and u4n are denoted

by DR
2n+1 and U4n . Among those, only DR

2n+1 provide SO3(R)-modules.

Denote by HU i
4n the unipotent R-group corresponding to hui4n , i =

0, 1, 2, 3.

Remark 3.6. It can be shown that the maximal unipotent subgroups of Sp(n, 1)
are isomorphic to HU3

4n .

Proposition 3.7. Up to isomorphism, the minimal solvable Lie SO3(R)-algebras
are DR

2n+1 for n ≥ 1; the other minimal solvable Lie SU(2)-algebras are HU i
4n ,

for n ≥ 1, i = 0, 1, 2, 3.

Proposition 3.8. Let G be a linear algebraic R-group. Suppose that [Sc, R] 6=
1. Then G has a R-subgroup which is R-isomorphic to either SU(2) n DR

2n+1 ,
SO3(R) nDR

2n+1 , or SU(2) nHU i
4n for some i = 0, 1, 2, 3 and some n ≥ 1.

Let G be a real Lie group. Suppose that [Sc, R] 6= 1. Then G has a Lie
subgroup which is locally isomorphic to either SU(2)nDR

2n+1 or SU(2)nHU i
4n for

some i = 0, 1, 2, 3 and some n ≥ 1.
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4. Application to Haagerup and Kazhdan Properties

4.1. Reminder.

Recall [5, Chap. 1] that a locally compact, σ -compact group G has the
Haagerup Property if there exists a metrically proper, isometric action of G on
some affine Hilbert space.

If H is a subgroup of G , the pair (G,H) has Kazhdan Property (T), or
that H has Kazhdan’s Property (T) relatively to G , if every isometric action of
G on any affine Hilbert space has a fixed point in restriction to H . In the case
when H = G , G is said to have Property (T) (see [10] or [2]).

As an immediate consequence of these definitions, if (G,H) has Prop-
erty (T) and H is not relatively compact in G , then G does not have the Haagerup
Property; this is a frequent obstruction to Haagerup Property, although it is not
the only one (see Remark 4.10).

The class of groups with the Haagerup Property generalizes the class of
amenable groups as a strong negation of Kazhdan’s Property (T). For other mo-
tivations of the Haagerup Property and equivalent definitions, see [5].

In the following lemma, we summarize the hereditary properties of the
Haagerup and Kazhdan Properties that we will use in the sequel.

Lemma 4.1. The Haagerup Property for locally compact, σ -compact groups is
closed under taking (H1) closed subgroups, (H2) finite direct products, (H3) direct
limits [5, Proposition 6.1.1], (H4) extensions with amenable quotient [5, Example
6.1.6], and (H5) is inherited from lattices [5, Proposition 6.1.5].

Relative Property (T) is inherited by dense images: if (G,H) has Prop-
erty (T) and f : G → K is a continuous morphism, then (K, f(H)) has Prop-
erty (T).

4.2. Continuous families of Lie groups with Property (T).

Proof of Proposition 1.12. We must construct a continuous family of connected
Lie groups with Property (T) and with perfect and pairwise non-isomorphic Lie
algebras.

Consider s = sp2n(R) (n ≥ 2). Let vi , i = 1, 2, 3, 4 be four non-
trivial absolutely irreducible, s-modules which are pairwise non-isomorphic and
all preserve a symplectic form3. Then v =

⊕4
i=1 vi is a full s-module and

Auts(v) =
∏4

i=1 Auts(vi) ' (R∗)4 . In particular, Alts(v)∗ ' R4 and Auts(v)
acts diagonally on it. The action on the 2-Grassmannian, which is 4-dimensional,
is trivial on the scalars, so that its orbits are at most 3-dimensional. So there ex-
ists a continuous family (Pt) of 2-planes in Alts(v)∗ which are in pairwise distinct
orbits for the action of Auts(v). By Theorem 3.1, the Lie s-algebras h(v)/Pt are
pairwise non-isomorphic, and so the Lie algebras s n h(v)/Pt are pairwise non-
isomorphic. The Lie algebras gt are perfect, and the corresponding Lie groups Gt

have Property (T): this immediately follows from Wang’s classification [13, Theo-
rem 1.9].

3There exist infinitely many such modules, which can be obtained by taking large irreducible
components of the odd tensor powers of the standard 2n -dimensional s-module.
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Remark 4.2. These examples have 2-nilpotent radical. This is, in a certain
sense, optimal, since there exist only countably many isomorphism classes of Lie
algebras over R with abelian radical, and only a finite number for each dimension.

Proof of Proposition 1.13. We must construct a continuous family of locally
isomorphic, pairwise non-isomorphic connected Lie groups with Property (T). The
proof is actually similar to that of Proposition 1.12. Use the same construction,
but, instead of taking the quotient Gt by Pt , take the quotient Ht by a lattice
Γt of Pt . If we take the quotient of Ht by its biggest compact normal subgroup
Pt/Γt , we obtain Gt . Accordingly, the groups Ht are pairwise non-isomorphic.

4.3. Characterization of groups with the Haagerup Property.

Proposition 4.3. Let K be a local field of characteristic zero and n ≥ 1.
Then the pairs (SL2(K)nVn(K), Vn(K)), (PGL2(K)nVn(K), Vn(K)), (SL2(K)n
Hn(K), Hn(K)), (S̃L2(R) n Vn(R), Vn(R)), and (S̃L2(R) n Hn(R), Hn(R)) have
Property (T).

Proof. The first (and the fourth) case is well-known; it follows, for instance,
from Furstenberg’s theory [8] of invariant probabilities on projective spaces, which
implies that SL2(K) does not preserve any probability on Vn(K) (more precisely,
on its Pontryagin dual) other than the Dirac measure at zero. See, for instance, the
proof [10, Chap. 2, Proposition 2]. The second case is an immediate consequence
of the first. For the third (resp. fifth) case, we invoke [5, Proposition 4.1.4], with
S = SL2(K), N = Hn(K), even if the hypotheses are slightly different (unless
K = R or C): the only modification is that, since here [N,S] is not necessarily
connected, we must show that its image in the unitary group Un is connected so
as to justify Lie’s Theorem. Otherwise, it would have a nontrivial finite quotient.
This is a contradiction, since [N,S] is generated by divisible elements; this is
clear, since, as the group of K-points of an unipotent group, it has a well-defined
logarithm.

Corollary 4.4. Let G be either a connected Lie group, or G = G(K), where
G is a linear algebraic group over the local field K of characteristic zero. Suppose
that the Lie algebra g of G contains a subalgebra h isomorphic to either sl2 n vn
or sl2 n h2n−1 for some n ≥ 2. Then G has a noncompact closed subgroup with
relative Property (T). In particular, G does not have Haagerup’s property.

Proof. Let us begin by the case of algebraic groups. By [3, Chap. II, Corollary
7.9], since h is perfect, it is the Lie algebra of a closed K-subgroup H of G . Since
H must be K-isomorphic to either SL2 n Vm , PGL2 n V2m−1 , or SL2 n H2m−1

for some m ≥ 2, Proposition 4.3 implies that G(K) has a noncompact closed
subgroup with relative Property (T).

In the case of Lie groups, we obtain a Lie subgroup which is the image of

an immersion i of S̃L2(R) nN , where N is either Vn(R) or H2n−1(R), for some
n ≥ 2, into G . By Proposition 4.3, (G, i(N)) has Property (T). We claim that
i(N) is not compact. Suppose the contrary. Then it is solvable and connected,
hence it is a torus. It is normal in the closure H of i(G). Since the automorphism
group of a torus is totally disconnected, the action by conjugation of H on i(N)
is trivial; that is, i(N) is central in H . This is a contradiction.
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Proof of Theorem 1.10. As we already noticed in the reminder, (i)⇒(ii) is
immediate from the definition. We are going to prove (ii)⇒(iv)⇒(iii)⇒(i).

For the implication (iii)⇒(i), in the algebraic case, G is isomorphic, up to
a finite kernel, to Snc(K)×Mr(K), where Mr denotes the amenable radical of G .
The group Mr(K) is amenable, hence has Haagerup’s property. The group Snc(K)
also has Haagerup’s property: if K is Archimedean, it maps, with finite kernel,
onto a product of groups isomorphic to PSO0(n, 1) or PSU(n, 1) (n ≥ 2), and
these groups have Haagerup’s property, by a result of Faraut and Harzallah, see
[2, Chap. 2]. If K is non-Archimedean, then Snc(K) acts properly on a product of
trees (one for each simple factor) [4], and this also implies that it has Haagerup’s
property [2, Chap. 2].

The same argument also works for connected Lie groups when the semisim-
ple part has finite centre; in particular, this is fulfilled for linear Lie groups and
their finite coverings. The case when the semisimple part has infinite centre is
considerably more involved, see [5, Chap. 4].

(ii)⇒(iv) Suppose that (iv) is not satisfied. If g contains a copy of sl2 n vn
or sl2 n h2n−1 for some n ≥ 2, then, by Corollary 4.4, G does not satisfy (ii).
If K = R , we consider G as a Lie group with finitely many components. By
a standard argument, since Sp(2, 1) is simply connected with finite centre (of
order 2), an embedding of sp(2, 1) into g corresponds to a closed embedding of
Sp(2, 1) or PSp(2, 1) into G . Since Sp(2, 1) has Property (T) [2, Chap. 3], this
contradicts (ii).

(iv)⇒(iii) If g is not M-decomposed, then, by Proposition 1.9, it contains
a copy of sl2 n vn or sl2 n h2n−1 for some n ≥ 2.

If g has a simple factor s , then s embeds in g through a Levi factor. If
s has K-rank ≥ 2, then it contains a subalgebra isomorphic to either sl3 or sp4

[11, Chap I, (1.6.2)], and such a subalgebra contains a subalgebra isomorphic to
sl2 n v2 (resp. sl2 n v3 ) [2, 1.4 and 1.5].

Finally, if K = R and s is isomorphic to either sp(n, 1) for some n ≥ 2 or
f4(−20) , then it contains a copy of sp(2, 1).

Remark 4.5. Conversely, sp(n, 1) and f4(−20) do not contain any subalgebra
isomorphic to sl2 nvn or sl2 nh2n−1 for any n ≥ 2; this can be shown using results
of [6] about weak amenability.

4.4. Subgroups of Lie groups.

Let us exhibit some subgroups in the groups above.

First observation. Let G denote SL2 n Vn , PGL2 n V2n−1 , or SL2 n H2n−1 for
some n ≥ 2, and R its radical. Then, for every field K of characteristic zero,
G(K) contains G(Z) as a subgroup. On the other hand, the pair (G(Z), R(Z))
has Property (T), this is because G(Z) is a lattice in G(R).

Second observation. Now, let G denote SU(2) n DR
2n+1 , SO3(R) n DR

2n+1 , or
SU(2) n HU i

4n for some i = 0, 1, 2, 3. These groups all have a Q-form: this is
obvious at least for all but SU(2) n HU i

4n for i = 1, 2; for these two, this is
because the subspace Zi can be chosen rational in the definition of HU i

4n .

Let R be the radical of G and S a Levi factor defined over Q . Let F
be a number field of degree three over Q , not totally real. Let O be its ring of
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integers. Then G(O) embeds diagonally as an irreducible lattice in G(R)×G(C).
Its projection Γ in G(R) does not have Haagerup’s property, since otherwise G(C)
would also have Haagerup’s property (by (H5) in Lemma 4.1), and this is excluded
since it does not satisfy [Snc, R] = 1, by Theorem 1.10 (noting that the anisotropic
Levi factor becomes isotropic after complexification).

Proposition 4.6. Let G be a real Lie group, R its radical, S a semisimple
factor. Suppose that [S,R] 6= 1. Then G has a countable subgroup without
Haagerup’s property.

Proof. First case: [Snc, R] 6= 1. Then, by Proposition 3.4, G has a Lie

subgroup H isomorphic to a quotient of H̃ = S̃L2(R)nR(R) by a discrete central

subgroup, where R = Vn or H2n−1 , for some n ≥ 2. Denote by H̃(Z) the

inverse image of SL2(Z) n R(Z) in H̃ . By the observation above, (H̃(Z), R(Z))
has Property (T), so that its image in H , which we denote by H(Z), satisfies
(H(Z), RG(Z)) has Property (T), where RG(Z) means the image of R(Z) in G .
Observe that RG(Z) is infinite: if R = Vn , this is Vn(Z); if R = H2n−1 , this is
a quotient of H2n−1(Z) by some central subgroup. Accordingly, H(Z) does not
have Haagerup’s property.

Second case: [Sc, R] 6= 1. By Proposition 3.8, G has a Lie subgroup H
isomorphic to a central quotient of SU(2)(R) n R , where R = DR

2n+1 or HU i
4n ,

for some n ≥ 1 and i = 0, 1, 2, 3.

First suppose that the radical of H is simply connected. Then, by the
second observation above, H has a subgroup without the Haagerup property.

Now, let us deal with the case when H = H̃/Z , where Z is a discrete central

subgroup. Then H̃ has a subgroup Γ as above which does not have Haagerup’s
property. Let W denote the centre of H̃ . The kernel of the projection of Γ to H
is given by Γ∩Z . We use the following trick: we apply an automorphism α of H̃
such that α(Γ)∩Z is finite. It follows that the image of α(Γ) in H does not have
Haagerup’s property.

This allows to suppose that Γ ∩ Z is finite, so that the image of Γ in H
does not have Haagerup’s property. Let us construct such an automorphism.

Observe that the representations of SU(2) can be extended to the direct
product R∗ × SU(2) by making R∗ act by scalar multiplication. This action lifts
to an action of R∗ × SU(2) on HU i

4n , where the scalar a acts on the derived
subgroup of HU i

4n by multiplication by a2 .

Now, working in the unit component of the centre W of H̃ , which we treat
as a vector space, we can take a so that a2 · (Γ ∩W ) avoids Z ∩W (a clearly
exists, since Γ and Z are countable).

Definition 4.7. Let G be a locally compact group. We say that G has
Haagerup’s property if every σ -compact open subgroup of G does.

Remark 4.8. In view of (H3) of Lemma 4.1, this is equivalent to: every com-
pactly generated, open subgroup of G has Haagerup’s property, and also equivalent
to the existence of a C0 -representation with almost invariant vectors [5, Chap. 1].
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In particular, G having Haagerup’s property and (G,H) having Property (T) still
imply H relatively compact.

All properties of the class of groups with Haagerup’s property claimed in
Lemma 4.1 also clearly remain true for general locally compact groups.

If G is a topological group, denote by Gd the group G endowed with the
discrete topology.

Proof of Theorem 1.14. We remind that we must prove, for a connected Lie
group G , the equivalence between

(i) G is locally isomorphic to SO3(R)a × SL2(R)b × SL2(C)c × R , with R
solvable and integers a, b, c , and

(ii) Gd has Haagerup’s property.

The implication (i) ⇒ (ii) is, essentially, a deep and recent result of Guent-
ner, Higson, and Weinberger [9, Theorem 5.1], which implies that (PSL2(C))d has
Haagerup’s property. Let G be as in (i), and S its semisimple factor. Then G/S
is solvable, so that, by (H4) of Lemma 4.1, we can reduce to the case when G = S .
Now, let Z be the centre of the semisimple group G , and embed Gd in (G/Z)d×G ,
where Gd means G endowed with the discrete topology. This is a discrete em-
bedding. Since G has Haagerup’s property, this reduces the problem to the case
when G has trivial centre. So, we are reduced to the cases of SO3(R), PSL2(R),
and PSL2(C). The two first groups are contained in the third, so that the result
follows from the Guentner-Higson-Weinberger Theorem.

Conversely, suppose that G does not satisfy (i). If [S,R] 6= 1, then, by
Proposition 4.6, Gd does not have Haagerup’s property. Otherwise, observe that
the simple factors allowed in (i) are exactly those of geometric rank one (viewing
SL2(C) as a complex Lie group). Hence, S has a factor W which is not of
geometric rank one. Then the result is provided by Lemma 4.9 below.

Lemma 4.9. Let S be a simple Lie group which is not locally isomorphic to
SO3(R), SL2(R) or SL2(C). Then Sd does not have Haagerup’s property.

Proof. Let Z be the centre of S , so that S/Z ' G(R) for some R-algebraic
group G . By assumption, G(C) has factors of higher rank, hence does not have
Haagerup’s property. Let F be a number field of degree three over Q , not totally
real. Let O be its ring of integers. Then G(O) embeds diagonally as an irreducible
lattice in G(R) × G(C), and is isomorphic to its projection in G(R). Let Γ be
the inverse image in S×G(C) of G(O). Then Γ is a lattice in S×G(C). Hence,
by [5, Proposition 6.1.5], Γ does not have Haagerup’s property. Note that the
projection Γ′ of Γ into S has finite kernel, contained in the centre of G(C). So
Γ′ neither has Haagerup’s property, and is a subgroup of S .

Remark 4.10. In contrast with Theorem 1.10, Theorem 1.14 is no longer
true if we replace the statement “Gd has Haagerup’s property” by “Gd has no
infinite subgroup with relative Property (T)”. Indeed, let G = K n V , where
K is locally isomorphic to SO3(R)n and V is a vector space on which K acts
nontrivially. Suppose that (Gd, H) has Property (T) for some subgroup H . Then
(Gd/V,H/(H ∩V )) has Property (T). In view of the Guentner-Higson-Weinberger
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Theorem (see the proof of Theorem 1.14), H/(H ∩ V ) is finite. On the other
hand, since G has Haagerup’s property, H ∩ V must be relatively compact, and
this implies that H ∩ V = 1. Thus, H is finite.

Motivated by this example, it is easy to exhibit finitely generated groups
without the Haagerup Property and do not have infinite subgroups with relative
Property (T). For instance, let n ≥ 3, and q be the quadratic form

√
2x2

0 + x2
1 +

x2
2 + · · · + x2

n−1 . Let G(R) = SO(q)(R) n Rn and write, for any commutative

Z(
√

2)-algebra R , H(R) = SO(q)(R). Then Γ = G(Z[
√

2]) is such an example.
The fact that Γ has no infinite subgroup Λ with relative Property (T) can be seen
without making use of the Guentner-Higson-Weinberger Theorem: first observe
that H(Z[

√
2]) is a cocompact lattice in SO(n − 1, 1), hence has Haagerup’s

property. So the projection of Λ in H(Z[
√

2]) is finite. So, upon passing to a
finite index subgroup, we can suppose that Λ is contained in the subgroup Z[

√
2]n

of Γ = SO(q)(Z[
√

2]) n Z[
√

2]n . But then the closure L of Λ in the subgroup Rn

of the amenable group G(R) = SO(q)(R) n Rn is not compact, and (G(R), L)
has Property (T). This is a contradiction.

On the other hand, Γ does not have Haagerup’s property, since it is a lattice
in G(R)nGσ(R) (use (H5) of Lemma 4.1), where σ is the nontrivial automorphism
of Q(

√
2), and Gσ(R) ' SO(n − 1, 1) n Rn does not have Haagerup’s property,

by Theorem 1.10. Note that Γ, as a cocompact lattice in a connected Lie group,
is finitely presented.
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[4] Bruhat, F.,and J. Tits, Groupes réductifs sur un corps local. I, Données
radicielles valuées, Publ. Math. Inst. Hautes Études Sci. 41 (1972), 5–251.

[5] Cherix, P.-A., M. Cowling, P. Jolissaint, and A. Valette, “Groups with the
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