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Abstract. With the support of software Mathematica 4.0 we obtain
important properties of Heisenberg type superalgebras, this type of superal-
gebras corresponds to the family of Lie superalgebras that generalize Heisen-
berg algebras. In particular, we obtain concrete classifications for arbitrary
dimension of even part and dimension of odd part up to three.
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1. Introduction

The theory of Lie superalgebras has many important applications in mathematics
and physics in general, nuclear physics, genetics and molecular biophysics, see [4].

The first comprehensive description of the mathematical theory of Lie su-
peralgebras is due to Kac [7] in 1977, who establishes the classification of all
finite-dimensional simple Lie superalgebras over an algebraically closed field of
characteristic zero.

However, nilpotent Lie superalgebras are practically unknown, so far [2].
This paper is placed within this context. As Heisenberg algebra plays a funda-
mental role in quantum mechanics [1], [8], the aim of this work is to study the Lie
superalgebras that generalize Heisenberg algebra. These (nilpotent) Lie superal-
gebras are called Heisenberg superalgebras.

2. Preliminary

A Lie superalgebra, g = g0 ⊕ g1 is a superalgebra over a base field K = R or C
with an operation [ , ] satisfying the following axioms:

(i) [X, Y ] = −(−1)α·β[Y, X] ∀X ∈ gα,∀Y ∈ gβ .

(ii) (−1)γ·α[X, [Y, Z]] + (−1)α·β[Y, [Z,X]] + (−1)β·γ[Z, [X, Y ]] = 0.

for all X ∈ gα, Y ∈ gβ, Z ∈ gγ with α, β, γ ∈ Z2 .

ISSN 0949–5932 / $2.50 C© Heldermann Verlag
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This property is called graded Jacobi identity and we will denote it by
Jg(X, Y, Z).

g0 is called the even part, and it is a Lie algebra, and g1 is called the odd
part and it is an g0 -module by restriction of the adjoint representation [9].

We say that two Lie superalgebras g , g′ are isomorphic if there exists
a Z2 -graded vector spaces isomorphism Φ : g −→ g′ satisfying Φ([X, Y ]) =
[Φ(X), Φ(Y )] for all X,Y ∈ g (and then Φ is called an isomorphism of Lie su-
peralgebras). We recall that an isomorphism (homomorphism, automorphism) of
Z2 -graded vector spaces are homogeneous linear mappings of degree zero. Partic-
ularly, changes of basis are isomorphisms of Lie superalgebras.

The descending central sequence of a Lie superalgebra g = g0⊕g1 is defined
by C0(g) = g , Ck+1(g) = [Ck(g), g] for all k ≥ 0. If Ck(g) = {0} for some k , Lie
superalgebra is called nilpotent. The smallest integer k such as Ck(g) = {0} is
called the nilindex of g .

Engel’s theorem for Lie algebras and its direct consequences remain valid
for Lie superalgebras, and the proof is the same for Lie algebras [6].

Proposition 2.1. A Lie superalgebra g is nilpotent if and only if ad(X) is
nilpotent for every homogeneous element X of g.

Analogous to Lie algebras, Goze’s invariant (or pair of characteristic se-
quences), [5], appears for Lie superalgebras and it is defined by the following pair
of sequences

gz(g) =
(

max gz0(X1) max gz1(X2)
)

∀X1, X2 ∈ g0 − [g0, g0]

with gzi(X), i = 0, 1 the characteristic sequence formed by the dimensions of
Jordan’s boxes, in decreasing for lexicografic order, of the matrix associated to
operator ad(X) restricted to gi .

Corollary 2.2. Let V be a vector space of dimension m and let h be a set of
nilpotent endomorphism of V . Then there exists a descending sequence of vector
subspaces Vm, . . . , V1, V0 of V , with dimensions m,m − 1, . . . 0, respectively, and
such that h(Vi+1) ⊆ Vi ∀h ∈ h i = 0, 1, . . . ,m− 1.

Remark 2.3. Let g = g0 ⊕ g1 be a nilpotent Lie superalgebra. If we consider
V = g1 (taking g1 as vector space) and h the operator ad restricted to g0 , the
conditions of the above corollary are satisfied, and then we have a descending
sequence of subspaces V = Vm ⊃ . . . ⊃ V1 ⊃ V0 of dimensions m, m − 1, . . . 0,
such that [g0, Vi+1] ⊆ Vi .

We denote by Ln+m the set of the Lie superalgebras g = g0 ⊕ g1 with
dim(g0) = n and dim(g1) = m .

By taking an homogeneous basis {X0, X1, . . . , Xn−1, Y1, . . . , Ym} in g (with
g ∈ Ln+m ), the superalgebra is completely determined by its structure constants,
that is, by the set of constants {Ck

ij, D
k
ij, E

k
ij}i,j,k .
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From the graded Jacobi identity we have the following restrictions for the
structure constants:

(S)



n−1∑
l=0

(C l
ijC

s
kl + C l

jkC
s
il + C l

kiC
s
jl) = 0 0 ≤ i < j < k ≤ n− 1,

s = 0, . . . , n− 1
m∑

l=1

(Dl
jkD

s
il −Ds

jlD
l
ik)−

n−1∑
l=0

C l
ijD

s
lk = 0 0 ≤ i < j ≤ n− 1,

k = 1, . . . ,m, s = 1, . . . ,m

(S)



m∑
l=1

(Dl
ijE

s
lk + Dl

ikE
s
jl)−

n−1∑
l=0

El
jkC

s
il = 0 i = 0, . . . , n− 1,

1 ≤ j ≤ k ≤ m, s = 0, . . . , n− 1
n−1∑
l=0

(El
ijD

s
lk + El

ikD
s
lj + El

jkD
s
li) = 0 1 ≤ i ≤ j ≤ m, 0 ≤ k ≤ n− 1

s = 1, . . . ,m

One could think of a program of classifying all Lie superalgebras by con-
sidering the above equations to be solved for unknown structure constants. This
turns out to be a very complicated problem because of the non-linearity of the
equations.

In this paper we are going to solve (S) for some special classes of nilpotent
Lie superalgebras (which we call Heisenberg type superalgebras) using changes of
basis, nilindex, and the software Mathematica 4.0.

3. Heisenberg type superalgebras.

Definition 3.1. A nilpotent Lie superalgebra g = g0 ⊕ g1 is a Heisenberg
type superalgebra (HSA) if g0 = Hr , where Hr is the Heisenberg Lie algebra of
dimension 2r + 1 and law

(BHr) [X2i, X2i+1] = X2r, 0 ≤ i ≤ r − 1

in a certain basis denoted by {X0, X1, . . . , X2r} . The all other commutators of g0

are zero.

In what follows, when we use the laws of a HSA we omit the commutators
BHr . Also we omit all commutators which are zero, for instances in the theorems
3.2., 3.3., 3.5.,. . .

In this section, with aid of the above program, we present the classification
of the HSA with arbitrary dimension of even part and dimension of odd part three.
The study the existence of adapted basis for HSA with dimension of odd part up
to three can see in [3].

Theorem 3.2. [3] If g = g0 ⊕ g1 is a HSA with dim(g0) = 2r + 1 and
dim(g1) = 1, then

1. there exists a suitable homogeneous basis of g, {X0, X1, . . . , X2r, Y1} such
that the commutators can be expressed as in BHr

2. g is isomorphic to g1 , whose law can be expressed by BHr and [Y1, Y1] = X2r
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Theorem 3.3. [3] If g = g0 ⊕ g1 is a HSA with dim(g0) = 2r + 1 and
dim(g1) = 2, then

1. there exists a suitable homogeneous basis of g, {X0, X1, . . . , X2r, Y1, Y2}, with
{X0, X1, . . . , X2r} a basis of g0 and {Y1, Y2} a basis of g1 , such that BHr

and [X0, Y1] = εY2, ε ∈ {0, 1}.

2. g is isomorphic to one of the superalgebras, pairwise non-isomorphic, whose
laws can be expressed by

g1 ⊕C : g2
1 : g2

2 : g2
3 :{

[Y1, Y1] = X2r

{
[Y1, Y2] = X2r

{
[X0, Y1] = Y2

[Y1, Y1] = X2r


[X0, Y1] = Y2

[Y1, Y1] = 2X1

[Y1, Y2] = X2r

Note that we omit the commutators BHr .

Theorem 3.4. If g = g0⊕g1 is a HSA with dim(g0) = 2r+1 and dim(g1) = 3,
then there exists a suitable homogeneous basis of g, {X0, X1, . . . , X2r, Y1, Y2, Y3},
with {X0, X1, . . . , X2r} a basis of g0 and {Y1, Y2, Y3} a basis of g1 , such that

(∗)
{

[X0, Y1] = ε1Y2

[X0, Y2] = ε1ε2Y3, ε1, ε2 ∈ {0, 1}
or (∗∗)

{
[X0, Y1] = Y3

[X0, Y2] = Y3

The proofs of these theorems can be consulted in [3].

In the follows, when we use the label (∗∗) we omit the commutators
[X0, Y1] = Y3 and [X0, Y2] = Y3 .

In this paper, we have obtained the classifications for some concrete dimen-
sions with the aid of a program. Afterwards, we have induced the expressions for
the general case. Finally, we have proved the general result.

Thanks to Theorem 3.4, we can reduce the problem of classification of HSA
with arbitrary dimension of even part and dimension of odd part three to the
following cases.

The family (∗) verify that the second part of Goze invariant is (1, 1, 1),
(2, 1) or (3) if (ε1, ε2) is (0,−), (1, 0) or (1, 1).

Case 1. Goze invariant (2, 1, . . . , 1|1, 1, 1)
[Yi, Yj] =

2r∑
k=0

Ek
ijXk, 1 ≤ i, j ≤ 3, (i, j) 6= (3, 3),

[Y3, Y3] = E2r
33X2r.

(1)

Case 2. Goze invariant (2, 1, . . . , 1|2, 1)

2.1. With adapted basis [X0, Y1] = Y2, [X0, Y2] = 0

[X0, Y1] = Y2,
[Xj, Y1] = D2

j,1Y2 + D3
j,1Y3, 1 ≤ j ≤ 2r − 1,

[X2r, Y1] = D3
2r,1Y3,

[Xj, Y2] = D3
j,2Y3, 1 ≤ j ≤ 2r − 1,

[Yi, Yj] =
2r∑

k=0

Ek
ijXk, 1 ≤ i, j ≤ 3, (i, j) 6= (3, 3),

[Y3, Y3] = E2r
33X2r.

(2)
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with the following restrictions for the parameters
D2

j,1D
3
j,2 = 0 1 ≤ j ≤ 2r − 1

D2
j,1D

3
j+1,2 = 0 1 ≤ j ≤ 2r − 2

D2
j,1D

3
j−1,2 = 0 2 ≤ j ≤ 2r − 1

2.2. With adapted basis [X0, Y1] = Y3, [X0, Y2] = Y3

(∗∗)
[Xj, Y1] = D3

j,1Y3, 1 ≤ j ≤ 2r,
[Xj, Y2] = D3

j,2Y3, 1 ≤ j ≤ 2r − 1,

[Yi, Yj] =
2r∑

k=0

Ek
ijXk, 1 ≤ i, j ≤ 3, (i, j) 6= (3, 3),

[Y3, Y3] = E2r
33X2r.

(3)

Case 3. Goze invariant (2, 1, . . . , 1|3)

[X0, Y1] = Y2,
[X0, Y2] = Y3,
[Xj, Y1] = D2

j,1Y2 + D3
j,1Y3, 1 ≤ j ≤ 2r − 1,

[X2r, Y1] = D3
2r,1Y3,

[Xj, Y2] = D3
j,2Y3, 1 ≤ j ≤ 2r − 1,

[Yi, Yj] =
2r∑

k=0

Ek
ijXk, 1 ≤ i, j ≤ 3, (i, j) 6= (3, 3),

[Y3, Y3] = E2r
33X2r.

The Lie superalgebras that we obtain in the different cases are non isomorphic
because they have different Goze’s invariant.

Notation. The superalgebras obtained from case j will be designed as
g3

(j,i) .Thus, those from case 2 as g3
(2,i) , with 1 ≤ i ≤ 10, and g3,α,β

(2,11) , g3,α
(2,12) , g3

(2,13) ,

g3,α,β
(2,14) , g3,α

(2,15) and g3
(2,16) ; those from case 3 as g3

(3,i) , 1 ≤ i ≤ 9. In case 1 there
only exists one non-split and non degenerate superalgebra. To simplify we will
design it as g3

1 , instead of g3
(1,1) .

Now, we will study the HSA with dimension of even part 2r + 1 and
dimension of odd part equal three. We classify those minimal Goze invariant
(2, 1, . . . , 1| 1, 1, 1) and maximal (2, 1, . . . , 1| 3); from this Goze invariant
(2, 1, . . . , 1| 2, 1) we obtain the generic family and the list of 2-nilpotent.

3.1. Minimal Goze invariant (2, 1, . . . , 1| 1, 1, 1).

Theorem 3.5. If g is a non degenerate HSA with dimension of even part
2r + 1, dimension of odd part 3 and Goze invariant (2, 1, . . . , 1| 1, 1, 1), then it is
isomorphic to one of the following three superalgebras, pairwise non-isomorphic,
whose laws can be expressed in a suitable basis,

({X0, X1, . . . , X2r−1, X2r, Y1, Y2, Y3}), by

g1 ⊕C2 : g2
1 ⊕C : g3

1 :{
[Y1, Y1] = X2r

{
[Y1, Y2] = X2r

{
[Y1, Y1] = X2r

[Y2, Y3] = X2r
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Proof. It is easy to prove that the above superalgebras are HSA, with dimen-
sion of even part 2r + 1, dimension of odd part 3 and Goze invariant

(2, 1, . . . , 1| 1, 1, 1).

Moreover, these superalgebras are pairwise non-isomorphic. The split superalge-
bras g1 ⊕C2 , g2

1 ⊕C are non-isomorphic and g3
1 is not split.

It remains to prove that the given superalgebras are all the Lie superalgebras
verifying the desired conditions.

We can consider the following family
[Xi, Yj] = 0, 0 ≤ i ≤ 2r, 1 ≤ j ≤ 3

[Yi, Yj] =
2r∑

k=0

Ek
ijXk, 1 ≤ i, j ≤ 3, (i, j) 6= (3, 3)

[Y3, Y3] = E2r
33X2r

We obtain that E2k+1
ij = 0 (from Jg(X2k, Yi, Yj)) and E2k

ij = 0 (from
Jg(X2k+1, Yi, Yj )), 0 ≤ k ≤ r − 1, 1 ≤ i, j ≤ 3.

The family to consider is the following,{
[Yi, Yj] = E2r

ij X2r, 1 ≤ i, j ≤ 3

We always can suppose that E2r
33 = 0, because

• If E2r
22 = 0, we make the change of basis Y ′

2 = Y3, Y ′
3 = Y2 .

• If E2r
22 6= 0, we make the change of basis Y ′

2 = Y2, Y ′
3 = cY2 + Y3 , where c is

one solution of the equation E2r
22c

2 + 2E2r
23c + E2r

33 = 0.

Moreover, we can also suppose that E2r
22 = 0, because

• If E2r
11 = 0, we make the change of basis Y ′

1 = Y2, Y ′
2 = Y1 .

• If E2r
11 6= 0, we make the change of basis Y ′

1 = Y1, Y ′
2 = cY1 + Y2 , where c is

one solution of the equation E2r
11c

2 + 2E2r
12c + E2r

22 = 0.

The family to classify is
[Y1, Y1] = E2r

11X2r

[Y1, Y2] = E2r
12X2r

[Y1, Y3] = E2r
13X2r

[Y2, Y3] = E2r
23X2r

Analogously, we can suppose that E2r
13 = 0, because

• If E2r
12 = 0, we make the change of basis Y ′

1 = Y1, Y ′
2 = Y3, Y ′

3 = Y2 .

• If E2r
12 6= 0:

− E2r
23 6= 0, making the change Y ′

1 = Y1 − E2r
13

E2r
23

Y2 − E2r
12

E2r
23

Y3 , we obtain that

[Y ′
1 , Y

′
2 ] = [Y ′

1 , Y
′
3 ] = 0

− E2r
23 = 0, making the change Y ′

3 = Y3− E2r
13

E2r
12

Y2 , we obtain that [Y ′
1 , Y

′
3 ] = 0
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and the family 
[Y1, Y1] = E2r

11X2r

[Y1, Y2] = E2r
12X2r

[Y2, Y3] = E2r
23X2r

Case E2r
23 = 0:

• If E2r
12 = 0, then E2r

11 6= 0 (if E2r
11 = 0 we have a Lie algebra) we obtain

g1 ⊕C2 , a split HSA.

• If E2r
12 6= 0, we can suppose that E2r

11 = 0, making a change of basis,

Y ′
1 = Y1 − E2r

11

2E2r
12

Y2 , we find g2
1 ⊕C , a split HSA.

Case E2r
23 6= 0.

We can suppose that E2r
12 = 0, making the following change Y ′

1 = Y1−E2r
12

E2r
23

Y3 .

If E2r
11 = 0, we obtain g2

1 ⊕C by the change of basis Y ′
1 = Y2, Y ′

2 = Y3, Y ′
3 = Y1 .

If E2r
11 6= 0, we find g3

1 by an obvious change of basis.

3.2. Goze invariant (2, 1, . . . , 1| 2, 1). In this case, we have two subfamilies
of HSA. A family with adapted basis [X0, Y1] = Y2, [X0, Y2] = 0 and the other
family with adapted basis [X0, Y1] = Y3, [X0, Y2] = Y3 . We will fully classify the
first family and we will obtain from the second family the generic expression and
the list of 2-nilpotent we will given.

Theorem 3.6. If g is a non degenerate HSA with dimension of even part
2r + 1, dimension of odd part 3, Goze invariant (2, 1, . . . , 1| 2, 1) such that it
admits an adapted basis {X0, X1, . . . , X2r−1, X2r, Y1, Y2, Y3} with [X0, Y1] = Y2 and
[X0, Y2] = 0, then it is isomorphic to one of the following superalgebras, pairwise
non-isomorphic, whose laws can be expressed by

g2
2 ⊕C : g2

3 ⊕C : g3
(2,1) : g3

(2,2) :{
[X0, Y1] = Y2

[Y1, Y1] = X2r


[X0, Y1] = Y2

[Y1, Y1] = 2X1

[Y1, Y2] = X2r


[X0, Y1] = Y2

[X1, Y1] = Y3

[Y1, Y1] = X2r


[X0, Y1] = Y2

[X3, Y1] = Y3

[Y1, Y1] = X2r

g3
(2,3) : g3

(2,4) : g3
(2,5) : g3

(2,6) :

[X0, Y1] = Y2

[X3, Y1] = Y3

[Y1, Y1] = X1 − 2X2

[Y1, Y2] = 1
2X2r

[Y1, Y3] = X2r


[X0, Y1] = Y2

[X3, Y1] = Y3

[Y1, Y1] = −2X2

[Y1, Y3] = X2r


[X0, Y1] = Y2

[Y1, Y1] = X1

[Y1, Y2] = 1
2X2r

[Y1, Y3] = X2r


[X0, Y1] = Y2

[Y1, Y1] = X1

[Y1, Y2] = 1
2X2r

[Y3, Y3] = X2r

g3
(2,7) : g3

(2,8) : g3
(2,9) : g3

(2,10) :
[X0, Y1] = Y2

[Y1, Y1] = X2r

[Y1, Y3] = X1

[Y2, Y3] = X2r

{
[X0, Y1] = Y2

[Y1, Y3] = X2r


[X0, Y1] = Y2

[Y1, Y3] = X1

[Y2, Y3] = X2r

{
[X0, Y1] = Y2

[Y3, Y3] = X2r
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Proof. It is easy to prove that the above superalgebras are HSA, with dimen-
sion of even part 2r + 1, dimension of odd part 3 and Goze invariant
(2, 1, . . . , 1| 2, 1). Moreover, these superalgebras are pairwise non-isomorphic.

The HSA g3
(2,6) , g3

(2,7) and g3
(2,9) are non-isomorphic by generic change of

basis and the remaining superalgebras can be easily observed in the table below,
where C is the centralizer operator.

dim(Z(g)) dim(C1(g)) dim(Cg(g1)) dim[Cg0(Cg0(g1)), Cg0(Cg0(g1))]

g3
(2,1) 3 3 2r+1 1

g3
(2,2) 3 3 2r+1 0

g3
(2,3) 1 4 - -

g3
(2,4) 2 4 2r -

g3
(2,5) 1 3 2r+1 -

g3
(2,6) 1 3 2r -

g3
(2,7) 1 3 2r -

g3
(2,8) 2 2 2r+1 -

g3
(2,9) 1 3 2r -

g3
(2,10) 2 2 2r+2 -

It remains to prove that the given superalgebras are all the Lie superalgebras
verifying the desired conditions. Thus, we consider the following family

[X0, Y1] = Y2

[X0, Y2] = 0
[Xj, Y1] = D2

j,1Y2 + D3
j,1Y3, 1 ≤ j ≤ 2r − 1

[X2r, Y1] = D3
2r,1Y3

[Xj, Y2] = D3
j,2Y3, 1 ≤ j ≤ 2r − 1

[Yi, Yj] =
2r∑

k=0

Ek
ijXk, 1 ≤ i, j ≤ 3, (i, j) 6= (3, 3)

[Y3, Y3] = E2r
33X2r

with the restrictions 
D2

j,1D
3
j,2 = 0 1 ≤ j ≤ 2r − 1

D2
j,1D

3
j+1,2 = 0 1 ≤ j ≤ 2r − 2

D2
j,1D

3
j−1,2 = 0 2 ≤ j ≤ 2r − 1

We can suppose that D2
j,1 = 0, 1 ≤ j ≤ 2r − 1, making the following change of

basis
X ′

1 = −D2
1,1X0 + X1 −

r−1∑
k=1

D2
2k+1,1X2k +

r−1∑
k=1

D2
2k,1X2k+1

X ′
j = −D2

j,1X0 + Xj 2 ≤ j ≤ 2r − 1
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We compute the graded Jacobi identity for the vectors of basis (with the
help of the program) and we obtain the following family

[X0, Y1] = Y2

[Xj, Y1] = D3
j,1Y3, 1 ≤ j ≤ 2r

[Y1, Y1] =
2r−1∑
k=1

Ek
11Xk + E2r

11X2r

[Y1, Y2] = 1
2
E1

11X2r

[Y1, Y3] = E1
13X1 + E2r

13X2r

[Y2, Y3] = E1
13X2r

[Y3, Y3] = E2r
33X2r

with the restrictions

2r−1∑
k=1

Ek
11D

3
k,1 = 0

E2i
11 + 2D3

2i+1,1E
2r
13 = 0, 1 ≤ i ≤ r − 1

E2i+1
11 − 2D3

2i,1E
2r
13 = 0, 1 ≤ i ≤ r − 1

D3
j,1E

2r
33 = 0, 1 ≤ j ≤ 2r − 1

D3
j,1E

k
13 = 0, 1 ≤ j ≤ 2r − 1, 1 ≤ k ≤ 2r − 1

D3
1,1E

2r
33 = D3

1,1E
2r
13 = 0

In this moment, making a study similar to the precedent cases we obtain
the superalgebras of the theorem.

We can suppose that D3
2i,1 = 0, 1 ≤ i ≤ r−1 and, by restrictions, E2j+1

11 = 0
with 1 ≤ j ≤ r − 1, making the following change of basis

• For each k , 1 ≤ k ≤ r − 1 such that D3
2k+1,1 6= 0

X ′
2k =D3

2k+1,1X2k −D3
2k,1X2k+1

X ′
2k+1=

1

D3
2k+1,1

X2k+1

• For each k , 1 ≤ k ≤ r − 1 such that D3
2k+1,1 = 0{

X ′
2k =−X2k+1

X ′
2k+1=X2k

So the family of laws is reduced to

[X0, Y1] = Y2

[X2j+1, Y1] = D3
2j+1,1Y3, 0 ≤ j ≤ r − 1

[Y1, Y1] = E1
11X1 − 2E2r

13

r−1∑
k=1

D3
2k+1,1X2k + E2r

11X2r

[Y1, Y2] = 1
2
E1

11X2r

[Y1, Y3] = E1
13X1 + E2r

13X2r

[Y2, Y3] = E2r
13X2r

[Y3, Y3] = E2r
33X2r
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with the restrictions

D3
11E

1
11 = D3

11E
2r
13 = 0

D3
2j+1,1E

1
13 = 0, 0 ≤ j ≤ r − 1

D3
2j+1,1E

2r
33 = 0, 0 ≤ j ≤ r − 1

Now, a detailed study (similar the preceding case) of the possible values of
the parameters determine:

E1
13 = 0



E1
11 = 0

 E2r
33 = 0

{
E2r

13 = 0 : g2
2 ⊕C, g3

(2,1)

E2r
13 6= 0 : g3

(2,4), g3
(2,8)

E2r
33 6= 0 : g3

(2,10)

E1
11 6= 0


D3

(2j+1,1) = 0, ∀j ∈ {1, . . . , r − 1}
{

E2r
33 = 0 : g2

3 ⊕C, g3
(2,5)

E2r
33 6= 0 : g3

(2,6)

∃j ∈ {1, . . . , r − 1}/D3
(2j+1,1) 6= 0

{
E2r

13 = 0 : g3
(2,4)

E2r
13 6= 0 : g3

(2,3)

E1
13 6= 0


E2r

11 = 0 : g3
(2,9)

E2r
11 6= 0 : g3

(2,7)

Now, we obtain the generic family for the HSA with dimension of even
part 2r+1, dimension of odd part 3, Goze invariant (2, 1, . . . , 1|2, 1) and adapted
basis {X0, X1, . . . , X2r, Y1, Y2, Y3} with [X0, Y1] = Y3 and [X0, Y2] = Y3 ((∗∗)).
Among them, we classify the 2-nilpotent HSA.

Lemma 3.7. If g is a non degenerate HSA with dimension of even part 2r+1,
dimension of odd part 3, Goze invariant (2, 1, . . . , 1| 2, 1) such that it admits an
adapted basis {X0, X1, . . . , X2r−1, X2r, Y1, Y2, Y3} with [X0, Y1] = Y3 and [X0, Y2] =
Y3 , then g is in the following family of superalgebras expressed by

(∗∗)
[X1, Y2] = D3

12Y3

[X2, Y2] = εY3, ε ∈ {0, 1}
[Y1, Y1] = E1

11X1 + E2r
11X2r

[Y1, Y2] = −1
2
D3

12E
1
11X0 + E1

12X1 +
ε

2
E1

11X3 + E2r
12X2r

[Y1, Y3] =
1
2
E1

11X2r

[Y2, Y2] = D3
12(E

1
11 − 2E1

12)X0 + (2E1
12 − E1

11)X1 + 2ε(E1
12 −

1
2
E1

11)X3 + E2r
22X2r

[Y2, Y3] = (E1
12 −

1
2
E1

11)X2r

Proof. In this case, we have already seen that the family of laws of superalge-
bras is 

(∗∗)
[Xj, Y1] = D3

j,1Y3, 1 ≤ j ≤ 2r
[Xj, Y2] = D3

j,2Y3, 1 ≤ j ≤ 2r − 1

[Yi, Yj] =
2r∑

k=0

Ek
ijXk, 1 ≤ i, j ≤ 3, (i, j) 6= (3, 3)

[Y3, Y3] = E2r
33X2r
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with certain restrictions. By an analogous reasoning of the preceding cases we
obtain the generic family.

Lemma 3.8. If g belongs to the generic family of HSA in the above lemma and
2-nilpotent, then it is isomorphic to one of the following three superalgebras, or it
belongs to one of the parametric families of superalgebras

g3,α,β
(2,11) : g3,α

(2,12) : g3
(2,13) :



(∗∗)
[X1, Y2] = Y3

[Y1, Y1] = X2r

[Y1, Y2] = αX2r, α ∈ C
[Y2, Y2] = βX2r, β ∈ C


(∗∗)
[X1, Y2] = Y3

[Y1, Y2] = X2r

[Y2, Y2] = αX2r, α ∈ C


(∗∗)
[X1, Y2] = Y3

[Y2, Y2] = X2r

g3,α,β
(2,14) : g3,α

(2,15) : g3
(2,16) :



(∗∗)
[X2, Y2] = Y3

[Y1, Y1] = X2r

[Y1, Y2] = αX2r, α ∈ C
[Y2, Y2] = βX2r, β ∈ C


(∗∗)
[X2, Y2] = Y3

[Y1, Y2] = X2r

[Y2, Y2] = αX2r, α ∈ C


(∗∗)
[X2, Y2] = Y3

[Y2, Y2] = X2r

Proof. We will differentiate four cases in the generic family of the above lemma.

D3
12 = 0


ε = 0 (Case 1)

ε = 1 (Case 2)

D3
12 6= 0


ε = 0 (Case 3)

ε = 1 (Case 4)

In the case 1, making the following change of basis Y ′
1 = Y1 − Y2 and

renaming the vectors Yi adequately, we obtain a family of superalgebras that
would be included in the case studied in Theorem 3.6.

Case 4 is the same as case 3, making the following change of basis
X ′

0 = D3
12X0 −X3

X ′
2 = D3

12X2 −X1

X ′
2i = D3

12X2i, 2 ≤ i ≤ r
Y ′

3 = D3
12Y3

Case 2. D3
12 = 0, ε = 1.

A study similar to the preceding theorems permits to differentiate these
relations among the parameters, and we obtain the following superalgebras

E1
11 = E1

12 = 0


E2r

11 = 0

{
E2r

12 = 0 =⇒ E2r
22 6= 0 g3

(2,16)

E2r
12 6= 0 =⇒ g3,α

(2,15)

E2r
11 6= 0 =⇒ g3,α,β

(2,14)
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It is easy to prove that these superalgebras have nilindex 2 and we obtain
superalgebras with nilindex 3 for any other possibility of the constant structures.

Case 3. D3
12 6= 0, ε = 0.

A study similar to preceding theorems permits to differentiate this relation
among the parameters, and we obtain the following superalgebras and family of
superalgebras

E1
11 = E1

12 = 0


E2r

11 = 0


E2r

12 = 0 =⇒ E2r
22 6= 0 g3

(2,13)

5

E2r
12 6= 0 =⇒ g3,α

(2,12)

E2r
11 6= 0 =⇒ g3,α,β

(2,11)

It is easy to prove that these superalgebras have nilindex 2 and we obtain
superalgebras with nilindex 4 for any other possibility of the constant structures.

3.3. Maximal Goze invariant (2, 1, . . . , 1| 3).

Theorem 3.9. If g is a non degenerate HSA with dimension of even part 2r+
1, dimension of odd part 3 and Goze invariant (2, 1, . . . , 1| 3), then it is isomorphic
to one of the following three superalgebras, pairwise non-isomorphic, whose laws
can be expressed in a suitable basis, ({X0, X1, . . . , X2r−1, X2r, Y1, Y2, Y3}), by

g3
(3,1) : g3

(3,2) : g3
(3,3) : g3

(3,4) :
[X0, Y1] = Y2

[X0, Y2] = Y3

[X1, Y1] = Y3

[Y1, Y1] = X2r



[X0, Y1] = Y2

[X0, Y2] = Y3

[X1, Y1] = Y3

[Y1, Y1] = X1

[Y1, Y2] = 1
2X2r


[X0, Y1] = Y2

[X0, Y2] = Y3

[X3, Y1] = Y3

[Y1, Y1] = X2r



[X0, Y1] = Y2

[X0, Y2] = Y3

[X3, Y1] = Y3

[Y1, Y1] = X1

[Y1, Y2] = 1
2X2r

g3
(3,5) : g3

(3,6) : g3
(3,7) : g3

(3,8) :

[X0, Y1] = Y2

[X0, Y2] = Y3

[X3, Y1] = −1
2Y3

[Y1, Y1] = X2

[Y1, Y3] = X2r

[Y2, Y2] = −X2r


[X0, Y1] = Y2

[X0, Y2] = Y3

[Y1, Y1] = X2r


[X0, Y1] = Y2

[X0, Y2] = Y3

[Y1, Y1] = X1

[Y1, Y2] = 1
2X2r



[X0, Y1] = Y2

[X0, Y2] = Y3

[Y1, Y1] = X1

[Y1, Y2] = 1
2X2r

[Y1, Y3] = X2r

[Y2, Y2] = −X2r

g3
(3,9) :

[X0, Y1] = Y2

[X0, Y2] = Y3

[Y1, Y3] = X2r

[Y2, Y2] = −X2r

Proof. It is easy to prove that the above superalgebras are HSA, with dimen-
sion of even part 2r+1, dimension of odd part 3 and Goze invariant (2, 1, . . . , 1| 3).
Moreover, these superalgebras are pairwise non-isomorphic, just observe the table
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below.

dim(Z(g)) dim(C1(g)) dim(Cg(g1)) dim[Cg0(Cg0(g1)), Cg0(Cg0(g1))]

g3
(3,1) 2 3 2r+1 1

g3
(3,2) 2 4 2r 1

g3
(3,3) 2 3 2r+1 0

g3
(3,4) 2 4 2r 0

g3
(3,5) 1 3 2r-1 -

g3
(3,6) 2 3 2r+2 -

g3
(3,7) 2 4 2r+1 -

g3
(3,8) 1 4 2r -

g3
(3,9) 1 3 2r -

It remains to prove that the given superalgebras g3
(3,i) , 1 ≤ i ≤ 9 are all the Lie

superalgebras verifying the desired conditions.

We have already seen that the family of laws of superalgebras is

[X0, Y1] = Y2

[X0, Y2] = Y3

[Xj, Y1] = D2
j,1Y2 + D3

j,1Y3, 1 ≤ j ≤ 2r − 1
[X2r, Y1] = D3

2r,1Y3

[Xj, Y2] = D3
j,2Y3, 1 ≤ j ≤ 2r − 1

[Yi, Yj] =
2r∑

k=0

Ek
ijXk, 1 ≤ i, j ≤ 3, (i, j) 6= (3, 3)

[Y3, Y3] = E2r
33X2r

We can suppose that D3
j,2 = 0, 1 ≤ j ≤ 2r− 1, making this change of basis


X ′

1 = −D3
12X0 + X1 −

r−1∑
k=1

D3
2k+1,2X2k +

r−1∑
k=1

D3
2k,2X2k+1

X ′
j = −D3

j,2X0 + Xj 2 ≤ j ≤ 2r − 1

We compute the graded Jacobi identity for the vectors of basis (with aid of the
program) and we obtain the following family

[X0, Y1] = Y2

[X0, Y2] = Y3

[Xj, Y1] = D3
j,1Y3, 1 ≤ j ≤ 2r − 1

[Y1, Y1] =
2r∑

k=1

Ek
11Xk

[Y1, Y2] = 1
2
E1

11X2r

[Y1, Y3] = E2r
13X2r

[Y2, Y2] = −E2r
13X2r
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with the restrictions

D3
11E

2r
13 = 0

E2i+1
11 − 2D3

2i,1E
2r
13 = 0, 1 ≤ i ≤ r − 1

E2i
11 + 2D3

2i+1,1E
2r
13 = 0, 1 ≤ i ≤ r − 1

2r−1∑
k=1

D3
k,1E

k
11 = 0

Case D3
11 = 0

We can suppose that D3
2i,1 = 0, 1 ≤ i ≤ r − 1,

• For each k , such that D3
2k+1,1 6= 0, we make the following change

X ′
2k =D3

2k+1,1X2k −D3
2k,1X2k+1

X ′
2k+1=

1

D3
2k+1,1

X2k+1

• For each k , such that D3
2k+1,1 = 0, we make the following change{

X ′
2k =−X2k+1

X ′
2k+1=X2k

and by the restrictions E2i+1
11 = 0.

The family to classify is

[X0, Y1] = Y2

[X0, Y2] = Y3

[X2i+1, Y1] = D3
2i+1,1Y3, 1 ≤ i ≤ r − 1

[Y1, Y1] = E1
11X1 + E2

11X2 + E4
11X4 + . . . + E2r

11X2r

[Y1, Y2] = 1
2
E1

11X2r

[Y1, Y3] = E2r
13X2r

[Y2, Y2] = −E2r
13X2r

with restrictions E2i
11 + 2D3

2i+1,1E
2r
13 = 0, 1 ≤ i ≤ r − 1.

Case 1: E2r
13 = 0. In this case we have that E2i

11 = 0, 1 ≤ i ≤ r − 1, and the
family is 

[X0, Y1] = Y2

[X0, Y2] = Y3

[X2j+1, Y1] = D3
2j+1,1Y3, 1 ≤ j ≤ r − 1

[Y1, Y1] = E1
11X1 + E2r

11X2r

[Y1, Y2] = 1
2
E1

11X2r

A detailed study of the possible values of the parameters determine:

D3
2i+1,1 = 0, 1 ≤ i ≤ r − 1


E1

11 = 0 ⇒ E2r
11 6= 0 : g3

(3,6)

E1
11 6= 0 ⇒ E2r

11 = 0 : g3
(3,7)

∃i, 1 ≤ i ≤ r − 1, D3
2i+1,1 6= 0


E1

11 = 0 ⇒ E2r
11 6= 0 : g3

(3,3)

E1
11 6= 0 ⇒ E2r

11 = 0 : g3
(3,4)
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Case 2: E2r
13 6= 0. The family to classify is

[X0, Y1] = Y2

[X0, Y2] = Y3

[X2i+1, Y1] = − E2i
11

2E2r
13

Y3, 1 ≤ i ≤ r − 1

[Y1, Y1] = E1
11X1 + E2

11X2 + E4
11X4 + . . . + E2r

11X2r

[Y1, Y2] = 1
2
E1

11X2r

[Y1, Y3] = E2r
13X2r

[Y2, Y2] = −E2r
13X2r

Analogously, we have that the relations among the parameters are

E1
11 = 0


E2i

11 = 0, 1 ≤ i ≤ r − 1 ⇒ E2r
11 = 0 : g3

(3,9)

∃i, E2i
11 6= 0, 1 ≤ i ≤ r − 1 : g3

(3,5)

E1
11 6= 0


E2i

11 = 0, 1 ≤ i ≤ r − 1 : g3
(3,8)

∃i, E2i
11 6= 0, 1 ≤ i ≤ r − 1 : g3

(3,5)

Case D3
11 6= 0

We have that E2r
13 = 0, and the family is

[X0, Y1] = Y2

[X0, Y2] = Y3

[Xj, Y1] = D3
j,1Y3, 1 ≤ j ≤ 2r − 1

[Y1, Y1] = E1
11X1 + E2r

11X2r

[Y1, Y2] = 1
2
E1

11X2r

with D3
11 6= 0.

Analogously to the preceding case (making a change of basis), we can
suppose D3

2i,1 = 0, 1 ≤ i ≤ r − 1. Moreover, the following change

X ′
0 = D3

11X0 +
r−1∑
i=1

D3
2i+1,1X2i

X ′
1 = 1

D3
11

X1

X ′
2j = 1

D3
11

X2j 1 ≤ j ≤ r − 1

X ′
2j+1 = D3

11X2j+1 −D3
2j+1,1X1 1 ≤ j ≤ r − 1

permits to suppose that D3
2j+1,1 = 0, 1 ≤ j ≤ r − 1.

We can resume the relations among the parameters in the table below
E1

11 = 0 ⇒ E2r
11 6= 0 : g3

(3,1)

E1
11 6= 0 ⇒ E2r

11 = 0 : g3
(3,2)
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