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Abstract. Any sufficiently often differentiable curve in the orbit space V/G
of a real finite dimensional orthogonal representation G → O(V ) of a finite
group G admits a differentiable lift into the representation space V with locally
bounded derivative. As a consequence any sufficiently often differentiable curve
in the orbit space V/G can be lifted twice differentiably which is in general best
possible. These results can be generalized to arbitrary polar representations.
Finite reflection groups and finite rotation groups in dimensions two and three
are discussed in detail.
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1. Introduction

In [2] and [18] the following problem was investigated. Consider an orthogonal
representation of a compact Lie group G on a real finite dimensional Euclidean
vector space V . Let σ1, . . . , σn be a system of homogeneous generators for the al-
gebra R[V ]G of invariant polynomials on V . Then the mapping σ = (σ1, . . . , σn) :
V → Rn induces a homeomorphism between the orbit space V/G and the semi-
algebraic set σ(V ). Suppose a smooth curve c : R → V/G = σ(V ) ⊆ Rn in the
orbit space is given (smooth as curve in Rn ), does there exist a smooth lift to V ,
i.e., a smooth curve c̄ : R → V with c = σ ◦ c̄ ? The answer is independent of the
choice of the generators.

Note that in general no C1,α -lift for any α > 0 exists which is shown by
examples in [1], [5], and [13]. Thus twice differentiability is the best regularity
condition for lifts one can expect in general.

It was shown in [2] that a real analytic curve in V/G admits a local real
analytic lift to V , and that a smooth curve in V/G admits a global smooth lift,
if certain genericity conditions are satisfied. In both cases the lifts may be chosen
orthogonal to each orbit they meet and then they are unique up to a transformation
in G , whenever the representation of G on V is polar, i.e., admits sections.
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In [18] we proved that any sufficiently often differentiable curve in the orbit
space V/G can be lifted to a once differentiable curve in V .

In the special case that the symmetric group Sn is acting on Rn by per-
muting the coordinates there is the following interpretation of the described lifting
problem. As generators of R[Rn]Sn we may take the elementary symmetric func-
tions

σj(x) =
∑

1≤i1<···<ij≤n

xi1 · · ·xij (1 ≤ j ≤ n),

which constitute the coefficients (up to sign) of a monic polynomial P with roots
x1, . . . , xn via Vieta’s formulas. Then a curve in the orbit space Rn/Sn = σ(Rn)
corresponds to a curve P (t) of monic polynomials of degree n with only real roots,
and a lift of P (t) may be interpreted as a parameterization of the roots of P (t).

This problem has been studied extensively in [1]. Moreover, the following
results were proved in [17]: Any differentiable lift (parameterization of roots) of
a C2n -curve (of polynomials) P : R → Rn/Sn is actually C1 , and there always
exists a twice differentiable but in general not better lift of P , if P is of class C3n .
Note that here the differentiability assumptions on P are not the weakest possible
which is shown by the case n = 2, elaborated in [1] 2.1. The proof in [17] is based
on the fact that the roots of a Cn -curve of polynomials P : R → Rn/Sn may be
chosen differentiable with locally bounded derivative; this is due to Bronshtein [7]
and Wakabayashi [34].

In the present paper we show the corresponding statements for arbitrary
real finite dimensional orthogonal representations of finite groups. We consider
representations ρ : G → O(V ) with the property (Bk) that any Ck -curve in a
neighborhood of 0 in the orbit space V/G admits a local differentiable lift to
V with locally bounded derivative (section 3). In analogy to the polynomial
case Sn : Rn we then show that, for representations of finite groups G with
property (Bk), any differentiable lift of a Ck+d -curve is actually C1 (section 4),
and there always exists a twice differentiable lift of a Ck+2d -curve in the orbit
space (section 5). The integer d is the maximal degree of a minimal system
of homogeneous generators of the algebra of invariant polynomials R[V ]G (see
2.4). As a consequence we obtain in section 6 that polar representations, where
the representation of the associated generalized Weyl group on some section has
property (Bk), allow orthogonal C1 -lifts of Ck+d -curves and orthogonal twice
differentiable lifts of Ck+2d -curves. In section 7 we show that property (Bk) is
stable under subrepresentations and orthogonal direct sums. We prove in section 8,
by reducing to the polynomial case, that any real finite dimensional representation
ρ : G → O(V ) of a finite group G has property (Bk), where

k = max{d, |G|/|Gvi
| : 1 ≤ i ≤ l},

vi ∈ Vi\{0} are chosen such that the cardinality of the isotropy groups Gvi
is

maximal, and V = V1⊕· · ·⊕Vl is the decomposition into irreducible subrepresen-
tations. This establishes property (Bk) for polar representations with appropriate
k , too. In section 9 we give a complete survey of all finite reflection groups. Sec-
tion 10 is devoted to the discussion of finite rotation groups in dimensions two and
three.

Still open is the question whether non-polar representations of compact Lie
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groups G on real finite dimensional Euclidean vector spaces V have property (Bk)
for some k ≤ ∞ .

The polynomial results have applications in the theory of partial differential
equations and perturbation theory, see [19].

2. Preliminaries

2.1. The setting. Let G be a compact Lie group and let ρ : G → O(V ) be
an orthogonal representation in a real finite dimensional Euclidean vector space
V with inner product 〈 | 〉 . By a classical theorem of Hilbert and Nagata,
the algebra R[V ]G of invariant polynomials on V is finitely generated. So let
σ1, . . . , σn be a system of homogeneous generators of R[V ]G of positive degrees
d1, . . . , dn . Consider the orbit map σ = (σ1, . . . , σn) : V → Rn . Note that, if
(y1, . . . , yn) = σ(v) for v ∈ V , then (td1y1, . . . , t

dnyn) = σ(tv) for t ∈ R , and that
σ−1(0) = {0} . The image σ(V ) is a semialgebraic set in

{y ∈ Rn : P (y) = 0 for all P ∈ I}

where I is the ideal of relations between σ1, . . . , σn . Since G is compact, σ is
proper and separates orbits of G , it thus induces a homeomorphism between V/G
and σ(V ).

2.2. The problem of lifting curves. Let c : R → V/G = σ(V ) ⊆ Rn be a
smooth curve in the orbit space; smooth as curve in Rn . A curve c̄ : R → V
is called lift of c to V , if c = σ ◦ c̄ holds. The problem of lifting smooth
curves over invariants is independent of the choice of a system of homogeneous
generators of R[V ]G in the following sense: Suppose σ1, . . . , σn and τ1, . . . , τm

both generate R[V ]G . Then for all i and j we have σi = pi(τ1, . . . , τm) and
τj = qj(σ1, . . . , σn) for polynomials pi and qj . If cσ = (c1, . . . , cn) is a curve in
σ(V ), then cτ = (q1(c

σ), . . . , qm(cσ)) defines a curve in τ(V ) of the same regularity.
Any lift c̄ to V of the curve cσ , i.e., cσ = σ◦c̄ , is a lift of cτ as well (and conversely):

cτ = (q1(c
σ), . . . , qm(cσ)) = (q1(σ(c̄)), . . . , qm(σ(c̄))) = (τ1(c̄), . . . , τm(c̄)) = τ ◦ c̄.

2.3. The slice theorem. For a point v ∈ V we denote by Gv its isotropy
group and by Nv = Tv(G.v)⊥ the normal subspace of the orbit G.v at v . It
is well known that there exists a G-invariant open neighborhood U of v which
is real analytically G-isomorphic to the crossed product (or associated bundle)
G ×Gv Sv = (G × Sv)/Gv , where Sv is a ball in Nv with center at the origin.
The quotient U/G is homeomorphic to Sv/Gv . It follows that the problem of
local lifting curves in V/G passing through σ(v) reduces to the same problem
for curves in Nv/Gv passing through 0. For more details see [2], [20], and [29]
theorem 1.1.

A point v ∈ V (and its orbit G.v in V/G) is called regular if the slice
representation Gv → O(Nv) is trivial. Hence a neighborhood of this point is
analytically G-isomorphic to G/Gv × Sv

∼= G.v × Sv . The set Vreg of regular
points is open and dense in V , and the projection Vreg → Vreg/G is a locally
trivial fiber bundle. A non regular orbit or point is called singular.
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2.4. The integer d. Let ρ : G → O(V ) be as in 2.1. Choose a minimal system
of homogeneous generators σ1, . . . , σn of positive degrees d1, . . . , dn of R[V ]G . We
associate to ρ the following number:

d = d(ρ) := max{d1, . . . , dn}.

The integer d is well-defined and independent of the choice of a minimal system
of homogeneous generators of the algebra of invariant polynomials. This follows
from the fact that a system of homogeneous invariants of positive degree generates
R[V ]G as an algebra over R if and only if the images of the invariants in this
system generate R[V ]G+/(R[V ]G+)2 as a vector space over R , where R[V ]G+ is the
set of invariant polynomials vanishing at 0, e.g. [11], 3.6. The grading used here
is given by the degree of the polynomials. Hence a system of homogeneous algebra
generators has minimal cardinality if no generator is superfluous, and the number
and the degrees of the elements in a minimal system of homogeneous generators
are uniquely determined.

Note that independence of d from the choice of a minimal system of homo-
geneous generators of R[V ]G also follows from the following lemma applied to the
slice representation at 0.

Lemma. Let ρ : G → O(V ) be a finite dimensional representation of a compact
Lie group G, let ρ′ be some slice representation of ρ. Then, d(ρ′) ≤ d(ρ).

Proof. Let σ1, . . . , σn be a minimal system of homogeneous generators of
R[V ]G .

For an arbitrary v ∈ V let ρ′ : Gv → O(Nv) be its slice representation,
and suppose Sv is a normal slice at v . Choose a minimal system of homogeneous
generators τ1, . . . , τm of R[Nv]

Gv and assume that deg τ1 ≤ · · · ≤ deg τm = d(ρ′).
Then there exist polynomials pi ∈ R[Rm] such that

σi|Sv = pi(τ1|Sv , . . . , τm|Sv) (1 ≤ i ≤ n).

On the other hand, by the slice theorem, near v ∈ Nv we have

τj|Sv = fj(σ1|Sv , . . . , σn|Sv) (1 ≤ j ≤ m),

where fj are real analytic functions; e.g. [30].

For contradiction assume deg τm > d(ρ). Then all polynomials pi do not
depend on their last entry. Consequently, near v ∈ Nv ,

τm|Sv = F (τ1|Sv , . . . , τm−1|Sv),

where
F = fm(p1, . . . , pn)

is real analytic. Introduce a new grading in R[Rm−1] with respect to deg τ1 ≤
· · · ≤ deg τm−1 and write the function F as an infinite sum of homogeneous (with
respect to this grading) terms. Let F̄ be the sum of all terms of degree deg τm in
this presentation of F . We obtain, near v ∈ Nv ,

τm|Sv = F̄ (τ1|Sv , . . . , τm−1|Sv).

This means τm is a polynomial in τ1, . . . , τm−1 in a neighborhood of v in Nv , and,
hence, everywhere. This contradicts minimality of τ1, . . . , τm .
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Remark. The previous lemma allows to replace the intricate definition of the
integer d given in [18] by the definition given above.

2.5. Removing fixed points. Let V G be the space of G-invariant vectors in
V , and let V ′ be its orthogonal complement in V . Then we have V = V G ⊕ V ′ ,
R[V ]G = R[V G]⊗ R[V ′]G , and V/G = V G × V ′/G .

Lemma. Any lift c̄ of a curve c = (c0, c1) of class Ck (k = 0, 1, . . . ,∞, ω) in
V G × V ′/G has the form c̄ = (c0, c̄1), where c̄1 is a lift of c1 to V ′ of class Ck .
Then the lift c̄ is orthogonal if and only if the lift c̄1 is orthogonal.

If V G = {0} we may assume that σ1 : v 7→ 〈v | v〉 is the inner product.

2.6. Multiplicity. For a continuous function f defined near 0 in R , let the
multiplicity or order of flatness m(f) at 0 be the supremum of all integers p such
that f(t) = tpg(t) near 0 for a continuous function g . If f is Cn and m(f) < n ,
then f(t) = tm(f)g(t), where now g is Cn−m(f) and g(0) 6= 0. Similarly, one can
define multiplicity of a function at any t ∈ R .

Lemma. Let c = (c1, . . . , cn) be a curve in σ(V ) ⊆ Rn of class Cr , where r ≥ d,
and c(0) = 0. Then the following two conditions are equivalent:

1. c1(t) = t2c1,1(t) near 0 for a Cr−2 -function c1,1 ;

2. ci(t) = tdici,i(t) near 0 for a Cr−di -function ci,i , for all 1 ≤ i ≤ n.

Proof. The proof is essentially the same as that of lemma 3.3 in [2].

2.7. We recall a few facts from [18]:

Lemma. [a] A curve c : R → V/G = σ(V ) ⊆ Rn of class Cd admits an orthogonal
Cd -lift c̄ in a neighborhood of a regular point c(t0) ∈ Vreg/G. It is unique up to a
transformation from G.

Lemma.[b] Consider a continuous curve c : (a, b) → X in a compact metric space
X . Then the set A of all accumulation points of c(t) as t ↘ a is connected.

Theorem. Let c = (c1, . . . , cn) : R → V/G = σ(V ) ⊆ Rn be a curve of class Cd .
Then there exists a global differentiable lift c̄ : R → V of c.

2.8. Bronshtein’s and Wakabayashi’s result. We formulate Bronshtein’s
theorem [7]; compare also with Wakabayashi’s version [34].

Theorem. Let

P (t)(x) = xn +
n∑

j=1

(−1)jaj(t)x
n−j

be a curve of monic polynomials of degree n with all roots real for all t ∈ R,
where aj ∈ Cn(R) for all 1 ≤ j ≤ n. Choose a differentiable parameterization
x1(t), . . . , xn(t) of the roots of P (t) (which always exists). Then, for any compact
subset K ⊆ R there exists a constant CK such that∣∣∣∣ d

dt
xj(t)

∣∣∣∣ ≤ CK for all t ∈ K, 1 ≤ j ≤ n.
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In the language of representation theory: Any Cn -curve P in the orbit
space Rn/Sn of the standard representation of the symmetric group Sn on Rn , by
permuting the coordinates, allows a differentiable lift x = (x1, . . . , xn) with locally
bounded derivative.

3. Property (B)

3.1. Property (B). We shall say that an orthogonal representation ρ : G →
O(V ) of a compact Lie group G on a real finite dimensional Euclidean vector
space V has property (Bk), if:

There exists a neighborhood U = U(ρ) of 0 in V/G = σ(V ) such
that each Ck -curve in U admits a local differentiable lift c̄ to V with
locally bounded derivative.

Note that property (Bk) is independent of the choice of generators of R[V ]G .

It is clear that, if a representation ρ has property (Bk), then it has property
(Bl) for all l ∈ {k, k + 1, . . . ,∞, ω} as well.

We shall write simply property (B), if the degree of differentiability k is
not specified.

Example. The standard representation of the symmetric group Sn on Rn has
property (Bn). This follows from theorem 2.8.

3.2. Proposition. Let c = (c1, . . . , cn) : R → V/G = σ(V ) ⊆ Rn be a curve
of class Ck in the orbit space of a representation ρ : G → O(V ) with property
(Bk). Then for any t0 ∈ R there exists a local differentiable lift c̄ of c near t0
with locally bounded derivative.

Proof. For each s ∈ R\{0} let us define a Ck -curve cs : R → σ(V ) by

cs(t) = (sd1c1(t), . . . , s
dncn(t)).

There exists some s = s(c; t0) ∈ R\{0} such that cs(t) ∈ U for t near t0 , where
U is the neighborhood of 0 in V/G introduced in the definition of property (Bk).
Since ρ has property (Bk), there exists, near t0 , a local differentiable lift c̄s of
cs to V with locally bounded derivative. Then, c̄(t) := s−1 · c̄s(t) defines a local
differentiable lift of c for t near t0 whose derivative is locally bounded.

3.3. Proposition. Assume that ρ : G → O(V ) is a representation of a finite
group G with property (Bk). Then any slice representation ρ′ of ρ has property
(Bk) as well.

Proof. Let ρ′ : Gv → O(Nv) be an arbitrary slice representation of ρ . Consider
some normal slice Sv at v for the G-action on V . Then Sv/Gv is an open
neighborhood of 0 in Nv/Gv which by 2.3 is homeomorphic to (G ×Gv Sv)/G
which in turn is an open neighborhood of G.v in V/G .

Given a Ck -curve c in Sv/Gv , we may view it as a curve in (G×Gv Sv)/G .
Since ρ has property (Bk) and by proposition 3.2, there exists a local differentiable
lift c̄ of c to V with locally bounded derivative. The finiteness of G implies that
Nv = V , and hence Sv is an open neighborhood of v in V . Therefore c̄ is a local
lift of c to Nv with respect to the Gv -action.
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3.4. Lemma. Let c : R → V/G = σ(V ) ⊆ Rn be a curve in the orbit space V/G.
We assume that G is finite. Let t0 ∈ R. If c̄1 and c̄2 are lifts of c which are (one-
sided) differentiable at t0 and c̄1(t0) = c̄2(t0), then there exists some g ∈ Gc̄1(t0)

such that c̄′1(t0) = g.c̄′2(t0).

Proof. Without loss we can assume that t0 = 0.

Let c̄1 and c̄2 be lifts of c : R → V/G which are (one-sided) differentiable
at 0 and satisfy c̄1(0) = c̄2(0) =: v0 . We may suppose V G = {0} , by lemma 2.5.
We consider the following cases separately:

If c(0) = 0, then c̄1(0) = c̄2(0) = 0 and consequently, for i = 1, 2,

σ(c̄′i(0)) = σ

(
lim
t→0

c̄i(t)

t

)
= lim

t→0
σ

(
c̄i(t)

t

)
.

Now, for t 6= 0 we have σ (c̄i(t)/t) = c(1)(t) ∈ σ(V ), where

c(1)(t) := (t−d1c1(t), . . . , t
−dncn(t)).

Since σ(V ) is closed in Rn (see [28]), we find

σ(c̄′i(0)) = lim
t→0

σ

(
c̄i(t)

t

)
= lim

t→0
c(1)(t) ∈ σ(V ),

i.e., σ maps c̄′1(0) and c̄′2(0) to the same point in σ(V ). (Note that, if only
one-sided derivatives exist, then t → 0 has to be replaced by t ↗ 0 or t ↘ 0,
respectively.) This shows that c̄′1(0) and c̄′2(0) lie in the same orbit, therefore we
find some g ∈ G = G0 with c̄′1(0) = g.c̄′2(0).

If c(0) 6= 0: Since G is finite and therefore Nv0 = V , the ball Sv0 is a
neighborhood of v0 in V which contains the lifts c̄1(t) and c̄2(t) for t near 0.
Hence, by 2.3, we may change to the slice representation Gv0 → O(Nv0). Now we
may assume that c is a curve in Nv0/Gv0 with c(0) = 0 and with lifts c̄1(t) and
c̄2(t) to Nv0 for t near 0. So we refer to the former case.

Note that lemma 3.4 does no longer hold, if finiteness of G is omitted:

Example. Consider the standard action of SO(2) on R2 . Then σ(x1, x2) = x2
1+x2

2

generates R[R2]SO(2) and R2/SO(2) = σ(R2) = [0,∞). We consider the curve
c(t) = t2 and its differentiable lifts c̄1(t) = (t, 0) and c̄2(t) = (t cos t, t sin t). We
find c̄1(2π) = c̄2(2π) = (2π, 0), but c̄′1(2π) = (1, 0) and c̄′2(2π) = (1, 2π) cannot
be transformed to each other by an element of G(2π,0) = {id} .

Remark. If G is not finite, then lemma 3.4 generalizes to the following statement:
Let c : R → V/G = σ(V ) ⊆ Rn be a curve in the orbit space V/G. Let
t0 ∈ R. If c̄1 and c̄2 are lifts of c which are (one-sided) differentiable at t0 and
c̄1(t0) = c̄2(t0) =: v0 , then there exists some g ∈ Gv0 such that c̄′1(t0)

⊥ = g.c̄′2(t0)
⊥ ,

where ⊥ indicates the projection onto Nv0 .

To see this: We consider the projection p : G.Sv0
∼= G×Gv0

Sv0 → G/Gv0
∼=

G.v0 of a fiber bundle associated to the principal bundle π : G → G/Gv0 , where
Sv0 is a normal slice at v0 . Then, for t close to t0 , c̄1 and c̄2 are curves in
G.Sv0 , whence p ◦ c̄i (i = 1, 2) are curves in G/Gv0 which admit lifts gi into
G with gi(t0) = e , which are (one-sided) differentiable at t0 (via the horizontal
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lift of the principal connection, say). Consequently, t 7→ gi(t)
−1.c̄i(t) are lifts

which lie in Sv0 , whence d
dt

∣∣
t=t0

(gi(t)
−1.c̄i(t)) = −g′i(t0).v0 + c̄′i(t0) ∈ Nv0 . Thus,

c̄′i(t0)
⊥ = d

dt

∣∣
t=t0

(gi(t)
−1.c̄i(t)). By this observation, we may assume without loss

that the lifts c̄1 and c̄2 lie in Sv0 for t close to t0 . Then the proof of lemma 3.4
gives the statement.

3.5. Remark. Lemma 3.4 implies that for any two differentiable lifts c̄1 and c̄2

of a curve c in V/G , where G is finite, we have ‖c̄′1(t)‖ = ‖c̄′2(t)‖ for all t . So, if
there exists some differentiable lift of c with locally bounded derivative, then any
differentiable lift of c has this property as well.

3.6. Proposition. Assume that ρ : G → O(V ) is a representation of a finite
group G with property (Bk). Let c : R → V/G = σ(V ) ⊆ Rn be a curve of class
Ck . Then there exists a global differentiable lift c̄ of c to V with locally bounded
derivative.

Proof. Proposition 3.2 provides local differentiable lifts of c with locally
bounded derivative near any t ∈ R .

Now let us construct from these data a global differentiable lift of c with lo-
cally bounded derivative: We glue the local differentiable lifts with locally bounded
derivative differentiably. The derivative of the resulting global differentiable lift
of c is then evidently locally bounded. It is sufficient to show that each local
differentiable lift of c defined on an open interval I can be extended to a larger
interval whenever I 6= R .

Suppose that c̄1 : I → V is a local differentiable lift of c , and suppose
the open interval I is bounded from above (say), and t1 is its upper boundary
point. Then, there exists a local differentiable lift c̄2 of c near t1 , and a t2 < t1
such that both c̄1 and c̄2 are defined near t2 . There is some g ∈ G such that
c̄1(t2) = g.c̄2(t2). By lemma 3.4, we find an h ∈ Gc̄1(t2) with c̄′1(t2) = hg.c̄′2(t2).
Then c̄(t) := c̄1(t) for t ≤ t2 and c̄(t) := hg.c̄2(t) for t ≥ t2 defines a differentiable
lift of c on a larger interval.

4. C1 -lifts

4.1. Proposition. Assume that ρ : G → O(V ) is a representation of a finite
group G with property (Bk). Let c : R → V/G = σ(V ) ⊆ Rn be a curve of class
Ck+d . Then for any t0 ∈ R there exists a local differentiable lift c̄ of c near t0
whose derivative is continuous at t0 .

Proof. Without loss of generality we may assume that t0 = 0. We show the
existence of local differentiable lifts of c whose derivatives are continuous at 0
through any v ∈ σ−1(c(0)). By lemma 2.5 we can assume V G = {0} .

If c(0) 6= 0 corresponds to a regular orbit, then unique orthogonal Ck+d -lifts
defined near 0 exist through all v ∈ σ−1(c(0)), by lemma 2.7(a).

If c(0) = 0, then c1 must vanish of at least second order at 0, since c1(t) ≥ 0
for all t ∈ R . That means c1(t) = t2c1,1(t) near 0 for a Ck+d−2 -function c1,1 . By
the multiplicity lemma 2.6 we find that ci(t) = tdici,i(t) near 0 for 1 ≤ i ≤ n , where
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c1,1, c2,2, . . . , cn,n are functions of class Ck+d−2, Ck+d−d2 , . . . , Ck+d−dn , respectively.
We consider the following Ck -curve in σ(V ) (since σ(V ) is closed in Rn , see [28]):

c(1)(t) := (c1,1(t), c2,2(t), . . . , cn,n(t))

= (t−2c1(t), t
−d2c2(t), . . . , t

−dncn(t)).

By property (Bk) and proposition 3.2, there exists a local differentiable lift c̄(1) of
c(1) with locally bounded derivative. Thus, c̄(t) := t · c̄(1)(t) is a local differentiable
lift of c near 0 with derivative c̄′(t) = c̄(1)(t)+ tc̄′(1)(t) which is continuous at t = 0

with c̄′(0) = c̄(1)(0). Note that σ−1(0) = {0} , therefore we are done in this case.

If c(0) 6= 0 corresponds to a singular orbit, let v be in σ−1(c(0)) and
consider the slice representation Gv → O(Nv). By 2.3, the lifting problem reduces
to the same problem for curves in Nv/Gv now passing through 0. By proposition
3.3 we may refer to the former case.

4.2. Theorem. Assume that ρ : G → O(V ) is a representation of a finite group
G with property (Bk). Let c : R → V/G = σ(V ) ⊆ Rn be a curve of class Ck+d .
Then any differentiable lift c̄ of c is actually of class C1 .

Proof. Let c̄ be a differentiable lift of c . Let t0 ∈ R be arbitrary. We
show that c̄′ is continuous at t0 . Let c̃ denote the local differentiable lift of c
near t0 with continuous derivative at t0 , provided by proposition 4.1. Consider
a sequence (tm)m ⊆ R with tm → t0 . For every m there is a gm ∈ G such
that c̄(tm) = gm.c̃(tm). Since G is finite, we may choose a subsequence of (tm)m

again denoted by (tm)m such that c̄(tm) = g.c̃(tm) for some fixed g ∈ G and
all m . By lemma 3.4, there exist hm ∈ Gc̄(tm) with c̄′(tm) = hmg.c̃′(tm) for
all m . Passing again to a subsequence we find a fixed h ∈ Gc̄(tm) such that
c̄(tm) = h.c̄(tm) = hg.c̃(tm) and c̄′(tm) = hg.c̃′(tm) for all m . Then

c̄(t0) = lim
tm→t0

c̄(tm) = lim
tm→t0

hg.c̃(tm) = hg. lim
tm→t0

c̃(tm) = hg.c̃(t0)

and

c̄′(t0) = lim
tm→t0

c̄(tm)− c̄(t0)

tm − t0
= lim

tm→t0

hg.c̃(tm)− hg.c̃(t0)

tm − t0
= hg.c̃′(t0)

and hence
lim

tm→t0
c̄′(tm) = lim

tm→t0
hg.c̃′(tm) = hg.c̃′(t0) = c̄′(t0).

This completes the proof.

The forgoing theorem 4.2 is false, if G is not finite:

Example. Again consider the standard action of SO(2) on R2 with or-
bit map σ(x1, x2) = x2

1 + x2
2 . Let us consider the curve c(t) = t4

and its differentiable lift c̄(t) =
(
t2 cos 1

t
, t2 sin 1

t

)
. But the derivative

c̄′(t) =
(
2t cos 1

t
+ sin 1

t
, 2t sin 1

t
− cos 1

t

)
is not continuous at t = 0.

Remark. The failure of theorem 4.2 in this special example really is due to the
fact that SO(2) is infinite, since there is the following result due to Bony [4]: Any
non-negative function f : R → R of class C2m can be represented as sum of squares
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f = g2 + h2 of Cm -functions g and h . This result implies that SO(2) : R2 has
property (B2), and hence any standard representation of SO(n) on Rn (n ≥ 2)
has property (B2) as well. But see 6.3.

Note that the lifting problem for the standard representation of SO(n) on
Rn is just the problem of representing non-negative functions as sums of squares.
In this regard see [3], [4], [5], [12], and [15].

5. Twice differentiable lifts

5.1. Proposition. Assume that ρ : G → O(V ) is a representation of a finite
group G with property (Bk). Let c = (c1, . . . , cn) : R → V/G = σ(V ) ⊆ Rn be a
curve of class Ck+2d . Then for any t0 ∈ R there exists a local C1 -lift c̄ of c near
t0 which is twice differentiable at t0 .

Proof. Without loss of generality we may assume that t0 = 0. We show the
existence of local C1 -lifts of c which are twice differentiable at 0 through any
v ∈ σ−1(c(0)). By lemma 2.5 we can assume V G = {0} .

If c(0) 6= 0 corresponds to a regular orbit, then unique orthogonal Ck+2d -
lifts defined near 0 exist through all v ∈ σ−1(c(0)), by lemma 2.7(a).

If c(0) = 0, then as in the proof of proposition 4.1 we find that the curve

c(1)(t) := (c1,1(t), c2,2(t), . . . , cn,n(t))

= (t−2c1(t), t
−d2c2(t), . . . , t

−dncn(t))

lies in σ(V ) and is of class Ck+d . By property (Bk) and theorem 4.2, there exists
a local C1 -lift c̄(1) of c(1) . Thus, c̄(t) := t · c̄(1)(t) is a local C1 -lift of c near 0
with derivative c̄′(t) = c̄(1)(t) + tc̄′(1)(t) which is differentiable at t = 0:

lim
t→0

c̄′(t)− c̄′(0)

t
= lim

t→0

c̄(1)(t)− c̄(1)(0) + tc̄′(1)(t)

t
= 2c̄′(1)(0).

Note that σ−1(0) = {0} , therefore we are done in this case.

If c(0) 6= 0 corresponds to a singular orbit, let v be in σ−1(c(0)) and
consider the isotropy representation Gv → O(Nv). By 2.3, the lifting problem
reduces to the same problem for curves in Nv/Gv now passing through 0. By
proposition 3.3 we may refer to the former case.

5.2. Theorem. Assume that ρ : G → O(V ) is a representation of a finite group
G with property (Bk). Let c : R → V/G = σ(V ) ⊆ Rn be a curve of class Ck+2d .
Then there exists a global twice differentiable lift c̄ of c.

Proof. The proof will be carried out by induction on the cardinality of G .

If G = {e} is trivial, then c̄ := c is a global twice differentiable lift.

So let us assume that for any finite G′ with |G′| < |G| and any c : R → V/G′

of class Ck+2d′
there exists a global twice differentiable lift c̄ : R → V of c ,

where ρ′ : G′ → O(V ) is an orthogonal representation on an arbitrary real finite
dimensional Euclidean vector space V with property (Bk), and d′ = d(ρ′).
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We shall prove that the same is true for G . Let c = (c1, . . . , cn) : R →
V/G = σ(V ) ⊆ Rn be of class Ck+2d . We may assume that V G = {0} , by lemma
2.5. We can write c−1(σ(V )\{0}) =

⋃
i(ai, bi), a disjoint, at most countable union,

where ai, bi ∈ R ∪ {±∞} with ai < bi such that each (ai, bi) is maximal with
respect to not containing zeros of c . In particular, we have c(ai) = c(bi) = 0 for
all ai, bi ∈ R appearing in the above presentation.

Claim: On each (ai, bi) there exists a twice differentiable lift c̄ : (ai, bi) →
V \{0} of the restriction c|(ai,bi) : (ai, bi) → σ(V )\{0} . The lack of nontrivial fixed
points guarantees that for all v ∈ V \{0} the isotropy groups Gv satisfy |Gv| < |G| .
Therefore, by induction hypothesis, which is fulfilled by proposition 3.3 and lemma
2.4, and by 2.3, we find local twice differentiable lifts of c|(ai,bi) near any t ∈ (ai, bi)
and through all v ∈ σ−1(c(t)). Suppose that c̄1 : (ai, bi) ⊇ (a, b) → V \{0} is a
local twice differentiable lift of c|(ai,bi) with maximal domain (a, b), where, say,
b < bi . Then there exists a local twice differentiable lift c̄2 of c|(ai,bi) near b , and
there exists a t0 < b such that both c̄1 and c̄2 are defined near t0 . Let (tm)m

be a sequence with tm → t0 . By the arguments in the proof of theorem 4.2,
we may pass to a subsequence and find a g ∈ G and a h ∈ Gc̄1(tm) such that
c̄1(tm) = g.c̄2(tm) = hg.c̄2(tm) and c̄′1(tm) = hg.c̄′2(tm) for all m . Consequently,
c̄1(t0) = hg.c̄2(t0) and c̄′1(t0) = hg.c̄′2(t0), and hence

c̄′′1(t0) = lim
tm→t0

c̄′1(tm)− c̄′1(t0)

tm − t0
= lim

tm→t0

hg.c̄′2(tm)− hg.c̄′2(t0)

tm − t0
= hg.c̄′′2(t0).

So c̄(t) := c̄1(t) for t ≤ t0 and c̄(t) := hg.c̄2(t) for t ≥ t0 defines a twice
differentiable lift of c|(ai,bi) on a larger interval than (a, b). This proves the claim.

Now let c̄ : (ai, bi) → V \{0} be the twice differentiable lift of c|(ai,bi)

constructed above. For ai 6= −∞ , we put c̄(ai) := 0 and c̄′(ai) := limt↘ai

c̄(t)
t−ai

which exists as shown in the proof of theorem 4.4 in [18]. Then c̄ is one-sided
continuous at ai , since 〈c̄(t) | c̄(t)〉 = σ1(c̄(t)) = c1(t). Let c̃ be a local C1 -lift of
c defined near ai which is twice differentiable at ai , provided by proposition 5.1.
Then we find

lim
t↘ai

c̄(t) = c̄(ai) = 0 = c̃(ai).

Let (tm)m ⊆ (ai, bi) be a sequence with tm ↘ ai . By the arguments in the proof
of theorem 4.2, we may pass to a subsequence and find a g ∈ G and a h ∈ Gc̄(tm)

such that c̄(tm) = g.c̃(tm) = hg.c̃(tm) and c̄′(tm) = hg.c̃′(tm) for all m . Therefore
we have

c̄′(ai) = lim
tm↘ai

c̄(tm)

tm − ai

= lim
tm↘ai

hg.c̃(tm)

tm − ai

= hg.c̃′(ai). (1)

Moreover,

lim
tm↘ai

c̄′(tm) = lim
tm↘ai

hg.c̃′(tm) = hg.c̃′(ai) = c̄′(ai),

since c̃ is C1 . It follows that the set of all accumulation points of (c̄′(t))t↘ai
lies in

the orbit G.c̃′(ai). Since G is finite, lemma 2.7(b) implies that c̄′(t) converges for
t ↘ ai , with limit c̄′(ai), because it does so along the sequence (tm)m . Otherwise
put, the lift c̄ is continuously differentiable also at the boundary point ai of its
domain.
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For the sequence (tm)m from above we can argue further

c̄′(tm)− c̄′(ai)

tm − ai

=
hg.c̃′(tm)− hg.c̃′(ai)

tm − ai

→ hg.c̃′′(ai) as tm ↘ ai,

since the lift c̃ is twice differentiable at ai . Hence the set of all accumulation

points of
(

c̄′(t)−c̄′(ai)
t−ai

)
t↘ai

is a subset of Gc̄′(ai)hg.c̃′′(ai): Any accumulation point

of
(

c̄′(t)−c̄′(ai)
t−ai

)
t↘ai

corresponds to a sequence (tm)m ∈ (ai, bi) with tm ↘ ai such

that c̄′(tm)−c̄′(ai)
tm−ai

→ ĥĝ.c̃′′(ai), where ĥ and ĝ are found by repeating the procedure

above. ¿From the equation ĥĝ.c̃′(ai) = c̄′(ai) = hg.c̃′(ai), which follows from (1),
we can read off (hg)−1ĥĝ ∈ Gc̃′(ai) = (hg)−1Gc̄′(ai)hg , and hence ĥĝ ∈ Gc̄′(ai)hg .

By lemma 2.7(b) we have that c̄′(t)−c̄′(ai)
t−ai

converges for t ↘ ai , with limit
hg.c̃′′(ai), since it does so along the sequence (tm)m . That means that the one-
sided second derivative of c̄ exists at ai . The same reasoning is true for bi 6= +∞ .
So we have extended our lift c̄ twice differentiably to the closure of (ai, bi).

Let us now construct a global twice differentiable lift of c defined on the
whole of R . For isolated points t0 ∈ c−1(0) the two twice differentiable lifts on
the neighboring intervals can be made to match twice differentiably, by applying
a fixed transformation from G to one of them: Let c̄1 and c̄2 denote the lifts
left and right of t0 . Then c̄1(t0) = c̄2(t0) = 0 and, by lemma 3.4, we find some
g ∈ G such that c̄′1(t0) = g.c̄′2(t0). Let c̃ be the local C1 -lift near t0 which is twice
differentiable at t0 , provided by proposition 5.1. By the same argumentation as
in the previous paragraph we find h1, h2 ∈ G such that

h1.c̃
′(t0) = c̄′1(t0) = g.c̄′2(t0) = h2.c̃

′(t0),

and for the one-sided second derivatives we have

lim
t↗t0

c̄′1(t)− c̄′1(t0)

t− t0
= h1.c̃

′′(t0) and lim
t↘t0

g.c̄′2(t)− g.c̄′2(t0)

t− t0
= h2.c̃

′′(t0).

It follows that there is a h := h1h
−1
2 ∈ Gc̄′

1(t0) with c̄′′1(t0) = hg.c̄′′2(t0), which shows
the assertion.

Let E be the set of accumulation points of c−1(0). For connected com-
ponents of R\E we can proceed inductively to obtain twice differentiable lifts on
them.

Let ĉ : R → V be a global C1 -lift of c which exists by theorem 2.7 and
theorem 4.2. We define the following set

F := {t ∈ R : ĉ(t) = ĉ′(t) = 0}.

Note that every lift c̄ of c has to vanish on E and is continuous there since
〈c̄(t) | c̄(t)〉 = σ1(c̄(t)) = c1(t). We also claim that any lift c̄ of c is differentiable

at any point t′ ∈ E with derivative 0. Namely, the difference quotient t 7→ c̄(t)
t−t′

is
a lift of the curve

c(1,t′)(t) := ((t− t′)−d1c1(t), . . . , (t− t′)−dncn(t))

in σ(V ) which vanishes at t′ by the following argument: Consider the local lift
c̃ of c near t′ , provided by proposition 5.1. Let (tm)m∈N ⊆ c−1(0) be a sequence
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with t′ 6= tm → t′ , consisting exclusively of zeros of c . Such a sequence always
exists since t′ ∈ E . Then we have

c̃′(t′) = lim
t→t′

c̃(t)− c̃(t′)

t− t′
= lim

m→∞

c̃(tm)

tm − t′
= 0.

Thus c(1,t′)(t
′) = limt→t′ σ( c̃(t)

t−t′
) = σ(c̃′(t′)) = 0.

In particular this shows that E ⊆ F . If we denote by F ′ the accumulation
points of F , then E ⊆ F = (F\F ′) ∪ F ′ ⊆ c−1(0).

Consider first some t′ ∈ F\F ′ , i.e., t′ is an isolated point of F . Then again
we have a local twice differentiable lift for t 6= t′ (left and right of t′ ), since near
t′ there are only points of R\E . Moreover, proposition 5.1 yields again a local
C1 -lift near t′ which is twice differentiable at t′ . As above we are able to find a
twice differentiable lift on the set (R\E) ∪ (F\F ′).

Finally let t′ ∈ F ′ , i.e., t′ is an accumulation point of F . By proposition 5.1,
we have again a local C1 -lift c̃ near t′ which is twice differentiable at t′ . Lemma
3.4 implies that locally near t′ the set F is given by F = {c̃(t) = c̃′(t) = 0} .
So we have c̃(t′) = c̃′(t′) = c̃′′(t′) = 0, as t′ is an accumulation point of F . We
extend our twice differentiable lift c̄ on (R\E)∪ (F\F ′) by 0 on F ′ to the whole
of (R\E) ∪ (F\F ′) ∪ F ′ = (R\E) ∪ F = R . It remains to check that then c̄ is
twice differentiable at t′ ∈ F ′ . Since F ′ ⊆ E , we obtain that c̄ vanishes at t′

and is continuous and differentiable there with derivative 0. Consider a sequence
(tm)m with t′ 6= tm → t′ . Passing to a subsequence, we find as above, for all m ,
c̄(tm) = g.c̃(tm) and c̄′(tm) = hg.c̃′(tm) for some g ∈ G and some h ∈ Gc̄(tm) .
Then,

c̄′(tm)− c̄′(t′)

tm − t′
=

c̄′(tm)

tm − t′
=

hg.c̃′(tm)

tm − t′
→ hg.c̃′′(t′) = 0 as tm → t′.

It follows that the second derivative of c̄ at t′ exists and equals 0. This completes
the proof.

6. Polar representations

The main results of sections 4 and 5, obtained there for finite groups G , can be
generalized to polar representations G → O(V ).

An orthogonal representation ρ : G → O(V ) of a Lie group G on a
finite dimensional Euclidean vector space V is called polar, if there exists a linear
subspace Σ ⊆ V , called a section or a Cartan subspace, which meets each orbit
orthogonally. See [9], [10], and [25]. The trace of the G-action is the action of the
generalized Weyl group W (Σ) = NG(Σ)/ZG(Σ) on Σ, where NG(Σ) := {g ∈ G :
ρ(g)(Σ) = Σ} and ZG(Σ) := {g ∈ G : ρ(g)(s) = s for all s ∈ Σ} . The generalized
Weyl group is a finite group, and is a reflection group if G is connected. If Σ′ is
a different section, then there is an isomorphism W (Σ) → W (Σ′) induced by an
inner automorphism of G .

We shall need the following generalization of Chevalley’s restriction theo-
rem, which is due to Dadok and Kac [10] and independently to Terng [33].

6.1. Theorem. Let ρ : G → O(V ) be a polar representation of a compact
Lie group, with section Σ and generalized Weyl group W (Σ). Then the algebra
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R[V ]G of G-invariant polynomials on V is isomorphic to the algebra R[Σ]W (Σ) of
W (Σ)-invariant polynomials on the section Σ, via restriction f 7→ f |Σ .

As a consequence of this theorem we obtain that the orbit spaces V/G =
σ(V ) and Σ/W (Σ) = σ|Σ(Σ) are isomorphic.

6.2. Theorem. Let ρ : G → O(V ) be a polar representation of a compact Lie
group on a finite dimensional Euclidean vector space V with orbit map σ : V →
Rn . Assume that W (Σ) → O(Σ) has property (Bk) for some section Σ. Let
c : R → σ(V ) ⊆ Rn be a curve in the orbit space. Then we have:

(1) If c is of class Ck+d , then there exists a global orthogonal C1 -lift c̄ : R → V .

(2) If c is of class Ck+2d , then there exists a global orthogonal twice differentiable
lift c̄ : R → V .

Proof. By theorem 6.1, σ|Σ : Σ → Rn is the orbit map for the representation
W (Σ) → O(Σ), and hence the orbit spaces V/G = σ(V ) and Σ/W (Σ) = σ|Σ(Σ)
are isomorphic.

If c : R → σ(V ) ∼= σ|Σ(Σ) is Ck+d , then by theorem 2.7 and theorem 4.2
(since W (Σ) is finite) there exists a global C1 -lift c̄ : R → Σ, which as a curve in
V is orthogonal to each G-orbit it meets, by the properties of Σ. This shows (1).

If c : R → σ(V ) ∼= σ|Σ(Σ) is Ck+2d , then statement (2) follows analogously
from theorem 5.1.

6.3. Example. The standard representation of SO(n) on Rn is polar. Any 1-
dimensional linear subspace Σ of Rn is a section. The associated generalized Weyl
group is W (Σ) = {±id} . So the representation W (Σ) → O(Σ) has property (B2),
since it reduces to S2 : R2 , the problem of finding regular roots of x2 − f(t) = 0
(f ≥ 0 and C2 ), which has property (B2), by theorem 2.8. Hence theorem 6.2 is
applicable.

7. Stability of property (B)

7.1. Proposition. Let ρ : G → O(V ) be an orthogonal representation of a
compact Lie group G on a real finite dimensional Euclidean vector space V having
property (Bk). For any G-invariant linear subspace W ⊆ V the subrepresentation
ρ′ : G → O(W ) has property (Bk) as well.

Proof. If σ1, . . . , σn are generators of R[V ]G , then their restrictions
σ1|W , . . . , σn|W generate R[W ]G . Thus W/G = σ|W (W ) naturally lies in
V/G = σ(V ).

Let c : R → σ|W (W )∩U be a Ck -curve in the orbit space σ|W (W ), where
U = U(ρ) is the open neighborhood of 0 in σ(V ) from the definition of property
(Bk) (see 3.1). We may view c as a curve in the orbit space σ(V ), and since the
representation ρ has property (Bk), we can lift c to a local differentiable curve
c̄ in V with locally bounded derivative. But then c̄ has obviously to lie in the
G-invariant subspace W . This completes the proof.
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7.2. Proposition. Suppose that ρi : Gi → O(Vi) (1 ≤ i ≤ l) are orthogonal
representations of compact Lie groups Gi on real finite dimensional Euclidean
vector spaces Vi having property (Bki

). Then the orthogonal direct sum

ρ1 ⊕ · · · ⊕ ρl : G1 × · · · ×Gl −→ O(V1 ⊕ · · · ⊕ Vl)

of the representations ρ1, . . . , ρl has property (Bk), where k = max{k1, . . . , kl}.

Proof. It is sufficient to consider the case l = 2, since the general case follows
by induction.

If 〈 | 〉1 and 〈 | 〉2 denote the inner products on V1 and V2 , then

〈v1 + v2 | w1 + w2〉 := 〈v1 | w1〉1 + 〈v2 | w2〉2

defines an inner product on V = V1 ⊕ V2 which makes V1 and V2 into orthogonal
subspaces of V . The action of G = G1 × G2 on V1 ⊕ V2 is obviously again
orthogonal. Moreover, we find R[V ]G = R[V1 ⊕ V2]

G1×G2 ∼= R[V1]
G1 ⊗R[V2]

G2 and
V/G = (V1 ⊕ V2)/(G1 ×G2) ∼= V1/G1 × V2/G2 .

Now any Ck -curve c in U1 × U2 ⊆ V/G has the form c = (c1, c2) for
Ck -curves ci in Ui ⊆ Vi/Gi , where Ui = U(ρi) from 3.1, which allow local
differentiable lifts c̄i with locally bounded derivative to Vi , by assumption. This
shows that ρ = ρ1 ⊕ ρ2 has property (Bk).

8. Finite groups G have property (B)

8.1. Theorem. Let ρ : G → O(V ) be a real finite dimensional orthogonal
representation of a finite group G, and let σ1, . . . , σn be a minimal system of
homogeneous generators of R[V ]G . Write V = V1 ⊕ · · · ⊕ Vl as orthogonal direct
sum of irreducible subspaces Vi . Choose vi ∈ Vi\{0} such that the cardinality of the
corresponding isotropy group Gvi

is maximal, and put k = max{d(ρ), |G|/|Gvi
| :

1 ≤ i ≤ l}. Then any curve c = (c1, . . . , cn) : R → V/G = σ(V ) ⊆ Rn of class
Ck in the orbit space admits a global differentiable lift c̄ to V with locally bounded
derivative.

Proof. We shall reduce to the representation the polynomial case, i.e., to the
standard representation of the symmetric group.

Since d(ρ) ≤ k , we can apply theorem 2.7 which provides a differentiable
lift c̄ : R → V of c .

Let i be fixed. For g ∈ G we define a linear function

Fi,g : V −→ R
x 7−→ 〈vi | g.prVi

(x)〉 = 〈vi | g.x〉.

Here prVi
: V → Vi is the natural projection. The cardinality of distinct functions

Fi,g equals ki := |G|/|Gvi
| .

Let Gvi
\G denote the space of right cosets of Gvi

in G , and introduce
a numbering Gvi

\G = {g1, g2, . . . , gki
} . We construct the following polynomials

on V :
ai,j(x) =

∑
1≤m1<···<mj≤ki

Fi,gm1
(x) · · ·Fi,gmj

(x) 1 ≤ j ≤ ki.



594 Kriegl, Losik, Michor, Rainer

These polynomials ai,j are G-invariant by construction, and therefore ex-
pressible in the homogeneous generators σ1, . . . , σn of R[V ]G , i.e., there exist poly-
nomials pi,j ∈ R[Rn] such that

ai,j = pi,j(σ1, . . . , σn) 1 ≤ j ≤ ki. (1)

The polynomials ai,j , for 1 ≤ j ≤ ki , are elementary symmetric functions
in the variables Fi,g(x), where g runs through Gvi

\G = {g1, g2, . . . , gki
} . Finally,

we associate the following monic polynomial of degree ki in one variable y :

Pi(x)(y) = yki +

ki∑
j=1

(−1)jai,j(x)yki−j =

ki∏
j=1

(y−Fi,gj
(x)). (2)

By construction, the functions x 7→ Fi,g(x) (g ∈ Gvi
\G) parameterize the roots of

x 7→ Pi(x)(y) which, consequently, are always real.

Now consider the functions t 7→ ai,j(c̄(t)) (1 ≤ j ≤ ki ) which are of class
Ck by equation (1). As in (2) we may associate a Ck -curve t 7→ Pi(t)(y) of monic
polynomials of degree ki in one variable defined by

Pi(t)(y) = yki +

ki∑
j=1

(−1)jai,j(c̄(t))y
ki−j.

By theorem 2.8, applied to the curve of polynomials t 7→ Pi(t)(y), the differentiable
functions t 7→ Fi,g(c̄(t)) (g ∈ Gvi

\G) which parameterize the roots of t 7→ Pi(t)(y)
have locally bounded derivative.

Since Vi is irreducible, the linear span of the orbit G.vi spans Vi . If we
repeat the above procedure for each 1 ≤ i ≤ l , it follows that c̄ is a differentiable
lift of c with locally bounded derivative. This completes the proof.

Corollary. Any polar representation ρ of a compact Lie group G has property
(Bk), where k is determined analogously to theorem 8.1 but for the representation
W → O(Σ), where W is the generalized Weyl group of some section Σ. Moreover,
the lifts can be chosen orthogonal.

Remark. The case k = |G| can occur: For finite rotation groups in the plane we
have d = |G| , and for any non-zero v the isotropy group Gv is trivial.

Remark. There are irreducible orthogonal representations of finite groups G
where the inequality d ≤ |G|/|Gv| is violated for non-zero vectors v :

Consider the rotational symmetry group T of the regular tetrahedron in R3 .
We find d = 6 (e.g. [8]). The isotropy group of each vertex v of the tetrahedron
has 3 elements. So |G|/|Gv| = 12/3 = 4.

Furthermore, the same phenomenon appears for the rotational symmetry
groups W and H of the cube and the regular icosahedron in R3 , respectively.
Compare with section 10.

Remark. The method of the proof of theorem 8.1 is used by L. Smith and R.E.
Strong in [31] for constructing generators of invariant rings. It is related to E.
Noether’s [24] proof of Hilbert’s finiteness theorem as recounted by H. Weyl [35].
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9. Property (Bk) for finite reflection groups

Abusing notation we will denote finite reflection groups as well as their root systems
(respectively their Coxeter graphs) with the same symbols.

Recall the characterization of finite reflection groups ([14], [16]):

If G is a finite subgroup of O(V ) that is generated by reflections, then
V may be written as the orthogonal direct sum of G-invariant subspaces V0 =
V G, V1, . . . , Vk with the following properties:

(a) If Gi = {g|Vi
: g ∈ G} , then Gi is a subgroup of O(Vi), and G is isomorphic

with G0 ×G1 × · · · ×Gk .

(b) G0 consists only of the identity transformation on V0 .

(c) Each Gi (i ≥ 1) is one of the groups

An, n ≥ 1; Bn, n ≥ 2; Dn, n ≥ 4; In
2 , n ≥ 5, n 6= 6;

G2; H3; H4; F4; E6; E7; E8.

We will apply theorem 8.1 to each of the irreducible finite reflection groups
listed in (c). Here the inequality d ≤ |G|/|Gv| will be satisfied for all non-zero v
which can be checked directly in the table given at the end of this section.

Let ρ : G → O(V ) be the standard representation of some irreducible finite
reflection group G listed in (c). We consider an arbitrary slice representation
Gv → O(Nv) (v ∈ V ) of ρ ; note Nv = V . By [16], theorem 1.12, there exists a
g ∈ G such that g.v = w for a w in the fundamental domain

F = {x ∈ V : 〈x | r〉 ≥ 0 for all r ∈ Π},

where Π is a system of simple roots, and Gw is generated by the simple reflections
it contains. It follows that we can read off easily the information we need to
determine a minimal |G|/|Gv| from the Coxeter graph of G .

Easy computations yield the results collected in the table in figure 1 which
gives a complete survey of the standard representations of all irreducible finite
reflection groups. The integers d and |G| for the listed representations can be
found e.g. in [14]; in [22] also generators of the corresponding algebra of invariant
polynomials are available. The integer k is the minimum of the numbers |G|/|Gv|
where v runs through all non-zero vectors in V . We have d ≤ k . By theorem
8.1 the representations listed in the table have property (Bk). This together with
lemma 2.5 and proposition 7.2 treats finite reflection groups completely.

10. Property (Bk) for finite rotation groups

Let us denote by Cn
2 the cyclic subgroup of O(2) generated by the counterclockwise

rotation of R2 through the angle 2π/n . Here we have d = |G| = n , and for any
non-zero vector v ∈ R2 its isotropy group Gv is trivial. By theorem 8.1, all finite
rotation groups Cn

2 in the plane have property (Bn).

Remark. This together with the result for dihedral groups In
2 in section 9 gives

a complete discussion of all finite subgroups of O(2).
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ρ : G → O(V ) d k |G|
An, n ≥ 1 n + 1 n + 1 (n + 1)!
Bn, n ≥ 2 2n 2n 2nn!
Dn, n ≥ 4 2n− 2 2n 2n−1n!
In
2 , n ≥ 5 n n 2n

G2 6 6 12
H3 10 12 120
H4 30 120 14400
F4 12 24 1152
E6 12 27 51840
E7 18 56 2903040
E8 30 240 696729600

Figure 1: Irreducible Coxeter groups and associated integers d , k , and |G| .

Next we consider finite rotation groups in 3-dimensional space.

Let P be a 2-dimensional linear subspace in R3 . Any rotation R in O(P )
can be extended to a rotation in O(3), by setting Rx = x for all x ∈ P⊥ and
using linearity. By extending each transformation in a cyclic subgroup Cn

2 of O(P )
in this fashion, we obtain a cyclic subgroup of rotations in O(3), which will be
denoted by Cn

3 .

On the other hand, if S is a reflection in O(P ), then S may also be extended
to a rotation in O(3), in fact to the rotation through the angle π having the
reflection line of S in P as its axis of rotation: define Sx = −x for all x ∈ P⊥

and extend by linearity. By extending each transformation in a dihedral subgroup
In
2 of O(P ) to a rotation in O(3), the resulting set of rotations is a subgroup of

O(3) isomorphic with In
2 ; it shall be denoted In

3 .

If T , W , and H denote the subgroups of rotations in O(3) which leave
invariant the regular tetrahedron, cube, and icosahedron each with center in the
origin, then the following list provides a complete characterization of finite rotation
groups in R3 (e.g. [14]):

Cn
3 , n ≥ 1; In

3 , n ≥ 2; T ; W ; H.

Rotation groups of type Cn
3 have property (Bn) by construction, since the

linear subspace P⊥ is left pointwise invariant under the Cn
3 -action, and on P it

restricts to the Cn
2 -action; so lemma 2.5 and the result for Cn

2 give the statement.

Rotation groups of type In
3 have property (Bn+1): Note first that here

d = n + 1. Moreover, we have the decomposition R3 = P ⊕ P⊥ into irreducible
subrepresentations. In order to make |G|/|Gv1| minimal for 0 6= v1 ∈ P we may
choose v1 to lie on some reflection line of In

2 in P ; then |G|/|Gv1| = 2n/2 = n .
For 0 6= v2 ∈ P⊥ we find that |Gv2| is the number of rotations (including the
identity) in In

2 . So |G|/|Gv2| = 2n/n = 2. Application of theorem 8.1 gives the
assertion.

The rotational symmetry group T of the regular tetrahedron has property
(B6): We have d = 6 (e.g. [8], [27]). Further the action of T on R3 is irreducible.
The elements of T consist of rotations through angles of 2π/3 and 4π/3 about
each of four axes joining vertices of the tetrahedron with centers of opposite faces,
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ρ : G → O(V ) d k |G|
Cn

2 , n ≥ 1 n n n
Cn

3 , n ≥ 1 n n n
In
3 , n ≥ 2 n + 1 n + 1 2n

T 6 6 12
W 9 9 24
H 15 15 60

Figure 2: Finite rotation groups in two and three dimensions and associated
integers d , k , and |G| .

rotations through the angle π about each of the three axes joining the midpoints
of opposite edges, and the identity. So |T | = 12. The isotropy groups of non-zero
vectors on axes joining vertices with centers of opposite faces have cardinality 3,
those of non-zero vectors on axes joining the midpoints of opposite edges have
cardinality 2, and all other isotropy groups of non-zero vectors are trivial. Hence
application of theorem 8.1 gives the statement.

The rotational symmetry group W of the cube has property (B9): We have
d = 9 (e.g. [27]). The action of W on R3 is irreducible. The elements of W
consist of rotations through angles of π/2, π , and 3π/2 about each of three axes
joining the centers of opposite faces, rotations through angles of 2π/3 and 4π/3
about each of four axes joining extreme opposite vertices, rotations through the
angle π about each of six axes joining midpoints of diagonally opposite edges, and
the identity. Thus |W | = 24. The isotropy groups of non-zero vectors on axes
joining the centers of opposite faces have cardinality 4, those of non-zero vectors
on axes joining extreme opposite vertices have cardinality 3, those of non-zero
vectors on axes joining midpoints of diagonally opposite edges have cardinality 2,
and all other isotropy groups of non-zero vectors are trivial. Apply theorem 8.1.

The rotational symmetry group H of the regular icosahedron has property
(B15): We have d = 15 (e.g. [8]). The action of H on R3 is irreducible. The
elements of H consist of rotations through angles of 2π/5, 4π/5, 6π/5, and 8π/5
about each of the six axes joining extreme opposite vertices, rotations through
angles of 2π/3 and 4π/3 about each of ten axes joining centers of opposite faces,
rotations through the angle π about each of fifteen axes joining midpoints of
opposite edges, and the identity. Therefore |H| = 60. The isotropy groups of non-
zero vectors on axes joining extreme opposite vertices have cardinality 5, those of
non-zero vectors on axes joining centers of opposite faces have cardinality 3, those
of non-zero vectors on axes joining midpoints of opposite edges have cardinality 2,
and all other isotropy groups of non-zero vectors are trivial. Apply theorem 8.1.

The table in figure 2 collects the results for finite rotation groups in two
and three dimensions obtained in this section. The groups in the first column
of the table are meant to stay for their standard representation, d is the integer
associated to representations in 2.4, and k is as in theorem 8.1.

Remark. Observe that in this table we always have d = k , i.e., the respective
representation has property (Bd). Since we need at least regularity Cd for a
curve in the orbit space to be liftable once differentiably (theorem 2.7), we cannot
expect to improve these results. Evidently this remark applies also for those
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representations in the table in figure 2 with d = k .
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