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Abstract. We extend previous results of the authors on orbital convolutions
for compact groups, to compact times vector semidirect products. In particular,
we define convolutions of noncompact coadjoint orbits and recover the character
formulae and Plancherel formula of Lipsman.
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1. Introduction

Previous work of the authors ([5], [7], [6]), in the setting of compact groups,
introduced the wrapping map Φ. This map associates, to each Ad-invariant
distribution µ of compact support on the Lie algebra g , a central distribution
Φµ on the Lie group G , via the formula, for f ∈ C∞

c (G),

〈Φµ, f〉 = 〈µ, j · f ◦ exp〉, (1)

where j is the square root of the Jacobian of exp : g → G .

The remarkable thing about Φ is that it provides a convolution homomor-
phism between the Euclidean convolution structure on g and the group convolution
on G , that is

Φ(µ ∗g ν) = Φµ ∗G Φν. (2)

This mapping is a global version of the Duflo isomorphism — there are no condi-
tions on the supports of µ and ν (they need not, for example, lie in a fundamental
domain). As pointed out in [5], we may interpret the dual of Φ, a map from the
Gelfand space of MG(G) to that of MG(g), in such a way as to obtain the Kirillov
character formula for G .

In a recent paper [1], Andler, Sahi and Torossian have extended the Duflo
isomorphism to arbitrary Lie groups. Their results give a version of equation (2)
which holds for germs of hyperfunctions with support at the identity. In fact,
equation (2) can be viewed as a statement that, for compact Lie groups, the

1We gratefully acknowledge the support of the Australian Research Council
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results of [1] hold for invariant distributions of compact support, and hold globally
in the sense that the restriction that the supports are compact is needed only
in order to ensure that the convolutions exist. This observation allows one to
develop calculational tools for invariant harmonic analysis based on convolutions
of orbits and distributions in the Euclidean space g : see for example [6], where new
character formulae and new approaches to the Plancherel formula are developed
for compact Lie groups.

In this article, we extend these ideas to semi-direct product groups G =
V o K , where V is a vector space and K a compact group. There are several
significant differences between this case and the compact case previously treated
— firstly, there is no identification between the adjoint and coadjoint pictures
as the Killing form is indefinite, and secondly, perhaps more significantly, the
fact that the orbits are no longer compact means that there are few Ad-invariant
distributions of compact support — so the convolutions in formula (2) need careful
interpretation.

Specifically, we shall:

(1) Give an explicit description of conjugacy classes in G , adjoint orbits in g and
coadjoint orbits in g∗ , and find canonical G-invariant measures on these.
(Sections 2 and 3).

(2) Show how the adjoint orbits exponentiate to conjugacy classes, calculate the
function j , and calculate the Fourier transforms of adjoint orbits. (Section
5).

(3) Define classes of invariant distributions on G , g and g∗ , which include the
canonical orbital measures, and which will play the role of the G-invariant
distributions of compact support. These distributions are defined using the
structure of the orbits — roughly speaking on g , they are K -invariant, have
compact support in the k-direction, and consist of appropriate invariant
means in the direction of the fibres. The spaces of such distributions are
denoted AP ′

G(G), AP ′
G(g), AP ′

G(g∗). (Section 6)

(4) Show that the elements of AP ′
G(g) wrap to elements of AP ′

G(G) and have
Fourier transforms in AP ′

G(g∗). (Section 6)

(5) Show that the spaces AP ′
G(G), AP ′

G(g) and AP ′
G(g∗) are closed under the

operation of convolution. In order to do this, one needs to introduce spaces
of test functions APG(G), APG(g), APG(g∗) which have our distributions
as duals, and define

〈µ ∗ ν, ψ〉 = 〈µ(X)ν(Y ), ψ(X + Y )〉.

The basic idea of the test space APG(g) is to take functions which are C∞

in the k-direction and almost periodic in the fibre direction. This idea is
appropriately modified for G and g∗ (see Definitions 6.1 and 6.3).

(6) Prove the convolution formula Φ(µ ∗ ν) = Φ(µ) ∗Φ(ν) for invariant elements
µ, ν ∈ AP ′

G(g) for this notion of convolution (Theorem 6.1).
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(7) Link this to the representation theory of G , and prove the Lipsman character
formula (Sections 4,7).

Together, these steps constitute a demonstration that the “orbital convolu-
tions” approach can work in the setting of non-compact groups. It will be apparent
that we have made significant use of our detailed knowledge of the structure of the
orbits in order to define the convolution algebras AP ′

G over each of G , g and g∗ .
It is for this technical reason that we cannot at present extend our results to other
Lie groups, although there are some preliminary indications (see for example [3],
[16], [15]) that the program might also work for nilpotent groups.

We would like to thank the referee for carefully reading our manuscript and
making a number of helpful comments.

2. The exponential map and the adjoint action

Let K be a compact connected Lie group with Lie algebra k and suppose that
K has a smooth linear action on a complex vector space V . We shall write the
action as v 7→ kv , k ∈ K, v ∈ V . We may then form the semi-direct product
G = V oK . This is the product manifold V ×K with multiplication

(v, k)(v′, k′) = (v + kv′, kk′). (3)

For simplicity 2 , we shall assume throughout that K acts effectively on V , that
is K0 = {e} , where

K0 = {k ∈ K : kv = v ∀v ∈ V }.

The semi-direct product is a Lie group with identity (0, e) and inverse map
(v, k)−1 = (−k−1v, k−1). Its Lie algebra may be identified as g = V ⊕ k with Lie
bracket given, for a, a1 ∈ V , A,A1 ∈ k by

ad(a,A)(a1, A1) = [(a,A), (a1, A1)] = (A · a1 − A1 · a, [A,A1]k). (4)

In this formula a 7→ A · a denotes the differential of the action of K on V , given
by

A · a =
d

dt

∣∣∣∣
t=0

(expK tA)a,

where A ∈ k and a ∈ V . Here, expK denotes the exponential map of K .

The exponential map expG : g → G is given by

expG(a,A) =

((
I − e−A

A

)
· a, expK A

)
. (5)

In this formula, the expression I−e−A

A
denotes the linear operator on V

defined by the formal power series
∑∞

n=0(−1)n An

(n+1)!
. (see [9])

2In fact, it is not difficult to see that this is no real restriction. K0 is easily seen to be a
closed normal subgroup of K , and the quotient action of K/K0 on V is effective. The standard
isomorphism theorems of group theory allow us to write

V o K ∼= (V o K/K0) o K0

and one may easily combine the theorems which we will prove with those already known for the
compact case to obtain the analagous results for V o K with no restriction on the action.
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One calculates easily that the conjugation action of G on itself is given by

(v, k)(v1, k1)(v, k)
−1 = (v + kv1 − kk1k

−1v, kk1k
−1). (6)

This formula may be differentiated to see that the adjoint action of G on g is

Ad(v, k)(a,A) = (k · a− (Ad(k)A) · v,Ad(k)A). (7)

By Weyl’s unitary trick we may (and will) assume that V is equipped with
a K -invariant inner product ( , ). We shall do this systematically throughout the
paper.

Given k ∈ K , let

Vk = {v ∈ V : kv = v} and

V k = {(I − k) · v : v ∈ V }
(8)

so that we have the orthogonal decomposition

V = Vk ⊕ V k

Given A ∈ k , let
VA = {v ∈ V : A · v = 0}

and
V A = A · V.

This gives an orthogonal decomposition

V = VA ⊕ V A. (9)

We may now describe the geometrical structure of the conjugacy classes and the
adjoint orbits as follows:

Lemma 2.1. The conjugacy class of (v1, k1) ∈ G is fibred over the K -orbit
K(v1, k1) = {(k · v1, kk1k

−1)} in G, the fibre at the point indexed by k being
V kk1k−1

.

Lemma 2.2. Let (a,A) ∈ g = V ⊕ k. The adjoint orbit through (a,A) is fibred
over the K -orbit in g {(k · a,Ad(k)A) : k ∈ K}, the fibre at (k · a,Ad(k)A) being
V Ad(k)A .

It is generally true that the exponential map of a Lie group maps adjoint
orbits to conjugacy classes. This may be seen directly in our situation from the
following basic properties of exp = expG .

Proposition 2.3. (i) exp(Ad(v, e)(a,A)) = (a− A · v, exp A)

(ii) exp−1{e} = {(A · v, A) : expK A = eK , v ∈ V }
(iii) Let JK be the Jacobian of expK and JG the Jacobian of expG . Then

JG(a,A) = det

((
1− e−A

A

) ∣∣∣∣
V

)
JK(A). (10)

(Notice that the right-hand side is independent of a .)
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Proof. (i) is a simple consequence of the formulae in Lemma 2.1.

For (ii), suppose that exp(a,A) = (0, eK). Then expK A = eK and (1−e−A

A
)·

a = 0. Since expK A = eK , 1− e−A = 0 and hence for such an A , (1−e−A

A
) · a = 0

if and only if a ∈ A · V .

To see (iii), write the formula for ad as

ad(a,A)(a1, A1) =

 A −( . ) · a

0 adA

( a1

A1

)
,

where ( . ) · a is the map k → V given by A1 → A1 · a
By Helgason [9] the differential of exp at 0 is given by

exp∗,0(A, a) =
1− e−ad(a,A)

ad(a,A)
=

 1−e−A

A
∗

0 1−e−ad A

ad A

 .

The formula given in (iii) follows.

Remark 2.4. If the point A lies in the exponential lattice of k , then under
the exponential map, the affine subspace (VA, A) is collapsed to the single point
(0, eK); the Jacobian is zero on this subspace.

We now define canonical measures on conjugacy classes and adjoint orbits.
For the compact group K this is done as follows (c.f. [5] ). Let T be a maximal
torus for K , and choose a set Φ+ of positive roots for T . Let t+ be the cor-
responding positive Weyl chamber in t . Let D be an Ad-invariant fundamental
domain for G in g and let T+ = exp(D ∪ t+).

Each conjugacy class C intersects T in a Weyl group orbit; let tC be the
element of this orbit which lies in the closure of T+ and KC the stabilizer of
tC (generically, KC = T ). The conjugacy class is isomorphic to K/KC (via
gtCg

−1 7→ gKC ) and thus carries a unique central measure dµC which gives it
total mass ( ∏

α∈Φ+

α(log tC) 6=0

2 sin

(
α

2
(log tC)

))2

.

Similarly, each adjoint orbit O intersects t in a Weyl orbit. Letting HO be
a point in this orbit in t+ , we see that O carries a unique Ad-invariant measure
dµO so that it has total mass ( ∏

α∈Φ+

α(HO) 6=0

α(HO)

)2

.

Given [5] that the Jacobian of the exponential map of K is given by

JK(H) = (jK(H))2,

where

jK(H) =
∏

α∈Φ+

2 sin α
2
(H)

α(H)
,
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we see that dµC = J(H)dµO whenever C is the image of O , and H ∈ O .

We now carry out an analogous procedure to define measures on conjugacy
classes and coadjoint orbits for V oK .

We may decompose V into real weight spaces for T ;

V = ⊕λ∈ΛVλ, (11)

where if v ∈ V0 , we have t · v = v , for all t ∈ T , and if λ 6= 0, Vλ is a 2mλ

dimensional space such that for v ∈ Vλ t · v = ⊗mλTλ(t)v. Here Tθ denotes the

rotation whose matrix is

(
cos θ sin θ
− sin θ cos θ

)
, and mλ ≥ 1 is the multiplicity of the

weight λ . The direct sum is with respect to our fixed K -invariant inner product
( , ).

Each of the spaces Vλ , equipped with ( , ), is a Euclidean space. We choose
(and fix once and for all) a Lebesgue measure dvλ on Vλ . This choice leads to a
measure dv =

∏
λ dvλ on V , and we may assume that Haar measure on V oK is

dv dk .

Notice that if t ∈ T , then in the notation of (8),

Vt = ⊕{λ:λ(log t)=0}Vλ (12)

and
V t = ⊕{λ:λ(log t) 6=0}Vλ. (13)

Consider a V o K conjugacy class C . By the formula for the conjugation
and the remarks about the compact case, C contains a unique point of the form
(v, t) where t ∈ T+ and v ∈ Vt . The fibre at this point is V t . Denote such a
conjugacy class by C(v, t).

We may thus define a measure on C by (1) identifying the K orbit of (v, t)
with the conjugacy class of t in K ; we take the measure dµt on this orbit; and

(2) defining a suitable measure on V t which is then transferred to V k·t by K -
invariance. Such a measure is given by∏

{λ:λ(log t) 6=0}

4 sin2mλ

(
λ

2
(log t)

)
dvλ. (14)

The factors of 2 sin
(

λ
2
(log t)

)
come from the facts that V t = (1 − t)V , and that

Vλ is an invariant space for ⊗mλI − Tθ and det(I − Tθ) = 4 sin2mλ θ
2
.

Definition 2.5. For fixed (v, t) with v ∈ Vt , let

κ1(t) =
∏

{λ:λ(log t) 6=0}

4 sin2mλ

(
λ(log t)

2

) ∏
{α∈Φ+:α(log t) 6=0}

4 sin2 α(log t)

2

Using the fact that V t = ⊕{λ:λ(log t) 6=0}Vλ , define the measure dv1 on V t by

dv1 =
∏

{λ:λ(log t) 6=0}

dvλ

and take dk̇ to be normalized measure on K/Kt .

Finally, define the measure dµC on the conjugacy class C = C(v, t) =
{(k · (v + v1), ktk

−1) : k ∈ K, v1 ∈ V t} by dµC = κ1(t)dv1dk̇ .

We have shown:
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Proposition 2.6. The measure dµC is an invariant measure on C(v, t).

Following the same path as in Proposition 2.6, we may define an associated
measure on the adjoint orbits. Each adjoint orbit O contains a unique point of
the form (aH , H) where H ∈ t+ and aH ∈ VH . The fibre at this point is

V H = ⊕{λ:λ(H) 6=0}Vλ,

and Vλ is a 2mλ -dimensional eigenspace for the t action with eigenvalue λ(H),
so we may define a measure on V H by da1 = Π{λ:λ(H) 6=0} dvλ , and a constant

κ2(H) = Πλ:λ(H) 6=0 λ(H)2mλ Π{α∈Φ+:α(H) 6=0} α(H)2. (15)

This leads to:

Proposition 2.7. An invariant measure on the adjoint orbit
{(k · (aH + a1), Ad(k)H) : k ∈ K, a1 ∈ V H}, where aH ∈ VH , is given by

dµO(a1, k̇) = κ2(H)da1dk̇, (16)

where dk̇ is the normalized measure on K/KH and a is written in the
⊕{λ:λ(H) 6=0}Vλ coordinates as (aλ).

Proposition 2.8. Suppose that the exponential map takes O to C . Then

dµC = JdµO.

Proof . This follows exactly as in the compact case once we write out the expres-
sion for J(H) = det

(
1−e−H

H

∣∣
V

)
JK(H) for H ∈ t , using the basis V = ⊕Vλ . With

this basis, the first determinant becomes

∏
λ∈Λ

(
1− e−iλ(H)

λ(H)

)mλ

=
∏
λ∈Λ

(
2 sin λ(H)

2

λ(H)

)mλ

.

Now using the result for K and comparing the formulae given above, the result
follows.

Note that neither adjoint orbits nor conjugacy classes are symplectic mani-
folds (in general), so we cannot expect a canonical Liouville measure. Nevertheless,
the above choices are natural and compatible.

3. The coadjoint action

The coadjoint orbits may be described similarly to the adjoint orbits — although
unlike the compact case, there is not a one-to-one G-correspondence between g

and g∗ : the Killing form is degenerate.

We may identify the dual of g as V ∗⊕k∗ . The coadjoint action is defined by
〈Ad∗(g)β,X〉 = 〈β,Ad(g−1)X〉 for β ∈ g∗ and X ∈ g , and may be conveniently
written as

Ad∗(v, k)(ϕ, f) = (k · ϕ, k · f + v × (k · ϕ)), (17)
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where v × ϕ ∈ k∗ is defined by

(v × ϕ)(A) = (ϕ,A · v) for A ∈ k.

This notation, generalizing the traditional crossed product of vector calculus, is
due to Rawnsley [13], see also [12].

Note that by our assumption that the action of K is effective on V , we see
that

k∗ = {v × ϕ : v ∈ V, ϕ ∈ V ∗}.

The following Lemma, which gives the structure of the coadjoint orbits, is now
obvious.

Lemma 3.1. The coadjoint orbit through (ϕ, f) ∈ V ∗ × k∗ is given by

{k · (ϕ, f) + v × (k · ϕ) : v ∈ V, k ∈ K}.

This is fibred over the K orbit K · (ϕ, f) with fibre at the point (k · ϕ, Ad∗(k)f)
being V × k · ϕ.)

Let kϕ denote the stabilizer of ϕ in k , kϕ = {A ∈ k : A · ϕ = 0} . Use
the K -invariant form on k to form k⊥ . Similarly, use the form to define an Ad∗ -
invariant form on k∗ and notice that k∗ϕ = {f ∈ k∗ : f(A) = 0 if A ⊥ kϕ} .
Furthermore, k⊥ϕ = V × ϕ . To see this, notice that for v ∈ V and A ∈ kϕ ,
(v × ϕ)(A) = ϕ(A · v) = (A · ϕ, v) = 0. Since v × ϕ = 0 if and only if v ⊥ k · ϕ ,
we see that dim(V × ϕ) = dim(k · ϕ), which is the dimension of (k⊥ϕ ). Thus the
two spaces are equal. From this it follows that there is a canonical point on each
fibre. Specifically:

Lemma 3.2. On any fibre there is a point (ϕ, f) with f ∈ k∗ϕ .

Proof. Let (ϕ, f) be any point on the orbit, and write f = f1 + f2 with f1 ∈ k∗ϕ
and f2 ∈ k∗⊥ϕ . Choose v ∈ V so that v × ϕ = f2 ; we have

Ad∗(−v, e)(ϕ, f) = (ϕ, f1). (18)

We shall sometimes denote the choice of such a pair by writing (ϕ, f) ∈
V ∗ × k∗ϕ .

Corollary 3.3. If (ϕ, f) ∈ V ∗×k∗ϕ , the stabilizer of (ϕ, f) (under the coadjoint
action) is Vϕ o (Kϕ)f , where Vϕ = {v ∈ V : v×ϕ = 0} and (Kϕ)f is the stabilizer
of f in Kϕ .

We may now describe the canonical Liouville measure on the coadjoint orbit
through (ϕ, f) ∈ V ∗× k∗ϕ . Let Kϕ be the stabilizer of ϕ in K . The Lie algebra of
the connected component of Kϕ is kϕ . We let f ∈ k∗ϕ . The stabilizer of f in Kϕ

is denoted Kϕ,f and its Lie algebra, kϕ,f is generically a Cartan subalgebra in kϕ .

Clearly, the K -orbit of (ϕ, f) may be canonically identified with K/Kϕ,f ,
and this coset space carries a unique normalized K -invariant measure.

Now Kϕ need not be connected, but its connected component (Kϕ)e is a
compact connected Lie group whose Lie algebra is kϕ . Thus, since f ∈ k∗ϕ , ((Kϕ)e)f
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is also connected — this is a fundamental property of the Adjoint representation.
Now ((Kϕ)f )e is also a connected Lie group, which contains ((Kϕ)e)f (since the
latter is connected). Since these two connected Lie groups have the same Lie
algebra, they are equal.

Now Kϕ/(Kϕ)e is a compact discrete, hence finite, group. Let us denote it
by Fϕ ; we may then realize Kϕ as Fϕ n (Kϕ)e . It follows that

(Kϕ)f = {(`, k) : ` ∈ Fϕ and k ∈ (Kϕ)e and `kf = f}.

In a similar manner, (Kϕ)f/((Kϕ)f )e is a finite group and by the comments of the
previous paragraph, it may be realized as a subgroup Fϕ,f of Fϕ .

The canonical 2-form on the orbit of (ϕ, f) may be calculated as follows.
Firstly, notice that for (a,A) and (a1, A1) ∈ V ⊕ k , we have

((ϕ, f), [(a,A), (a1, A1)]) = ϕ(A · a1)− ϕ(A1 · a) + (f, [A,A1])

= a1 × ϕ(A)− a× ϕ(A1) + wf ([A,A1]).
(19)

Decomposing A = B + C and A1 = B1 + C1 , where B,B1 ∈ kϕ and C,C1 ∈ k⊥ϕ ,
we get

ω(ϕ,f)((a,A), (a1, A1)) = (a1 × ϕ)(C)− (a× ϕ)(C1) + ωf (C,C1). (20)

The last term passes to the canonical symplectic 2-form on the (Kϕ)e orbit through
f , and its wedge product with itself 1

2
(dimkϕ−dim(kϕ)f ) times is nothing but the

Liouville orbital measure of dµOf .

The first two terms of this expression can be understood as ψ ∧ ψ , where
ψ is the 1-form on k · ϕ× k⊥ϕ given by

ψ(a, C) = (a× ϕ)(C). (21)

To evaluate the wedge product of this 1-form with itself (dim k.ϕ) + dim k⊥ϕ =
2dim k⊥ϕ times, note that the tangent space of the orbit Kϕ at ϕ may be canon-
ically identified as k · ϕ (a subspace of V ). As observed above, k⊥ϕ (a subspace
of k) has the same dimension, and indeed, the pairing k⊥ϕ × k.ϕ → C given by
(C, a) = a× ϕ(C) identifies k⊥ϕ as (K · ϕ)∗ . The symplectic form

〈(C, a), (C1, a1)〉 = (a1 × ϕ)(C)− (a× ϕ)(C1) (22)

then identifies ψ ∧ ψ as the canonical symplectic form on the cotangent bundle.

The associated measure on k ·ϕ may be described in coordinates as follows.
By Lemma 3.1, we may assume without loss of generality that C ∈ t . Then if
a =

∑
aλ , we have (a× ϕ)(C) = ϕ(C.a) =

∑
λ∈Λ λ(C)ϕ(aλ).

Define the constant

κ3(C, a) = Πλ∈Λ λ(C)ϕ(aλ). (23)

Thus we have proved

Proposition 3.4. In the coordinates introduced above, the Liouville measure
on the coadjoint orbit through (ϕ, f) ∈ V ∗ × k∗ϕ is

κ3(C, a) da dC dµf (B). (24)
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4. The representation theory of G

The description of the irreducible representations of V oK is standard, using the
Mackey machine. The relationship between the Mackey induced representation
and the Kirillov orbit method is explained in [13]. We give a brief outline of how
the correspondence works in the notation above.

According to Mackey, the irreducible representations of V oK are in one-
one correspondence with pairs (ϕ, η), where ϕ ∈ V ∗ and η ∈ K̂ϕ . Elements ϕ of
the same K -orbit in V ∗ and equivalent irreducible representations η of Kϕ give
equivalent representations of V oK . The corresponding irreducible representation
of V oK is the induced representation

%(ϕ,η) = eiϕ ⊗ η ↑ V oK
V oKϕ

.

The orbit method description of %(ϕ,η) is achieved as follows. Note that η ∈ K̂ϕ

and Kϕ = (Kϕ)e o Fϕ , we may choose η0 ∈ (̂Kϕ)e and φ ∈ F̂ϕη0
so that η is

induced from η̃(k, f) = η0(k)φ(f).

To relate this to the method of orbits approach to the representations of
solvable Lie groups detailed by Auslander and Kostant [2], we remark that (Kϕ)e

has Lie algebra kϕ and so η0 has highest weight, say f ∈ t∗ϕ , where tϕ is a Cartan
subalgebra of kC

ϕ . Letting Φ+
ϕ be a choice of positive roots of (kϕ, tϕ), we have

(kϕ)f = tϕ ⊕
∑

{α∈Φϕ:<f,α>=0}

k(α)
ϕ

and the associated polarisation of kϕ at f is

hϕ,f = tC ⊕
∑

{α∈Φϕ:<f,α>≥0}

k(α)
ϕ .

We now describe polarisations at (ϕ, f) for g . We saw in Corollary 3.3,
that the stabilizer of (ϕ, f) is Vϕ o (Kϕ)f . Thus at the Lie algebra level, the
polarisation must contain V C

ϕ ⊕ hϕ,f , if it is to be compatible with the choice of
polarisation for f outlined above.

In section 3. we wrote V = Vϕ ⊕ k · ϕ and k = kϕ ⊕ k⊥ϕ . So far, we have
chosen a polarising space for Vϕ ⊕ kϕ . We now must add a polarising space for
k · ϕ⊕ k⊥ϕ .

Writing the k coordinate as A = (B,C) with respect to the first decompo-
sition and the V coordinates as a = (w, u) with respect to the second, we have
the pairing:

ψ(u,C) = (u× ϕ)(C)

between u ∈ k·ϕ and C ∈ k⊥ϕ . We take a maximal isotropic subspace of
(
k·ϕ⊕k⊥ϕ

)C

relative to the symplectic form ψ ∧ ψ given in equation (22)

By using the K -invariant inner product in V , we can identify k · ϕ with a
subspace of V . In section 3. we wrote V = Vϕ ⊕ k · ϕ and k = kϕ ⊕ k⊥ϕ . So far, we
have chosen a polarising space for Vϕ ⊕ kϕ . We now must add a polarising space
for k · ϕ⊕ k⊥ϕ .

An obvious choice of maximal isotropic space h1
ϕ above is to choose h1

ϕ =
(k ·ϕ)C . In this case we get h = V ⊕hϕ,f and, if η denotes the representation of kϕ
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associated to hϕ,f , then the associated representation of V oK may be calculated
as acting by the left regular representation in

Hϕ,f = {φ ∈ C∞(V oK) : Xφ = 2πi(ϕ, f)(X)φ ∀ X ∈ h}

=
{
φ ∈ C∞(V oK) : φ(v, k) = e2πiϕ(v)φ(0, k)

and Xφ(0, k) = 2πif(X)φ(0, k) X ∈ hϕ,f}

=
{
φ ∈ C∞(V oK,Hη) : φ(v, k1) = e2πiϕ(v)η(k1)φ(0, k) ∀ k ∈ Kϕ

}
This space may be put into 1-1 correspondence with a subspace of L2(K/Kϕ),
via F(φ)(k) = φ(0, k). Hence it inherits a norm. The completion of Hϕ,f under
this norm is exactly the Mackey induced representation eiϕ ⊗ η ↑V×K

V×Kϕ
.

5. Fourier transforms

Given the pairing β(X) between g∗ and g , we can define the Fourier transform

of a function f on g to be the function f̂ on g∗ defined by

f̂(β) =

∫
f(X)eiβ(X)dX (25)

(provided the integral is defined) and similarly, if ψ is a function on g∗ , its inverse
Fourier transform is the function on g defined by

ψ̂(X) =

∫
ψ(β)e−iβ(X)dβ. (26)

These definitions may be extended in the usual way to certain classes of distri-
butions on g and g∗ . (We are so far being imprecise about what conditions are
necessary on the distributions for the integrals to make sense.) Notice that this
definition intertwines the adjoint and coadjoint action of G — provided that G-
invariant Lebesgue measures have been chosen on g and g∗ , we have

f̂(g · β) = (gf)̂(β) ψ̂(gX) = (gψ)̂(X).

Thus, in very general terms, if the Fourier transform of an adjoint orbit
exists, then it should be able to be written as a combination of coadjoint orbits.
(And the same can be said interchanging “adjoint” and “coadjoint”.) In this
section, we aim to show that the distributional Fourier transforms of adjoint orbits
and inverse Fourier transforms of coadjoint orbits both exist, and to find formulae
for them.

Of course, unlike the compact case, these orbits are in general non-compact
sets, so we cannot expect to be dealing with functions: the associated distributions
need to be defined as “principal value at infinity” integrals. Recall that in the
case of a compact group, the Fourier transform µ̂O(X) of a coadjoint orbit is a
generalized Bessel function JO(X). (See [7].)

However, our orbits are fibred over compact orbits. Now the Fourier trans-
form of the constant function 1 on R is δ0 (in a suitable p.v. sense) and similarly,
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the Fourier transform of a subspace P in Rn “is” the orthogonal P⊥ of P . We
begin by recalling how this works in the Rn case.

Let P be a vector subspace of Rn . Choose a Lebesgue dx measure on P .
For each R > 0, let BR be a ball of radius R in Rn , and for φ ∈ C∞

c (Rn), let

〈χ
P
, φ1〉 = lim

R→∞

∫
BR∩P

φ(x)dx. (27)

This defines χ
P

as a p.v. distribution. Then it is a simple exercise to show that
for every u ∈ C∞

c (Rn)

〈χ̂
P
, u〉 = lim

R→∞

∫ ∫
BR∩P

eiξ(x)dx u(ξ)dξ (28)

exists and equals 〈χ
P⊥
, u〉 , where P⊥ is the subspace of Rn given by

P⊥ = {ξ : ξ(x) = 0 ∀x ∈ P} . (29)

Thus χ̂
P

= χ
P⊥

.

We now use these ideas to define and compute the Fourier transform of an adjoint
orbit. Let BR ⊆ V be a ball of radius R > 0 and let B′

R ⊂ k be a ball of radius
R with respect to the negative Killing form on k .

We define B̃R to be BR × B′
R and consider the Radon measure µO , con-

centrated on the adjoint orbit O , which is defined for u ∈ C∞
c (g) by

〈µO, u〉 =
∫
O u(X)dµO(X) = limR→∞

∫
O∩B̃R

u(X)dµO(X) (30)

The following theorem is a direct result of the Rn case studied above.

Theorem 5.1. Let φ ∈ C∞
c (g∗) be a K -invariant function, and let O be an

adjoint orbit. The limit

〈µ̂O, φ〉 = lim
R→∞

∫
g∗

{∫
O∩B̃R

eiβ(X)dµO(X)

}
φ(β)dβ (31)

exists and defines a distribution in D(g∗).

It turns out that the Fourier transform can be given as a locally integrable
function. We now give an explicit formula for this function in terms of generalised
Bessel functions.

Definition 5.2. For X ∈ g and β ∈ g∗ , we define

JX(β) = κ2(H)

∫
K

eiβ(Ad(k)X)dk.

where X is conjugate under the K -action to H ∈ t , and κ2(H) is the constant
defined in (15). The functions JX will be known as generalised Bessel functions.
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These expressions are to be compared with the expressions for the general-
ized Bessel function for a compact Lie group given in Clerc [4].

Notice that we have, as with the standard Bessel functions, for all k ∈ K ,
JX(β) = JAd(k)X(β) = JX(Ad∗(k−1)β).

Notice also that if X = (aH , H) with H ∈ t and aH ∈ VH , the integrand
is invariant under the action of KH , as is the coefficient κ2 ; so we can write

JX(β) = κ2(H)

∫
K/KH

eiβ(Ad(k)X)dk̇.

where dk̇ denotes normalised invariant measure on K/KH .

Proposition 5.3. Let O be an adjoint orbit. Then µ̂O is an Ad∗ - invariant
locally integrable function on g∗ defined as follows. Choose (aH , H) ∈ O , where
H ∈ t+ and aH ∈ VH (c.f. the discussion preceding Proposition (2.7)). Then

µ̂O(β) = J(aH ,H)(ϕ, f)

where β = (ϕ, f) with f ∈ kϕ .

Proof . Let φ ∈ C∞
c (g∗).

〈µ̂O, φ〉 = lim
R→∞

∫
g∗

∫
O∩B̃R

eiβXdµO(X)φ(β)dβ.

Note that, since φ has compact support, we may exchange the limit and the outer
integral. We calculate the inner integral using Proposition (2.7).∫

O∩B̃R
eiβXdµO(X) = κ2(H)

∫
K/KH

∫
V H∩BR

eiβ(k·(aH+a1),Ad(k)H)da1dk̇

= κ2(H)
∫

K/KH

∫
V H∩BR

eiϕ(k·(aH+a1))eif(Ad(k)H)da1dk̇

= κ2(H)
∫

K/KH

∫
V H∩BR

eik·ϕ(aH+a1)da1e
iAd∗(k)f(H)dk̇

Taking the limit as R → ∞ , we may first pass the limit inside the K/KH

integral, which is compact. The limit of the inner integral, which is purely Eu-
clidean, may then be evaluated by (27), obtaining eik·ϕ(aH) , since VH is orthogonal
to V H . Thus

µ̂O(β) = κ2(H)

∫
K/KH

eik·ϕ(aH)eiAd∗(k)f(H)dk̇

The right hand side of this equation coincides with the definition of the generalised
Bessel function J(aH ,H)(ϕ, f).

We can thus write

µ̂O(β) = J(aH ,H)(ϕ, f)

as claimed.

The above formula serves as a model for the introduction of spaces of invariant
distributions in the next section.
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6. Convolution structures

In order to prove our main theorem — an analogue of Theorem 1 of [5] — we
need to define a suitable notion of convolution. This must be defined at least on
the conjugacy classes, the adjoint orbits and the coadjoint orbits of G . In fact,
we will define a notion of convolution for spaces of distributions invariant under
conjugation, the adjoint representation or the coadjoint representation respectively,
and show that our spaces include the orbital measures defined in sections 2. and
3..

In the case of compact Lie groups, where the orbits are of compact support,
G-invariant distributions of compact support are the appropriate space to use.
Here, however, the definition of the space of distributions is more delicate, and is
achieved by the use of a space of test functions APG which is an amalgam of C∞

and the space AP of almost periodic functions. We denote this space of G-almost
periodic functions by APG . Our G-invariant distributions live in the duals of
these spaces.

Recall that in Rn a function is said to be almost periodic if it is the
uniform limit of trigonometric polynomials.

Our spaces of test functions will be defined for each of conjugation ac-
tion, the adjoint action and the coadjoint action. Thus, will define three spaces:
APG(G), APG(g) and APG(g∗), and develop their properties.

Definition 6.1. For G = V oK , let

APG(G) = {h ∈ C∞(V oK) : (∀k ∈ K) v 7→ h(v, k) is almost periodic onV }
APG(g) = {h ∈ C∞(V ⊕ k) : (∀A ∈ k) v 7→ h(v, A) is almost periodic onV }
APG(g∗) = {h ∈ C∞(V ∗⊕k∗) : (∀ϕ ∈ V ∗)f 7→ h(ϕ, f) is almost periodic on k∗}

We shall refer to these spaces of functions as G-almost periodic functions on G ,
g and g∗ respectively.

We define topologies on these spaces as follows. Choose any basis X1, . . . XN for g

and its dual basis X∗
1 , . . . X

∗
N for g∗ . We will use the usual multi-index notation,

so that Dαh = Xα1
1 . . . Xαn

n h for h ∈ C∞(G), and similarly for h ∈ C∞(g) or
Dαh = (X∗

1 )α1 . . . (X∗
n)αnh for h ∈ C∞(g∗).

For APG(G), we use the seminorms

ρN
V×B(h) = sup

|α|≤N, x∈V×B

|Dαh(x)|,

where B runs through all compact subsets of K and N ∈ N .

For APG(g) we use

ρN
V×B(h) = sup

|α|≤N, x∈V×B

|Dαh(x)|,

where B runs through all compact subsets of k and N ∈ N .

For APG(g∗), we use

ρN
V×B(h) = sup

|α|≤N, x∈V×B

|Dαh(x)|,

where B runs through all compact subsets of k∗ and N ∈ N .
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An equivalent way of defining these seminorms is to compactify V (respec-
tively k∗ ) and define the usual C∞ topology by taking local convergence of all
derivatives. It is clear from the definition together with the fact that a uniform
limit of almost periodic functions on Rn is again almost periodic, that the spaces
are complete in the topology defined by these semi-norms.

The basic properties of G-almost periodic functions which we shall need
are contained in the following propositions.

Lemma 6.2. (i) APG(G) is a closed linear subspace of C∞(G) when equipped
with the above topology.

(ii) If h ∈ APG(G), then for all g ∈ G, both gh : x 7→ h(gx) and hg : x 7→ h(xg)
belong to APG(G); and hence so does x 7→ h(g−1xg).

Proof. The first statement follows from the fact that the almost periodic functions
are a linear space, and that a uniform limit of almost periodic functions is almost
periodic ([14] Ch 12, ex.29).

For the second, let g = (v0, k0) and notice that

gh(v, k) = h((v0, k0)(v, k)) = h(v0 + k · v, k0k).

Now the space of almost periodic functions on V is translation invariant and
rotationally invariant, which proves the result.

The statement for right translations follows similarly.

Lemma 6.3. (i) APG(g) is a closed linear subspace of C∞(g) when equipped
with the above topology.

(ii) If h ∈ APG(g), then for all X0 ∈ g

X 7→ h(X +X0) ∈ APG(g).

(iii) If h ∈ APG(g) then for all g ∈ G

X 7→ h(Ad(g)X) ∈ APG(g).

Proof. (i) follows as in the previous lemma, as does (ii). For (iii), use Lemma
2.2 to write

h(Ad(v, k)(a,A)) = h(k · a− (Ad(k)A) · v,Ad(k)A)

and again notice that in the first variable we have a translation and a rotation.

Lemma 6.4. (i) APG(g∗) is a closed linear subspace of C∞(g∗).

(ii) If h ∈ APG(g∗) and α ∈ g∗ then

β 7→ h(α+ β) ∈ APG(g∗).

(iii) If h ∈ APG(g∗) then for all g ∈ G

β 7→ h(Ad∗(g)β) ∈ APG(g∗).
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Proof. (i) and (ii) follow as before. For (iii), we use (17) to see that

h(Ad∗(v, k)(ϕ, f)) = h(k · ϕ, k.f + v × (k · ϕ)),

and the result follows as before.

Furthermore, the spaces APG(G) and APG(g∗) are related by the expo-
nential map.

Lemma 6.5. Let h ∈ APG(G). Then h ◦ exp ∈ APG(g).

Proof. It is clear that h ◦ exp ∈ C∞(g).

It remains to check the almost periodicity. By (5), we have

h(exp(a,A)) = h((
I − e−A

A
) · a,A).

Since a 7→ ( I−e−A

A
) · a is a linear map on V , and since composition of linear

transformations with almost periodic functions are almost periodic, the result is
true.

We now begin consideration of the natural analogues of G-invariant distri-
butions of compact support, which were important in the compact case. These
will be defined in each of the three cases as above.

Definition 6.6. (i) Let AP ′
G(G) denote the set of continuous linear func-

tionals φ on APG(G), where the pairing is denoted 〈φ, h〉. We shall say that
φ is G-invariant if for all g ∈ G,

〈φ, h(g)〉 = 〈φ, h〉,

where h(g)(x) = h(g−1xg).

Denote the set of G-invariant elements of AP ′
G(G) by I(G).

(ii) Let AP ′
G(g) denote the set of continuous linear functionals φ on APG(g),

where the pairing is also denoted 〈φ, h〉. We shall say that φ is G-invariant
if for all g ∈ G,

〈φ, h ◦ Ad(g)〉 = 〈φ, h〉.

Denote the set of G-invariant elements of AP ′
G(g) by I(g).

(iii) Let AP ′
G(g∗) denote the set of continuous linear functionals φ on APG(g∗),

where the pairing is also denoted 〈φ, h〉. We shall say that φ is G-invariant
if for all g ∈ G,

〈φ, h ◦ Ad∗(g)〉 = 〈φ, h〉.

Denote the set of G-invariant elements of AP ′
G(g∗) by I(g∗).

In the case of compact groups, the orbital measures, that is, G-invariant
measures concentrated on conjugacy classes, and on adjoint and coadjoint orbits
and suitably normalised, play an important role, as the simplest invariant distri-
butions. Before going on to develop the general theory, we give the analogues of
orbital measures for the case of G = V oK . These are elements of I(G).
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Definition 6.7. (i) For h ∈ APG(G), k ∈ K and a ∈ V , we let

(Mh)(a, k) = lim
R→∞

1

λ(BR ∩ V k)

∫
BR∩V k

h(a+ b, k) dλ(b), (32)

where λ is any Lebesgue measure on the Euclidean space V k , and BR is the
ball of radius R in V (c.f. the discussion preceding Theorem 5.1).

(ii) Let h ∈ APG(g). For A ∈ k , and a ∈ VA define

(Mh)(a,A) = lim
R→∞

1

λ(BR ∩ V A)

∫
BR∩V A

h(a+ b, A) dλ(b). (33)

Here, λ denotes any Lebesgue measure on the Euclidean space V A and BR

is as above.

(iii) For h ∈ APG(g∗), ϕ ∈ V ∗ , f0 ∈ k∗ϕ ,

(Mh)(ϕ, f) = lim
R→∞

1

λ(BR ∩ V × ϕ)

∫
BR∩V×ϕ

h(ϕ, f + f1) dλ(f1), (34)

where λ is any Lebesgue measure on V × ϕ ⊆ k .

The fact that the limits exists in each of the three cases follows from the
fact that we may take the invariant mean of an almost periodic function. These
functions are pointwise limits of measurable functions and so are (jointly) measur-
able. Note also that the limit is in each case independent of the normalisation of
λ .

Proposition 6.8. Let h ∈ APG(G), t ∈ T , a ∈ V . If C denotes the conjugacy
class of (a, t), let

〈µC, h〉 = κ1(t)

∫
K/Kt

(Mh)(k · a, ktk−1) dk̇ (35)

Then µC ∈ I(G).

Proof. This follows readily from the definition of APG(G).

We shall refer to µC as the orbital distribution of C.

Proposition 6.9. For h ∈ APG(g), for A ∈ k and for a ∈ VA , we have

(M̃h)(a,A) =
∫

K/KA
(Mh)(k · a,Ad(k)A)dk̇ is an Ad-invariant function which is

bounded and Borel measurable.

Proof. We observed above that the integrand is measurable. It is clearly bounded
since elements of APG are bounded. Since we are integrating over a compact set,
the result is again bounded and measurable. By construction, it is constant on
adjoint orbits.

If O is the adjoint orbit of (a,A), we denote by µO the associated orbital
distribution in I(g) defined by

〈µO, h〉 = κ2(A)M̃h(a,A). (36)

It is also clear how to define orbital distributions on coadjoint orbits:
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Proposition 6.10. Let ϕ ∈ V ∗ , f ∈ kϕ , and O∗ the coadjoint orbit through
(ϕ, f). Let

〈µO∗ , h〉 = κ3(ϕ, f)

∫
K/Kϕ

(Mh)(Ad∗(k)ϕ, k · f)dk̇. (37)

Then µO∗ ∈ I(g∗).

In section Proposition 5.3, we calculated the Fourier transform of µO as a gener-
alised Bessel function. It is not too hard to see that the Fourier transform belongs
to I(g∗).

We now need to make the observation that each of these spaces of distribu-
tions is closed under convolution. Convolution will be defined in the usual fashion
(Definition 6.12 below). To ensure that it is well-defined, we will need the following
result.

Proposition 6.11. (i) Let h ∈ APG(G) and φ ∈ AP ′
G(G). Then the func-

tion g 7→ 〈φ( · ), h(g · )〉 belongs to APG(G).

(ii) Let h ∈ APG(g) and φ ∈ AP ′
G(g). Then the function X 7→ 〈φ( · ), h( ·+X)〉

belongs to APG(g).

(iii) Let h ∈ APG(g∗). Then the function β 7→ 〈φ( · ), h( · + β)〉 belongs to
APG(g∗).

Proof. We shall prove (ii) only — the proofs of (i) and (iii) are sufficiently similar
to be left to the reader.

Recall that the dual space of C∞(Rn) is the space E(Rn) of distributions
of compact support.

Our theorem, of course, both extends and uses in its proof, the standard
result that for h ∈ C∞(Rn) and φ ∈ E(Rn), x 7→ 〈φ( · ), h( · + x)〉 belongs
to C∞(Rn). (See [14] 6.35.) In this statement (and in the sequel) we use the
conventional abuse of notation, writing φ as if it were a function.

We know that h ∈ C∞(V ×K), and that for each fixed k ∈ K , h(·, k) is
almost periodic on V .

Consider the function

ζ : (v0, k0) 7→ 〈φ(v, k), h(v0 + k0 · v, k0k)〉.

By the standard result quoted above, applied to the compactification in the V -
direction, ζ belongs to C∞(V × K). Now fix k0 ∈ K . The function h(·, k0k)
may be approximated uniformly by trigonometric polynomials on V . Since the
translation by k0 · v of such a function may again be approximated uniformly by
trigonometric polynomials, and since the APG(g) topology is stronger than the
uniform topology in the V direction, we see that ζ(·, k) may also be uniformly
approximated by trigonometric polynomials. Hence, ζ ∈ AP(g).

This completes the proof.

Proposition 6.11 now allows us to define convolution of our spaces of distri-
butions. This coincides with the usual definition
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Definition 6.12. (i) Suppose that η, φ ∈ AP ′
G(G). We define η ∗ φ by

〈η ∗ φ, h〉 = 〈η(g), 〈φ(g0), h(gg0)〉〉

for all h ∈ APG(G).

(ii) Suppose that η, φ ∈ AP ′
G(g). We define η ∗ φ by

〈η ∗ φ, h〉 = 〈η(X), 〈φ(Y ), h(X + Y )〉〉

for all h ∈ APG(g).

(iii) Suppose that η, φ ∈ AP ′
G(g∗). We define η ∗ φ by

〈η ∗ φ, h〉 = 〈η(β), 〈φ(γ), h(β + γ)〉〉

for all h ∈ APG(g∗).

It follows from Proposition 6.11 that the above convolutions are all well-
defined. Furthermore, the convolution of two invariant distributions is again
invariant. It follows from this proposition that convolutions of orbital distributions
exist as elements of I . We shall see how to compute these in some specific examples
in section 8.

We now give the definition of the wrapping map for our spaces of distribu-
tions. This is a direct analogue of the definition from [5].

Definition 6.13. Let φ ∈ AP ′
G(g). We define Φφ ∈ AP ′

G(G), the wrap of φ
by

〈Φφ, h〉 = 〈φ, j · h ◦ exp〉 (38)

for all h ∈ APG(G).

Φ is called the wrapping map.

The results we have proved so far show that this definition is valid. By
Lemma 6.5, h ∈ APG(G) implies that h ◦ exp ∈ APG(g), and hence, since j is
Ad-invariant and bounded, j · h ◦ exp also belongs to APG(g). Hence we have
defined 〈Φφ, h〉 for each h ∈ APG(G). It follows that Φφ ∈ AP ′

G(G).

It is clear that the wrap of an element of I(g) belongs to I(G).

We may now state our main theorem. It is a direct analogue of Theorem 1
of [5].

Theorem 6.14. Let η, φ ∈ I(g). Then

Φ(η ∗ φ) = Φ(η) ∗ Φ(φ). (39)

(The convolution on the left-hand side is on g and that on the right-hand side is
on G .)

The proof of the theorem will occupy the remainder of this section. It will
be preceded by a sequence of lemmas which make a systematic study of the spaces
I .

In the case of a compact group, every conjugacy class of G meets the
maximal torus in a unique Weyl group orbit. Thus, the central distributions can
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be analysed in terms of W -invariant distributions on the torus. Similar statements
are true for both adjoint and coadjoint orbits. These facts were used in [5] and [6]
in our proofs of the basic properties of the wrapping maps.

We now develop an analgous theory for the semi-direct product case —
again, we will need to do this for each of the three cases; G , g and g∗ .

We start with the conjugation action.

If f ∈ AP(G), then M̃f(a, k) =
∫

K
Mf(k1 · a, k−1

1 kk1)dk1 is a central
invariant function on G .

Note that for t, t0 ∈ T and for v ∈ V , we have

M̃f(t0 · v, t−1
0 tt0) = M̃f(v, t). (40)

Recall that the Weyl group W of (K,T ) is the quotient NK(T )/T of the
normaliser of T in K by its centraliser (which is equal to T itself).

By (40) the action M̃f(w ·v, w−1tw) is well-defined for all w ∈ W , and one

must have M̃f(w · v, w−1tw) = M̃f(v, t).

Note that the function κ1(t) is also W -invariant. Thus

(a, t) → κ1(t)M̃f(a, t)

is a W -invariant function on V × T which, in addition, is constant on V t , as a
function of a , for any fixed t .

Note that every element of K is conjugate to an element of T , and to
a unique element of T+ . Thus, the values of M̃f on V × T+ define its values
everywhere.

Thus M̃f |V×T belongs to

APW(V × T ) = {g ∈ C∞(V × T ) : ∀t ∈ T and ∀v ∈ V,
(i) ∀w ∈ W , g(w · v, w−1tw) = g(v, t);

(ii) ∀a ∈ V t, g(v + a, t) = g(v, t)}.

Note that by equations (12) and (13), we have

Vt = ⊕{λ:λ(log t)=0}Vλ and V t = ⊕{λ:λ(log t) 6=0}Vλ.

In fact, for a finite set F ⊆ Λ, let VF = ⊕{λ:λ∈F}Vλ,

V F = ⊕{λ:λ/∈F}Vλ,

and TF = {t ∈ T : exp(iλt) = 1 if and only if λ ∈ F}, a closed subset of T .

Then for t ∈ TF , Vt = VF and V t = V F . Note that for w ∈ W , wTF = TwF

and for t ∈ TF , Vwt = VwF and V wt = V wF .

If φ ∈ I(G) and f ∈ APG(G) then < φ, f >=< φ, M̃f > . Thus, we see
that, dual to the above restriction of APG(G) to APW(T ), there is a notion of
extension of a distribution of compact support in E(VF × TF ) to an element of
I(G). This extension is given by the exact analogue of Definition 3.4 of [6].

Definition 6.15. Let F ⊆ Λ, and let ψ ∈ E(VF × TF ). Define the extension
of ψ to an element e(ψ) of I(G) by

〈e(ψ), f〉 =
1

|W|
∑
w∈W

〈ψ, κ1(t)M̃f |VF×TF
(w · a, w−1tw)〉.

Following the proof of Lemma 3.5 of [6], we have
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Lemma 6.16. If ψ is W -invariant of compact support, then e(ψ) ∈ I(G).
Furthermore, if ψ ∈ L1

loc(G) is Ad-invariant then e(ψ |V×T ) = ψ a.e.

The following results are now obvious.

Lemma 6.17. g ∈ APW(V × T ) if and only if there exists f ∈ APG(G) such

that M̃f |V×T = g .

Proof: The “only if” direction needs a proof. It is clear how to extend an element
g ∈ APW(V × T ) to a K - invariant function ĝ on V × K . Now it suffices to
choose an element of APG(G) whose invariant means in the V -directions coincide
with the values of ĝ on the corresponding conjugacy classes.

Corollary 6.18. (i) For all ψ ∈ AP ′
W(V ×T ) there exists e(ψ) ∈ I(G) such

that
〈e(ψ), f〉 = 〈ψ, M̃f |V×T 〉.

(ii) ψ → e(ψ) is a one-one correspondence.

Given a distribution ψ ∈ E(VF × TF ) we can define ψ ∈ AP ′
W(V × T ) by,

for g ∈ C∞(V × T ),

〈ψ, g〉 =
1

|W|
∑
w∈W

〈ψ, (wg) |VF×TF
〉. (41)

Then ψ is W -invariant and supported on ∪w∈WVwF×TwF . By Lemma 6.16,
e(ψ) ∈ I(G). We have therefore defined a one-to-one correspondence between the
W - invariant elements of ∪F⊆ΛE(VF × TF ) and I(G).

More precisely, we have

Proposition 6.19. Suppose that φ ∈ I(G). Then for each F ⊆ Λ there is
φF ∈ E(VF × TF ), with the property that for all w ∈ W , φwF = w · φF , and such
that

φ =
∑
F⊆Λ

e(φF ).

We may now treat the Adjoint representation in a similar fashion.

For H ∈ t , we have VH = ⊕{λ:λ(H)=0}Vλ and V H = ⊕{λ:λ(H) 6=0}Vλ . Given a
subset F of Λ, we let tF = {H ∈ t : λ(H) = 0 iff λ ∈ F} .

We shall denote as above the space of distributions of compact support on
VF × tF by E(VF × tF ). For such a distribution ψ , let ψ be the W -invariant
distribution on V × t given by

〈ψ, h〉 =
1

|W|
∑
w∈W

〈ψ, (wh) |VF×tF 〉 (42)

and define e(ψ) ∈ I(g) by letting, for h ∈ APG(g),

〈e(ψ), h〉 = 〈ψ(a,H), κ2(H)

∫
K

(Mh)(k · a,Ad(k)H)dk〉. (43)
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Proposition 6.20. (i) For any choice of ψ ∈ E(VF × tF ), e(ψ) ∈ I(g).

(ii) Every element of I(g) has the form
∑
F⊆Λ

e(φF ), for suitable choices of dis-

tributions φF ∈ E(VF × tF ), F ⊆ Λ, such that φwF = wφF for all w ∈ W .

The above proposition establishes a linear mapping from a space of the W -
invariant elements of E(tF ×VF ) into I(g). Furthermore, the sum of these images
consists of all of I(g).

Finally, we show how to carry out the analogue of this procedure for I(g∗).

Choose a basis {ψλ : λ ∈ Λ} for V ∗ which is dual to {vλ}, i.e. ϕλ(vµ) = δµλ.

For F ⊆ Λ, let

V ∗
F = {ϕ ∈ V ∗ : ϕ(Vλ) = {0} for all λ 6∈ F}.

Let t∗F = sp{α ∈ Φ : 〈α, λ〉 = 0 ∀λ ∈ F}.
Then the coadjoint orbits associated with F are indexed by (ϕ, f), with

ϕ ∈ V ∗
F , f ∈ t∗F .

Definition 6.21. For a distribution τ of compact support on V ∗
F × t∗F , and for

h ∈ APG(g∗) let

〈e(τ), h〉 = 〈τ(ϕ, β), κ3(C, a)

∫
K

Mh(k · ϕ,Ad∗(k)β)dk〉. (44)

Given this definition, we now have a direct analogue of the previous propo-
sitions.

Proposition 6.22. (i) For any finite subset F of Λ, let τ ∈ E(V ∗
F × t∗F ).

Then e(τ) ∈ I(g∗).

(ii) Every element of I(g∗) has the form
∑
F⊆Λ

e(τF ), for suitable choices of τF ∈

E(V ∗
F × t∗F ), with τwF = wτF ∀w ∈ W .

Proposition 6.23. Let φ ∈ I(g). Then for all g ∈ APG(G),

〈Φ(φ), g〉 = 〈ΦK(φ),Mg〉,

where ΦK denotes the wrapping map for the compact group K , acting in the second
variable only.

Proof. We may assume that φ = e(φF ), by Proposition 6.20. By (43), for
h ∈ APG(g),

〈e(φF ), h〉 =
1

|W|
∑
w∈W

〈w · φF (a,H), κ2(H)

∫
K

Mh(k · a,Ad(k)H)dk〉. (45)

Thus for g ∈ APG(G),

〈Φ(φ), g〉 = 〈φF (a,H), κ2(H)j(a,H)

∫
K

Mg(k · e
H − 1

H
· a, k−1 expK(H)k)dk〉.

(46)
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Now if H ∈ tF , and a ∈ VF , then H · a = 0, so that
eH − 1

H
· a = a . Also, by (10)

and (15),

j(a,H) = jK(H)
∏
λ6∈F

(
2 sin λ(H)

2

λ(H)

)mλ

, and (47)

κ2(H) =
∏

{α∈Φ+:α(H) 6=0}

α(H)2
∏
{λ6∈F}

λ(H)mλ . (48)

Substituting (47) and (48) in (46), we obtain 〈Φ(φ), g〉

= 〈φF (a,H), jK(H)
∏
{α∈Φ+:α(H) 6=0} α(H)2κ1(expK(H))×

×
∫

K
Mg(k · a, k−1 expK(H)k)dk〉

= 〈ΦK(φF )(a, ·)(t) |V×T , κ1(t)Mg(a, t )〉.

(49)

This follows by Lemma 3.5 of [6]. Hence we finally obtain

〈Φ(φ), g〉 = 〈ΦK(φ), Mg〉, (50)

as claimed.

Proof of Theorem 6.14.
By Proposition 6.20, we may assume that φ = e(φE) and ψ = e(φF ), where E
and F are W -invariant subsets of Λ, φE ∈ E(VE × tE) and φF ∈ E(VF × tF ).

By definition, we have, for h ∈ APG(g),

〈φ ∗ ψ, h〉 = 〈e(φE)(X), 〈e(φF )(Y ), h(X + Y )〉 〉. (51)

Thus for g ∈ APG(G), we may use Proposition 6.23 to calculate

〈Φ(φ) ∗ ψ, g〉 = 〈φ(X), 〈ψ(Y ), j.g ◦ exp(X + Y )〉 〉

= 〈ΦK(φ))(a, k1), 〈ΦK(ψ)(b, k2),M1M2g(a+ b, k1k2)〉 〉

= 〈ΦK(φ)(a, k1), 〈ΦK(ψ)(b, k2), M3g(a+ k1 · b , k1k2)〉 〉.

(52)

Here, we denote by M1 the average in the variable a over the space V k1 , by M2

the average in the variable a over the space V k2 and by M3 the average over the
space V k1k2 in the first variable of g .

To see the last equality, notice that for any almost periodic function p on
V , and for subspaces W1, W2 of V , we have (in the obvious notation),

MW1
a MW2

b p(a+ b) = MW1+W2
c p(c).

Furthermore, we have V k = (I − k) · V , and for all v ∈ V , (I − k1k2) · v =
(I − k1) · v + k1 · (I − k2) · v . Thus V k1k2 = V k1 + k1 · V k2 .

It follows that M1M2p(a+ b) = M3p(a+ k1 · b).
Since (a, k1)(b, k2) = (a + k1 · b, k1k2) and since by [5] Theorem 2.1, we

know the wrapping formula for distributions of compact support on k , we can now
simplify (52) to

〈Φ(φ ∗ ψ), g〉 = 〈Φ(φ)(a, k1), 〈Φ(ψ)(b, k2), g((a, k1)(b, k2))〉 〉

= 〈Φ(φ ∗ ψ), g〉.
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7. Representation Theory and the Character Formula

In the previous section we saw that the spaces APG(g), APG(g∗) and APG(G)
have natural dual spaces of distributions which carry convolution structures. Fur-
thermore, the convolutions of G-invariant distributions in these spaces is commu-
tative. In this section, we establish that the Gelfand spaces — the set of characters
— of these commutative convolution algebras may be naturally identified respec-
tively with the set of coadjoint orbits in g∗ , the set of adjoint orbits in g , and the
set of characters of irreducible representations of G . Theorem 6.14 then leads to
a natural correspondence between the irreducible characters of G and coadjoint
orbits, and hence to a version of the Kirillov character formula. Whereas both
the original Kirillov statement [11] and Lipsman’s formulation [12] have a local
character, our Theorem will be stated as an equality of distributions in I(g), and
hence holds globally. We first establish some lemmas.

Lemma 7.1. Let e(φF ) ∈ I(g) where φF ∈ E(tF × VF ), and let β = (ϕ, f) ∈
g∗ . Then X 7→ eiβX ∈ APG(g) and

〈e(φF ), eiβ〉 = 〈φF (H, a), eif |tF (H)eiϕ|VF
(a)〉. (53)

Proof. By Lemma 3.2 and the fact that e(φF ) is Ad-invariant, 〈e(φF ), eiβ〉 =
〈e(φF ), eiβ0〉 , where β0 = (ϕ, f0) with f0 = f |kϕ∈ k∗ϕ . Then eiβ0(X,v) = eiϕ(X)eif0(V )

is clearly in APG(g) as exponential functions are periodic. Further 〈e(φF ), eiβ0〉 =
〈φF , e

if |tF eiϕ|VF 〉 . The Lemma follows.

Now VF × tF is a Euclidean space, and so there is a one-to-one correspon-
dence between its characters and V ∗

F × t∗F . Thus we get immediately

Proposition 7.2. The space of characters of I(g) is in one-one correspondence
with the set of coadjoint orbits in g∗ .

An entirely similar proof, which is omitted, gives

Proposition 7.3. The space of characters of I(g∗) is in one-one correspon-
dence with the set of adjoint orbits in g.

We now consider the space I(G). The characters of this space will turn out
to be in one-to-one correspondence with the set of traces of irreducible represen-
tations of G , in a sense which we shall make precise. We will need three Lemmas
to do this.

Lemma 7.4. Let ρ be an irreducible representation of G. For each ξ, ξ′ ∈ Hρ ,
the matrix entry

tρξ,ξ′(g) = 〈ρ(g)ξ, ξ′〉

belongs to APG(G).

Proof. This follows immediately from the expression for ρ as an induced
representation given in (4.).
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Lemma 7.5. Let ρ = ρ(ϕ,η) ∈ Ĝ and e(φF ) ∈ I(G). Then

〈e(φF ), tρξ,ξ′〉 = 〈φF (t, a), κ2(a)e
2πiϕ|VF

(a)

∫
K

〈η(t)ξ, η(k1)ξ
′〉dk1〉. (54)

Proof. By the remarks at the end of Section 4, we have

tρξ,ξ′(v, k1) =

∫
K/Kϕ

e2πiϕ(k−1v)ξ(k−1
1 k)ξ′(k) dk̇.

Now by Definition (6.21), we have

〈e(φF ), tρξ,ξ′〉 = 〈φF (t, a), κ1(a)

∫
K

Mtρξ,ξ′(k · a, kt) dk〉 (55)

= 〈φF (t, a), κ1(a)

∫
K

∫
K

Me2πiϕ(ka)ξ(t−1k−1
1 k)ξ′(k) dk1dk〉 (56)

In the sense of equation (29), the mean of an exponential function is the
delta function in the perpendicular direction. Hence we obtain Mkte2πiϕ(ka) =
e2πiϕ|VF

(a) . Thus the double integral (56) simplifies to give

e2πiϕ|VF
(a)

∫
K

∫
K

ξ(t−1k−1
1 k)ξ′(k) dk1dk = e2πiϕ|VF

(a)

∫
K

〈η(k1t)ξ, ξ
′〉Hηdk1.

Substituting this in (55), we obtain (54).

Now we may choose an orthonormal basis {ξη
i }

dη

i=1 basis of weight vectors
for Hη , so that η(t)ξη

i is a multiple of αi(t) ∈ C of ξη
i . We then have, for all

ξ′ ∈ Hη ,

〈e(φF ), tξη
i ξ′〉 = 〈φF (a, t), κ1(a)e

2πiϕ|VF
(a)αi(t)〉〈ξη

i , ξ
′〉Hη .

Putting these together, we have an orthonormal basis
{ξη

i : η ∈ K̂, i = 1, . . . , dη} for L2(K) and with respect to this basis,

Tr〈e(φF ), ρ〉 =
∑
µ∈K̂

dµ〈φF (a, t), κ1(a)e
2πiϕ|VF

(a)χµ(t)〉.

Now
∑
µ∈K̂

dµχµ(t) converges as a distribution on K to δ0(t). Thus

Tr〈e(φF ), ρ〉 = 〈φF (a, t), κ1(a)e
2πiϕ|VF

(a)δ0(t)〉

= 〈φF (a, e), κ1(a)e
2πiϕ|VF

(a)〉.
(57)

Since this is clearly finite, we have shown

Lemma 7.6. 〈e(φF ), ρ〉 is a diagonal matrix on Hρ , and Tr〈e(φF ), ρ〉 < ∞.
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Theorem 7.7. The mappings ψ 7→ Tr〈ψ, ρ〉 are ∗-homomorphisms I(G) →
C. Furthermore, every such ∗-homomorphism arises in this way for a suitable
choice of ρ.

Proof. We have shown that for ψ ∈ I(G), the operator-valued function
ψ 7→ 〈ψ, ρ〉 is well-defined into B(Hρ), and that it is trace class. We have by
standard arguments 〈φ ∗ ψ, ρ〉 = 〈φ, ρ〉〈ψ, ρ〉 . Now since both φ and ψ are G-
invariant, both 〈φ, ρ〉 and 〈ψ, ρ〉 are, in fact, multiples of the identity on AP(G).
The first statement follows.

Now, elements of I(G) are constant on conjugacy classes of G , and hence
are defined by their values on character of unitary representations of G .

We may now deduce our version of the Kirillov character formula.

Corollary 7.8. We have the following equality as elements of I(g)

j(X)Tr(ρ(expX)) =

∫
Oρ

eiβ(X)dµOρ(β).

Proof. By Theorem 6.16, Φ is a homomorphism of commutative algebras from
I(g) to I(G). Now Proposition 7.2 identifies the set of characters of the first as
the set of coadjoint orbits and Theorem 7.7 identifies the set of characters of the
second as the set of traces of irreducible representations. The theorem now follows.

Of course, versions of this theorem have been given before. However, all of
these have had some restrictions on the support of X . Over many years, and in a
number of papers, Kirillov has shown a local version of it for some Lie groups and
conjectured that his version holds for all groups (see [11] for a history). Lipsman
[12] gave a version of the character formula for semidirect products with co-compact
nilradical — this includes our classes of groups (though again, his version was
local).

There are two novel aspects in our version of the formula. Firstly, our
formula is globally valid — with no restrictions such as that the support of φ̃ must
lie close to {0} . This is a consequence of our proof via (APG , AP ′

G ) duality.

Secondly, this duality also gives a more precise statement of the equality
than in other versions. We believe that this will allow for greater use of the
formulae in analysis on motion groups.

In the case where G is a compact Lie group we have [7] given a very explicit
formula for the convolution of coadjoint orbits, proving a continuous version of the
Kostant multiplicity formula. Knowledge of the compact case, together with the
notion of convolution in the space I allows one to develop similar formulae for the
semi-direct product case.

A different feature present here is the fact that, unlike the compact case,
there is no identification of the adjoint and coadjoint pictures, as the Killing form
is now indefinite. Nevertheless, the coadjoint hypergroup is the dual of the adjoint
hypergroup. This fact is expressed by Proposition 7.3. In fact, the duality of the
two hypergroups is realized by the Fourier transform, and may be conveniently
represented by the generalised Bessel functions introduced in Definition 5.2. In
future work, we plan to extend these ideas to other Lie groups.
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8. Examples

In this section, we provide two worked examples: the Euclidean motion groups of
degree two and three. We believe that these two examples form a good illustration
of the theory developed in this paper.

Let K = SO(n) act in Rn by rotations, and form the semi-direct product
G = M(n) = Rn o SO(n). This is the n-dimensional Euclidean motion group,
with product

(v, k)(v1, k1) = (v + kv1, kk1).

Its Lie algebra is g = Rn ⊕ so(n).

A maximal torus in SO(n) is given by

T = {Tθ1···θk
: θi ∈ [0, 2π), i = 1 · · · k},

where k =
[n
2

]
, Tθ =

(
cos θ sin θ
− sin θ cos θ

)
and Tθ1···θk

is the n × n matrix with

blocks Tθ1,··· ,Tθn on the diagonal, finishing with a 1 in the bottom right hand
corner when n is odd.

Note that Tθ1···θk
= exp

(∑k
i=1 θiHi

)
, where Hi is the matrix with(

0 1
−1 0

)
in the ith block. Let e1 · · · en be the standard basis for Rn . We have

Hiej =


0 if j 6= 2i− 1, 2i
e2i

if j = 2i− 1
−e2i−1 if j = 2i

Thus, for the weight λj(ΣθiHi) = θj on so(n), we have the weight space
sp{e2i−1, e2i}. If n is odd, we also have the weight λ0(H) = 0, with weight space
{en}. Then

V =

{
⊕k

j=1Vλj
if n even

⊕k
j=0Vλj

if n odd.

We will consider the two cases n = 2 and n = 3 separately, as they illustrate
our theorems.

8.1. The Group M(2).

In this case, SO(2) = T = {Tθ : 0 ≤ θ < 2π}.
Fix a Haar measure on R2. Note that, if θ = 0, VTθ

= V and V Tθ = {0},
while if θ 6= 0, VTθ

= {0} and V Tθ = V.

The conjugacy classes through (v, Tθ) corresponding to θ = 0 are circles
of radius |v| ≥ 0. Thus, we have the single point (0, 0) with orbital measure
δ0 , and circles of radius R > 0, {(u, 0) : |u| = R} with orbital measure Rdθ.
These have dimension 0 and 1 respectively. The conjugacy class though (v, Tθ)
corresponding to θ 6= 0 are {(u, Tθ) : u ∈ R2} a two dimensional fibre over a single
point (0, Tθ), a trivial K -orbit. The orbital measure on this orbit is sin θdx.

The adjoint orbits through (v, sH1) are likewise of two types. If s = 0,
there is the single point (0, 0) with measure δ0 when |v| = 0, and the circle
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{(v, xH1) : |u| = R} with measure Rdθ when |v| = R. If s 6= 0, we have two
dimensional orbits {(u, sH1) : u ∈ R2} with measure sdx.

The coadjoint orbits are as follows. Let ϕ ∈ R2∗ = R2 and f = fλ ∈
so(2)∗ = R where〈fλ, H1〉 = −λ. Then for v ∈ R2, we calculate

(v × ϕ)(sH1) = sϕ(H1 · v) = s(ϕ1ϕ2)

(
v2

−v1

)
= s(ϕ1v2 − ϕ2v1).

Thus v × ϕ = fv1ϕ2−ϕ1v2 indeed corresponds to the cross product of vector
calculus.

There are again two types of coadjoint orbit. In the case where ϕ = 0,
the orbit of (0, fλ) is the single point with Liouville measure δ(0,fλ). By contrast,
in the case ϕ 6= 0 the space is fibred over the circle {Tθϕ : 0 ≤ θ < 2π}, the
fibre being {fµ : µ ∈ R}. These are cylinders of radius |ϕ| > 0. The Liouville
measure on such a cylinder is Rdθ× dµ, where dµ is Lebesgue measure on R. For
ϕ 6= 0, Kϕ = {f0} and so the condition fλ ∈ kϕ is simply λ = 0.

The spaces AP are as follows:

AP(G) = {f ∈ C∞(R2 × T) : for all θ, v 7→ f(v, Tθ) ∈ AP(R2)}

AP(g) = {f ∈ C∞(R2 × R) : for all s, v 7→ f(v, sH1) ∈ AP(R2)}

AP(g∗) = {f ∈ C∞(R2 × R) : for all ϕ ∈ R2, λ 7→ f(ϕ, fλ) ∈ AP(R)}.

We now describe the spaces of invariant distributions I and their convolu-
tion structures. There is just one weight λ, of t on V. Thus, the possible values
for F are:

F = Ø, corresponding to VF = {0} , V F = V , TF = T , t∗F = t , V ∗
F = {0} and

t∗F = t∗ , furthermore,

F = {λ} corresponding to VF = V , V F = {0} , TF = {I} , tF = {0} , V ∗
F = V ∗

and t∗F = t∗ .

The structure of I(G) is as follows.

Corresponding to F = Ø, we choose ϕ0 ∈ E({0} × T ) = E(T ).

For f ∈ AP(G), let f̃(Tθ) be the invariant mean of the function v 7→
f(v, Tθ). Then for τ0 = e(ϕ0), we have

〈τ0, f〉 = 〈ϕ0(Tθ), f̃(Tθ)〉,

If τ0, τ
′
0 are two such distributions arising from ϕ0, ϕ

′
0, (say) then 〈τ0 ∗ τ ′0, f〉 =

〈ϕ0 ∗ ϕ′0(Tθ), f̃(Tθ)〉.
Corresponding to F = {λ}, we choose ϕ1 ∈ E(V × {I}) = E(V ). Setting

τ1 = e(ϕ1), we have

〈τ1, f〉 = 〈ϕ1(v),
∫ 2π

0
f(Tθv, I)dθ〉

= 〈ϕ1(v), f(v, I)〉 if ϕ1 is K-invariant on V.

If ϕ1, ϕ
′
1 are two such K -invariant distributions with extensions τ1, τ

′
1, then

〈τ1 ∗ τ ′1, f〉 = 〈ϕ1 ∗V ϕ
′
1, f(v, I)〉.
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If τ0, τ1 arise from ϕ0, ϕ1 as above, then

〈τ1 ∗ τ0, f〉 = 〈ϕ1(v), 〈τ0(Tθ), f̃(Tθ)〉〉

= 〈τ1, 1〉〈τ0, f〉

where 1 denotes the constant function.

Notice that every element of I(G) is a sum of two distributions τ = τ0+τ1, τi
as above.

The structure of I(g) is similar. We can write τ ∈ I(g) as τ = τ0 + τ1 ,
where τ0 is the extension of ϕ0 ∈ E(t) and τ1 is the extension of ϕ1 ∈ E(v), which
is K -invariant.

If τ0, τ
′
0, τ1, τ

′
1 have this form, then

〈τ0 ∗ τ ′0, f〉 = 〈ϕ0 ∗ ϕ′0(sH1), f̃(sH1)〉

〈τ1 ∗ τ ′1, f〉 = 〈ϕ1 ∗ ϕ′1(v), f(v, 0)〉

and 〈τ1 ∗ τ0, f〉 = 〈ϕ1, 1〉 〈ϕ0(sH1), f̃(sH1)〉.

The picture for I(g∗) is slightly different. Corresponding to F = Ø, ϕ0 ∈
E(t∗) = E({0} × t∗) we obtain τ0 = e(ϕ0) as follows. Let f ∈ AP(g∗) and denote
by f̃(v∗) the mean of the function β 7→ f(v∗, β). Then 〈τ0, f〉 = 〈ϕ0(B), f(0, β)〉,
and for τ0, τ

′
0 of this form,

〈τ0 ∗ τ ′0, f〉 = 〈ϕ0 ∗ ϕ′0(β), f(0, β)〉.

On the other hand, corresponding to ϕ1 ∈ E(V ∗), we have

〈τ1, f〉 = 〈ϕ1(v
∗),
∫
f̃(Tθv

∗)dθ〉

= 〈ϕ1(v
∗), f̃(v∗)〉

provided that ϕ1 is K -invariant. As above, we obtain

〈τ1 ∗ τ ′1, f〉 = 〈ϕ1 ∗ ϕ′1(v∗), f̃(v∗)〉, and

〈τ0 ∗ τ1, f〉 = 〈ϕ0, 1〉〈ϕ1, f̃〉.

These notions of convolution give the natural convolution on the conjugacy
classes, adjoint orbits and coadjoint units. For example, the convolution of two
cylinders (coadjoint orbits) of radius R1, R2 can be written

Cyl(R1) ∗ Cyl(R2) =

∫
NR1R2(R)Cyl(R)dR

where NR1R2(R) is the density for convolutions of circles in the plane.

8.2. The Group M(3).

The group SO(3) has maximal torus

T = {T̃θ = diag(Tθ, 1) : 0 ≤ θ < 2π},
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and one positive root α . The weights on R3 are λ0 = 0 corresponding to the
z -axis, sp{e3}, and one non-zero weight λ, with weight space sp{e1, e2}, defined
by λ(sH) = s where

H =

 0 1 0
−1 0 0
0 0 1

 .

Recall that each non-zero element A of SO(3) has an axis of rotation in
R3. A matrix which rotates this axis to the z -axis will conjugate A into T.

If θ = 0, then VT̃θ
= V and V T̃θ = {0}. If θ 6= 0, then VT̃θ

= sp{e3} V T̃θ =
sp{e1, e2}.

The conjugacy class of G through the point (v, A) is as follows:

• If A = I, |v| = 0, we have the single point (0, I). The orbital measure is
δ(0,I) .

• If A = I, |v| = R > 0, we have a two-dimensional compact orbit SR × {0} ,
where SR is the sphere of radius R in R3. The orbital measure is Rdσ, dσ
being surface measure on the sphere.

• If A 6= I, |v| = 0 then the orbit is fibred over the compact orbit {0} × CA ,
where CA = {B−1AB : B ∈ SO(3)} is the conjugacy class of A . The fibre at
B−1AB is the two-dimensional space V B−1AB. This orbit is four dimensional
with measure dOc × dx.

• If A 6= I, |v| = R > 0, then the orbit is fibred over SR × CA , with fibre at
(Bv,B−1AB) being V B−1AB. This orbit is six dimensional, and the orbital
measure is Rdσ × dOc × dx.

The adjoint orbit through (v,X) ∈ R3 ⊕ so(3) is similar:

• If X = 0, v = 0, we have the single point (0, 0).

• If X = 0, |v| = R > 0, we have SR × {0}.

• If X 6= 0, v = 0 we have the compact orbit {0}×OX ,OX being the SO(3)-
adjoint orbit of X , with fibre at (0, y) being the two-dimensional space V y.

• If X 6= 0, |v| = R > 0, we have SR ×OX with fibre at (u, y) being V y.

These orbits have dimension 0, 2, 4 and 6 respectively.

For the coadjoint orbits, let ϕ ∈ R3∗ = R3, v ∈ R3 and calculate

(v × ϕ)A = ϕ(sH∗v) = s(ϕ1, ϕ2, ϕ3)

 v2

−v1

0

 = s(ϕ1v2 − ϕ2v1).

For ϕ 6= 0, kϕ is the set of rotations with axis ϕ.

Then for (ϕ, f) with f ∈ kθ, we have

• If ϕ = 0, f = 0 the single point (0, 0).
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• If ϕ = 0, f 6= 0, we get {0} × Of , where Of is the (two dimensional)
coadjoint orbit in k∗ through f.

• If ϕ 6= 0, f = 0, V ×ϕ has dimension 2 in k. It is the orthogonal complement
of the rotations which preserve ϕ. The orbit is then S|ϕ| × (V × ϕ).

• If ϕ 6= 0, f 6= 0, we get the compact orbit S|ϕ| ×Of with fibre at
(kϕ,Ad∗(k)f) being V × kϕ.

The spaces AP are as follows:

AP(G) ={f∈C∞(V×SO(3)) : ∀A ∈ SO(3), f(·, A) is almost periodic on R3}

AP(g) ={f∈C∞(V⊕so(3)) : ∀x ∈ so(3), f(·, x) is almost periodic in R3}

AP(g∗) ={f∈C∞(V ∗⊕so(3)∗) : ∀ϕ ∈ V ∗, f(ϕ, ·) is almost periodic on so(3)}.

For f ∈ AP(G), i ⊆ {1, 2, 3}, let Mif be the function on R3−|i|×SO(3) which is
the invariant mean in the variables xi, i ∈ i of the function xi 7→ f(x1, x2, x3, A).
Thus M12f(x3, A) denotes the result of taking the mean in x1 and x2 of f. We
use similar notation for AP(g).

Given that λ = {0, λ} contains two elements, there are four possible subsets:
F = Ø, F = {0}, F = {λ}, F = Λ. Each of our invariant distributions is a sum of
four distributions defined by these four sets. We will denote them by τ0, τ1, τ2, τ3
respectively.

Note that for

• F = Ø, VF = {0}, V F = V, TF = T, tT = t, V ∗
F = {0} and t∗F = {0}.

• F = {0}, VF = sp{e3}, V F = sp{e1, e2}, TF = T, tF = t, V ∗
F = {0} and

t∗F = t.

• F = {λ}, VF = sp{e1, e2}, V F = sp{e3}, TF = {I}, tF = {0}, V ∗
F =

sp{e∗1, e∗2}, t∗F = {0}.

• F = λ, VF = V, V F = {0}, TF = {I}, tF = {0}, V ∗
F = V ∗, t∗F = {0}.

Using this notation, we now describe our spaces of invariant distributions I(G)
consists of τ = τ0 + τ1 + τ2 + τ3, where there exist

ϕ0 ∈ E(T ), ϕ1 ∈ E(sp{e3} × T ), ϕ2 ∈ I(sp{e1, e2}), ϕ3 ∈ E(V ),

with

• 〈τ0, f〉 = 〈e(ϕ0), f〉 = 〈ϕ̃0, M123f〉.

Here 〈ϕ̃0(x), f〉 = 〈ϕ0(t),
∏

α∈Φ+

sin(logα(t))

∫
SO(3)

f(ktk−1)dk〉.

Given τ0, τ
′
0 of this form, we have τ0×τ ′0 = e(ϕ̃0∗ϕ̃′0), the usual convolution

on K.

• 〈τ1, f〉 = 〈e(ϕ1), f〉 = 〈ϕ̃1(x3, A),M12f(x3, A)〉.
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Given τ1, τ
′
1 of this form, we have

〈τ1 ∗ τ ′1, f〉 = 〈ϕ̃1 ∗ ϕ̃′1(x3, A), M12f(x3, A)〉.

Further, we have

〈τ1 ∗ τ2, f〉 = 〈ϕ̃1(x3, ·) ∗G ϕ̃0(A),M12f(x3, A)〉.

• 〈τ2, f〉 = 〈e(ϕ2), f〉 = 〈ϕ2(x1, x2), M3f(x1, x2, I)〉

with τ2 ∗ τ ′2 = e(ϕ2 ∗ ϕ′2) (convolution in E(R2))

τ2 ∗ τ0 = 〈ϕ0, 1〉τ2, where 1 is the constant function.

τ2 ∗ τ1 = 〈ϕ0(x1, x2), 〈ϕ̃1(x3, A), f(x, x2, x3, I)〉〉.

•〈τ3, f〉 = 〈e(ϕ3), f〉 = 〈ϕ3(x1, x2, x3), f(x1, x2, x3, I)〉 where

τ3 ∗ τ ′3 is the usual convolution in R3

〈τ3 ∗ τ2, f〉 = 〈〈ϕ3, 1x3〉 ∗x1x2 ϕ2(x1, x2),M3f(x1, x2, I)〉

〈τ3 ∗ τ1, f〉 = 〈〈ϕ3, 1x1x2〉 ∗x3 ϕ̃1(x3, A),M12f(x3, A)〉〉.

I(g) consists of distributions τ = τ0 + τ1 + τ2 + τ3, extensions of ϕ0 ∈ E(t), ϕ1 ∈
E(R× t), ϕ2 ∈ E(R2), ϕ3 ∈ E(R3) such that

〈τ0, f〉 = 〈ϕ̃0(x), M23f(X)〉

〈ϕ1, f〉 = 〈ϕ̃1(x3, X), M12f(x3, X)〉

〈τ2, f〉 = 〈ϕ2(x1, x2)M3f(x1, x2, 0)〉

〈τ3, f〉 = 〈ϕ3(x1x2x3), f(x1x2x3, 0)〉.

The convolution structure is given by

〈τ0 ∗ τ ′0, f〉 = 〈ϕ̃0 ∗X ϕ̃′0(X), M123f(X)〉, usual convolution in E(g)

〈τ1 ∗ τ ′1, f〉 = 〈ϕ̃1 ∗x3,X
ϕ̃′1(x3, X), M12f(x3, X)〉

〈τ1 ∗ τ0, f〉 = 〈(ϕ̃1(x3, ·) ∗X ϕ̃0)(X), M12f(x3, X)〉

〈τ2 ∗ τ ′2, f〉 = 〈ϕ2 ∗x1,x2 ϕ
′
2(x1, x2), Mx3f(x1, x2, 0)

〈τ2 ∗ τ1, f〉 = 〈ϕ2(x1, x2)ϕ̃1(x3, X), f(x1, x2, x3, X)〉

〈τ2 ∗ τ0, f〉 = 〈ϕ2, 1x1,x2〉〈ϕ̃0(X), M123f(X)〉

〈τ3 ∗ τ ′3, f〉 = e(ϕ3 ∗ ϕ′3) is the usual R3 convolution

〈τ3 ∗ τ2, f〉 = 〈〈ϕ3, 1x3〉 ∗x1,x2 ϕ2(x1, x2), M3f(x1, x2, 0)〉

〈τ3 ∗ τ1, f〉 = 〈〈ϕ3, 1x1,x2〉 ∗x3 ϕ̃1(x3, X), M12f(x3, X)〉

〈τ3 ∗ τ0, f〉 = 〈ϕ3, 1x1,x2,x3〉〈ϕ̃0(X), M123f(X)〉.
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I(g∗) may be described as follows. Let e∗1, e
∗
2e
∗
3 be the basis in V ∗ dual to

{e1, e2, e3}. For f ∈ AP(g∗), let Mf(V ) be the mean of the function β 7→ f(v, β).
Again, we have τ = τ0 + τ1 + τ2 + τ3, where τi = e(ϕi), ϕ0 ∈ E(t), ϕ1 ∈
E(R× t∗), ϕ2 ∈ E(R2), ϕ3 ∈ E(R3) and

〈τ0, f〉 = 〈ϕ̃0(β), f(0, β)〉,

where ϕ̃0 is the radial extension of ϕ0 from E(t∗) to E(k∗).

〈τ1, f〉 = 〈ϕ̃1(x
∗
3, β), f(0, 0, x∗3, β)〉

〈τ2, f〉 = 〈ϕ2(x
∗
1, x

∗
2), (Mf)(x∗1, x

∗
2, 0)〉

〈τ3, f〉 = 〈ϕ3,Mf〉.

The convolution relationships between the distributions τi are given as
follows:

〈τ0 ∗ τ ′0, f〉 = 〈ϕ̃0 ∗ ϕ̃′0(β), f(0, β)〉

〈τ1 ∗ τ ′1, f〉 = 〈ϕ̃1 ∗x∗3,β ϕ
′
1(x

∗
3, β), f(0, 0, x∗3, β)〉

〈τ1 ∗ τ0, f〉 = 〈ϕ̃1(x
∗
3, 0) ∗β ϕ̃0(β), f(0, 0, x∗3, β)〉

〈τ2 ∗ τ ′2, f〉 = 〈ϕ2 ∗x∗1,x∗2
ϕ′2(x

∗
1, x

∗
2), (Mf)(x∗1, x

∗
2, 0)〉

〈τ2 ∗ τ1, f〉 = 〈ϕ2(x
∗
1, x

∗
2), 〈ϕ̃1(x

∗
3, β), f(x∗1, x

∗
2, x

∗
3, β〉〉

〈τ2 ∗ τ0, f〉 = 〈ϕ2(x
∗
1, x

∗
2), 〈ϕ̃0(β), f(x∗1, x

∗
2, 0, β〉〉

〈τ3 ∗ τ ′3, f〉 = 〈ϕ3 ∗ ϕ′3,Mf〉

〈τ3 ∗ τ2, f〉 = 〈〈ϕ3(·, ·, x∗3), 1x∗3
〉 ∗x∗1,x∗2

ϕ2(x
∗
1, x

∗
2), Mf(x1, x2, β)〉

〈τ3 ∗ τ1, f〉 = 〈〈ϕ3(x
∗
1, x

∗
2, ·), 1x∗1,x∗2

〉 ∗x∗3
ϕ1(x

∗
3, β), f(0, 0, x3, β)〉

〈τ3 ∗ τ0, f〉 = 〈ϕ3(x
∗
1, x

∗
2, x

∗
3)〈ϕ0(β), f(x∗1, x

∗
2, x

∗
3, β〉〉.

Again, it can be readily seen that this gives a natural convolution structure
on the orbits, and that the coadjoint orbits are the natural “dual hypergroups”
with respect to this convolution.
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