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1. Introduction

In 1932 E. Cartan [3] classified all connected 3-dimensional homogeneous strongly
pseudoconvex CR-manifolds – we reproduce his classification in detail below in
Section 2. Most manifolds in the classification are given by explicit equations as
hypersurfaces in either C2 or CP2 . The exceptions (apart from lens spaces) are
all possible covers of each of the following hypersurfaces:

χ := {(z, w) ∈ C2 : x2 + u2 = 1} ,
µα := {(z : w : ζ) ∈ CP2 : |z|2 + |w|2 + |ζ|2 = α|z2 + w2 + ζ2|} , α > 1,
να := {(z, w) ∈ C2 : |z|2 + |w|2 − 1 = α|z2 + w2 − 1|} \

{(x, u) ∈ R2 : x2 + u2 = 1} , −1 < α < 1,

ηα :=
{

(z, w) ∈ C2 : 1 + |z|2 − |w|2 = α|1 + z2 − w2|,

Im(z(1 + w)) > 0
}
, α > 1.

In the above formulas and everywhere below we set z = x+ iy , w = u+ iv .

Sometimes it is desirable to know all the covers explicitly. For example,
such a need arises when one attempts to describe all Kobayashi-hyperbolic 2-
dimensional complex manifolds with holomorphic automorphism group of dimen-
sion 3, since almost every hypersurface from Cartan’s classification can be realized
as an orbit of the automorphism group action on such a manifold [6] (see also [5]
for motivations and related results).
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All covers of the hypersurface χ are easy to find – see Section 3. Next,
we determine the covers of the hypersurfaces µα in Section 4. All of them are
compact, and, since compact Levi non-degenerate homogeneous CR-manifolds
have been extensively studied (see, e.g., [2] and references therein), all these covers
have been discovered on many occasions in various guises (see, e.g. [4]). We show
how the covers of µα can be found by using a map introduced by Rossi in [8] –
see Section 4. Originally, Rossi defined it as a map from CP2 \ {0} into CP3 and
used it to construct strongly pseudoconvex 3-dimensional manifolds that do not
bound any pseudoconvex analytic space. For our purposes, however, we will only
be interested in the restriction of the map to C2 \ {0} and call this restriction
Rossi’s map (see formula (4.1)).

Our main results are contained in Section 5. There we determine all covers
of the hypersurfaces να and ηα that, in contrast with those of µα , appear to have
never been found explicitly. Interestingly, it turns out that this can be done by
introducing a map (in fact, a sequence of maps) analogous to Rossi’s map (see
(5.1), (5.11)). While Rossi’s map is associated with the action of SU2 on C2 \{0} ,
our analogues are associated with the action of SU1,1 on C2 \ {(z, w) ∈ C2 :
|z|2 − |w|2 = 0} (which is a manifestation of the non-compactness of να and ηα ).
While for µα only 2- and 4-sheeted covers can occur, there is an n-sheeted cover for
every n ≥ 2 as well as an infinite-sheeted cover, for each of να , ηα . In fact, as in the
cases of χ and µα , we explicitly find the covers of certain domains in C2 , namely
Dν := ∪−1<α<1να and Dη := ∪α>1ηα . We equip the covers of these domains with
complex structures obtained by pull-backs under explicit covering maps, the covers
of να , ηα with CR-structures induced by these complex structures, and find the
groups of CR-automorphisms of the induced CR-structures explicitly. Hence the
emphasis of the present paper is on the explicit determination of the covers of να
and ηα in the differential-geometric sense, and on group actions.

The main motivation for the present work was the above-mentioned problem
of classifying 2-dimensional Kobayashi-hyperbolic manifolds with 3-dimensional
automorphism groups (we call such manifolds (2,3)-manifolds for brevity). A
complete explicit classification of (2,3)-manifolds was obtained in [6], and the
particular realizations of the covers of να and ηα (as well as those of χ and
µα ) constructed in the present paper turned out to be extremely useful for this

purpose. In our construction, the covers ν
(N)
α and η

(N)
α of να and ηα with the same

number of sheets N (where N can be infinite) are glued together into complex
manifolds M ν

N and Mη
N , respectively. On these manifolds certain connected 3-

dimensional Lie groups Gν c
N and Gη c

N act by holomorphic transformations (these
groups are in fact the connected identity components of the automorphism groups
of M ν

N and Mη
N ), and the orbits of these actions are exactly the hypersurfaces

ν
(N)
α and η

(N)
α , respectively (the groups Gν c

N and Gη c
N also coincide with the

connected identity components of the groups of CR-automorphisms of ν
(N)
α and

η
(N)
α ) – see Theorem 5.1. The actions of Gν c

N and Gη c
N on M ν

N and Mη
N are

proper without singular orbits, and the orbit spaces M ν
N/G

ν c
N and Mη

N/G
η c
N are

homeomorphic to R (see [1]). The manifolds M ν
N and Mη

N cover the domains
Dν and Dη by means of N -to-1 explicit covering maps Pν

N and Pη
N that are

expressed in terms of our analogues of Rossi’s map. The restrictions of Pν
N to

ν
(N)
α and Pη

N to η
(N)
α are N -to-1 covering maps onto να and ηα , respectively.
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Thus, our construction immediately gives a large number of examples of (2,3)-
manifolds whose automorphism groups act with codimension 1 orbits: indeed, any
domain in M ν

N bounded by two Gν c
N -orbits and any domain in Mη

N bounded by
two Gη c

N -orbits are such manifolds (this phenomenon takes place for other types
of hypersurfaces from Cartan’s classification as well).

Another feature of our construction utilized in [6] concerns the complex
structures of M ν

N and Mη
N . These structures are given by pull-backs under the

maps Pν
N and Pη

N and, since the formulas for Pν
N and Pη

N are complicated, the
resulting complex structures are not very explicit. Nevertheless, some properties of
these structures can be derived from our construction. In [6], in order to classify
(2,3)-manifolds whose automorphism groups act with codimension 2 orbits, we
study complex curves in M ν

N and Mη
N invariant under the actions of maximal

compact subgroups of Gν c
N and Gη c

N , respectively, for N < ∞ . Namely, let
K ⊂ Gν c

N be a maximal compact subgroup (every such subgroup is isomorphic
to the circle) and C a connected K -invariant non-singular complex curve in M ν

N .
Next, let Gν be the connected identity component of the automorphism group of
Dν (in fact, Gν is isomorphic to the connected identity component SO2,1(R)c

of SO2,1(R)). The group Gν c
N covers the group Gν by means of an explicit

N -to-1 covering homomorphism Pη
N , the group K ′ := Pν

N(K) is a maximal
compact subgroup of Gν , and the restriction of Pν

N to K is an N -to-1 covering
homomorphism onto K ′ . Then it turns out that C ′ := Pν

N(C) is a K ′ -invariant
non-singular complex curve in Dν , and the restriction of Pν

N to C is an N -to-
1 covering map onto C ′ . Moreover, every connected non-singular K ′ -invariant
complex curve in Dν is obtained in this way. A similar statement holds for
complex curves in Mη

N invariant under the actions of maximal compact subgroups
of Gη c

N . In [6] we often relied on this property when studying (2,3)-manifolds with
codimension 2 orbits.

Before proceeding, we would like to thank one of the anonymous referees for
numerous suggestions that help improve the paper. These suggestions included,
in particular, a group-theoretic interpretation of Rossi’s map that we reproduce
in Section 4. Similar constructions lead to group-theoretic interpretations of our
analogues of Rossi’s map – see Section 5.

2. E. Cartan’s Classification

In this section we reproduce E. Cartan’s classification of connected 3-dimensional
homogeneous strongly pseudoconvex CR-manifolds from [3]. He shows that every
such hypersurface is CR-equivalent to one of the manifolds on the list below. As
does Cartan, we group the model manifolds into spherical and non-spherical ones.
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The Spherical Case

(i) S3,
(ii) Lm := S3/Zm, m ∈ N, n ≥ 2, (lens spaces),
(iii) σ := {(z, w) ∈ C2 : u = |z|2} ,
(iv) σ+ := {(z, w) ∈ C2 : u = |z|2, x > 0} ,
(v) εα := {(z, w) ∈ C2 : |z|2 + |w|α = 1, w 6= 0} , α > 0,
(vi) ω := {(z, w) ∈ C2 : |z|2 + eu = 1} ,
(vii) δ := {(z, w) ∈ C2 : |w| = exp (|z|2)} ,
(viii) ν0 = S3 \ R2,
(ix) any cover of ν0.

The groups of CR-automorphisms of the above hypersurfaces (except in case (ix))
are as follows:

AutCR(S3) ' SU2,1/(center) :

(
z
w

)
7→

(
a11 a12

a21 a22

)(
z
w

)
+

(
b1
b2

)
c1z + c2w + d

, (2.1)

with Q ∈ SU2,1 , where

Q :=

 a11 a12 b1
a21 a22 b2
c1 c2 d

 . (2.2)

AutCR(Lm) ' U2/Zm : [(
z
w

)]
7→
[
U

(
z
w

)]
,

where U ∈ U2 and [(z, w)] ∈ Lm denotes the equivalence class of (z, w) ∈ S3

under the action of Zm embedded in U2 as a subgroup of scalar matrices.

AutCR(σ) ' CU1 nH :

z 7→ λeiϕz + a,
w 7→ λ2w + 2λeiϕaz + |a|2 + iγ,

where λ ∈ R∗ , ϕ, γ ∈ R , a ∈ C , CU1 denotes the conformal unitary group given
by the conditions a = 0, γ = 0, and H denotes the Heisenberg group given by
the conditions λ = 1, ϕ = 0.

AutCR(σ+) ' R n R2 :

z 7→ λz + iβ,
w 7→ λ2w − 2iλγz + γ2 + iγ,

where λ > 0, β, γ ∈ R .

AutCR(εα) :

z 7→ eiϕ
z − a

1− az
,

w 7→ eiψ
(1− |a|2)1/α

(1− az)2/α
w,
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where ϕ, ψ ∈ R , a ∈ C , |a| < 1. We have AutCR(εα) ' S̃O2,1(R)c ×loc U1 , if

α 6∈ Q , where S̃O2,1(R)c is the universal cover of the connected identity compo-
nent SO2,1(R)c of the group SO2,1(R), and ×loc denotes locally direct product;
AutCR(εα) ' SO2,1(R)c (n) ×loc U1 , if α = n/k , with n, k ∈ Z , n > 0, k ≥ 0,
(n, k) = 1, where SO2,1(R)c (n) is the n-sheeted cover of SO2,1(R)c .

AutCR(ω) ' S̃O2,1(R)c ×loc R :

z 7→ eiϕ
z − a

1− az
,

w 7→ w + 2 ln

√
1− |a|2
1− az

+ iγ,

where ϕ, γ ∈ R , a ∈ C , |a| < 1.

AutCR(δ) ' U1 × (U1 n R2) :

z 7→ eiϕz + a,

w 7→ eiψ exp
(
2eiϕaz + |a|2

)
w,

where ϕ, ψ ∈ R , a ∈ C .

AutCR(ν0) ' SO2,1(R) : This group consists of all maps of the form (2.1) with

Q ∈ SO2,1(R), where Q is defined in (2.2).

The Non-Spherical Case

(i) τα := {(z, w) ∈ C2 : u = xα, x > 0} ,
α ∈ (−∞,−1] ∪ (1, 2) ∪ (2,∞),

(ii) ξ := {(z, w) ∈ C2 : u = x · lnx, x > 0} ,
(iii) χ = {(z, w) ∈ C2 : x2 + u2 = 1} ,
(iv) any cover of χ,
(v) ρα := {(z, w) ∈ C2 : r = eαϕ} , α > 0,

where (r, ϕ) denote the polar coordinates in the (x, u)-plane
with ϕ varying from −∞ to ∞,

(vi) µα = {(z : w : ζ) ∈ CP2 : |z|2 + |w|2 + |ζ|2 = α|z2 + w2 + ζ2|} , α > 1,
(vii) any cover of µα with α > 1,
(viii) να = {(z, w) ∈ C2 : |z|2 + |w|2 − 1 = α|z2 + w2 − 1|} \

{(x, u) ∈ R2 : x2 + u2 = 1} , −1 < α < 1, α 6= 0,
(ix) any cover of να with −1 < α < 1, α 6= 0,

(x) ηα =
{

(z, w) ∈ C2 : 1 + |z|2 − |w|2 = α|1 + z2 − w2|,

Im(z(1 + w)) > 0
}
, α > 1,

(xi) any cover of ηα with α > 1.

Below we list the groups of CR-automorphisms of the above hypersurfaces
excluding cases (iv), (vii), (ix), (xi). Note that it follows from the proof of Lemma
3.3 of [7] that the automorphism group of a connected non-spherical homogeneous
hypersurface in a 2-dimensional complex manifold has at most two connected
components.
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AutCR(τα) ' R n R2 :

z 7→ λz + iβ,
w 7→ λαw + iγ,

where λ > 0, β, γ ∈ R .

AutCR(ξ) ' R n R2 :

z 7→ λz + iβ,
w 7→ (λ lnλ)z + λw + iγ,

where λ > 0, β, γ ∈ R .

AutCR(χ) ' O2 n R2 : (
z
w

)
7→ A

(
z
w

)
+ i

(
β
γ

)
,

where A ∈ O2(R), β, γ ∈ R .

AutCR(ρα) ' R n R2 :(
z
w

)
7→ eαψ

(
cosψ sinψ

− sinψ cosψ

)(
z
w

)
+ i

(
β
γ

)
,

where ψ, β, γ ∈ R .

AutCR(µα) ' SO3(R) :  z
w
ζ

 7→ A

 z
w
ζ

 ,

where A ∈ SO3(R).

AutCR(να) ' SO2,1(R) : This group consists of all maps of the form (2.1) with

Q ∈ SO2,1(R), where Q is defined in (2.2).

AutCR(ηα) ' SO2,1(R)c :

(
z
w

)
7→

(
a22 b2
c2 d

)(
z
w

)
+

(
a21

c1

)
a12z + b1w + a11

, (2.3)

with Q ∈ SO2,1(R)c , where Q is defined in (2.2).

Thus, to obtain an explicit classification from the above lists, one needs to
determine all possible covers of χ , µα , να (including the spherical hypersurface
ν0 ), and ηα .

Let M be an arbitrary manifold, M̃ its universal cover, Π : M̃ → M a
covering map and ΓΠ the corresponding group of covering transformations of M̃ .
Then an arbitrary manifold that covers M is obtained from M̃ by factoring it
by the action of a subgroup of ΓΠ . Hence, in order to find all covers of each of
the hypersurfaces χ , µα , να , ηα we need to determine their universal covers, the
corresponding groups of covering transformations and all their subgroups.
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3. The Covers of χ

Let Φχ : C2 → C2 \ {x = 0, u = 0} be the following map:

z 7→ ex cos y + iu,
w 7→ ex sin y + iv.

Clearly, Φχ is an infinitely-sheeted covering map. Introduce on the domain of
Φχ a complex structure so that Φχ becomes holomorphic (the pull-back complex
structure under Φχ ), and denote the resulting manifold by MΦχ

. Then χ̃ coincides
with the hypersurface

χ(∞) :=
{
(z, w) ∈MΦχ

: x = 0
}
,

equipped with the CR-structure induced by the complex structure of MΦχ
.

Clearly, ΓΦχ consists of all transformations of the form

z 7→ z + 2πik, k ∈ Z,
w 7→ w.

Let Γ ⊂ ΓΦχ be a subgroup. Then there exists an integer n ≥ 0 such that every
element of Γ has the form

z 7→ z + 2πink, k ∈ Z,
w 7→ w.

Suppose that n ≥ 1 and consider the map Φχ
n from C2 \{x = 0, u = 0} onto itself

defined as follows:
z 7→ Re (x+ iu)n + iy,
w 7→ Im (x+ iu)n + iv.

Denote by MΦχ
n the domain of Φχ

n with the pull-back complex structure under
Φχ
n . Then the hypersurface

χ(n) :=
{

(z, w) ∈MΦχ
n : x2 + u2 = 1

}
,

equipped with the CR-structure induced by the complex structure of MΦχ
n is an

n-sheeted cover of χ corresponding to Γ with covering map χ(n) → χ coinciding
with Φχ

n : MΦχ
n :→ C2 \ {x = 0, u = 0} and factorization map χ(∞) → χ(n) given

by
z 7→ ex/n cos (y/n) + iu,
w 7→ ex/n sin (y/n) + iv.

Thus, every cover of χ is CR-equivalent to either χ(∞) or χ(n) for some
n ∈ N . The groups of CR-automorphisms of χ(∞) and χ(n) are given below.

AutCR
(
χ(∞)

)
' R3 o Z2 : This group is generated by the maps

z 7→ z + iβ,
w 7→ w + a,

where β ∈ R , a ∈ C , that form the connected identity component AutCR(χ(∞))c

of AutCR
(
χ(∞)

)
, and the map

z 7→ z,
w 7→ w,
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which is a lift from C2 \ {x = 0, u = 0} to MΦχ
of the following element of

AutCR(χ):
z 7→ z,
w 7→ −w. (3.1)

AutCR
(
χ(n)

)
' O2(R) n R2 : This group is generated by the maps

z 7→ cosϕ · x+ sinϕ · u+ i(cos(nϕ) · y + sin(nϕ) · v + β),
w 7→ − sinϕ · x+ cosϕ · u+ i(− sin(nϕ) · y + cos(nϕ) · v + γ),

where ϕ, β, γ ∈ R , that form the identity component of AutCR
(
χ(n)

)
, and map

(3.1).

4. The Covers of µα

All covers of µα can be found by using a map introduced by Rossi in [8]. Let Q+

be the variety in C3 given by

z2
1 + z2

2 + z2
3 = 1.

Consider the map Φµ : C2 \ {0} → Q+ defined by the formulas

z1 = −i(z2 + w2) + i
zw − wz

|z|2 + |w|2
,

z2 = z2 − w2 − zw + wz

|z|2 + |w|2
,

z3 = 2zw +
|z|2 − |w|2

|z|2 + |w|2
.

(4.1)

It is straightforward to verify that Φµ is a 2-to-1 covering map onto Q+\(Q+ ∩ R3)
and that it satisfies

Φµ(g(z, w)) = ϕµ(g)Φµ((z, w)), (4.2)

for all g ∈ SU2 , (z, w) ∈ C2 \ {0} , where ϕµ is the standard 2-to-1 covering
homomorphism from SU2 onto SO3(R) defined as follows: for

g =

(
a b

−b a

)
∈ SU2

(here |a|2 + |b|2 = 1), set

ϕµ(g) :=

 Re (a2 + b2) Im (a2 − b2) 2Im(ab)
−Im (a2 + b2) Re (a2 − b2) 2Re(ab)

2Im(ab) −2Re(ab) |a|2 − |b2|

 . (4.3)

In formula (4.2) the actions of SU2 on C2 and SO3(R) on C3 are standard.

In fact, the covering homomorphism ϕµ can be used to give a simple group-
theoretic interpretation of Rossi’s map Φµ (this interpretation was suggested to
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us by one of the referees). First of all, we observe that the group R×SU2 acts on
C2 \ {0} simply transitively as follows:

(t, g)(z, w) := et · g(z, w),

where t ∈ R , g ∈ SU2 . On the other hand, the standard action of SO3(R)
on Q+ \ (Q+ ∩ R3) can be extended to a simple transitive action of the group
R× SO3(R) by diffeomorphisms. Indeed, R× SO3(R) acts simply transitively on

Q̂+ :=
{
ζ = (ζ1, ζ2, ζ3) ∈ C3 \ {0} : ζ2

1 + ζ2
2 + ζ2

3 = 0
}

as follows:
(t, g) ζ := et · g ζ,

where t ∈ R , g ∈ SO3(R). The manifold Q̂+ is SO3(R)-equivariantly diffeomor-
phic to Q+ \ (Q+ ∩ R3) by means of the map F+ given by

ζ 7→ ζ + ξ,

where ξ ∈ R3 is such that 〈ξ, ξ〉+ = 1, 〈ξ, ζ〉+ = 0, det(ξ,Re ζ, Im ζ) > 0,
and 〈·, ·〉+ denotes the standard Hermitian scalar product in C3 . Using the
SO3(R)-equivariant diffeomorphism F+ , we can now push forward the action of
R×SO3(R) on Q̂+ to a simple transitive action of R×SO3(R) on Q+\(Q+ ∩ R3)
by diffeomorphisms.

Thus, as smooth manifolds C3 \ {0} and Q+ \ (Q+ ∩ R3) can be identified
with R × SU2 and R × SO3(R), respectively. Then the map (t, g) 7→ (t, ϕµ(g))
is precisely Rossi’s map Φµ if we choose (1, 0) ∈ C2 \ {0} and (−i, 1, 1) ∈
Q+ \ (Q+ ∩ R3) as basepoints. Hence formulas (4.1) – that may look somewhat
mysterious at first sight – are a simple consequence of (4.3).

Next, we introduce on the domain of Φµ the pull-back complex structure
under Φµ and denote the resulting complex manifold by MΦµ

. This complex
structure is invariant under the ordinary action of SU2 on MΦµ

. It follows from
(4.2) that Φµ maps every SU2 -orbit in MΦµ

(all such orbits are diffeomorphic to
S3 ) onto an SO3(R)-orbit in Q+ \ (Q+ ∩ R3) (we note in passing that Q+ ∩R3 is
also an SO3(R)-orbit in Q+ ; it has dimension 2 and does not lie in the range of the
map Φµ ). Specifically, Φµ maps the SU2 -orbit

{
(z, w) ∈MΦµ

: |z|2 + |w|2 = r2
}

,
r > 0, onto the SO3(R)-orbit

µ
(2)

2r4+1 :=
{
(z1, z2, z3) ∈ C3 : |z1|2 + |z2|2 + |z3|2 = 2r4 + 1

}
∩Q+.

Further, consider a holomorphic map Ψµ : Q+ \ (Q+ ∩ R3) → CP2 \ RP2 defined
as

(z1, z2, z3) 7→ (z1 : z2 : z3).

Clearly, Ψµ is a 2-to-1 covering map, and Ψµ
(
µ

(2)
α

)
= µα for every α > 1. Thus,

we have shown that µ̃α coincides with the hypersurface

µ(4)
α :=

{
(z, w) ∈MΦµ

: |z|2 + |w|2 =
√

(α− 1)/2
}
,

with the CR-structure induced from MΦµ
; the 4-to-1 covering map µ

(4)
α → µα is

the composition Ψµ ◦ Φµ .
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Next, a straightforward calculation shows that ΓΨµ◦Φµ is a cyclic group of
order 4 generated by the map fµ defined as:

z 7→ i
z(|z|2 + |w|2)− w√

1 + (|z|2 + |w|2)2
,

w 7→ i
w(|z|2 + |w|2) + z√

1 + (|z|2 + |w|2)2
.

(4.4)

The only non-trivial subgroup of ΓΨµ◦Φµ is then a cyclic subgroup of order 2
generated by (fµ)2 . The cover of µα corresponding to this subgroup is the

hypersurface µ
(2)
α with covering map µ

(2)
α → µα coinciding with Ψµ : Q+ \

(Q+ ∩ R3) → CP2 \ RP2 and factorization map µ
(4)
α → µ

(2)
α coinciding with

Φµ : MΦµ → Q+ \ (Q+ ∩ R3).

Thus, every non-trivial (that is, not 1-to-1) cover of µα is CR-equivalent

to either µ
(4)
α or µ

(2)
α . The groups of CR-automorphisms of µ

(4)
α and µ

(2)
α are as

follows.

AutCR

(
µ

(4)
α

)
' SU2 ×loc Z4 : This group is generated by the maps

(
z
w

)
7→ A

(
z
w

)
,

where A ∈ SU2 , that form AutCR

(
µ

(4)
α

)c
, and the map fµ defined in (4.4), which

is a lift from Q+ \ R3 to MΦµ
of the following element of AutCR

(
µ

(2)
α

)
:

z1 7→ −z1,
z2 7→ −z2,
z3 7→ −z3.

(4.5)

AutCR

(
µ

(2)
α

)
' O3(R) :  z1

z2

z3

 7→ A

 z1

z2

z3

 , (4.6)

where A ∈ O3(R).

5. The Covers of να and ηα

In order to find all covers of να and ηα we introduce an analogue of Rossi’s map.
Instead of the Hermitian form |z|2 + |w|2 it is associated with the form |z|2−|w|2 .
Let Q− be the variety in C3 given by

z2
1 + z2

2 − z2
3 = 1.
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Set Ω := {(z, w) ∈ C2 : |z|2−|w|2 6= 0} and consider the map Φ : Ω → Q− defined
by the formulas

z1 = −i(z2 + w2)− i
zw + wz

|z|2 − |w|2
,

z2 = z2 − w2 +
zw − wz

|z|2 − |w|2
,

z3 = −2izw − i
|z|2 + |w|2

|z|2 − |w|2
.

(5.1)

It is straightforward to verify that the range of Φ is Q− \ (Q− ∩W), where

W : = iR3 ∪ R3∪{
(z1, z2, z3) ∈ C3 \ R3 : |iz1 + z2| = |iz3 − 1|, |iz1 − z2| = |iz3 + 1|

}
,

and that the restrictions of Φ to the domains

Ω> := {(z, w) ∈ C2 : |z|2 − |w|2 > 0},
Ω< := {(z, w) ∈ C2 : |z|2 − |w|2 < 0}

are 2-to-1 covering maps onto Φ(Ω>) and Φ(Ω<), respectively (note that Φ(Ω<)
is obtained from Φ(Ω>) by applying the transformation z1 7→ −z1 , z2 7→ z2 ,
z3 7→ −z3 ).

The map Φ satisfies

Φ(g(z, w)) = ϕ(g)Φ((z, w)), (5.2)

for all g ∈ SU1,1 , (z, w) ∈ Ω, where ϕ is the standard 2-to-1 covering homomor-
phism from SU1,1 onto SO2,1(R)c , defined as follows: for

g =

(
a b

b a

)
∈ SU1,1

(here |a|2 − |b|2 = 1), set

ϕ(g) :=

 Re (a2 + b2) Im (a2 − b2) 2Re(ab)
−Im (a2 + b2) Re (a2 − b2) −2Im(ab)

2Re(ab) 2Im(ab) |a|2 + |b2|

 . (5.3)

The actions of SU1,1 on C2 and SO2,1(R)c on C3 in formula (5.2) are standard.

Hence Φ maps every SU1,1 -orbit in Ω onto an SO2,1(R)c -orbit in
Q− \ (Q− ∩W). Note that SO2,1(R)c has exactly four orbits in Q− that do not
lie in the range of the map Φ:

O1 := iR3 ∩Q− = {(z1, z2, z3) ∈ C3 : |z1|2 + |z2|2 − |z3|2 = −1} ∩Q−,
O2 := R3 ∩Q−,

O3 :=
{

(z1, z2, z3) ∈ C3 \ R3 : |iz1 + z2| = |iz3 − 1|,

|iz1 − z2| = |iz3 + 1|, Im z3 < 0
}
∩Q−,

O4 :=
{

(z1, z2, z3) ∈ C3 \ R3 : |iz1 + z2| = |iz3 − 1|,

|iz1 − z2| = |iz3 + 1|, Im z3 > 0
}
∩Q−.
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The orbits O1 , O2 are 2-dimensional, the orbits O3 , O4 are 3-dimensional, and
O2 , O3 , O4 lie in the set

S :=
{
(z1, z2, z3) ∈ C3 : |z1|2 + |z2|2 − |z3|2 = 1

}
∩Q−.

In fact, we have
S = O2 ∪O3 ∪O4 ∪O5 ∪O6,

where O5 , O6 are the following 3-dimensional SO2,1(R)c -orbits in Q− :

O5 :=
{

(z1, z2, z3) ∈ C3 \ R3 : |iz1 + z2| = |iz3 + 1|,

|iz1 − z2| = |iz3 − 1|, Im z3 < 0
}
∩Q−,

O6 :=
{

(z1, z2, z3) ∈ C3 \ R3 : |iz1 + z2| = |iz3 + 1|,

|iz1 − z2| = |iz3 − 1|, Im z3 > 0
}
∩Q−.

In contrast with O2 , O3 , O4 , however, the orbits O5 , O6 lie in the range of
Φ and are the images under Φ of the sets {(z, w) ∈ C2 : |z|2 − |w|2 = 1} ,
{(z, w) ∈ C2 : |z|2 − |w|2 = −1} , respectively.

From now on we will only consider the restriction Φ> of Φ to Ω> . The
range of Φ> is D> := Σν ∪ Ση ∪O5 , where

Σν :=
{

(z1, z2, z3) ∈ C3 : −1 < |z1|2 + |z2|2 − |z3|2 < 1, Im z3 < 0
}
∩Q−,

and

Ση :=
{

(z1, z2, z3) ∈ C3 : |z1|2 + |z2|2 − |z3|2 > 1, Im(z2(z1 + z3)) > 0
}
∩Q−.

The covering homomorphism ϕ defined in (5.3) can be used to give a group-
theoretic interpretation of the map Φ> analogous to that of Rossi’s map Φµ from
the previous section, where the homomorphism ϕµ defined in (4.3) was utilized.
The group R× SU1,1 acts on Ω> simply transitively as follows:

(t, g)(z, w) := et · g(z, w),

where t ∈ R , g ∈ SU1,1 . On the other hand, the standard action of SO2,1(R)c on
D> can be extended to a simple transitive action of the group R× SO2,1(R)c by
diffeomorphisms. Indeed, R × SO2,1(R)c acts simply transitively on each of the
two connected components of the set

Q̂− :=
{
ζ = (ζ1, ζ2, ζ3) ∈ C3 : ζ2

1 + ζ2
2 + ζ2

3 = 0, 〈ζ, ζ〉− > 0
}
,

where 〈ζ, ζ ′〉− := ζ1ζ ′1 + ζ2ζ ′2 − ζ3ζ ′3 . The action is given as follows:

(t, g) ζ := et · g ζ,

where t ∈ R , g ∈ SO2,1(R)c . Let Q̂0
− be the connected component of Q̂−

that contains the point (−i, 1, 0). The manifold Q̂0
− is SO2,1(R)c -equivariantly

diffeomorphic to D> by means of the map F− defined as

ζ 7→ ζ + iξ,
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where ξ ∈ R3 is such that 〈ξ, ξ〉− = −1, 〈ξ, ζ〉− = 0, det(ξ,Re ζ, Im ζ) < 0.
Using the SO2,1(R)c -equivariant diffeomorphism F− , we can now push forward

the action of R× SO2,1(R)c on Q̂0
− to a simple transitive action of R× SO2,1(R)c

on D> by diffeomorphisms.

Thus, as smooth manifolds Ω> and D> can be identified with R × SU1,1

and R × SO2,1(R)c , respectively. Then the map (t, g) 7→ (t, ϕ(g)) is exactly the
map Φ> if we choose (1, 0) ∈ Ω> and (−i, 1,−i) ∈ D> as basepoints.

We will now concentrate on the domains in Ω> lying above Q− \ (O1 ∪S).
Let Φν , Φη denote the restrictions of Φ> to the domains

Ων := {(z, w) ∈ C2 : 0 < |z|2 − |w|2 < 1}

and

Ωη := {(z, w) ∈ C2 : |z|2 − |w|2 > 1},

respectively. The maps Φν and Φη are 2-to-1 covering maps onto Σν and Ση .
Introduce on Ων , Ωη the pull-back complex structures under the maps Φν , Φη ,
respectively, and denote the resulting complex manifolds by MΦν

, MΦη
. These

complex structures are invariant under the ordinary action of SU1,1 . The map Φν

takes the SU1,1 -orbit

ν
(2)

2r4−1 :=
{
(z, w) ∈MΦν

: |z|2 − |w|2 = r2
}

(5.4)

onto the SO2,1(R)c -orbit

ν ′2r4−1 :=
{
(z1, z2, z3) ∈ Σν : |z1|2 + |z2|2 − |z3|2 = 2r4 − 1

}
,

where 0 < r < 1. Similarly, the map Φη takes the SU1,1 -orbit

η
(4)

2r4−1 :=
{
(z, w) ∈MΦη

: |z|2 − |w|2 = r2
}

(5.5)

onto the SO2,1(R)c -orbit

η
(2)

2r4−1 :=
{
(z1, z2, z3) ∈ Ση : |z1|2 + |z2|2 − |z3|2 = 2r4 − 1

}
, (5.6)

where r > 1.

Observe now that z3 6= 0 on Σν and consider the holomorphic map Ψν :
Σν → C2 defined as follows:

z = z1/z3,
w = z2/z3.

This map is 1-to-1, it takes Σν onto

Dν :=
{

(z, w) ∈ C2 : −|z2 + w2 − 1| < |z|2 + |w|2 − 1 < |z2 + w2 − 1|
}
,

and establishes equivalence between ν ′α and να for −1 < α < 1. Next, we note
that z1 6= 0 on Ση and consider the holomorphic map Ψη : Ση → C2 defined by

z = z2/z1,
w = z3/z1.
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It is easy to see that Ψη is a 2-to-1 covering map onto

Dη :=
{

(z, w) ∈ C2 : 1 + |z|2 − |w|2 > |1 + z2 − w2|, Im(z(1 + w)) > 0
}
\{

(z, w) ∈ C2 : 1 + z2 − w2 = 0, Im(z(1 + w)) > 0
}
,

and realizes η
(2)
α as a 2-sheeted cover of ηα for α > 1.

Let Λ : C×∆ → Ω> be the following covering map:

z := es,
w := est,

where s ∈ C , t ∈ ∆ and ∆ is the unit disk. Further, define

U ν := {(s, t) ∈ C2 : |t| < 1, exp(2Re s)(1− |t|2) < 1} ,
Uη := {(s, t) ∈ C2 : |t| < 1, exp(2Re s)(1− |t|2) > 1} .

Denote by Λν , Λη the restrictions of Λ to U ν , Uη , respectively. Clearly, U ν covers
MΦν

by means of Λν , and Uη covers MΦη
by means of Λη . Introduce now on

U ν , Uη the pull-back complex structures under the maps Λν , Λη , respectively, and
denote the resulting complex manifolds by MΛν

, MΛη
. Then the simply-connected

hypersurface {
(s, t) ∈MΛν

: r2 exp (−2Re s) + |t|2 = 1
}

covers ν
(2)

2r4−1 by means of the map Λν for 0 < r < 1, and the simply-connected
hypersurface {

(s, t) ∈MΛη

: r2 exp (−2Re s) + |t|2 = 1
}

covers η
(4)

2r4−1 by means of the map Λη for r > 1.

Thus, ν̃α for −1 < α < 1 coincides with

ν(∞)
α :=

{
(s, t) ∈MΛν

:
√

(α+ 1)/2 exp (−2Re s) + |t|2 = 1
}
, (5.7)

with the CR-structure induced from the complex structure of MΛν
, and η̃α for

α > 1 coincides with

η(∞)
α :=

{
(s, t) ∈MΛη

:
√

(α+ 1)/2 exp (−2Re s) + |t|2 = 1
}
, (5.8)

with the CR-structure induced from the complex structure of MΛη
. The covering

maps ν
(∞)
α → να and η

(∞)
α → ηα are respectively Ψν ◦ Φν ◦ Λν : U ν → Dν and

Ψη ◦ Φη ◦ Λη : Uη → Dη .

Next, the group ΓΨν◦Φν◦Λν = ΓΦν◦Λν consists of the maps

s 7→ s+ πik, k ∈ Z,
t 7→ t.

(5.9)

Let Γ ⊂ ΓΦν◦Λν be a subgroup. Then there exists an integer n ≥ 0 such that every
element of Γ has the form

s 7→ s+ πink, k ∈ Z,
t 7→ t.

(5.10)
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Suppose that n ≥ 2 and set

Ων (n) :=
{
(z, w) ∈ C2 : 0 < |z|n − |z|n−2|w|2 < 1

}
(note that Ων (2) = Ων ). Consider the map Φν

n from Ων (n) to Σν defined as follows:

z1 = −i(zn + zn−2w2)− i
zw + wz

|z|2 − |w|2
,

z2 = zn − zn−2w2 +
zw − wz

|z|2 − |w|2
,

z3 = −2izn−1w − i
|z|2 + |w|2

|z|2 − |w|2
.

(5.11)

This map is a generalization of map (5.1) introduced at the beginning of the section
and also can be viewed as an analogue of Rossi’s map (4.1). The extension of this
map by the same formula to all of Ω> admits a group-theoretic interpretation
analogous to those given above for the maps Φµ and Φ> . It uses an n-to-1
covering homomorphism SO2,1(R)c (n) → SO2,1(R)c , where the n-sheeted cover
SO2,1(R)c (n) of SO2,1(R)c is realized as the group of maps of the form (5.17) that
will appear below, acting on Ω> (note that this group reduces to the group SU1,1

for n = 2). We do not provide a detailed construction here since it is very similar
to that for the map Φ> .

Denote by MΦν
n the domain Ων (n) with the pull-back complex structure

under the map Φν
n (note that MΦν

2 = MΦν
). Then the hypersurface

ν(n)
α :=

{
(z, w) ∈MΦν

n : |z|n − |z|n−2|w|2 =
√

(α+ 1)/2
}
, (5.12)

equipped with the CR-structure induced by the complex structure of MΦν
n is an

n-sheeted cover of να corresponding to Γ with covering map ν
(n)
α → να coinciding

with Ψν ◦ Φν
n : MΦν

n → Dν and factorization map ν
(∞)
α → ν

(n)
α given by

z 7→ e2s/n,
w 7→ e2s/nt,

(5.13)

(observe that for n = 2 formula (5.12) coincides with (5.4)). Thus, every non-

trivial cover of να is CR-equivalent to either ν
(∞)
α or ν

(n)
α for some n ∈ N , n ≥ 2.

The groups of CR-automorphisms of ν
(∞)
α and ν

(n)
α are given below.

(A) AutCR

(
ν

(∞)
α

)
' S̃O2,1(R)c oloc Z : This group is generated by the following

maps (they form the subgroup AutCR

(
ν

(∞)
α

)c
):

s 7→ s+ ln(a+ bt),

t 7→ b+ at

a+ bt
,

(5.14)
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where ln is any branch of the logarithm and |a|2 − |b|2 = 1, and the map

s 7→ s+ ln′

(
− 1 + e2st(1− |t|2)√

1− exp (4Re s) (1− |t|2)2

)
,

t 7→ − t+ e2s(1− |t|2)
1 + e2st(1− |t|2)

,

(5.15)

for some branch ln′ of the logarithm. Map (5.15) is a lift from Σν to MΛν
of the

following element of AutCR(ν ′α):

z1 7→ −z1,
z2 7→ z2,
z3 7→ z3.

(5.16)

Here oloc denotes local semidirect product.

(B) AutCR

(
ν

(n)
α

)
' SO2,1(R)c (n) oloc Z2n : This group is generated by the follow-

ing maps (they form the subgroup AutCR

(
ν

(n)
α

)c
):

z 7→ z
n

√
(a+ bw/z)2,

w 7→ z
b+ aw/z

a+ bw/z
n

√
(a+ bw/z)2,

(5.17)

where n
√

is any branch of the nth root and |a|2 − |b|2 = 1, and the map

z 7→ z

 n

√√√√(1 + zn−1w(1− |w|2/|z|2)
)2

1− |z|2n(1− |w|2/|z|2)2


′

,

w 7→ − w/z + zn(1− |w|2/|z|2)
1 + zn−1w(1− |w|2/|z|2)

×

z

 n

√√√√(1 + zn−1w(1− |w|2/|z|2)
)2

1− |z|2n(1− |w|2/|z|2)2


′

,

(5.18)

for some branch
(

n
√)′

of n
√

. Map (5.18) is a lift from Σν to MΦν
n of map (5.16)

(recall that SO
c (n)
2,1 (R) is the n-sheeted cover of SO2,1(R)c ).

Further, the group ΓΨη◦Φη◦Λη is generated by all maps of the form (5.9) and
the map fη defined as follows:

s 7→ 2s+ s+ ln′

(
i

1− |t|2 + e−2st√
exp (4Re s) (1− |t|2)2 − 1

)
,

t 7→ 1 + e2st(1− |t|2)
t+ e2s(1− |t|2)

,

(5.19)
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for some fixed branch ln′ of the logarithm. The map fη is a lift from Ση to MΛη

of the element of AutCR

(
η

(2)
α

)
given by formula (4.5). At the same time, fη is a

lift from MΦη
to MΛη

of the map

z 7→ i
z(|z|2 − |w|2) + w√

(|z|2 − |w|2)2 − 1
,

w 7→ i
w(|z|2 − |w|2) + z√

(|z|2 + |w|2)2 − 1
.

(5.20)

Since the square of map (5.20) is

z 7→ −z,
w 7→ −w, (5.21)

it follows that (fη)2 is a lift from MΦη
to MΛη

of map (5.21) and thus has the
form (5.9) with k odd. Since fη clearly commutes with all maps (5.9), the group
ΓΨη◦Φη◦Λη is isomorphic to Z and is generated by fη ◦ g , where g has the form
(5.9).

Let Γ ⊂ ΓΨη◦Φη◦Λη be a subgroup. It then follows that Γ is generated by
either a map of the form (5.9) or by fη ◦ h , where h has the form (5.9). In the
first case there exists an integer n ≥ 0 such that every element of Γ has the form
(5.10). Suppose that n ≥ 2 and set

Ωη (n) :=
{
(z, w) ∈ C2 : |z|n − |z|n−2|w|2 > 1

}
(note that Ωη (2) = Ωη ). Consider the map Φη

n from Ωη (n) to Ση defined by formula
(5.11). Denote by MΦη

n the domain Ωη (n) with the pull-back complex structure
under the map Φη

n (note that MΦη
2 = MΦη

). Then the hypersurface

η(2n)
α :=

{
(z, w) ∈MΦη

n : |z|n − |z|n−2|w|2 =
√

(α+ 1)/2
}
, (5.22)

equipped with the CR-structure induced by the complex structure of MΦη
n is a 2n-

sheeted cover of ηα corresponding to Γ with covering map η
(2n)
α → ηα coinciding

with Ψη ◦ Φη
n : MΦη

n → Dη and factorization map η
(∞)
α → η

(2n)
α given by formula

(5.13); note that for n = 2 formula (5.22) coincides with (5.5). For n = 1 we

obtain the hypersurface η
(2)
α defined in (5.6) that covers ηα by means of the 2-to-1

map Ψη : Ση → Dη ; the factorization map η
(∞)
α → η

(2)
α is Φη ◦ Λη : MΛη → Ση .

We will now describe finitely-sheeted covers of ηα of odd orders. They arise
in the case when Γ is generated by fη ◦h , where h has the form (5.9). In this case

the group Γ can be represented as Γ = Γ0∪
(
(fη ◦h)◦Γ0

)
, where Γ0 is a subgroup

that consists of maps of the form (5.10) for an odd positive integer n . We will
first factor MΦη

with respect to the action of the subgroup of Γ0 corresponding
to even k . Namely, MΦη

by means of the map

z 7→ es/n,
w 7→ es/nt,

(5.23)
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covers the manifold MΦη
2n and, accordingly, η

(∞)
α covers η

(4n)
α . In order to obtain

the cover of ηα corresponding to the group Γ, the hypersurface η
(4n)
α must be

further factored by the action of the cyclic group of four elements generated by
the following automorphism fηn of MΦη

2n :

z 7→ iz2z

(
n

√
1− |w|2/|z|2 + z−2nw/z√
|z|4n(1− |w|2/|z|2)2 − 1

)′

,

w 7→ i
1 + z2n−1w(1− |w|2/|z|2)
w/z + z2n(1− |w|2/|z|2)

×

z2z

(
n

√
1− |w|2/|z|2 + z−2nw/z√
|z|4n(1− |w|2/|z|2)2 − 1

)′

,

for some branch
(

n
√)′

of n
√

. Let M̂Φη
n denote the manifold arising from MΦη

2n

by means of this factorization and Πη
n : MΦη

2n → M̂Φη
n denote the corresponding

4-to-1 factorization map. Next, define

η(n)
α := Πη

n

(
η(4n)
α

)
. (5.24)

The hypersurface η
(n)
α with the CR-structure induced from the complex structure

of M̂Φη
n is an n-sheeted cover of ηα corresponding to Γ with the factorization map

η
(∞)
α → η

(n)
α coinciding with the composition of map (5.23) and Πη

n . Note that for
n = 1 the map fηn = fη1 coincides with the map defined in (5.20), and Πη

n = Πη
1

coincides with Ψη ◦Φη . Both Πη
n and the covering map η

(n)
α → ηα (which extends

to a covering map M̂Φη
n → Dη ) can be computed explicitly for any odd n ∈ N ,

but, since the resulting formulas are quite lengthy and not very instructive, we
omit them.

We will now write down the groups of CR-automorphisms of η
(∞)
α and η

(n)
α .

(C) AutCR

(
η

(∞)
α

)
' S̃O2,1(R)c ×loc Z : This group is generated by its connected

identity component that consists of all maps of the form (5.14), and the map fη

defined in (5.19).

(D) AutCR

(
η

(2)
α

)
' SO2,1(R)c × Z2 : This group is generated by its connected

identity component that consists of all maps of the form (4.6), where A ∈
SO2,1(R)c and the map given by formula (4.5).

(D’) AutCR

(
η

(2n)
α

)
' SO2,1(R)c (n) ×loc Z4n, n ≥ 2 : This group is generated by

its connected identity component that consists of all maps of the form (5.17), and
the map
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z 7→ z2z

 n

√√√√(1− |w|2/|z|2 + z−nw/z
)2

|z|2n(1− |w|2/|z|2)2 − 1


′

,

w 7→ 1 + zn−1w(1− |w|2/|z|2)
w/z + zn(1− |w|2/|z|2)

×

z2z

 n

√√√√(1− |w|2/|z|2 + z−nw/z
)2

|z|2n(1− |w|2/|z|2)2 − 1


′

,

for some branch
(

n
√)′

of n
√

.

(E) AutCR

(
η

(2n+1)
α

)
' SO2,1(R)c (2n+1) : This group is connected and consists of

all lifts from Dη to M̂η
2n+1 of maps (2.3).

Thus, we have proved the following theorem:

Theorem 5.1.

(i) A non-trivial cover of a hypersurface να with −1 < α < 1 is CR-equivalent

to either ν
(∞)
α or ν

(n)
α with n ≥ 2 defined in (5.7), (5.12); the groups of CR-

automorphisms of these covers are described in (A)-(B), in particular, for every
N ∈ {2, 3, . . . ,∞} there exists a complex 2-dimensional manifold M ν

N on which a
connected 3-dimensional Lie group Gν

N acts by holomorphic transformations, such

that for every −1 < α < 1 the hypersurface ν
(N)
α is a Gν

N -orbit in M ν
N and the

group AutCR
(
ν

(N)
α

)
consists of the restrictions of the elements of Gν

N to ν
(N)
α .

(ii) A non-trivial cover of a hypersurface ηα with α > 1 is CR-equivalent to ei-

ther η
(∞)
α or η

(n)
α with n ≥ 2 defined in (5.6), (5.8), (5.22), (5.24); the groups of

CR-automorphisms of the above covers are described in (C)-(E), in particular,
for every N ∈ {2, 3, . . . ,∞} there exists a complex 2-dimensional manifold Mη

N

on which a connected 3-dimensional Lie group Gη
N acts by holomorphic transfor-

mations, such that for every α > 1 the hypersurface η
(N)
α is a Gη

N -orbit in Mη
N

and the group AutCR
(
η

(N)
α

)
consists of the restrictions of the elements of Gη

N to

η
(N)
α .
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