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Abstract.  We introduce analogues of a map due to Rossi and show how they
can be used to explicitly determine all covers of certain homogeneous strongly
pseudoconvex 3-dimensional hypersurfaces that appear in the classification ob-
tained by E. Cartan in 1932.
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1. Introduction

In 1932 E. Cartan [3] classified all connected 3-dimensional homogeneous strongly
pseudoconvex C'R-manifolds — we reproduce his classification in detail below in
Section 2. Most manifolds in the classification are given by explicit equations as
hypersurfaces in either C? or CP?. The exceptions (apart from lens spaces) are
all possible covers of each of the following hypersurfaces:

x = {(zyw)eC*: 2 +u*=1},
fo = {(z:w:Q) €CP*: |2+ |w+[C|*=alz2+w?+ |}, a>1,
Vo = {(z,w) €C?: |2+ |w|* =1 = afz? + w? — 1|} \
{(z,u) eR?: 22 +u? =1}, -1 <a <1,
Mo = {(zw) €21t~ fuff = all 422 — w2

Im(z(1 +w)) > O}, a> 1.

In the above formulas and everywhere below we set z = x + 1y, w = u + .

Sometimes it is desirable to know all the covers explicitly. For example,
such a need arises when one attempts to describe all Kobayashi-hyperbolic 2-
dimensional complex manifolds with holomorphic automorphism group of dimen-
sion 3, since almost every hypersurface from Cartan’s classification can be realized
as an orbit of the automorphism group action on such a manifold [6] (see also [5]
for motivations and related results).
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All covers of the hypersurface x are easy to find — see Section 3. Next,
we determine the covers of the hypersurfaces pu, in Section 4. All of them are
compact, and, since compact Levi non-degenerate homogeneous C'R-manifolds
have been extensively studied (see, e.g., [2] and references therein), all these covers
have been discovered on many occasions in various guises (see, e.g. [4]). We show
how the covers of p, can be found by using a map introduced by Rossi in [8] —
see Section 4. Originally, Rossi defined it as a map from CP?\ {0} into CP? and
used it to construct strongly pseudoconvex 3-dimensional manifolds that do not
bound any pseudoconvex analytic space. For our purposes, however, we will only
be interested in the restriction of the map to C?\ {0} and call this restriction
Rossi’s map (see formula (4.1)).

Our main results are contained in Section 5. There we determine all covers
of the hypersurfaces v, and 7, that, in contrast with those of u,, appear to have
never been found explicitly. Interestingly, it turns out that this can be done by
introducing a map (in fact, a sequence of maps) analogous to Rossi’s map (see
(5.1), (5.11)). While Rossi’s map is associated with the action of SUy on C?\ {0},
our analogues are associated with the action of SU;; on C? \ {(z,w) € C? :
|z|? — |w|* = 0} (which is a manifestation of the non-compactness of v, and 7, ).
While for p,, only 2- and 4-sheeted covers can occur, there is an n-sheeted cover for
every n > 2 as well as an infinite-sheeted cover, for each of v, , 7, . In fact, as in the
cases of y and i, we explicitly find the covers of certain domains in C?, namely
DY :=U_1qc1Vq and D" := U,>11,. We equip the covers of these domains with
complex structures obtained by pull-backs under explicit covering maps, the covers
of v,, 1, with CR-structures induced by these complex structures, and find the
groups of C'R-automorphisms of the induced CR-structures explicitly. Hence the
emphasis of the present paper is on the explicit determination of the covers of v,
and 7, in the differential-geometric sense, and on group actions.

The main motivation for the present work was the above-mentioned problem
of classifying 2-dimensional Kobayashi-hyperbolic manifolds with 3-dimensional
automorphism groups (we call such manifolds (2,3)-manifolds for brevity). A
complete explicit classification of (2,3)-manifolds was obtained in [6], and the
particular realizations of the covers of v, and 7, (as well as those of x and
o) constructed in the present paper turned out to be extremely useful for this
purpose. In our construction, the covers VC(YN) and néN) of v, and 7, with the same
number of sheets N (where N can be infinite) are glued together into complex
manifolds M¥ and M}, respectively. On these manifolds certain connected 3-
dimensional Lie groups G%¢ and G} act by holomorphic transformations (these
groups are in fact the connected identity components of the automorphism groups
of M} and Mj;), and the orbits of these actions are exactly the hypersurfaces

v and "), respectively (the groups G%¢ and G also coincide with the

connected identity components of the groups of C'R-automorphisms of v

and
n") — see Theorem 5.1. The actions of G%¢ and G on MY and M], are
proper without singular orbits, and the orbit spaces MY /G and My, /G are
homeomorphic to R (see [1]). The manifolds My and M}, cover the domains
D¥ and D" by means of N-to-1 explicit covering maps % and P% that are
expressed in terms of our analogues of Rossi’s map. The restrictions of % to

v and B to n&N) are N-to-1 covering maps onto v, and 7,, respectively.
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Thus, our construction immediately gives a large number of examples of (2,3)-
manifolds whose automorphism groups act with codimension 1 orbits: indeed, any
domain in M} bounded by two G%f-orbits and any domain in M}, bounded by
two G -orbits are such manifolds (this phenomenon takes place for other types
of hypersurfaces from Cartan’s classification as well).

Another feature of our construction utilized in [6] concerns the complex
structures of M} and M},. These structures are given by pull-backs under the
maps ‘P4 and P, and, since the formulas for P4, and P, are complicated, the
resulting complex structures are not very explicit. Nevertheless, some properties of
these structures can be derived from our construction. In [6], in order to classify
(2,3)-manifolds whose automorphism groups act with codimension 2 orbits, we
study complex curves in MY and M}, invariant under the actions of maximal
compact subgroups of G%f and G}, respectively, for N < oo. Namely, let
K C GY%f be a maximal compact subgroup (every such subgroup is isomorphic
to the circle) and C' a connected K -invariant non-singular complex curve in MfF;.
Next, let G” be the connected identity component of the automorphism group of
DY (in fact, G¥ is isomorphic to the connected identity component SOq;(R)°
of SO31(R)). The group G%° covers the group G* by means of an explicit
N-to-1 covering homomorphism P}, the group K’ := Py (K) is a maximal
compact subgroup of G¥, and the restriction of Py, to K is an N-to-1 covering
homomorphism onto K’. Then it turns out that C’ := PX (C) is a K’'-invariant
non-singular complex curve in D¥, and the restriction of B% to C is an N-to-
1 covering map onto C’. Moreover, every connected non-singular K'-invariant
complex curve in DY is obtained in this way. A similar statement holds for
complex curves in M}, invariant under the actions of maximal compact subgroups
of G'. In [6] we often relied on this property when studying (2,3)-manifolds with
codimension 2 orbits.

Before proceeding, we would like to thank one of the anonymous referees for
numerous suggestions that help improve the paper. These suggestions included,
in particular, a group-theoretic interpretation of Rossi’s map that we reproduce
in Section 4. Similar constructions lead to group-theoretic interpretations of our
analogues of Rossi’s map — see Section 5.

2. E. Cartan’s Classification

In this section we reproduce E. Cartan’s classification of connected 3-dimensional
homogeneous strongly pseudoconvex C'R-manifolds from [3]. He shows that every
such hypersurface is C'R-equivalent to one of the manifolds on the list below. As
does Cartan, we group the model manifolds into spherical and non-spherical ones.
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The Spherical Case

CYNN i
i) L, :=28%/Z,, meN,n>2 (lens spaces),
i) o:={(z,w) € C*:u=|z2*},

(
(i)

(iv) oy :={(z,w) €C*:u=|z>, z >0},

(v)  ea={(z,w) €C*: |z + |w|* =1, w # 0}, a > 0,
(vi) w:={(z,w) € C*: |z]* +e* =1},

(vii) 6= {(=w) € C+ fu] = exp (|2}

(viii) vy = 5%\ R?

(ix) any cover of vy.

S

The groups of C'R-automorphisms of the above hypersurfaces (except in case (ix))
are as follows:

Auteg(S?) ~ SUs 1 /(center) :

(Z>H(Zi ) (o) ()

2.1
w c1z +cow +d ’ (2.1)
with @ € SU;;, where
ain aiz by
Q=1 an axn b |. (2.2)

C1 Co d

COl=1 (o)l
w w
where U € Uy and [(2,w)] € L,, denotes the equivalence class of (z,w) € S*

under the action of Z,, embedded in U, as a subgroup of scalar matrices.
Autegr(o) ~CU; x H -

Auter(Ly) ~ Us/Zyy, -

z2 — Ae¥z+a,
w — Nw+ 2 e¥az + |al* + i,

where A € R*, p,7 € R, a € C, CU; denotes the conformal unitary group given

by the conditions @ = 0, v = 0, and H denotes the Heisenberg group given by
the conditions A =1, ¢ =0.

Autcep(oy) ~ R x R? :

z = Az 4f,
w — ANw — 2iAyz + 2 + i,

where A > 0, 4,7 € R.

Auteg(ea) :
L L R0 |
1—-az
w (L= lal)!/*

w o — e (1—6z)2/aw’
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where ¢,9 € R, a € C, |a|] < 1. We have Auter(ca) ~ %271(R)C Xoe Uy, if
a ¢ Q, where %2,1(]1%)0 is the universal cover of the connected identity compo-
nent SO1(R)¢ of the group SO2;(R), and x,,. denotes locally direct product;
Autor(eq) = SO (R)*™ x,. Uy, if a = n/k, with n,k € Z, n > 0, k > 0,
(n,k) =1, where SO, ;(R)¢™ is the n-sheeted cover of SOy (R)°.

AutCR(w) ~ §(/)271(R>C Xiloe R:

. ewz—a’
1—-az

1—fa?

w +— w4+ 2In | + 17,

where p, v € R, a € C, |a] < 1.
AlltCR(5> ~ U1 X (Ul X RQ) :

z +— e¥z+4a,

w — eYexp (26“"62 + |a|2)w,

where ¢, € R, a € C.

Auter(vg) >~ SO51(R) @ This group consists of all maps of the form (2.1) with
Q € SO51(R), where @ is defined in (2.2).

The Non-Spherical Case

i) 7o ={(z,w) €C*:u=2z >0},
a € (—oo,—1]U(1,2) U (2,00),
(i) ¢&={(zw)eC?®:u=z-lnz, z> 0},
(i) x={(z,w) € C?: 2? +u* =1},
(iv)  any cover of ¥,
(v)  pa={(z,w) €C*:r =€}, a>0,
where (7, ) denote the polar coordinates in the (z,u)-plane
with ¢ varying from —oo to oo,
(Vi) pa={(z:w:¢) €CP*: |22 + [w]* + [¢|* = a|z2 + w? + *|}, a > 1,
(vii) any cover of p, with o > 1,
(vill) v ={(z,w) € C*: |2]* + |w|* — 1 = a]z? + w? — 1]} \
{(v,u) eR*: 2 +u?> =1}, -1 <a<1l,a#0,
(ix) any cover of v, with —1 <a <1, a #0,
(x) na:{(z,w)E(C2:1+|z|2—|w|2:a|1+22—w2|,
Im(z(1 + @) > 0}, a>1,

(xi) any cover of 1, with o > 1.

Below we list the groups of C'R-automorphisms of the above hypersurfaces
excluding cases (iv), (vii), (ix), (xi). Note that it follows from the proof of Lemma
3.3 of [7] that the automorphism group of a connected non-spherical homogeneous
hypersurface in a 2-dimensional complex manifold has at most two connected
components.
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Autop(Te) @ R x R?:

z = Az+if,
w = Aw 17,

where A > 0, 4,7 € R.
AutCR(f) ~RxR?:

z = Az 40,
w — (AlnA)z 4+ Aw + i,

where A > 0, §,v € R.
Autep(x) =~ Oy x R? :

where A € O2(R), 3,7 € R.
Autor(pa) ~ R x R?:

2z o cos siny z N
(w)'_)ed}(—sinw cosgb)(w)—m(fy)’

where ¢, 3,7 € R.
Auter(pta) ~ SO3(R) :

z
w | —A|l w |,
¢

where A € SO3(R).

Autcr(ve) ~ SO51(R) @ This group consists of all maps of the form (2.1) with
Q) € SO21(R), where @ is defined in (2.2).

AutCR(na) ~ SOQJ(R)C :

(- L)) () o

a122 + blw “+ a1

with @ € SO21(R)¢, where @ is defined in (2.2).

Thus, to obtain an explicit classification from the above lists, one needs to
determine all possible covers of x, pa, Vo (including the spherical hypersurface
v), and 1, .

Let M be an arbitrary manifold, M its universal cover, II : M — M a
covering map and I'y; the corresponding group of covering transformations of M .
Then an arbitrary manifold that covers M is obtained from M by factoring it
by the action of a subgroup of I';. Hence, in order to find all covers of each of
the hypersurfaces x, fo, Vo, Mo We need to determine their universal covers, the
corresponding groups of covering transformations and all their subgroups.
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3. The Covers of y
Let ®X: C? — C%\ {z =0, u = 0} be the following map:

z +— e¥cosy + iu,
w +— e’siny 4 wv.

Clearly, ®X is an infinitely-sheeted covering map. Introduce on the domain of
®X a complex structure so that ®X becomes holomorphic (the pull-back complex
structure under ®X), and denote the resulting manifold by M®*. Then ¥ coincides
with the hypersurface

() = {(z,w) e M® :x= 0}7

equipped with the C'R-structure induced by the complex structure of M®*.
Clearly, I'gpx consists of all transformations of the form

z +— z+2mik, ke€Z,
wo— w.

Let I' C I'gx be a subgroup. Then there exists an integer n > 0 such that every
element of I" has the form

z +— z+42mnk, ke€Z,
W w.

Suppose that n > 1 and consider the map ®X from C?\ {z = 0,u = 0} onto itself

defined as follows:
z +— Re(z+iu)" + 1y,
w — Im(z+ )"+ iv.

Denote by M ®% the domain of ®X with the pull-back complex structure under
®X. Then the hypersurface

™ = {(z,w) e M 2?42 = 1},

equipped with the C'R-structure induced by the complex structure of M®" is an
n-sheeted cover of y corresponding to I'" with covering map ™ — y coinciding
with ®X : M® :— C?\ {z = 0, u = 0} and factorization map ¥ — x given
by

z +— e""cos(y/n) +iu,

w e sin (y/n) +iv.

Thus, every cover of x is C'R-equivalent to either (> or ™ for some
n € N. The groups of C'R-automorphisms of (> and y(™ are given below.

Auteg (X(OO)) ~ R?® % Zy : This group is generated by the maps

z = z410,
w = w+a,

where 3 € R, a € C, that form the connected identity component Auteg(y ™)
of Autcr (X(OO)), and the map

—
—

&

z
w
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which is a lift from C?\ {z = 0, u = 0} to M®* of the following element of
Autor(x):

(3.1)

Auter (X(”)) ~ 0,(R) x R?: This group is generated by the maps

z = cosg-x+sing-u+i(cos(ny)-y+sin(ny) v+ G),
w +— —sing-x+cosp-u+i(—sin(ny) -y + cos(np) - v+ ),

where ¢, 3,7 € R, that form the identity component of Autcg (X(")), and map
(3.1).

4. The Covers of .,

All covers of p, can be found by using a map introduced by Rossi in [8]. Let Q.
be the variety in C® given by

2 2 2

Consider the map ®* : C*\ {0} — Q. defined by the formulas

zZ1 = —Z(Z +w )"—Zm,
9 9 2w+ wz
Zo = 2 — W — m, (41)
[2* — [wl?
23 = 220+ 55
’ 2% + wl?

It is straightforward to verify that ®# is a 2-to-1 covering map onto @\ (Q, NR3)
and that it satisfies

H(g(z, w)) = ¢"(9)@"((z, w)), (4.2)

for all ¢ € SUy, (z,w) € C*\ {0}, where " is the standard 2-to-1 covering
homomorphism from SU, onto SO3(R) defined as follows: for

(.

Re (a? + 0?) Im(a® —b*) 2Im(ab)
©"(g) = —Im(a®+0%) Re(a®-1*) 2Re(ad) |. (4.3)
2Im(ab)  —2Re(ab) |a|* — |b?|

> R

v ) s,
a

(here |al® + |b]* = 1), set

In formula (4.2) the actions of SU; on C? and SO3(R) on C? are standard.

In fact, the covering homomorphism ¢* can be used to give a simple group-
theoretic interpretation of Rossi’s map ®* (this interpretation was suggested to
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us by one of the referees). First of all, we observe that the group R x SU, acts on
C?%\ {0} simply transitively as follows:

(tag)(sz) = - g(z,w),

where t € R, g € SU,. On the other hand, the standard action of SO3(R)
on @, \ (Qy NR3) can be extended to a simple transitive action of the group
R x SO3(R) by diffeomorphisms. Indeed, R x SO3(R) acts simply transitively on

Qr ={C=(C,0,¢) €C\{0}: T+ G+ G =0}

as follows:
(tag)c = et gCa

where t € R, g € SO3(R). The manifold Q, is SOs(R)-equivariantly diffeomor-
phic to Q; \ (Q;+ NR?) by means of the map F, given by

(= G+,

where & € R3 is such that (£,€), = 1, (£,¢)y = 0, det(&,Re(,Im¢) > 0,
and (-,-), denotes the standard Hermitian scalar product in C*. Using the
SO;3(R)-equivariant diffeomorphism F;, we can now push forward the action of
R x SO3(R) on Q. to a simple transitive action of R x SO3(R) on Q4 \ (Q, NR3)
by diffeomorphisms.

Thus, as smooth manifolds C*\ {0} and Q \ (Q+ NR?) can be identified
with R x SU; and R x SO3(R), respectively. Then the map (¢, g) — (¢, ¢"(g))
is precisely Rossi’s map ®* if we choose (1,0) € C?\ {0} and (—i,1,1) €
Q.+ \ (Q+ NR3) as basepoints. Hence formulas (4.1) — that may look somewhat
mysterious at first sight — are a simple consequence of (4.3).

Next, we introduce on the domain of ®* the pull-back complex structure
under ®* and denote the resulting complex manifold by M®". This complex
structure is invariant under the ordinary action of SU; on M®". It follows from
(4.2) that ®* maps every SU,-orbit in M®" (all such orbits are diffeomorphic to
S3) onto an SO3(R)-orbit in @, \ (Q+ NR?) (we note in passing that Q@ NR3 is
also an SO3(R)-orbit in @ ; it has dimension 2 and does not lie in the range of the
map ®#). Specifically, ®* maps the SUs-orbit {(z,w) € M® : [z]> + |w|* = r?},
r > 0, onto the SO3(R)-orbit

oy = (21,2, 2) € C 1 P+ |2 + P = 20 +1} N Q.

Further, consider a holomorphic map ¥* : @, \ (Q; NR3) — CP? \ RP? defined
as

(21, 22,23) — (21 1 29 @ 23).

Clearly, U* is a 2-to-1 covering map, and W* (ug) ) = lo for every a > 1. Thus,

we have shown that i, coincides with the hypersurface
O = {(zw) € M¥ < |2 4 Juf? = Vo~ D2}

with the C'R-structure induced from M®": the 4-to-1 covering map u&) — g is

the composition W o O,
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Next, a straightforward calculation shows that I'guoewr is a cyclic group of
order 4 generated by the map f* defined as:

(2 + Jwf?) —w
VI+ (P + [P

(4.4)
w2+ w?) + 2z '
V14 ([22 + [w]?)?

The only non-trivial subgroup of I'guoer is then a cyclic subgroup of order 2
generated by (f*)?. The cover of u, corresponding to this subgroup is the
hypersurface ,ug) with covering map ,u,(f) — o coinciding with U* . Q4 \
(Q+ NR3) — CP? \ RP? and factorization map pl = pl? coinciding with
B M s Qo \ (Qu R,

Thus, every non-trivial (that is, not 1-to-1) cover of p, is C'R-equivalent

)

to either ugl or ,ug). The groups of C'R-automorphisms of ,ugl) and ,ug) are as

follows.

Autcr (ug)) ~ SU; X, Z4 : This group is generated by the maps

(2)=a(2)

w w

where A € SU,, that form Autcpr (MS‘))C, and the map f#* defined in (4.4), which
is a lift from Q. \ R® to M®" of the following element of Autcp (;ﬁ) :

21 = =2,
29 = —Z9, (45)

Z3 > —2s3.

Autcp (u?) ~ O3(R) :

21 21
z9 — A Z9 s (46)
z3 Z3

where A € O3(R).

5. The Covers of v, and 7,

In order to find all covers of v, and 7, we introduce an analogue of Rossi’s map.
Instead of the Hermitian form |z|? + |w|? it is associated with the form |z|? — |w|?.
Let Q_ be the variety in C?® given by

2 2 2 _
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Set Q := {(z,w) € C?: |z — |w|* # 0} and consider the map ® : Q — @Q_ defined
by the formulas

_ 9 9 AWt wz
S P T
' ERST o
z = —szw—zM
’ ERTEd

It is straightforward to verify that the range of ® is Q_ \ (Q_ N W), where
W: = iRPURU
{(21,22,23) € C*\R® : |izy + 20| = |izz — 1|, |izg — 22| = |izz + 1]},
and that the restrictions of ® to the domains

Q" = {(z,w) € C*: |z]* — |w|]* > 0},
Q< = {(z,w) € C*:|z]* — |w|* < 0}

are 2-to-1 covering maps onto ®(2~) and ®(£2<), respectively (note that ®(2<)
is obtained from ®(2”) by applying the transformation z; +— —z1, 25 +— 29,
23— —23).

The map ¢ satisfies

®(g(z, w)) = p(9)®((z, w)), (5.2)

for all g € SUy 4, (2,w) € Q, where ¢ is the standard 2-to-1 covering homomor-
phism from SU;; onto SO (R)°, defined as follows: for

-~

Re (a? + b?) Im(a® —b*) 2Re(ab)
o(g) == | —Im(a®+?*) Re(a®—0°) —2Im(ad) |. (5.3)
2Re(ab) 2Im(ab) |al® + 07|

_b ) € SUl’l
a

>R

(here |a|*> —|b|? = 1), set

The actions of SU;; on C? and SOq;(R)¢ on C? in formula (5.2) are standard.
Hence ® maps every SUj-orbit in © onto an SO, ;(R)¢-orbit in

Q- \ (Q-NW). Note that SOy ;(R)¢ has exactly four orbits in ¢)_ that do not

lie in the range of the map ®:

O; = IR*NQ- ={(21,2,23) € C*: |z* + |2]* — |23]* = -1} N Q_,
02 = RgﬁQ_,
Os = {(Z1,227Z3) € CP\R?: |izy + 25| = [izg — 1],
iz1 = 2] = iz + 1], Tm 25 < 0} N Q-
Oi = {(21,22,2) € C\R® :|izy + 2] = lizg — 1],

lizy — 29| = |izg + 1], Im 23 > O} naQ-_.
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The orbits O, Oy are 2-dimensional, the orbits O3, O, are 3-dimensional, and

Oy, O3, Oy lie in the set
S = {(21,22,23) €C*: |21 [* + |2 — |3 =1} NQ-_.

In fact, we have

S =0,U03U04UO0O5U O,
where O3, Og are the following 3-dimensional SO5;(R)¢-orbits in Q_:

05 = {(z1.20.20) € CNRE: fizy 4 20l = Jizg + 1],
lizg — 29| = |izz3 — 1|, Im 23 < 0} naQ-_,
06 = {(21722723) € (C3\R3 : |/LZ1 +22‘ = |7:Zg + 1|’

|i21 — 22’ = ‘iZg — 1‘, Im z3 > 0} N Q,.

In contrast with Oy, Os, Oy, however, the orbits Os, Og lie in the range of
® and are the images under ® of the sets {(z,w) € C* : |z|*> — |w|* = 1},
{(z,w) € C*: |2]? — |w|* = —1}, respectively.

From now on we will only consider the restriction ®~ of ® to 2. The
range of &~ is D~ := 3" U X" U O3, where

2= {(zl,z2,23) €C: -1 <]al +]nl’ —|ul* <1, Imz < 0} ne-,
and
Y= {(zl,ZQ,zg) € C3: 22+ |22)? — |z* > 1, Im(22(z1 +23)) > 0} NQ-_.

The covering homomorphism ¢ defined in (5.3) can be used to give a group-
theoretic interpretation of the map ®~ analogous to that of Rossi’'s map ®* from
the previous section, where the homomorphism ¢ defined in (4.3) was utilized.
The group R x SU;; acts on Q7 simply transitively as follows:

(tag)('sz) =e - g(z,w),

where t € R, g € SU; 1. On the other hand, the standard action of SO4;(R)¢ on
D~ can be extended to a simple transitive action of the group R x SO 1(R)¢ by
diffeomorphisms. Indeed, R x SO51(R)¢ acts simply transitively on each of the
two connected components of the set

_{g C17<27C3 €C3 C1+C2+€3_0 <CC >O}
where (¢,¢')_ = (¢ 4 (¢ — (3¢ The action is given as follows:
(t7g)C = e 9G,

where t € R, g € SO,1(R)*. Let Q° be the connected component of Q_
that contains the point (—i,1,0). The manifold Q° is S051(R)-equivariantly
diffeomorphic to D~ by means of the map F_ defined as

¢ = +ig,
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where £ € R? is such that (£,&). = —1, (£,{)_ = 0, det(¢,Re(,Im(¢) < 0.
Using the SO, (R)%-equivariant diffeomorphism F_, we can now push forward
the action of R x SOy 1(R)° on Q° to a simple transitive action of R x SOy (R)®
on D~ by diffeomorphisms.

Thus, as smooth manifolds 2~ and D~ can be identified with R x SU; 4
and R x SO21(R)°, respectively. Then the map (¢,9) — (¢, ¢(g)) is exactly the
map ®~ if we choose (1,0) € 2~ and (—i,1,—i) € D~ as basepoints.

We will now concentrate on the domains in 2~ lying above Q_\ (O;UG).
Let &7, ®" denote the restrictions of &~ to the domains

Q"= {(z,w) €C*: 0 < |z)* — |w|* < 1}
and
Q"= {(z,w) € C*: |2)* — |w|* > 1},

respectively. The maps ®¥ and ®" are 2-to-1 covering maps onto ¥ and 7.
Introduce on 2V, Q" the pull-back complex structures under the maps &, &7,
respectively, and denote the resulting complex manifolds by M®", M?®". These
complex structures are invariant under the ordinary action of SU; ;. The map &
takes the SU; ;-orbit

v = {(zw) € MY 1 |2 = Jw)? = ) (5.4)
onto the SO ;(R)¢-orbit
Vpa_q i= {(21,22, z) €YY a4 |2l — |2 = 2rt — 1} ,
where 0 < r < 1. Similarly, the map ®" takes the SU; ;-orbit
= {(z,w) € M®" ;|22 — |w|? = 12} (5.5)
onto the SO ;(R)¢-orbit
77;2_1 = {(21, 29, 23) € X7 |z |P + |2)? — |z]? = 20t — 1} , (5.6)

where r > 1.
Observe now that z3 # 0 on X and consider the holomorphic map ¥" :
¥¥ — C? defined as follows:
z = z/z,
w = z/zs.

This map is 1-to-1, it takes >” onto
DY = {(z,w) eC?: —|Z2+w =1 < 2P+ |wf —1< |22 +w? - 1|},

and establishes equivalence between v/, and v, for —1 < a < 1. Next, we note
that z; # 0 on X" and consider the holomorphic map ¥” : ¥7 — C? defined by

z = z/z,
w = z3/z.
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It is easy to see that U is a 2-to-1 covering map onto

D" o= L) €21+ 22 — |w]? > |1+ 2% — w?), Im(2(1 + @) > o}\
(z,w) €C*: 1+ 2% —w? =0, Im(z(1+w))>0},

{2 as a 2-sheeted cover of No for a > 1.

Let A: C x A — Q7 be the following covering map:

and realizes 7

z = é°

= e’t,
where s € C, t € A and A is the unit disk. Further, define

U’ = {(s,t) € C*: |t| <1, exp(2Res)(1 — [t]*) < 1},
U = {(s.6) €€ [ < 1, exp(2Res)(1 i) > 1}

Denote by A”, A" the restrictions of A to U”, U", respectively. Clearly, U” covers
M?®" by means of AY, and U" covers M®" by means of A7. Introduce now on
UV, U" the pull-back complex structures under the maps A, A", respectively, and
denote the resulting complex manifolds by M*”, M*". Then the simply-connected
hypersurface

{(s,t) € MY : r®exp (—2Res) + [t|* = 1}

(2)

covers v, ; by means of the map A” for 0 < r < 1, and the simply-connected
hypersurface

{(s,t) € MY : r®exp (—2Res) + [t|* = 1}
covers 77;:%)471 by means of the map A" for r > 1.

Thus, 7, for —1 < a < 1 coincides with

«

V) = {(s,t) e MY . /la+ 1)/2exp (—2Res) + |t = 1} L.

with the CR-structure induced from the complex structure of M*", and 7, for
a > 1 coincides with

) = {(s,t) e MM : \/(a+1)/2exp (—2Res) + [t|? = 1} . (5.8)

with the C R-structure induced from the complex structure of M*". The covering
maps v — v, and 7 — n, are respectively ¥ o & o AV : U¥ — DY and
Ulo®To A": UM — D",

Next, the group I'grogropr = 'aropr consists of the maps

s+ mik, k€Z, (5.9)

Let I' C I'gvopr be a subgroup. Then there exists an integer n > 0 such that every
element of I" has the form

(5.10)
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Suppose that n > 2 and set
Q0= {(z,w) € C?: 0 < |2|* — 2" ?|w]? < 1}

(note that Q¥ = Q). Consider the map ®* from Q¥ to ©¥ defined as follows:

B . _9 9 _ W+ wz
zZ21 = —Z<Zn + 2" w ) — ZW,
_ 2W — Wz
zg = 2" —2" 2w2+m, (5.11)
_ . n—1 122 + Jw]?
zz = —2iz" w—zm.

This map is a generalization of map (5.1) introduced at the beginning of the section
and also can be viewed as an analogue of Rossi’s map (4.1). The extension of this
map by the same formula to all of Q= admits a group-theoretic interpretation
analogous to those given above for the maps ®* and ®~. It uses an n-to-1
covering homomorphism SOy (R)¢™ — SO, ;(R)¢, where the n-sheeted cover
SO41(R)*™ of SOy, (R)® is realized as the group of maps of the form (5.17) that
will appear below, acting on 2~ (note that this group reduces to the group SU; ;
for n =2). We do not provide a detailed construction here since it is very similar
to that for the map ®~.

Denote by M®% the domain Q* with the pull-back complex structure
under the map ®” (note that M®2 = M®"). Then the hypersurface

v = {(Z,w> e M. 2" — 2" 2w = (o + 1)/2}, (5.12)

«

equipped with the C'R-structure induced by the complex structure of M® is an
n-sheeted cover of v, corresponding to I' with covering map - v, coinciding

with U o ® : M® — D¥ and factorization map v — v{" given by

PN er/n’
W = 625/71757

(5.13)

(observe that for n = 2 formula (5.12) coincides with (5.4)). Thus, every non-
trivial cover of v, is C' R-equivalent to either Véoo) or V((ln) for some n € N, n > 2.

The groups of C R-automorphisms of v and " are given below.

(A) Auteg <yc(y°°)> ~ 6?@271(]1%)‘3 X. Z : This group is generated by the following

maps (they form the subgroup Autcg <Vc(y°°)> ):

s +— s+In(a+bt),

_ .14
b+ at (5 )
a+bt’



422 IsAEV

where In is any branch of the logarithm and |a|?> — [b]* = 1, and the map

5 — s+In |- L+ et — 1)
V1 —exp (4Res) (1—[t[)2 )’

(5.15)
e (1 - Jt*)
1+ ext(1 — |t]?)’
for some branch In" of the logarithm. Map (5.15) is a lift from ¥ to MA" of the
following element of Autcg(V)):

t

2 = =2,
29 — 29, (5.16)
zZ3 Z3.

Here x,,. denotes local semidirect product.

(B) Autcgr (V&n)) ~ SOy 1(R)*™ x,,. Zy, : This group is generated by the follow-

ing maps (they form the subgroup Autcg (Vé’”) )

2 = zi/(a+bw/z),
b+aw/z ./ 9
w = ZW (CL"’bU)/Z) s

where / is any branch of the nth root and |af* — [b|*> = 1, and the map

(5.17)

/
2
of (1 2 w(1 = Jul?/|212))
L=z = Jw?/]212)2 |

zZ =z

_ W[z 21— |w]*/]2*)
L4 zn (1 — fw|?/]2[?)

(5.18)

/
2
o| (12w (1 = wl?/|212)
L= 21— JwpP/|2?)? )

z

!/
for some branch <<z/> of ¢/. Map (5.18) is a lift from ¥ to M®n of map (5.16)

(recall that SO;(ln) (R) is the n-sheeted cover of SO5;(R)).

Further, the group ['gnognonn is generated by all maps of the form (5.9) and
the map f" defined as follows:

S — 2s+35+1In <z

1— [t +e 2 )
vexp (4Res) (1 — [t[2)2 —1
(5.19)

1+ e?t(1 — |t)
Pt ex(1—|t2)




IsAEV 423

for some fixed branch In’ of the logarithm. The map f7 is a lift from %7 to M*"
of the element of Autcgr (779) given by formula (4.5). At the same time, f7 is a

lift from M®" to M*" of the map

(|2 — wf?) +w

VAEMDEE

(5.20)
w(lz o) +
VP + w2 =1
Since the square of map (5.20) is
= TTE (5.21)

it follows that (f7)? is a lift from M®" to M*" of map (5.21) and thus has the
form (5.9) with k£ odd. Since f7 clearly commutes with all maps (5.9), the group
[groenoan is isomorphic to Z and is generated by f7 o g, where g has the form
(5.9).

Let I' C I'gnognoan be a subgroup. It then follows that I' is generated by
either a map of the form (5.9) or by f” o h, where h has the form (5.9). In the
first case there exists an integer n > 0 such that every element of I has the form
(5.10). Suppose that n > 2 and set

Q1 = {(z,w) € C*: |2|" — |2|" ?|w|* > 1}

(note that 27 = Q7). Consider the map ®7 from Q7 to X7 defined by formula
(5.11). Denote by M®* the domain Q7 with the pull-back complex structure
under the map @7 (note that M® = M®"). Then the hypersurface

ne = {(zw) € M™% : 1" = |2l = Ve + D2} (5.22)

equipped with the C'R-structure induced by the complex structure of M ®i s a 2n-
sheeted cover of 7, corresponding to I' with covering map 7]&2”) — 1), coinciding
with W7o @7 : M ®5 —, D" and factorization map n&oo) — n((fn) given by formula
(5.13); note that for n = 2 formula (5.22) coincides with (5.5). For n = 1 we
obtain the hypersurface 77&2) defined in (5.6) that covers 7, by means of the 2-to-1
map W7 : X" — D7; the factorization map n((fo) — ng?) is @70 A" : M — ¥,
We will now describe finitely-sheeted covers of 7, of odd orders. They arise
in the case when I' is generated by f"7oh, where h has the form (5.9). In this case

the group I' can be represented as I' = I'yU ((f?7 oh) oFO) , where I'y is a subgroup

that consists of maps of the form (5.10) for an odd positive integer n. We will
first factor M®" with respect to the action of the subgroup of I'y corresponding
to even k. Namely, M®" by means of the map

z = e .

w es/”t,

(5.23)
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covers the manifold M® and, accordingly, n°® covers ni'™. In order to obtain
the cover of 7, corresponding to the group I', the hypersurface 7]((;1") must be

further factored by the action of the cyclic group of four elements generated by
the following automorphism f! of M P2

/
1 — 2 2 —2na35 /%

s [ [ AP e\
VI~ TuP/PP = 1

1422w (1 — |w]?/]2?)
1
w/z+ 22 (1 = |w]?/[2]?)

/!
o (oA lPlEP =)
VI = w IR - 1

/ N n
for some branch <\n/> of o/ - Let M ®n denote the manifold arising from M ®2n

by means of this factorization and II? : M ®3. — M® denote the corresponding
4-to-1 factorization map. Next, define

) =TI (320 5.21)
The hypersurface 77&") with the C'R-structure induced from the complex structure
of M® is an n-sheeted cover of M. corresponding to I' with the factorization map
i — pi" coinciding with the composition of map (5.23) and II7. Note that for
n =1 the map f7 = f] coincides with the map defined in (5.20), and 17 = II7]
coincides with W7o ®". Both II" and the covering map n&”) — 1o (which extends
to a covering map Mo — D") can be computed explicitly for any odd n € N,
but, since the resulting formulas are quite lengthy and not very instructive, we
omit them.

We will now write down the groups of C'R-automorphisms of 7> and n{".

(C) Auter (ng’o)> ~ 576271<]R)C X10c Z : This group is generated by its connected

identity component that consists of all maps of the form (5.14), and the map f”
defined in (5.19).

(D) Autcgr (7]((12)) ~ S041(R)¢ x Zy : This group is generated by its connected

identity component that consists of all maps of the form (4.6), where A €
S051(R)¢ and the map given by formula (4.5).

(D) Auter <77((12n)> ~ 50271(]1%)‘3(”) Xioe Ligpn, n > 2 : This group is generated by

its connected identity component that consists of all maps of the form (5.17), and
the map
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/
2
. (1—\w\2/\z|2+z—nw/z)
222 (1 = Jw]?/[2)2 =1 |’

2 = 2%z

1+ 2" w(l — |w|?/|2]?)
W o= —— X
w/Z +2"(1 = [w|?/|2]?)

/
2
. (1 - \wP/\zP%—z*"@/E)
[22(1 = [w]?/[2[?)2 =1 |~

2’z

!
for some branch (C/) of /-

(E) Autcr (U&Z"H)) ~ SOy, (R)¢™+1) : This group is connected and consists of

all lifts from D" to My ., of maps (2.3).

Thus, we have proved the following theorem:

Theorem 5.1.

(i) A non-trivial cover of a hypersurface v, with —1 < a < 1 is CR-equivalent
to either v or V& with n > 2 defined in (5.7), (5.12); the groups of CR-
automorphisms of these covers are described in (A)-(B), in particular, for every
N €{2,3,...,00} there exists a complex 2-dimensional manifold MY on which a
connected 3-dimensional Lie group G, acts by holomorphic transformations, such

that for every —1 < a < 1 the hypersurface v s a GY -orbit in MY and the

group Autcpr (VC(XN)> consists of the restrictions of the elements of G%, to s

(ii) A non-trivial cover of a hypersurface n, with a > 1 is CR-equivalent to ei-
ther n& or n with n > 2 defined in (5.6), (5.8), (5.22), (5.24); the groups of
CR-automorphisms of the above covers are described in (C)-(E), in particular,
for every N € {2,3,...,00} there exists a complex 2-dimensional manifold M},

on which a connected 3-dimensional Lie group G, acts by holomorphic transfor-
mations, such that for every a > 1 the hypersurface 77((1N) is a G} -orbit in M},
and the group AutCR(n&N))
ne .

consists of the restrictions of the elements of G to
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