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1. Introduction

Our purpose is to classify the Lie superalgebras g = g0 ⊕ g1 , for which g0 is a
3-dimensional (real or complex) Lie algebra, having its action on g1 = g0 given
by the adjoint representation. In general, a Lie superalgebra structure on a Z2 -
graded vector space g = g0⊕g1 is a triple ([ · , · ], ρ, Γ) consisting of (see [9], [10],
and [11]):

(1) A Lie algebra structure [ · , · ] on g0 ,
(2) A representation ρ : g0 → End g1 ,
(3) A symmetric bilinear map Γ : g1 × g1 → g0 ,

satisfying the following super -Jacobi identities:

(J1) [x,Γ(u, v)] = Γ(ρ(x)u, v) + Γ(u, ρ(x)v) , x ∈ g0 , u, v ∈ g1

and

(J2) (ρ
(
Γ(u, v)

)
(w) + (ρ

(
Γ(w, u)

)
(v) + (ρ

(
Γ(v, w)

)
(u) = 0 , u, v, w ∈ g1 .

When g0 = g1 and ρ = ad, only (J1) is relevant, as (J2) is automatically satisfied
(see [9]). Lie superalgebras specified by this data will be called based on g0 , and
we shall write Symad(g0) for the F -vector space of symmetric, bilinear maps
Γ : g0 × g0 → g0 satisfying (J1) for ρ = ad. Clearly, Symad(g0) is the space of
equivariant maps Homg0(S

2(g0), g0).
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When a Lie superalgebra structure on the Z2 -graded vector space g = g0 ⊕ g1

is viewed as a triple ([ · , · ], ρ, Γ), the group GL(g0) × GL(g1) acts on the set
of such triples, producing isomorphic Lie superalgebras on each orbit: The Lie
superalgebras defined on g0⊕ g1 by the data ([ · , · ], ρ, Γ) and ([ · , · ]′, ρ′,Γ′) are
isomorphic if and only if there exists a pair (T, S) ∈ GL(g0)×GL(g1) such that,

[ · , · ]′ = T [T−1( · ) , T−1( · ) ] ,

ρ′ = S ◦ ρ(T−1( · )) ◦ S−1 ,

Γ′ = T (Γ(S−1( · ), S−1( · ))) .

When the Lie algebra structure [ · , · ] of g0 is kept fixed, and ρ = ad, we are
actually looking at the action of the group

G = {(T, S) ∈ Aut(g0)×GL(g0) | S ◦ T−1 ◦ ad( · ) = ad( · ) ◦ S ◦ T−1}

since ad(T−1(x)) = T−1 ◦ ad(x) ◦ T . To classify the different Lie superalgebras
based on g0 , amounts to parametrize the orbits in Symad(g0) under the left
action of the group of pairs (T, S) ∈ Aut(g0)×GL(g1), such that [T (x), S(y)] =
S([x, y]) , given by,

Γ 7→ (T, S) · Γ = T
(

Γ
(
S−1( · ), S−1( · )

) )
.

The automorphism group of the Lie superalgebra determined by a given Γ is
the isotropy subgroup at Γ of this action. Let Γ and Γ′ be two ad-equivariant
symmetric bilinear maps g1 × g1 → g0 . We shall say that they are equivalent if
and only if they are in the same orbit.

The classification of the Lie superalgebras based on a 3-dimensional Lie algebra
will be approached by first dividing the analysis according to the dimension of
the derived ideal g′0 of g0 . It turns out that Symad(g0) has a fixed dimension
for a fixed value of dim g′0 according to,

dim g′0 3 2 1 0

dim Symad(g0) 0 1 5 18

Table 1

In other words, to specify a Lie superalgebra based on a 3-dimensional Lie alge-
bra, one requires dim Symad(g0) parameters to build up Γ. That is, Symad(g0)
gets identified with Fdim Symad(g0) , and the G action on Symad(g0) translates
into the corresponding G action on Fdim Symad(g0) (see §2 below).

Our results can now be summarized in the following general statement whose
proof is precisely the aim of this work. Use has been made of the well-known
parametrization of 3-dimensional real or complex Lie algebras. We refer the
reader to [2] and [7] for details, and to §2 below for the notation to be used
throughout this work.
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Theorem 1.1. Up to isomorphism,
1. There is only one Lie superalgebra based on a 3-dimensional semisimple Lie
algebra g0 , and it has Γ = 0 .

2. There are 2 (resp., 3) different Lie superalgebras based on p(C) (resp., p(R)).
The same is assertion is true for qλ(C) (resp., qλ(R)).

3. There are 3 different (real) Lie superalgebras based on q1
λ(R) .

4. There are 15 (resp., 23) different Lie superalgebras based on q0(C) (resp.,
q0(R)), plus a non-zero-parameter family (resp., two (non-zero)-one-parameter
families) of different Lie superalgebras that are also based on q0(C) (resp.,
q0(R)).

5. There are 5 (resp., 6) different Lie superalgebras based on the Heisenberg Lie
algebra h2(C) (resp., h2(R)).

6. There are 10 (resp., 18) different isomorphism classes of Lie superalgebras
based on a(C) (resp., a(R)), plus a family depending on four complex parameters
(resp., two families depending on two real parameters each, plus three families
depending on four real parameters each).

What motivates the problem is the geometric idea that 3-dimensional smooth
manifolds are locally modeled on a 3-dimensional vector space. If a given 3-
manifold comes equipped with an additional structure —say, a given Lie group
acts on it— this structure gets reflected on the local model. In particular, the
real 3-dimensional vector space with which we are in close contact in elementary
physics and geometry is precisely the Lie algebra of the 3-dimensional rotation
group, as we naturally associate to it the geometric operations of ‘cross product’
(ie, the Lie bracket) and ‘scalar product’ (ie, the Cartan-Killing form). What
we are obtaining in this work is a list of the different 3-dimensional superspaces
that can be defined naturally on a 3-dimensional space that happens to have a
Lie algebra structure; naturally means with no additional hypotheses made on
the given Lie algebra itself, as all that is required to build up these superspaces
is the adjoint representation. This problem came quite naturally to us after
giving a physical interpretation of a previous similar result: Say, classify the
Lie superalgebras that can be defined from the Lie algebra u2 of the group of
unitary 2 × 2 matrices, through the adjoint representation. It turns out that
there are ten different such Lie superalgebras (see [8], and [9]), but u2 itself is
usually identified with Minkowski spacetime; therefore, our approach yield all
the possible superspacetime structures that can be defined on top of Minkowski
spacetime with no extra hypotheses.

Acknowledgements. The authors would like to thank the hospitality of the
Departments of Geometry and Topology of the Universities of Valencia, and San-
tiago de Compostela in Spain, and the Department of Mathematics of Harvard
University, where the main parts of this manuscript were written. The authors
would also like to acknowledge the partial support received by the following
grants: CONACyT Grant 37558-E, MB Grant 1411-2004, CONACyT’s Grad-
uate, Postdoctoral and Sabbatical Fellowships received by IH, GS, and OASV,
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respectively. Last, but not least, the authors would like to thank the referee’s
neat suggested corrections.

2. Determination of Symad(g0)

The purpose of this section is to prove the following,

Proposition 2.1. Let g0 be a 3-dimensional real or complex Lie algebra, and
let Symad(g0) be the real or complex vector space of symmetric, bilinear maps
Γ : g0 × g0 → g0 satisfying (J1) for ρ = ad . Then, dim Symad(g0) only depends
on the dimension of the derived ideal g′0 = [g0, g0] , and this dependence is given
in Table 1 above.

We shall start the proof by introducing some notation and fixing some conven-
tions, making use of well-known facts about 3-dimensional Lie algebras.

Let g′0 = [g0, g0] be the derived ideal. Now, g′0 = g0 when g0 is semisimple.
It is well-known that, up to isomorphism, there is only one complex semisimple
Lie algebra of dimension 3; namely, sl2 . Over the real field there are two: sl2
and su2 . The Abelian Lie algebra structure —corresponding to dimg′0 = 0— is
unique over either ground field.

It is well known (cf, [7]) that when g0 = sl2 , the space S2(sl2) gets decom-
posed into V1 ⊕ V5 where Vi is the sl2 -irreducible representation of dimension
i . Therefore, Symad(sl2) = Homsl2(V1 ⊕ V5, V3) = {0} by Schur’s Lemma, thus
proving that there is only one way to define Γ in order to obtain a Lie super-
algebra structure on sl2 ⊕ sl2 ; namely, Γ = 0. The same is true when F = R
and g0 = su2 . Therefore we may concentrate from now on, in those cases with
nonsemisimple g0 .

Let g0 be a fixed 3-dimensional nonsemisimple Lie algebra. We shall make a
choice of basis in g0 , say {e1, e2, e3} , and therefore identify the space Symad(g0)
with the set of triples (Γ1,Γ2,Γ3) of symmetric bilinear forms, for which Γ(u, v) =∑

Γi(u, v)ei satisfies (J1). It is easy to see that (J1) translates into,

(2.1)
∑

j

Γj ad(x)kj = ad(x)T Γk + Γk ad(x) , for all x ∈ g0

where ad(x)kj is defined through [x, ej ] =
∑

k ad(x)kjek . By letting x run
through the basis {ei} , we obtain a set of linear equations for the entries Γk

ij :=
Γk(ei, ej). Thus we need to find a convenient expression for the matrices Ci

associated to the linear transformations ad(ei), in such a way that we can deal
with all the nonsemisimple Lie algebras at once.

Since g0 6= g′0 , it can be easily seen that g0 contains a 2-dimensional abelian ideal
a . The 3-dimensional nonsemisimple Lie algebras can be classified by choosing
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e1 /∈ a and bringing ad(e1)|a into a convenient canonical form (see [2], [4], or [7]
for details). Thus, we shall write,

[e1, e2] = ae2 + ce3 ,

[e1, e3] = be2 + de3 ,

[e2, e3] = 0 ,

so that, ad(e1)|a ↔ A =
(

a b
c d

)
,

and will use the following notation:

(2.2)

g0 dim g′0 A Constraints

p(F) 2
(

1 1
0 1

)
qλ(F) 2

(
1 0
0 λ

)
0 < |λ| ≤ 1

q1
λ(R) 2

(
λ −1
1 λ

)
λ ∈ R

q0(F) 1
(

1 0
0 0

)
h(F) 1

(
0 0
1 0

)
a(F) 0

(
0 0
0 0

)
It is then easy to see that the matrices Ci of ad(ei) take the form,

(2.3) C1 =
(

0 0
0 A

)
, C2 = −

(
0 0

Aδ1 0

)
, C3 = −

(
0 0

Aδ2 0

)
,

where δ1 =
(

1

0

)
, and δ2 =

(
0

1

)
.

We shall now proceed to find Symad(g0) by solving (2.1) for the entries of the
Γk ’s, specializing each case with the appropriate A .

A. Lie algebras for which A is invertible. When A is invertible, the
only nonzero entries of Γ are Γ2

12 , Γ3
13 , and Γ1

11 , and it is easy to see that
Γ2

12 = Γ3
13 = 1

2Γ1
11 . Thus,

Γ1 = a

(
1 0 0

0 0 0

0 0 0

)
, Γ2 =

a

2

(
0 1 0

1 0 0

0 0 0

)
, Γ3 =

a

2

(
0 0 1

0 0 0

1 0 0

)
,

and therefore, dim Symad(g0) = 1.

B. A corresponding to the Lie algebra q0(F) . In this case we obtain the
following relations: Γ2

12 = 1
2Γ1

11 , and Γ2
23 = Γ1

13 . The parameters Γ3
11 , Γ3

13 , and
Γ3

33 can be chosen arbitrarily. Thus,

Γ1 =
(

2a 0 b

0 0 0

b 0 0

)
, Γ2 =

(
0 a 0

a 0 b

0 b 0

)
Γ3 =

(
c 0 d

0 0 0

d 0 e

)
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and it follows that dim Symad(g0) = 5.

C. A corresponding to the Heisenberg Lie algebra h(F) . In this case we
obtain the relations: Γ2

12 = Γ3
13 = 1

2Γ1
11 , and Γ1

12 = Γ3
23 = 1

2Γ2
22 . The parameters

Γ3
11 , Γ3

12 , and Γ3
22 can be chosen arbitrarily. Thus,

Γ1 =
(

2a b 0

b 0 0

0 0 0

)
Γ2 =

(
0 a 0

a 2b 0

0 0 0

)
Γ3 =

(
c d a

d e b

a b 0

)
showing again that dim Symad(g0) = 5.

D. A corresponding to the Abelian Lie algebra a(F) . Note that in this
case Γ is not restricted by equations and therefore the three symmetric matrices
Γ1,Γ2 , and Γ3 can be chosen arbitrarily. Thus, dim Symad(g0) = 18 in this case.

3. Lie superalgebras based on 3-dimensional nonsemisimple Lie algebras

Let g0 be spanned over F by {e1, e2, e3} as before, and let us assume that g′0
is neither {0} nor g0 . Let [ · , · ] have one of the canonical forms given in (2.2)
above. Write Ci = ad(ei) (i = 1, 2, 3) as before, and let T be an automorphism
of g0 , with Tej =

∑3
i=1 Tijei . It is easy to see that

(3.1) T ∈ Aut(g0) ⇐⇒ T Cj =
3∑

i=1

Tij CiT .

We may write T in block form in the same way as we wrote the Ci ’s in (2.3);
say, T =

(
δ0 vT

u t

)
. A straightforward computation leads to the following:

Lemma 3.1.
(1) Let g0 = p(F) , qλ(F) (λ 6= −1), q1

λ(R) (λ 6= 0), or q0(F) . Then

Aut(g0) =
{

T ∈ GL3(F) | T =
(

1 0

v B

)
, B ∈ GL2(F), AB = BA, v ∈ F2

}
(2) Let g0 = q−1(F) , or q1

0(R) . Then,

Aut(g0) =
{

T ∈ GL3(F) | T =
(
±1 0

v B

)
, B ∈ GL2(F), AB ∓BA = 0, v ∈ F2

}
(3) Aut(h(F)) =

{
T ∈ GL3(F) | T =

(
B 0

vT δ

)
, δ = det(B)

}
(4) Aut(a(F)) = GL3(F) .

Proof.

T ∈ Aut(g0) ⇐⇒ T =
(

δ0 vT

u B

)
where,

vT A = 0 ,

AuvT = δ0AB −BA ,

v1ABδ2 = v2ABδ1 .
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It is easy to see that if A−1 exists, then vT = 0; whence, δ0AB = BA . Therefore,
A = δ0B

−1AB . Since Tr(A) = Tr(B−1AB) and det(A) = det(B−1AB), it
follows that, either δ0 = 1, or Tr(A) = 0 and δ2

0 = 1. But Tr(A) = 0 implies
that g0 is either q−1(F), or q1

0(R).

If A =
(

1 0

0 0

)
it is easy to see that δ0 = 1, v = 0, u is arbitrary, and B is

diagonal.

If A =
(

0 0

1 0

)
then vT = (v1, 0), B is lower triangular, say B =

(
a 0

c d

)
, u is

arbitrary, and d = δ0a− u1v1 .

Our next task though, is to determine the group G for each of the possible g0 ’s.
According to §1, the group G consists of those pairs (T, S) ∈ Aut(g0)×GL(g0)
for which T−1 ◦ S commutes with ad(x) for any x ∈ g0 . Let R = T−1 ◦ S . We
need to find those R ’s satisfying,

[R,Ci] = 0 i = 1, 2, 3.

After a straightforward computation of the possible R ’s, we may summarize the
information in the following table which gives R and T to compute from it
S = RT .

g0 Aut(g0) Associated R

p(F), qλ(F), q1
λ(F)

(±1 0
v B

)
r0 Id3

q0(F)
(

1 0
v Diag(d1,d2)

) (
r0 0

r1δ2 Diag(r0,r2)

)
h(F)

(
B 0
vT δ

)
,

δ=det(B)

(
Diag(r0,r0) 0

rT r0

)
a(F) T ∈ GL3 R ∈ GL3

4. The action of G on Symad(g0)

Under the identification of Symad(g0) with the space of triples (Γ1,Γ2,Γ3) given
in §2, the action of G on Symad(g0) translates into

(Γ1,Γ2,Γ3) 7→ (T, S) · (Γ1,Γ2,Γ3) = (Γ′1,Γ′2,Γ′3)

= (
3∑

j=1

T1j(S−1)T ΓjS−1,
3∑

j=1

T2j(S−1)T ΓjS−1,
3∑

j=1

T3j(S−1)T ΓjS−1) .



546 Hernández, Salgado and Sánchez-Valenzuela

Equivalently, using the identification of the space of triples (Γ1,Γ2,Γ3) with Fn

(n = dim Symad(g0)) obtained in §2 A-D, and changing the left G -action by its
right G -action, we have,

(a, b, c, . . . ) 7→ (T, S)−1 · (a, b, c, . . . ) = (a′, b′, c′, . . . )

which is the way in which we shall express some of our results below. We shall be
able to classify the different Lie superalgebras we are interested in, by letting the
parameters (a′, b′, c′, . . . ) take some appropriate values that lead to a convenient
parametrization of the G -orbits.

Using the classification of the nonsemisimple 3-dimensional Lie algebras given
in (2.2) in terms of the matrices A , we shall divide the analysis in four cases
according to whether A is invertible, A corresponds to q0(F), A corresponds
to the Heisenberg algebra h(F), and A = 0 corresponding to the Abelian Lie
algebra.

A. A invertible and corresponding to p(F) , qλ(F) , and q1
λ(R) . The space

Symad(g0) of triples (Γ1,Γ2,Γ3) where Γ( · , · ) =
∑

i Γi( · , · ) ei satisfies (J1) is
1-dimensional, and we have,

(T, S)−1 ·
(

a

(
1 0 0

0 0 0

0 0 0

)
,
a

2

(
0 1 0

1 0 0

0 0 0

)
,
a

2

(
0 0 1

0 0 0

1 0 0

) )
=

(
r2
0a

(
1 0 0

0 0 0

0 0 0

)
,
r2
0a

2

(
0 1 0

1 0 0

0 0 0

)
,
r2
0a

2

(
0 0 1

0 0 0

1 0 0

) )

for any choice of T , where use has been made of the explicit forms for S and
T given in Tables 2 and 3 above. We could have anticipated this result because
the action of G on a 1-dimensional space must be given by a scalar. Therefore,
when the underlying field is C , there are two different orbits represented by the
parameter values a = 0, and a = 1. When the underlying field is R we have
three different orbits, as a = 1 and a = −1 are now separated.

Remark . Note that we could have made the identification (Γ1,Γ2,Γ3) ↔
(a) right from the start, and could have written the corresponding action as
(T, r0T )−1 · (a) =

(
r2
0a

)
.

B. A corresponding to q0(F) . We shall make the identification (Γ1,Γ2,Γ3) ↔
(a, b, c, d, e), according to the prescription given in §2 B. Writing

(T, S)−1 · (Γ1,Γ2,Γ3) = (Γ1′,Γ2′,Γ3′) ↔ (a′, b′, c′, d′, e′)
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we get,

(4.1)

a′ = r2
0a + r0d2

(
r1 + v2

r0

d2

)
b ,

b′ = r0r2d2b ,

c′ = −2v2
r2
0

d2
a− 2v2r0

(
r1 + v2

r0

d2

)
b

+
r2
0

d2
c + 2r0

(
r1 + v2

r0

d2

)
d + d2

(
r1 + v2

r0

d2

)2

e

d′ = −v2r0r2b + r0r2d + d2r2

(
r1 + v2

r0

d2

)
e ,

e′ = r2
2d2e .

We may now use the arbitrariness of v in T and of the ri ’s in S to make
appropriate choices that let us select a complete set of representatives for the
G -orbits.

Cases with b = e = 0 . The trivial subcase is a = c = d = 0. Let us first
assume a = d = 0, and c 6= 0. All what we are left with from Eqns. (4.1)
is c′ = r2

0
d2

c , and the choice d2 = r2
0c make us obtain the orbit representative

(a′, b′, c′, d′, e′) = (0, 0, 1, 0, 0).

Let us now assume that a 6= 0, and d = 0. Choosing v2 = c
2a , and r2

0 = ± 1
a ,

we see that the orbit representatives would correspond to the parameter values
(a′, b′, c′, d′, e′) = (1, 0, 0, 0, 0) when the ground field is C , and to (±1, 0, 0, 0, 0)
when the ground field is R .

Now assume a = 0, with d 6= 0. Since d2 6= 0, may then choose r1 so as to
make c′ = 0 regardless of the value of c . Then we choose the product r0r2 in the
expression for d′ to make it equal to 1. Therefore, the orbit representative in this
case would correspond to the parameter values (a′, b′, c′, d′, e′) = (0, 0, 0, 1, 0).

For the next subcase assume ad 6= 0. The resulting equation for c′ shows that
we may choose r1 so as to make c′ = 0, regardless of the value of c . The
equations for a′ and d′ then show that r0 and r2 may be chosen so as to bring
(a′, b′, c′, d′, e′) to the parameter values (±1, 0, 0, 1, 0) over R , and to (1, 0, 0, 1, 0)
over C .

Cases with b = 0 , and e 6= 0 . Regardless of the value of d , we can make d′ = 0
by letting r1 + v2

r0
d2

= − r0d
ed2

, in which case c′ = r2
0

d2

(
c− 2av2 − d2

e

)
; v2 can be

expressed in terms of r1 , it follows that when a 6= 0, r1 can be chosen so as to
make c′ = 0, too so that the orbit representatives for those cases having a 6= 0,
will be (a′, b′, c′, d′, e′) = (1, 0, 0, 0, 1) over the complex field, and (±1, 0, 0, 0, 1)
over the real field. If, on the other hand, a = 0 we can still make d′ = 0 as before
with r1+v2

r0
d2

= − r0d
ed2

, but then c′ = (r0r2)2(ec−d2), and an appropriate choice
of r0 will further make c′ be equal to 1 or 0 over the complex field, and ±1 or
0 over the real field depending only on whether ec−d2 is or is not equal to cero;
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altogether these are the orbit representatives (0, 0, 1, 0, 1), and (0, 0, 0, 0, 1) over
C , and (0, 0,±1, 0, 1), and (0, 0, 0, 0, 1) over R , respectively.

Cases with b 6= 0 . In (4.1) above we may first choose v2 = − r1d2
r0

, and using
the fact that d2 6= 0 and b 6= 0 we may also choose r1 = − dr0

dd2
, so as to bring

(a′, b′, c′, d′, e′) to the parameter values,(
r2
0a , r0r2d2b ,

r2
0

bd2
(bc− 2ad) , 0 , r2

2d2e

)
regardless of the values of d and e . It is then easy to see that the orbit
representatives will be given by (a′, 1, c′, 0, e′) where the possibilities for a′ , c′ ,
and e′ are given by the following table, where ∆ = bc− 2ad , ε = 0, 1 depending
on whether e is or is not equal to zero, and ν is either ±1 or 1, depending on
whether the ground field is R or C :

a′ c′ e′

∆ = 0 and a = 0 0 0 ε

∆ = 0 and a 6= 0 ν 0 ε

∆ 6= 0 and a = 0 0 1 νε

∆ 6= 0 and a 6= 0 ν 1
ε

a2b∆

In the final count of orbits for q0(F), the value ε(a2b∆)−1 appears as a nonzero
parameter. Adding up all the possibilities for the orbit representatives we find
that there are 23 different orbits, plus two one-non-zero-parameter families of
orbits when F = R , and 15 different orbits, plus one non-zero-parameter family
of orbits when F = C .

C. A corresponding to the Heisenberg Lie algebra h2 . We shall make
the identification (Γ1,Γ2,Γ3) ↔ (a, b, c, d, e), according to the prescription given
in §2 C. The group G is now given by

G=

{(
t 0

τT δ

)
, λ

(
t 0

σT δ

) ∣∣∣∣∣ t ∈ GL2, δ = det t 6= 0, λ ∈ F−{0}, σ, τ ∈ F2

}
.

We shall use the following block notation for the Γk ’s given in §2 C:

Γ1 =
(

γ1 0
0 0

)
, Γ2 =

(
γ2 0
0 0

)
, Γ3 =

(
γ3 g
gT 0

)

γ1 =
(

2a b
b 0

)
, γ2 =

(
0 a
a 2b

)
, γ3 =

(
c d
d e

)
, g =

(
a
b

)
.

The equations for the left G -action can be reduced to

(4.2) λ2tT γ̂jt = tj1γ1 + tj2γ2 , j = 1, 2.



Hernández, Salgado and Sánchez-Valenzuela 549

(4.3) λ2tT ĝ = g

(4.4) λ2(tT γ̂3t + σ(tT ĝ)T + tT ĝσT ) = τ1γ1 + τ2γ2 + δγ3 ,

where τT = (τ1, τ2).

Case 1:
(

â

b̂

)
6= 0 . Choose,

t =
(

t11 −λ2δb̂
t21 λ2δâ

)
, with 1 = λ2(t11â + t21b̂)

to obtain gT = (1, 0). Then Eqns. (4.2) are automatically satisfied with this
choice of t , and Eqn. (4.4) yields

λ2tT γ̂3t +
(

2(σ1 − τ1) σ2 − τ2

σ2 − τ2 0

)
= δγ3 .

A straightforward computation of the 22 entry in the LHS yields

λ6δ2(â2ê− 2âb̂d̂ + b̂2ĉ) .

We can choose σ1 − τ1 and σ2 − τ2 to always anihilate the 11 and 12 entries of
γ3 , and end up with the following canonical forms:

γ1 =
(

2 0
0 0

)
, γ2 =

(
0 1
1 0

)
, γ3 =

(
0 0
0 e

)
, g =

(
1
0

)
where e is either 0 or 1, depending on whether â2ê − 2âb̂d̂ + b̂2ĉ is zero or
nonzero.

Case 2:
(

â

b̂

)
= 0 . The LHS of Eqns. (4.3) is identically zero. Therefore, the

canonical forms for γ1 and γ2 are γ1 = γ2 = 0. Then, Eqn. (4.3) becomes a
trivial identity with g = 0, and Eqn. (4.4) reduces to δ−1λ2tT γ̂3t = γ3 . The
possible canonical forms for γ3 over the real numbers are(

1 0
0 1

)
,

(
1 0
0 −1

)
,

(
1 0
0 0

)
,

(
0 0
0 0

)
.

It is now clear that we end up with six different orbits when the ground field is
R . When the ground field is C there are only three possible canonical forms for
γ3 , giving thus rise to 5 different orbits.

5. Lie superalgebras based on the 3-dimensional Abelian Lie algebra

Notation 5.1.

I =

 1 0 0
0 1 0
0 0 1

 , I2,1 =

 1 0 0
0 −1 0
0 0 1

 ,
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I1 =

 1 0 0
0 0 0
0 0 0

 , I2 =

 0 0 0
0 1 0
0 0 0

 , I3 =

 0 0 0
0 0 0
0 0 1

 .

We shall also use the following special notation for the standard Pauli matrices:

H := σ3 =
(

1 0
0 −1

)
, iJ := σ2 =

(
0 −i
i 0

)
, K := σ1 =

(
0 1
1 0

)
.

We shall denote by 12×2 the 2× 2 identity matrix, and we let

L := 12×2 + K −H =
(

0 1
1 2

)
.

The purpose of this section is to prove Thm.5.4. below. In order to be systematic
along its proof we give the following:

Definition 5.2.

(1) a(Γ) = max{ # of diagonal matrices in (S, T ) · (Γ1,Γ2,Γ3) | S, T ∈
GL3 } .

(2) b(Γ) = dim SpanF {Γ1,Γ2,Γ3} .
(3) c(Γ) = max{ # of diagonal matrices in (S, I) · (Γ1,Γ2,Γ3) | S ∈ GL3 } .

Observation 5.3. Note that a(Γ) and b(Γ) are invariant along each orbit.
The number c(Γ) in (3) above corresponds to the number of matrices that can
be simultaneously diagonalized in a given triple (Γ1,Γ2,Γ3). It is clear that
a(Γ) ≥ c(Γ).

Theorem 5.4. Let S be the set of triples of 3 × 3 real symmetric matrices,
and let G = GL3×GL3 act on S on the left by means of,

(S, T ) · (Γ1,Γ2,Γ3) = (
∑

T1i(S ΓiST ) ,
∑

T2i(S ΓiST ) ,
∑

T3i(S ΓiST ) )

and write [Γ1,Γ2,Γ3] for the G-orbit of the triple (Γ1,Γ2,Γ3) . Then, the fol-
lowing is a complete list of orbit representatives in S :

(1) Orbits for which (Γ1,Γ2,Γ3) can be simultaneously diagonalized:

(1.i) Orbits for which dim SpanF {Γ1,Γ2,Γ3} = 3 :

[I, I1 + I2, I1] .

(1.ii) Orbits for which dim SpanF {Γ1,Γ2,Γ3} = 2 :

[I, I1 + yI2, 0] , [I2,1, I1 + yI2, 0] , [I1 + I2, I1, 0] ,
y = 1,−1 , y = 0,−1 .
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(1.iii) Orbits for which dim SpanF {Γ1,Γ2,Γ3} = 1 :

[I, 0, 0] , [I2,1, 0, 0] , [I1 + I2, 0, 0] , [I1 − I2, 0, 0] , [I1, 0, 0] .

(1.iv) Orbits for which dim SpanF {Γ1,Γ2,Γ3} = 0 :

[0, 0, 0] .

(2) Orbits for which (Γ1,Γ2,Γ3) cannot be simultaneously diagonalized:

(2.i) Orbits having a pair of matrices that can be simultaneously
diagonalized:

(2.i.1) Orbits with dim SpanF {Γ1,Γ2,Γ3} = 2 :

[I1 − I2, 0,Γ2] , Γ2 =
(

X 0
0 0

)
, X = K, L .

[I2,1, 0,Γ2] , Γ2 =
(

0 wT

w X

)
, X = K, L, Y ,

with w ∈ R2 arbitrary, and Y a diagonal matrix.

(2.i.2) Orbits with dim SpanF {Γ1,Γ2,Γ3} = 3 :

[I1 + I2, I2,Γ3] , Γ3 =
(

K 0
0 0

)
.

[I, I1 + yI2,Γ3] , y = 1,−1; and [I2,1, I1 + yI2,Γ3] , y = 0,−1

with Γ3 having at least two diagonal entries equal to zero, but otherwise
arbitrary.

(2.ii) Orbits having no pair of matrices that can be simultaneously
diagonalized:

[I2,1,Γ2,Γ3] , Γ2 =
(

0 0
0 X

)
, X = K, L , Γ3 =

(
0 wT

w Y

)
,

with w ∈ R2 arbitrary, and Y a diagonal matrix.

Remark 5.5. When the ground field is C , the statements made in Thm.5.4.
above get simplified since the nonzero entries of the different diagonal forms that
arise in the analysis can always be chosen equal to +1. Therefore, the statements
over the complex numbers are the following:

(1) Orbit representatives for which (Γ1,Γ2,Γ3) can be simultane-
ously diagonalized:
[I, I1+I2, I1] , [I, I1+I2, 0], [I1+I2, I1, 0], [I, 0, 0], [I1+I2, 0, 0], [I1, 0, 0],
and [0, 0, 0].

(2) Orbit representatives for which (Γ1,Γ2,Γ3) cannot be simulta-
neously diagonalized:
[I1 + I2,Γ2, 0], with Γ2 as in the first case of (2.i.1) of Thm.5.4 above;
[I1, I2,Γ3] , with Γ3 as in (2.i.2); and [I, I1 + I2,Γ3] , with Γ3 having at
least two diagonal entries equal to zero, but otherwise arbitrary.



552 Hernández, Salgado and Sánchez-Valenzuela

All together we have 10 different orbits, plus a 4-parameter family of orbits.

Observation 5.6. We may always act on a triple (Γ1,Γ2,Γ3) with a pair (T, I),
so as to further arrange it in such a way that rk Γ1 ≥ rk Γ2 ≥ rk Γ3 .

Strategy for proving Thm. 5.4

We may organize the proof by filling in the table below the different orbits that
can have a given pair of values for a(Γ) and b(Γ):

(a(Γ)=3,b(Γ)=3); (a(Γ)=3,b(Γ)=2); (a(Γ)=3,b(Γ)=1);

(a(Γ)=2,b(Γ)=3); (a(Γ)=2,b(Γ)=2); (a(Γ)=2,b(Γ)=1);
Void case by Lemma 5.7 (2)

(a(Γ)=1,b(Γ)=3); (a(Γ)=1,b(Γ)=2);
Void case by Lemma 5.7 (5)

(a(Γ)=1,b(Γ)=1);
Void case by Lemma 5.7 (5)

We shall first deal with orbits having a(Γ) = 3. We then look at the other
extreme; namely, orbits having a(Γ) = 1. We shall finally look at the cases for
which a(Γ) = 2. In dealing with the cases having a(Γ) = 3 we shall choose orbit
representatives in such a way that rk Γ1 ≥ rk Γ2 ≥ rk Γ3 with maximal rk Γ1 .
For the cases having a(Γ) ≤ 2 our orbit representatives will be chosen in such a
way that the first two matrices are those that we can simultaneously diagonalize
with rkΓ1 maximal. If, at the end of this procedure there is still a Γi = 0, we
act with a permutation matrix T so that we present the orbit representatives of
this sort with 0’s at the end.

We may immediately prove the following Lemma whose value is to organize the
strategy indicated above.

Lemma 5.7.

(1) If b(Γ) = 2 there is a pair (S, T ) ∈ GL3×GL3 such that (S, T ) ·
(Γ1,Γ2,Γ3) = (Γ̃1, Γ̃2, 0) having rk Γ̃1 ≥ rk Γ̃2 . Therefore a(Γ) ≥ 2 .

(2) If b(Γ) = 1 there is a pair (S, T ) ∈ GL3×GL3 such that (S, T ) ·
(Γ1,Γ2,Γ3) = (Γ̃1, 0, 0) . Therefore a(Γ) = 3 .

(3) If b(Γ) = 0 . Then a(Γ) = 3 .
(4) If Γ1 , Γ2 and Γ3 are linearly dependent. Then a(Γ) ≥ 2 .
(5) If a(Γ) = 1 . Then b(Γ) = 3 .

We may now start with the strategy stated:

Orbits with a(Γ) = 3 .

It is easily proved that a(Γ) = 3 if and only if c(Γ) = 3, and that c(Γ) = 3
if and only if for any pair (S, T ) ∈ GL3×GL3 , c((S, T ) · Γ) = 3. It is then
easy to see that we may start with a triple of diagonal matrices (Γ1,Γ2,Γ3)
satisfying rk Γ1 ≥ rk Γ2 ≥ rk Γ3 . We then proceed to give a case-by-case analysis
subdivided according to rk Γ1 : Say either rk Γ1 = 3, 2, 1 or 0, under specific
hypotheses on b(Γ); say, either b(Γ) = 3, 2, 1 or 0. The way to go is by starting
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with a clever choice of Γ1 and then acting on the triple (Γ1,Γ2,Γ3) with (S, I),
having S ∈ O(Γ1), the isotropy group of Γ1 .

Orbits with a(Γ) = 1 .

It is similarly proved that a(Γ) = 1 if and only if c(Γ) = 1, and that c(Γ) = 1 if
and only if for any pair (S, T ) ∈ GL3×GL3 , c((S, T ) · Γ) = 1. One can further
show that the hypotheses a(Γ) = 1 and b(Γ) = 3 imply that there must be
scalars x1, x2, x3 such that det(x1Γ1 + x2Γ2 + x3Γ3) 6= 0. Indeed, we have the
following result whose proof is given in the Appendix:

Lemma 5.8. Let Γ = (Γ1,Γ2,Γ3) with b(Γ) = 3 . Then, [Γ1,Γ2,Γ3] = [I1, I2 ,(
K 0

0 0

)]
if and only if for any choice of scalars x1 , x2 , and x3 , det(x1Γ1+x2Γ2+

x3Γ3) = 0 . In particular, under any of these equivalent hypotheses, a(Γ) = 2 .

Corollary 5.9. If a(Γ) = 1 , there exist a triple (Γ1,Γ2,Γ3) in the orbit and
scalars x1, x2, x3 such that det(x1Γ1 + x2Γ2 + x3Γ3) 6= 0 . Furthermore, the
diagonal form of x1Γ1 + x2Γ2 + x3Γ3 is I2,1 .

Proof. If the diagonal form of x1Γ1 + x2Γ2 + x3Γ3 was ±I , then a(Γ) ≥ 2
contrary to the assumption a(Γ) = 1.

By statement (5) in Lemma 5.7, a(Γ) = 1 implies b(Γ) = 3. If det(x1Γ1+x2Γ2+
x3Γ3) = 0 for all x1, x2, x3 ∈ R , then a(Γ) = 2, contrary to the assumption.

We then conclude the following (see the Appendix for its proof) :

Proposition 5.10. The only orbits having a(Γ) = 1 and b(Γ) = 3 are,[
I2,1,

(
0 0

0 X

)
,
(

0 wT

w Diag(c,d)

)]
where X = K, L , and R2 3 w 6= 0 .

Orbits with a(Γ) = 2 .

Note that b(Γ) = 1 would produce a triple of the form (Γ̃1, 0, 0) in the orbit;
whence, a(Γ) = 3. Therefore, either b(Γ) = 2, or b(Γ) = 3. In any case we can
look separately at the subcases for which det

(∑
xiΓi

)
= 0 for all xi ∈ F , and

those for which there exist xi ∈ F such that det
(∑

xiΓi
)
6= 0, i = 1, 2, 3.

Orbits with a(Γ) = 2 , b(Γ) = 2 , and det
(∑

xiΓi
)

= 0 for all xi .

We may start with Γ = (Γ1,Γ2, 0) and rkΓ1 ≥ rk Γ2 . Now, rk Γ1 cannot be 3
because det

(∑
xiΓi

)
must be zero for any triple (x1, x2, x3) ∈ F3 .

If rk Γ1 = 1 a suitable T ∈ GL3 can be found to produce a rank-2 matrix
in the triple (I, T ) · (Γ1,Γ2, 0), while still keeping the third matrix equal to 0;
otherwise, Γ2 would have to be a scalar multiple of Γ1 and a(Γ) = 3 contrary
to our assumptions.
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Therefore 2 = rk Γ1 ≥ rk Γ2 , and the triple we start with can be brought to the
form (I1 ± I2, Γ̃2, 0).

Suppose there is some S ∈ O(I1 ± I2) such that S Γ̃2ST has a nonzero entry in
its third row, say. Then, scalars x1 and x2 can be found such that det(x1(I1 ±
I2)+x2Γ̃2) 6= 0. Therefore, Γ̃2 must have a 2×2 symmetric matrix in its upper
left block and zero entries in its third row (and hence in its third column). If
Γ̃1 = I1 + I2 , then the symmetric matrix in the upper left block of Γ̃2 can be
further diagonalized with an element of O(I1 +I2), thus implying that a(Γ) = 3.
So, Γ̃1 must be I1 − I2 , and the 2× 2 symmetric matrix in the upper left block
of Γ̃2 must be either K or L . The proof is given in the Appendix (see Lemma
A1).

Orbits with a(Γ) = 2 , b(Γ) = 3 , and det
(∑

xiΓi
)

= 0 for all xi .

According to the Lemma 5.7 above there is only one orbit having b(Γ) = 3 and
det(

∑
xiΓi) = 0 which necessarily has a(Γ) = 2.

Orbits with a(Γ) = 2 , b(Γ) = 2 , and det
(∑

xiΓi
)
6= 0 .

Since b(Γ) = 2 we may assume that we have started with a triple (Γ1,Γ2, 0)
having 3 = rkΓ1 ≥ Γ2 . Acting with (S, I) for a suitable S ∈ GL3 we may
further assume that Γ1 = I , or Γ1 = I2,1 . If Γ1 = I then S ∈ O(I) = O3 can be
found so as to further diagonalize the second matrix in the triple (S, I)·(I,Γ2, 0);
thus, a(Γ) = 3, contrary to our assumptions. Whence Γ1 = I2,1 . Since Γ2

cannot be diagonalized by an element from the Lorentz group S ∈ O(I2,1), it
follows that Γ2 must be of the form, (see Lemma A.4.3 in the Appendix)

Γ2 =
(

0 w
wT X

)
, w =

(
w1

w2

)
∈ R2 , X = K, L, Diag(d1, d2) .

Orbits with a(Γ) = 2 , b(Γ) = 3 , and det
(∑

xiΓi
)
6= 0 .

We may assume that rk Γ1 = 3 ≥ rk Γ2 , with Γ1 and Γ2 diagonal. Therefore, we
can find a pair (T, S) such that either Γ1 = I , and Γ2 = I1 + yI2 with y = ±1,
or else Γ1 = I2,1 , and Γ2 = I1 + yI2 with y = 0 or y = −1. In either case Γ3

can be chosen with two diagonal entries equal to zero.

Appendix

The purpose of this section is to outline the proofs of the Lemmas from which
the statements in Thm. follow. For any real symmetric 3 × 3 matrix X , we
shall write O(X) for the isotropy group {g ∈ GL3 | gXgT = X} , regardless of
the rank of X , and we shall keep using the notation I , I2,1 , I1 , . . . , for the
matrices introduced in 5.1.

A.1 Case a(Γ) = 2 and b(Γ) = 2 .
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A.1.1 rk Γ1 = 1 . Let us write Γ2 =
(

a wT

w B

)
, with BT = B , w ∈ R2 , and

a ∈ R . An explicit description for g ∈ O(I1) can be written in the form,

g =
(
±1 vT

0 A

)
, A ∈ GL2 and v ∈ R2 .

It is then easy to see that Γ2 can be simultaneously diagonalized with I1 if and
only if w ∈ Im(B). We are interested precisely in the complementary case. In
particular, B should not be invertible and we may analize the cases B = 0 and
rkB = 1 with w /∈ Im B separately.

Let us first assume B = 0. By adding −aI1 to Γ2 we may assume from the
start that the (1, 1)-entry of Γ2 is equal to zero. We then choose v = 0, and
the invertibility of A in g ∈ O(I1) in order to have Aw = δ1 =

(
1

0

)
, and

therefore, [I1,Γ2, 0] =
[
I1,

(
K 0

0 0

)
, 0

]
. Acting on the last triple with (I, h),

where h =
(

r −r 0

r r 0

0 0 1

)
, and r = 1√

2
, we get,

[
(I, h) ·

(
I1,

(
K 0

0 0

)
, 0

)]
=

[(
H 0

0 0

)
, r2

(
1 −1 0

−1 1 0

0 0 0

)
, 0

]
=

[(
H 0

0 0

)
,
(

K 0

0 0

)
, 0

]
where we have used the fact that: If X cannot be simultaneously diagonalized
with H then via O(H), X is equivalent to K or L . (see [8], Prop. in §6.1)

Let us now assume that rk B = 1 and w /∈ Im B . We may again assume from
the start that the (1, 1)-entry of Γ2 is equal to zero. Now choose g ∈ O(I1) with
v = 0 and A such that ABAT = Diag(0, 1). Then,

[I1,Γ2, 0] =
[
I1,

(
0 wT AT

Aw Diag(0,1)

)
, 0

]
.

Now choose g =
(

1 0 0

0 p 0

0 r s

)
(s2 = 1, and ps 6= 0), so that

g
(

0 wT AT

Aw Diag(0,1)

)
gT =


(

K 0

0 1

)
if δT

1 A w 6= 0 ,(
0 ±yδ1

±yδT
1 1

)
if δT

1 A w = 0 .

Note that we can proceed as before to get[
I1,

(
K 0

0 1

)
, 0

]
=

[(
1 0

0 H

)
,
(

1 0

0 K

)
, 0

]
.

On the other hand,[
I1,

(
0 ±yδ1

±yδT
1 1

)
, 0

]
=

[(
0 0

0 H

)
,
(

0 0

0 X

)
, 0

]
=

[(
H 0

0 0

)
,
(

X 0

0 0

)
, 0

]
where X = K, L (See [8] Prop. in §6.1). Altogether we obtain the following:
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Lemma A.1.2. Write Γ2 be as before, and assume a(I1,Γ2, 0) = 2 . Then
either

[
I1,Γ2, 0

]
=

[(
H 0

0 0

)
,
(

X 0

0 0

)
, 0

]
with X = K or L , or else

[
I1,Γ2, 0

]
=[

I2,1,
(

1 0

0 K

)
, 0

]
depending on whether B = 0 or rkB = 1 with w /∈ Im B .

A.2 Case rk Γ1 = 2 and gΓ1gT = I1 + I2 . We shall now write Γ2 =
(

B w

wT b

)
with BT = B , w ∈ R2 , and b ∈ R . An explicit computation of O(I1 + I2)
yields:

O(I1 + I2) 3 g ⇐⇒ g =
(

A v
0 a

)
, A ∈ O2 , v ∈ R2 , and, a ∈ R− {0} .

It is easy to see that Γ2 and I1+I2 can be simultaneously diagonalized if and only
if b 6= 0. We are therefore interested in the case b = 0. Choosing g ∈ O(I1 + I2)
with v = 0, A such that ABAT becomes diagonal, and a in such a way that
‖aAw‖ = 1, we see that either [I1+I2,Γ2, 0] = [I1+I2,

(
0 δ1

δT
1 0

)
, 0] when B = 0,

or else [I1 + I2,Γ2, 0] =
[
I1 + I2, I1 + yI2 +

(
0 u

uT 0

)
, 0

]
(‖u‖ = 1), when B 6= 0,

and the possible choices for y are −1, 0, or 1 with y 6= 0 if and only if rkB = 2.

A.2.1 Remark. Note that in this case we may always find real scalars x1 , and
x2 such that rk(x1(I1 + I2) + x2Γ2) = 3. Furthermore, the diagonal form of
x1(I1 + I2) + x2Γ2 must be I2,1 .

A.3 Case rk Γ1 = 2 and gΓ1gT = I1 − I2 . Let us write S(θ) =
(

cosh θ sinh θ

sinh θ cosh θ

)
,

so that g ∈ O(I1− I2) if and only if g =
(

S(θ) v

0 a

)
with v ∈ R2 and a ∈ R−{0} .

Write Γ2 =
(

B w

wT b

)
as before, and see that,

g Γ2gT =
(

S(θ)BS(θ)+vwT S(θ)+S(θ)wvT +bvvT a(S(θ)w+bv)

a(S(θ)w+bv)T a2b

)
.

Thus, in order to simultaneously diagonalize I1− I2 , and Γ2 it is necessary that
S(θ)w + bv = 0.

A.3.1 Case w = 0 . We choose g ∈ O(I1 − I2) having v = 0 and find that,

[I1 − I2,Γ2, 0] =
[
I1 − I2,

(
X 0

0 a2b

)
, 0

]
X = Diag(d1, d2),K, L

where again, the stated possibilities for X follow from Prop. in §6.1 of [8].

A.3.2 Case w 6= 0 We subdivide the analysis depending on whether b = 0 or
b 6= 0.
3.2.1. b 6= 0 . In this case we may choose g ∈ O(I1 − I2) having v = − 1

b S(θ)w ,
to obtain

g Γ2gT =
(

S(θ)(B− 1
b wwT )S(θ) 0

0 a2b

)
.

So that,

[I1 − I2,Γ2, 0] =
[
I1 − I2,

(
X 0

0 1

)
, 0

]
, X = Diag(d1, d2),K, L .
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3.2.2. b = 0 . In this case we choose g ∈ O(I1 − I2) having v = 0, and get

gΓ2gT =
(

S(θ)BS(θ) aS(θ)w

a(S(θ)w)T 0

)
.

Whence,

[I1 − I2,Γ2, 0] =
[
I1 − I2,

(
X w

wT 0

)
, 0

]
, X = Diag(d1, d2),K, L .

One might further choose a in order to make ‖w‖ = 1; but, since we are going to
choose orbit representatives having Γ1 with maximal rank, and in these cases we
are going to find a Γ̃1 with rk Γ̃1 = 3, there is no point in being more economical
about the choice of w stating that ‖w‖ = 1. Nevertheless, at some point it is
useful to know that we might have chosen a unitary vector w in order to prove
that we may find another triple in the orbit having rk Γ̃1 = 3.

We may now conclude the following:

Lemma A.3.3. Write Γ2 be as before, and assume a(I1−I2,Γ2, 0) = 2 . Then,

[I1−I2,Γ2, 0] =


[
I1 − I2,

(
X 0

0 ε

)
, 0

]
, X = K, L; ε = ±1, 0 ,[

I1 − I2,
(

X w
wT 0

)
, 0

]
, X =Diag(d1, d2),K, L ; w ∈ R2 − {0} .

Furthermore, we may find real scalars x1 and x2 such that rk(x1(I1 − I2) +
x2Γ2) = 3 in all cases but the one with ε = 0 .

A.4 Case rk Γ1 = 3 with gΓ1gT = I2,1 . In this case, g =
(

a uT

v A

)
∈ O(2, 1) if

and only if,

1 = a2 + uT Hu, 0 = AHu + av, H = AHAT + vvT .

In particular, we shall write g(θ) :=
(
±1 0

0 S(θ)

)
∈ O(2, 1). Write Γ2 =

(
b wT

w B

)
,

and Γ̃2 = gΓ2gT , to obtain the following blocks:

Γ̃2
11 = a2b + auT w + awT u + uT Bu ,

Γ̃2
21 = A(bHu + aw + a−1HuwT u + Bu) ,

Γ̃2
12 = Γ̃2

21
T ,

Γ̃2
22 = bH + a−1A(abH + wuT H + HuwT + aB)AT .

In order to diagonalize Γ̃2 , say with g ∈ O(I2,1) having an invertible A in its
lower right block, we must have

bHu + aw + a−1HuwT u + Bu = 0 .

There are two complementary conditions under which we may approach this
equation; namely w2

1 < w2
2 , and w2

1 ≥ w2
2 , where w =

( w1

w2

)
.
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A.4.1 Case w2
2 > w2

1 . Under this condition it is possible to find g ∈ O(I2,1)

such that Γ̃2 = gΓ2gT =
(

Γ̃2
11 0

0 Γ̃2
22

)
. But then, a linear combination of the latter

with I2,1 let us assume that Γ̃2
11 = 0. Finally, acting with g(θ)’s, we may assume

that:

(5) Γ̃2 = gΓ2gT =
(

0 0

0 X

)
X = Diag(d1, d2),K, L .

A.4.2 Case w2
2 ≤ w2

1 . In this case we may act with a suitable g(θ) ∈ O(I2,1)

(ie, u = v = 0) to obtain Γ̃2 = gΓ2gT =
(

b ±wT AT

±Aw 2bH+ABAT

)
. Now, if b 6= 0 a

suitable linear combination of the later with I2,1 let us assume that:

Γ̃2 = gΓ2gT =
(

0 uT

u X

)
X = Diag(d1, d2),K, L, u ∈ R2 .

In either case we conclude the following:

Lemma A.4.3. Write Γ2 be as before, and assume a(I2,1,Γ2, 0) = 2 . Then,

[I2,1,Γ2, 0] =
[
I2,1,

(
0 uT

u X

)
, 0

]
, X = Diag(d1, d2),K, L, u ∈ R2 .

A.4.4 Remark. The analysis of the case a(Γ) = 2 and b(Γ) = 3 follows easily
from A.1-A.4.3.

A.5 Orbits with Γ1 = I2,1 . We shall consider triples of the form (I2,1,Γ2,Γ3).

Let us write Γi =
(

bi wT
i

wi Bi

)
, i = 2, 3 as before. Let k = dim SpanF{w2, w3} .

Clearly, k = 0 if and only if Γi =
(

bi 0

0 Bi

)
(i = 2, 3). If k = 1 we may

write w3 = λw2 , and it is then clear that Γ̃3 = Γ3 − λΓ2 is block-diagonal.
If k = 2 we may find scalars λij (i, j = 1, 2), such that λi1w2 + λi2w3 = δi

(δ1 =
(

1

0

)
and δ2 =

(
0

1

)
). Using the same λij ’s we have Γ̃2 = λ11Γ2 + λ12Γ3

and Γ̃3 = λ21Γ2 + λ22Γ3 , and using our findings in A.4.1 we see that for Γ̃3

there is some g ∈ O(2, 1) such that gΓ̃3gT is again block diagonal. Therefore we
conclude the following:

Lemma A.5.1. For any orbit of the form [I2,1,Γ2,Γ3] we may always assume
that [I2,1,Γ2,Γ3] = [I2,1, Γ̃2, Γ̃3] , where at least Γ̃2 is block diagonal. Moreover,
if both Γ̃2 , and Γ̃3 are block diagonal, then a(I2,1,Γ2,Γ3) ≥ 2 .

Proof. Let us assume that Γ2 and I2,1 cannot be simultaneously diagonalized.

Then (cf, A.4.1 above), there is some g ∈ O(I2,1), such that gΓ2gT =
(

0 0

0 X

)
with X = K, L . Since Γ3 is block diagonal, the linear combination Γ3 −
Γ3

32(gΓ2gT ) becomes diagonal.

A.6 Case a(Γ) = 1 y b(Γ) = 3 .
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Lemma A.6.1. Let Γ = (Γ1,Γ2,Γ3) with b(Γ) = 3 . Then, [Γ1,Γ2,Γ3] =
[I1, I2 ,

(
K 0

0 0

)]
if and only if for any choice of scalars x1 , x2 , and x3 ,

det(x1Γ1 + x2Γ2 + x3Γ3) = 0 .

Proof. Since rk(Γi) ≤ 2 we may assume that rk(Γ1) = 2 ≥ rk(Γ2) ≥ rk(Γ3).
Now, if a(Γ) = 3, the linear independence of the Γi ’s yields [Γ1,Γ2,Γ3] =
[I1, I2, I3] . Thus, we must have a(Γ) ≤ 2. If there is some S ∈ GL3 such that
SΓ1ST = I1 + I2 , our Remark A.2.1 above shows that there are scalars xi such
that det(x1Γ1 + x2Γ2 + x3Γ3) 6= 0. Therefore, the diagonal form of Γ1 must be
I1 − I2 . From Lemma A.3.3 above we conclude that Γi =

(
Bi 0

0 0

)
(i = 2, 3),

with symmetric 2 × 2 matrices Bi . Now, H , B2 and B3 become a basis for
the symmetric 2 × 2 matrices, from which the statement now follows. [Note
that if rk Γ1 = 1 the analysis may be reduced to the one just given by finding
a suitable linear combination of Γ1 and Γ2 —which cannot be simultaneously
diagonalized— that yields a new Γ1 with rank ≥ 2].

Lemma A.6.2. Assume Γ = (Γ1,Γ2,Γ3) is such that rk(Γi) = 1 (i = 1, 2, 3),
and b(Γ) = 3 . Then a(Γ) = 3 , and [Γ1,Γ2,Γ3] = [I1, I2, I3] .

Proof. Suppose Γ1 and Γ2 cannot be simultaneously diagonalized. Then,
Lemma A.1.2 shows that rk(Γ2) ≥ 2. The same argument applies to Γ1

and Γ3 . In any case we may act on the triple with (I, S) (S ∈ GL3 ), and
rk(Γi) = rk(S ΓiST ).

A.6.3 Remark. Note that under the assumption b(Γ) = 3 and det(x1Γ1 +
x2Γ2 + x3Γ3) 6= 0 for some choice of scalars xi , we may further assume right
from the start that Γ1 = I2,1 and that Γ2 is block diagonal and cannot be
simultaneously diagonalized with I2,1 . Therefore, we finally obtain the following:

Proposition A.6.4. The only orbits having a(Γ) = 1 and b(Γ) = 3 are,[
I2,1,

(
0 0

0 X

)
,
(

0 wT

w Diag(c,d)

)]
where X = K, L , and R2 3 w 6= 0 .
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Poincaré algebras and bilinear invariants of the spinor representation of
Spin(p, q) , Commun. Math. Phys. 183 (1997), 477–510.

[2] Fulton, W., and J. Harris, “Representation Theory, a First Course,”
Graduate Texts in Mathematics 129, Springer-Verlag, 1991.

[3] Guillemin, V., and S. Sternberg, “Supersymmetry and Equivariant de
Rham Theory,” Springer-Verlag, New York, 1999.

[4] Jacobson, N., “Lie Algebras,” Dover Publications, Inc., New York, 1979.



560 Hernández, Salgado and Sánchez-Valenzuela

[5] Kac, V. G., A Sketch of Lie Superalgebra Theory, Commun. Math. Phys.
53 (1977), 31–64.

[6] Monterde, J., and O. A. Sánchez-Valenzuela, Existence and uniqueness
of solutions to superdiferential equations, J. Geom. Phys. 10 (1993), 315–
344.

[7] Onishchik, A. L., and E. B. Vinberg, “Lie Groups and Algebraic Groups,”
Springer Verlag, Heidelberg, 1990.

[8] Peniche, R., and O. A. Sánchez-Valenzuela, Lie supergroups supported
over GL2 and U2 associated to the adjoint representation, J. Geom.
Phys. 56 (2006), 999–1028.

[9] Salgado, G., and O. A. Sánchez-Valenzuela, Lie Superalgebras Based on
gln Associated to the Adjoint Representation, and Invariant Geometric
Structures Defined on them, Commun. Math. Phys., 241 (2003), 505–
518.

[10] Scheunert, M., “The Theory of Lie Superalgebras, an introduction,”
Lecture Notes in Mathematics 716, Springer-Verlag, New York, 1979.

[11] Sternberg, S., and J. A. Wolf, Hermitian Lie Algebras and Metaplectic
Representations, Trans. Amer. Math. Soc., 238 (1978), 1–43.

I. Hernández, G. Salgado,
O. A. Sánchez-Valenzuela
Centro de Investigación
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