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Abstract. Let V = Vo @ V7 be a real finite dimensional supervector space
provided with a nondegenerate antisymmetric even bilinear form B. Let spo(V)
be the Lie superalgebra of endomorphisms of V' which preserve B. We consider
spo(V) as a supermanifold. We show that a choice of an orientation of V7 and
of a square root ¢ of —1 determines a very interesting generalized function on
the supermanifold spo(V'), the superpfaffian.

When V = Vi, spo(V) is the orthogonal Lie algebra so(V;), the superpfaffian
is the usual Pfaffian, a square root of the determinant.

When V =V, spo(V) is the symplectic Lie algebra sp(Vp), the superpfaffian
is a constant multiple of the Fourier transform of one the two minimal nilpotent
orbits in the dual of the Lie algebra sp(Vp), and it is a square root of the inverse
of the determinant in the open subset of invertible elements of spo(V).

In this article, we present the definition and some basic properties of the superp-
faffian.
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Introduction

Let V' be an oriented finite dimensional real vector space provided with a non
degenerate symmetric bilinear form B. The Pfaffian of X € so(V') can be defined
by a suitable Berezin integral

/Vdv(v) exp(—%B(v,Xv)) (1)

over the vector space V' seen as an odd space (cf. [13], [2] and section 2. below).
This definition still have a formal meaning for an oriented symplectic supervector
space V. = Vo @ V1 (Vp is a symplectic vector space, V; is an oriented vector
space provided with a non degenerate symmetric bilinear form). This structure
provides us with a well defined Liouville integral dy on the supermanifold V.
The integral (1) converges when X is in an open subset of spo(V), and it is a
square root of the inverse Berezinian. We call this function the superpfaffian. For
instance, if V' = V4, then for X € sp(V'), B(v, Xv) is a quadratic form on V', and
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the integral (1) is convergent when it is positive definite. In this case, det(X) is
strictly positive, and the superpfaffian is the positive square root of 1/det(X).
Since the inverse Berezinian is not polynomial (it is only a rational function
when 1} is not 0), there is no natural extension of this superpfaffian to a function
on the supermanifold spo(V). The purpose of this article is to show that there
is a natural extension of this superpfaffian as a generalized function on the super-
manifold spo(V). Notice that the superpfaffian is 0 when dim(V;) is odd. Let
m = dim(Vp) (which is even) and n = dim(V;) (which we assume now to be even).
Let 2 € C be a square root of —1. We define the superpfaffian by the formula:

Spf(X) = i(m”)/Z/VdV(U) exp(—%B(v,Xv)). (2)

We prove that (2) has a well defined meaning as a generalized function of X on
the supermanifold spo(V).

The Berezinian is not a straightforward extension of the determinant, and
the superpfaffian is not a straightforward extension of the Pfaffian. We establish
several very nice properties of the superpfaffian:

a) It is an analytic function in the open set where the inverse Berezinian is
defined, and, in this open set, it is a square root of the inverse Berezinian.

b) In the open set where it is convergent, it is given by (1).

c¢) It is a boundary value of an holomorphic function defined in a specific
cone of spo(V ® C), and, together with property a), this determines the superp-
faffian up to sign.

d) It is harmonic. More precisely, let SpO(V) be the supergroup of en-
domorphisms of V' which preserve B. The superpfaffian is annihilated by the
homogeneous constant coefficient differential operators on spo(V) which are of
degree > 0 and SpO(V')-invariant.

e) We give several formulas for Spf(X +Y’). They generalize in an elegant
manner formulas of Mathai-Quillen for the Pfaffian, and formulas in Wick’s cal-
culus. Moreover, they are very useful to perform various computations of Spf(X)
in matrix coordinates.

I wish to thank Michel Duflo who introduced me to supermathematics and
spent much of his time to suggest to me many deep improvements to this paper.
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1. Prerequisites

1.1. Notations. In this article, unless otherwise specified, all supervector spaces
and superalgebras will be real. If V' is a supervector space, we denote by Vj its
even part and by V; its odd part. If v is a non zero homogeneous element of V',
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we denote by p(v) € Z/27Z its parity. We put dim(V) = (dim(Vp), dim(V1)). We
denote by V* the dual supervector space Hom(V,R). If V and W are supervector
spaces, V@ W and W ® V' are supervector spaces, and they are identified by the
usual rule of signs. We denote by S(V') the symmetric algebra of V. Recall that
it is equal to S(Vp) ® A(V4), where S(Vp) and A(V7) are the classical symmetric
and exterior algebras of the corresponding ungraded vector spaces. We use the
notation A(U) only for ungraded vector spaces U. So, if V' is a supervector space,
A(V) is the exterior algebra of the underlying vector space.
We choose a square root ¢ of —1.

1.2. Near superalgebras. We say that a commutative superalgebra P is near
if it is finite dimensional, local, and with R as residual field. They are the algébres
proches of Weil [16]. For o € P, we denote by b(«) the canonical projection of «
in R (b(a) is the body of o, and a — b(«r) —a nilpotent element of P— the soul
of «a, according to the terminology of [4]). Let o € Py be an even element. If ¢
is a smooth function defined in a neighborhood of b(«) in R with values in some
Fréchet supervector space W, we use the notation ¢p(«) (or simply ¢(«) if the
context is clear) for the finite Taylor’s series:

In particular, if b(«) # 0, we have

_ bl
|Oé| - b(Oé) ’ (4)

and if b(a) > 0,

\/E:\/b(a)<1+%($—1)—%(%—1)2+Z%!(%—1)3+...>. (5)

1.3. Supermanifolds. By a supermanifold we mean a smooth real supermani-
fold as in [3], [7], [1]. Let V' be a finite dimensional supervector space. We consider
V' as a supermanifold. We recall some relevant definitions in this particular case.
Let U C Vi be an open set. We put

Oy (U) = c=U) @ A(VY), (6)

where C>(U) is the usual algebra of smooth real valued functions defined in U,
and A(VY) the exterior algebra of Vi*. We say that C{°(U/) is the superalgebra of
smooth functions on V' defined in U. The supermanifold V' is by definition the
topological space Vp equipped with the sheaf of superalgebras C;°. Recall that
elements ¢ € C;°(U) are not functions in the usual sense, but we recall below how
to treat them as ordinary functions.

Notice that if ¢/ is not empty, there is a canonical inclusion S(V*) C Ci°(U).
The corresponding elements are called polynomial functions. One can also define
rational functions. Similarly, if W is a Fréchet supervector space (for instance
W = C), we denote by Ci*(U, W) = C®U, W) A(V}") the space of W -valued

smooth functions.
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We use similar notations, for instance C*(U) C C>*(U) and Cy(U, W) C
CP (U, W), for the real analytic functions.

If moreover V and W are complex supervector spaces, we use similar
notations, for instance H(U) C C*(U,C) and Hy (U, W) C Cr U, W), for the
holomorphic functions.

1.4. Evaluation of functions on supermanifolds.
Let P be a near superalgebra. We put

Vp = (V®&P)o. (7)

It is called the set of points of V' with values in P. Extending the body b: P — R
toamap V®P — V| and restricting it to the even part Vp, we obtain a map, still
denoted by b: Vp — Vy. Let U C Vo be an open set. We denote by Vp(U) C Vp
the inverse image of U in Vp. It is known that Vp(U) is canonically identified to
the set of even algebra homomorphisms C{*(U) — P. Let v € Vp(U). We will
denote the corresponding homomorphism by ¢ — ¢(v), and say that ¢(v) € P is
the value of ¢ € Ci*(U) at the point v. Note that formula (3) is a particular case
of this definition, when V = R.

For ¢ € C(U), we denote by ¢p € C®(Vp(U),P) the corresponding
function. More generally, for ¢ € Ci°(U, W) we define ¢p € C*(Vp(U), W @ P).
The importance of this construction is that for P large enough (for instance if P
is an exterior algebra ARY with N > dim(V;)), the map ¢ — ¢p is injective,
which allows more or less to treat ¢ as an ordinary function.

Let A be a commutative superalgebra. We still use the notation V4 =
(V ® A)o. Polynomial functions S(V*) can be evaluated on V4, but, in general,
smooth functions can be evaluated on V4 only if A is a near algebra. The
particular case A4 = S(V*) is important, because V4 contains a particular point,
the generic point, corresponding to the identity in the identification of Hom/(V, V)
with (V& V*)g C V4. Let us call v the generic point. We have f(v) = f for any
polynomial function f € S(V*).

1.5. Coordinates and integration.

Let V' be a finite dimensional supervector space. By a basis (g;)ic; of V', we mean
an indexed basis consisting of homogeneous elements. The dual basis (2%);e; of
V* is defined by the usual relation 27(g;) = /. We also say that the basis (g;)ic;
is the predual basis of the basis (2');c;. We call (2%);c; a system of coordinates
on V. The corresponding derivations of the algebra of smooth functions on V
are denoted by -2 . They are characterized by the rule 3% (z') = §:. The generic

oz ” D27

point v of V is given by the formula v = g;2* € V.

We use systems of coordinates of the form (x!,... 2™ & ... &), where
(x',...,2™) is a basis of Vg, and (¢',...,£") a basis of Vj*. They will be denoted
by the symbol (z,&). Let (e1,...,em, f1,..., fn) be the corresponding predual
basis of V: thus (ey,...,e,) is a basis of Vg and (f1,..., f,) is a basis of Vj.
These notations will be used in particular for the canonical basis of the standard
(m, n)-dimensional supervector space R"™™ . Let I = (iy,...,i,) € {0,1}". We
denote by &! the monomial (1) ... (") of S(V*). Let U C Vp be an open set.
Let W be a Fréchet supervector space. Any ¢ € Ci°(U, W) can be written in a
unique manner

¢:Z£1¢I(x17“'7xm)> (8)
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with ¢; is an ordinary W -valued smooth function defined in the appropriate open
subset of R™. Note that we write ¢; to the right of &/ (recall that /¢, = ¢!,
according to the sign rule).

We denote by Cy.(U, W) the subspace of Ci*(U, W) of functions with
compact support. The distributions on V defined in U are the elements of the
(Schwartz’s) dual of Ci7.(U). If t is a distribution, we use the notation

o) = /V H0)é(v)

for ¢ € Ci,(U). We also use complex valued distributions.
A system of coordinates (z,€) determines a distribution d,¢), called the
Berezin integral, by the formula

/ diwe)()O(0) = (=1) "7 / [dat . da™| g, (@t ... 2" (9)
Vv m

for ¢ € C3%.(Vo), where ‘ dat ... d:cm| is the Lebesgue measure on R™.

In this article, we will be in fact interested by complex valued distributions.
Then we consider basis (e1,...,€em, fi,..., fn) of V& C, where (e1,...,6,) is a
basis of Vo and (fi,..., f,) is a basis of V3 ® C. The dual basis (z, ) provides a
coordinate system (z) on Vp and a dual basis (£) of Vy*®@C. Any f € Cy.(Vo,C)
can be written in the form (8), and the (complex) Berezin integral d(,¢) is again
well defined by formula (9).
1.6. Generalized functions.
We say that a distribution ¢ on V' defined in U is smooth (resp. smooth compactly
supported) if there is a function ¢ € CyP(U) (resp. ¢ € Cy.(U)) such that
t(v) = dge)(v)1(v). It means that for any ¢ € C3.(U):

o) = /V Qo (0)0(0) (). (10)

This definition does not depend on the coordinates system (z,§).

By definition, the generalized functions on V' defined on U are the elements
of the (Schwartz’s) dual of the space of smooth compactly supported distributions.
For a generalized function ¢ and a smooth compactly supported distribution ¢,
we write:

o(t) = (—1)pOr®) / H0) (). (11)

v

We denote by C~*°(U) the space of generalized functions on U and by C,;*°(U)
the space of generalized functions on V' defined on U. Let us remark that, as

Cr(U) =C>U)® A(VY), we have:
Cy=(U) = C7(U) @ A(VY). (12)

Let W be a Fréchet supervector space. A W -valued generalized function
is a continuous homomorphism (in sense of Schwartz) from the space of smooth
compactly supported distributions to W. We denote by Cy,*°(U, W) the set of W -
valued generalized functions. If W is finite dimensional, we have C,,* U, W) =
C, (U)W
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1.7. Berezinians.
Let V be a supervector space. We denote by gl(V) the Lie superalgebra of
endomorphisms of V.

Let A be a commutative superalgebra. We write an element of gl(V') 4 in
the form

M= (é lB)) € al(V)a. (13)

where A € gl(Vo) ® Ay, D € gl(V1) ® Ay, B € Hom(V1,Vp) ® Ay, and
C € Hom(Vp, V1) ® A;. Berezin introduced the following generalizations of the
determinant (cf. [1, 3, 12]), called the Berezinian and inverse Berezinian.

Definition 1.1.  If D (resp. A) is invertible, we define:

Ber(M) = det(A — BD™'C) det(D) ™, (14)
(resp. Ber™ (M) = det(A) ' det(D — CA™'B)). (15)
Definition 1.2.  Assume moreover that A is a near superalgebra. If D (resp.

A) is invertible, we define (cf. [15]):

Ber(1.0)(M) = ( det(A — BD‘lC)‘ det(D)1, (16)

(resp. Ber( (M) = ‘ det(A)_l‘ det(D — CA™'B),) (17)

All these functions are multiplicative, and when both A and D are invert-

ible, it is known that Ber™ (M) = Ber™'(M) and Ber(, o, (M) = Ber(_lfo)(]\/[).

A 0 .
0 D with A € gl(Vp)

and D € gl(V1). We consider the two open sets U’ = GL(Vp) x gl(V1), and
U’ = gl(Vy) x GL(V7). Formula (14) defines a rational function on the open set
U’ of the supermanifold gl(V'). Formula (16) defines a smooth function on the
open set U” of the supermanifold gl(V'). We still denote by Ber and Ber( ) the
elements of Cyy (U”) whose evaluation in gl(V).4 is given as above. We similarly
define the elements Ber™ and Ber(, o of Cgiy (U).

1.8. Oriented symplectic supervector spaces.

Let V = Vo & Vi be a symplectic supervector space, that is a supervector space
provided with a symplectic form B: anon degenerate even skew symmetric bilinear
form on V. The space Vj is a classical symplectic space. The dimension m of Vg
is even. We choose a symplectic basis (ey,...,e,) of Vo, that is Vp is the direct
sum of m/2 symplectic vector spaces generated by the pairs (eq, es), (e3,€4), ...,
and B(ej,ey) = 1, B(es,eq) = 1,.... The space V; is a classical quadratic space.
We choose a symplectic basis (fi,... f,) of V3 ® C, that is an orthonormal basis
of V1 ®C such that f; € V3 or f; € iV; for all j. The dual basis (z*,&7) of V®@C
is called a symplectic coordinate system on V.

The pair of functions ££%...£" does not depend on the symplectic coor-
dinate system. A choice of one of the two elements of ££!...€" is called an
orientation of V. If V is oriented, an oriented symplectic coordinate system on
V is a coordinate system for which the orientation is &'...&".

Recall that gl(V)e consists of the matrices
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Let V' be an oriented symplectic supervector space. The distribution

1

Y @t

(18)
does not depend on the oriented symplectic coordinate system. We call it the
Liouville measure of V.

1.9. Symplectic Lie superalgebras.

Let V = (V, B) be a symplectic supervector space. We denote by spo(V, B) (or
spo(V)) the Lie superalgebra of endomorphisms of V' which leave B invariant.
We have spo(V, B)g = sp(Vp) ® so(V7).

Remark concerning the notation: Let 1IV be the space V with opposite
parity. It carries a structure of orthogonal supervector space, and spo(V) is
isomorphic to the usual orthosymplectic Lie superalgebra osp(ITV').

We denote by p € spo(V)* @ S?2(V*) C S(spo(V)* x V*) the element such
that .

u(X,v) = —§B(U,Xv), (19)

for any commutative superalgebra A, any X € spo(V)y4 and v € V4, where
B(v, Xv) € A is defined by natural extension of scalars. Considering a basis Gy
of spo(V), the dual basis Z*, the generic point X = G, Z*, a basis g; of V, the
dual basis z¢, and the generic point v = g;2*, we obtain:

= —%B(gi, Grg) 2 2% (20)

By composition with the exponential map, we obtain the analytic function e* on
the supermanifold spo(V') x V', which plays an important role in what follows.

Let us explain the choice of the constant —% in definition of y© and why we
call p (or its variants i and £ defined below) the moment map. The symplectic
form B gives to the supermanifold V' a symplectic structure, and a Poisson bracket
on S(V*) by the following. Let f € V*, we denote by v; the element of V' such
that for any w € V: B(vg,w) = f(w). This gives an isomorphism from V* onto
V. For f,g € V*, we put: {f,g} = B(vy,v,) and we extend it to a Poisson
bracket on S(V*).

Let i : spo(V) — S%(V*) be the linear map such that i(X)(v) = u(X,v).
It is an isomorphism of Lie superalgebras ji : spo(V) — S?(V*). We extend ji to
a morphism of commutative associative superalgebras from S(spo(V)) to S(V*).
For k € N, ji induces a surjective map i : S*(spo(V)) — S%*(V*). We choose a
graded right inverse

= 8 SR (V) — S(spo(V)). (21)

Thus, for P € S*(V*), we have Z(P) € S*(spo(V)) and i(Z(P)) = P.

2. The superpfaffian as an holomorphic function

2.1. Definition. Let V = V5 @® V5 be an oriented symplectic supervector space
of dimension (m,n). For X € sp(Vp), v — B(v, Xv) is a quadratic form on Vj.
We denote by U C sp(Vp) the open set of X € sp(Vp) for which this form is non
degenerate. It is the disjoint union of the subsets U, , (with p 4+ ¢ = m) where
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(p,q) is the signature of the quadratic form. We put U+ = U,,o. It is an open
convex cone in sp(Vp). We denote by V = U x so(V1), V,q = Upy x s0(V1),
VT =U" x s0(V3) the corresponding open subsets of spo(V)g. In particular V'
is an open convex cone in spo(V)g.

Recall the Liouville Measure (18).

Theorem 2.1. There exists a unique function Spf € CEpo (VJr C) such that
for any near superalgebra P and any element X of spo(V)p such that b(X) € V*:

SPE(X) = /V dy(0) expl(p(X, v)). (22)

We call the function Spf defined in the preceding theorem the superpfaffian.

Proof. Let P be any near superalgebra. We denote by Spf, the function on
spo(V)p(VT) such that for any X € spo(V)p(VT), Spfp(X) is the right hand
side of (22). Let X € spo(V)p(VT). Let Xy € UT and X, € sp(V;) such that
b(X) = Xo+ X;. Thus X = X+ X; + N with N nilpotent.

Let (z,€) be an oriented symplectic system of coordinates. Let v = e;x’ +
/€7 be the generic point of V', vg = e;2" be the generic point of Vp and vy = f;&
the generic point of V3. We have v = v + v1, B(v, Xov) = B(vo, Xove) and
B(v, Xjv) = B(vy, Xjv1).

In particular B(v, X v) is nilpotent. Thus B(v, (X—Xp)v) € (S?2(V*) @ P)o
is nilpotent. It follows that exp(—3B(v, (X — Xo)v)) € (S(V*) ® P)o is a polyno-
mial function on V' with values in P and that X ~— exp(—1B(v, (X — Xo)v)) €
(S(V*)®P)g is polynomial on spo(V)p.

Let Z € spo(V)p such that b(Z) € so(V1). Then B(v, Zv) is a nilpotent
element of S?(V*)p. We put:

1
P(Zo0) = | du(u)exp(~3Bluo + vr, Z(uo + ) € S0P, (23
1
Fubini’s formula gives:

/Vdv(v)exp(—%B(v,Xv))—/v dVO('UO)eXp(—%B(UO,XOUO))P(X—Xo,vo).

24
Since Xy € UT, B(vg, Xovp) is a positive definite quadratic form. The integgra)l
on the right hand side is a Gaussian integral on V4. Thus Spf, is an analytic
function on spo(V)p(VT).
Let @ = A(spo(V)3). Let h : spo(V)o — (5p0(V)0)Q be the canonical
embedding defined by h(v) =v®1. Let H € (5po(V)1)Q be the generic point of
spo(V);. We put for X € V+:

¢(X) = Spfg(h(X) + H) € @ = A(spo(V);3)

_ /V dvo(vo)exp(—%B(vo,XUUO))P(Xl—|—H,v0). (25)

(X = Xo+ Xy with Xy € UT and X; € so(V3); P is defined by (23).) It defines
a function

¢€ 5po )(V+)7 (26)
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such that for any near superalgebra P, any X =Y + Z € spo(V)p(V") with
Y € (spo(V)o)p (V") and Z € (spo(V)1)p, ¢(X) = ¢(Y)(Z).

Since ¢ is defined by a Gaussian integral on Vg all its derivatives along
spo(V)g are determined by derivation “under the integral”. Moreover the above in-
tegral is A(spo(V)3)-linear, hence for any near superalgebra P and X € spo(V)p,
¢(X) = Spip(X).

We put Spf = ¢ € C;”(V)(V*) and call it the superpfaffian. The preceding
remark shows that for any near superalgebra P and X € spo(V)p(V") the
expression Spf(X) is not ambiguous: the value of the function Spf at X is given
by formula (22). [
2.2. Holomorphic extension in the appropriate subset.

Formula (22) is meaningful for X € spo(V @ C)p with b(X) € V' x ispo(V)o
and it defines an holomorphic function on V* x ¢spo(V). Indeed, let X €
spo(V®C)p with b(X) € V' x ispo(V)g. As before, let Xy € Ut x 1sp(Vp)
and X; € s0(V3®C) such that b(X) = Xy + X;. The calculations of the
preceding section can be reproduced here. The right hand side of formula (24)
is still a Gaussian integral and therefore defines a complex analytic function on
spo(V @ C)p (VT x ispo(V)o). The same arguments as in the preceding section
show that formula (22) defines an holomorphic extension of Spf on V* x i spo(V)g
still denoted by Spf.

2.3. Invariance.

Let P be a near superalgebra. Let X € gl(V)p. We denote by X* € gl(V)p the
adjoint of X defined by:

Yo, w € Vp, B(Xv,w) = B(v, X"w). (27)

We have: (X*)* = X.

Let v € V, we denote by B (v) the element of V* such that for any w € V|
B#(v)(w) = B(v,w). This defines an isomorphism B# : V — V*. Moreover
for X € gl(V) non zero and homogenous we denote by ‘X the endomorphism

of V* such that for any ¢ € V* non zero and homogenous and any v € V,
EX(¢)(v) = (=1)PXP@p(Xv). Then:

X* = (B*)"''XB* (28)

We denote by GL(V)p the group of invertible elements of gl(V)p. Since
GL(V)p C gl(V)p, the definition of X* is meaningful for X = g € GL(V)p. For
g € GL(V)p we have from (28): Ber(g*) = Ber(g) and Ber(; 0)(g*) = Berg,0)(9)-

We put:

SpO(V)p={9€ GL(V)p /g =g '}. (29)

¢ From the multiplicative property of Ber we get for g € SpO(V)p:
Ber(g) = Ber(1,0)(g) = det(b(g)|v,) = £1 (30)

Proposition 2.1.  Let P be a near superalgebra. Let X € spo(V @ C)p (V+ X
ispo(V)) and g € GL(V)p, then:

Spf(g"Xg) = Ber(, ) (9) Sp(X). (31)
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In particular, for g € SpO(V)p, we have;
Spf(g™' Xg) = det(b(g)|v;) SpE(X). (32)

Proof.  The first formula follows from the formula of change of coordinates (cf.
[1]). Assume moreover that g € SpO(V)p. Then, by definition, we have g* = g~!
and formula (32) follows from (30). [
2.4. Action of differential operators.
Let V' be a symplectic finite dimensional supervector space. We assume that
dim(V4) is even.

Let X € spo(V) be homogeneous. We denote by Jx the derivation of
Copo(V) (5p0(V)0) such that for any homogeneous ¢ € spo(Vp)*:

Oxtp = (=1PIY(X). (33)

The mapping X +— Oy extends to an isomorphism between to S (spo(V))
and the superalgebra of differential operators with constant coefficients on spo(V').

Let D € S(spo(V)). Since i is linear and even on spo(V'), we have for any
X € spo(V)p(Vp) and v € Vp where P is a near superagebra:

(9 exp()) (X, 0) = (D) (v) exp(p) (X, v). (34)

Moreover we recall that since Spf is defined by a Gaussian integral all
its derivatives are determined by derivation “under the integral”. Thus, if X €

spo(V)p(VF):

0 | dv)esp (1X.0) = [ deDIE)esplu(X.0). @9

\%

It follows:
Proposition 2.2.  Let D € ker(f1) C S(spo(V)). Then, we have Op Spf = 0.

Let X,Y € spo(V). We put K(X,Y) = str(XY). It defines a non
degenerate symmetric even bilinear form on spo(V). Let (X;)ic; be a basis of
spo(V) and (X])ies the basis of spo(V') such that K (X;, X7) = 6] (4] is the Dirac
symbol). We put:

Ok = Y dx:0x, € S*(spo(V)). (36)
icl

As a corollary of the above proposition we obtain:

Corollary 2.1.  Let D € @ S*(spo(V))**Y). Thus 0p is an spo(V)-invar-
keN*

iant differential operator on spo(V') with constant coefficients and zero scalar term.

If dim(Vp) > 0 we have Op Spf = 0.

If V.= Vi we have deg(D) # dimT(V) or D € (Sdim;‘/) (so(V))
Jp Spf =0.

In particular, in all cases we have Ui Spf = 0.

o)
) =

Proof.  We will use the following lemma:
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Lemma 2.1. For k > 1, if dim(Vp) > 0 or V. = Vi and k # dim(V), we
have:

SEVT)F) = {0}, (37)
If V=V, and k = dim(V'), we have:

Sk(v*)ﬁo(V) — Ak(v*) (38)

Proof.  Assume that dim(Vp) > 0. Let P be a near superalgebra. Let
SpSO(V)p be the connected component of SpO(V)p. Since for v € V4 \
{0}, SpSO(V)pv = Vp \ {0}, the invariant polynomials are constant and equality
(37) follows.

In case V =V; cf. [17].

Let D € Sk (5po(V))5p°(v) (k > 0), then ji(D) € S*(V*)spelV),

Assume that dim(Vp) >0 or V =1V; and k # dimT(V), then by Lemma 2.1
we have [i(D) = 0.

Assume that V = V4 and k = @Y Then (D) € A%™(V)(V*). In this
case, if (D) is O(V) invariant, then we have (D) = 0.

The corollary follows from the proposition. ]
2.5. Taylor’s formula.
We still assume that V' is a symplectic finite dimensional supervector space with

n = dim(V;) even. Let (Py)ren be a basis of @& S?(V*) made with homogenous
leN

elements with respect to parity and degree (we can replace N by any appropriate
set of indices).

We define ¢ € S(spo(V)*) and by & € Cg,,y(VF) the formulas:

exp(pu(X,v)) = Z Pr(v)er(X); (39)
(X) = [ dv0)Pu(w)exp (u(X.0)) (40)

We put 0y, = O=(p,) (with Z defined in formula (21)). We have:
Lemma 2.2.  For any near superalgebra P and any X € spo(V)p(V7T):

&r(X) = (9w Spf ) (X). (41)

Proof. = We use formula (35) to show:

o0 | v ) es(u(X.0)) = [ av@)a(E(0) o) explu(X. )

_ /V dy (v) Pe(v) exp(u(X, v))
— &(X).

(42)



282 P. LavauD

Theorem 2.2.  Let P be a near superalgebra. Let X,Y € spo(V)p such that
b(Y) € so(V1), and b(X) € UT. In this case b(X +Y) € VT. Taylor’s formula
for Spf reads:

SPECX + 1) = 3 (=1 (V) (). (43)

keN
The sum converges as an analytic function in X .
Proof.  We have

exp(u(X +Y,v)) = exp(u(Y, v)) exp(u(X, v)). (44)

Then, we expand exp(u(Y,v)) by formula (39):

exp(p(Y,v) = ) Pi(v)en(Y) = Y (=1 ey (V) Pe(v); (45)

keN keN

and integrate against dy (v) (since dim(V;) is even, this operation is even and thus
commute with multiplication by ¢, (Y) on the left).

[
2.6. Case V =17.
In the particular case where V' = V; and Spf is the ordinary pfaffian Pf, we
have the following simplification which regain results of Mathai-Quillen ([13]) and
Magneron ([11]). Since here the situation is purely algebraic, we can work with
C as ground field. We fix an oriented orthonormal basis (fi,..., f,) of V. Let
(&', ...,€") be its dual basis. Then (£7),eq013» is a basis of S(V*). We define as
above ¢y, ¢; and Jy, for |J| =j; + -+ + j, even.

For J € {0,1}", we put V; = Cjifi + -+ Cjpfn. For J = (j1,...,Jn) €
{0,1}™ we denote by J' = (j1,...,7,) € {0,1}" its complementary: j; + j. = 1.
We have V =V; ® V. We denote by p; : V — V; the projection of V' onto V;
with ker(pJ) = VJ/.

We consider the case |J| even. Since (f1,..., f,) is an orthonormal oriented
basis of V' the non-degenerate symmetric bilinear form on V; restricts to a non-
degenerate symmetric bilinear form on Vj. Let (£',...,&") be the dual basis of
(fi,--., fn). We give to V; the orientation defined by 7. Let 1 < j; < -+ < j, <
n such that &/ = &t ... &, Then (fj,,..., f;) is an orthonormal oriented basis
of VJ.

Let Y € s0(V;). We put:

YJ . VJ — VJ; V= YJ(U) = pJ(Y(U)) (46)

We have Y; € so(V;). The matrix of Y, in the basis (fj,,..., f;) is obtained
from the matrix of Y in the basis (fi,..., f,) as the submatrix corresponding of
rows and columns (ji,..., 7).

We define €(J, J') € {—1,1} by the formula:

e(J, )T = ¢t g (47)

it is the signature of the permutation (1,...,71) — (J1,. ..\ Jr J1y -y dn_r)-
Using this notations we have:
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Proposition 2.3.  For V =Vi, formula (43) reads (cf. [13, 14, 11]):

Pf(X +Y) = > el ) PEX,) PE(Y ). (48)

Je{0,1}7/|J|even

Proof. We have:

[J1(J]=1)

(V) = (—1) 25 pr(y;). (49)
For J = (1,...,1) it is the definition of Pf, and in the other cases it follows (see
[13]) by evaluating exp(u(X,v)) at &1 = ... = g+ = 0.
We obtain for Y € so(V;):
er(Y) = (=15 e, S (Y). (50)

(n=1) |, 12111, 17100 1=1)
nn? + 2 + 2

= 1= (=1)I the formula follows.
n

Since for |J| even: (—1)

2.7. Case X € (spo(V)o)p and Y € (spo(V)1)p.
We fix a symplectic oriented basis (e;, f;) of V. Let I = (iy,...,4,,) € N™ be a
multiindice. We put: x! = (z) ... (™). Then: (gjxl)(I,J)eme{O,l}"’ is a basis
of S(V*). For I = (i1,...,im) € N™ weput |I| =d1+---+ip, and Il =dy!.. .0,
Moreover we put:

GBI GBI oIl oIl

ox! - (al’l)il c. (al‘m)’m and ox’ = (061)11 - (afn)h . (51)

Let P be a near superalgebra. Let v € V ® V™ be the generic point of
V. Let X € spo(V)p. We define c; ;(X) as the coefficient of £7z7 in the Taylor
formula:
exp(u(X,v) = > &ale s (X). (52)
(1,J)EN™x{0,1}n
(In particular, for X € spo(V)p such that b(X) € so(V4), since p(X,v) is nilpo-
tent, the sum is finite.) When |I| + |J] is even, it defines ¢; ; € e (spo(V)*).
When |I| + |J| is odd, we have ¢; ;(X) = 0. We put:

éry(X) = /Vdv(v)(f‘]xl)(v) exp (M(X,v)). (53)
and for A € sp(Vp)p:

Er(A) = /V dVO(UO)(xI)(UO)eXp(—%B(UO,AUO)). (54)

To avoid confusing notations, in the rest of this paragraph we denote by B
the symplectic form on V. We put:

X:(gl g) andY:(g é”) (55)

with A € sp(Vo)p, D € so(V1)p, B € Hom(V1,Vp)p and C € Hom(Vp, V1)p. We
have C' = —B*, where B* is defined by:

Yo € Vo@Po, Yw € |74 ®,P1, B(B*v,w) = B(U, Bw)
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Let vy be the generic point of V4, v be the generic point of V; and
v = vg + v1 be the generic point of V. We have:

1 1
u(X,v) = —§B(U0,AUO) - EB(vl,Dvl). (56)

Assume that b(X) € V', that means b(A) € U*. Then, with the no-

1 ]1=1) | n(n=1)
2 +" ”2

tations of the preceding subsection, for |J| even, we have (—1)
171(171=1)

(=1) 2, and so:

e10(X) = | dan)e(00) exp(—5 Blvo, Ao)

/ i (Ul)gJ(vl) eXP(_%B(Ul, Duy)) (57)
\ %1
IdJ1=1

= (~1) *e(J, J)é(A) PE(D.y).

We compute ¢ ;(Y). Let us introduce some notations.

Since B = —C* we have: u(Y,v) = —B(vy, Cvy).

Let (I,J) € N™ x {0,1}". We denote by Cj the |J| x || matrix obtained
from C' by keeping jj times the k-th line of C' (in other words we keep the lines
(ji,-.-,7,)) and i; times the k-th column of C.

Ezample: Assume that (m,n) = (3,4). Let I = (2,0,1) and J = (0,1,1,1)

and
ol G B B
C= b Bz s , then: Crr=1m m 13| - (58)
7 Y2 3 5 5 6
51 52 53 1 1 3

Let » € N. We denote by &, the group of permutations of {1,...,7r}. We
denote by ¢, the r-multilinear form on the r X r matrix antisymmetric in the
lines, symmetric in the columns defined for M = (a;;)1<; j<r With a;; € Py by:

Qbr(M) - Z A1,0(1) -+ - Qro(r) (59)

ceS,

In the sequel we put for C' € Hom(Vp, V1) ®@ Py and I,J € N x {0, 1}":

)0 if [I] # |J[;
cry(C) = {(—1)J<|;1>¢J|(CJ,1) it |1] = |J]. (60)

With this notations we have: ¢; ;(Y) = ¢/ 5(C).
Ezample: We take the preceding example with (m,n) = (3,4), YV =

(CO;, g) with C' as above, I = (2,0,1) and J = (0,1,1,1). Then:
crg(Y) = ¢c14(C) = —=¢3(Cyr) = =2(B17103 + B17301 + P37101) (61)

Formula (43) gives:
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Proposition 2.4.  Let P be a near superalgebra and (é g) € spo(V)p(VT),
then:

Spf (é g) — 3 (1) e, J)er s (C) PE(D)é (A).
(I,JYENM X T,y / [T|=|J| even

(62)
2.8. Spf(—X~1) and Spf°.
Let W be a supervector space. Let w € (V@W?*)y. Let P be any near
superalgebra. For w € Wp, w(w) belongs to Vp and v — B(v, w(w)) is linear on
V' while v — B(v, Xv) is quadratic. Thus, as in proof of theorem 2.1, for any near
superalgebra P we define an analytic function ¥p on spo(V)p(V+) x Wp x C by
the formula:

(X, w, \) = /V dy (v) exp (1(X, v) + AB(v, w(w)). (63)

As in the proof of theorem 2.1, we prove that there is a function ¢ on
spo(V) x W x C defined on V* x Wy x C such that for any near superalgebra P
and (X, w,\) € spo(V)p(VT) x Wp x C, we have (X, w,\) = p(X,w, \).

We define:

SpfY (X, w) = (X, w, A). (64)
Thus, for A € C, we have Spf} € Coy, v (VT x Wo).
Lemma 2.3.  (¢f. [13] for the case V = Vi.) Let X € spo(V)p(V*') be
invertible (since b(X)|y, is already invertible, it means that b(X)|y, is invertible)
and w € Wp. We have:

SpfY (X, w) = Spf(X) exp(%B(’w(w),X_l'w(w))). (65)
Proof. Since X* = —X | we have:
w(X,v) + AB(v,w(w)) = —%B(v —AX lw(w), X (v — AX"1w(w)))

+ ?B(X_lw(w),'w(w)).

We put:
(X, \w) = /vdv(v) exp(—%B(v —AX lw(w), X (v — AX"tw(w)))).  (67)

It is an analytic function on YT xCx V. Since dy (v) is invariant by translations, we
have on VT xRxV: ¢(X, A\, w) = Spf(X). By uniqueness of analytic continuation,
it follows that for any A € C, we have ¢(X, A\, w) = Spf(X). n

Applying this lemma for various particular values of W and w we obtain
some useful formulas. First, we take W to be a supervector space isomorphic to
V and w € V@ W* be an isomorphism W — V. Let D € S(V), P € S(V*) and
X € spo(V)p(VT). We define:

en(X) = (0p exp(u))(X, 0); (68)

:/Vdv v) exp(u(X,v)). (69)
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We extend the isomorphism B# : V — V* to an isomorphism of algebras
B# : S(V) — S(V*). We put for D € S(V): D# = B#(D). Let v € V®V* be
the generic point of V. For D € S*(V) we have: dpv* = k!D and:

Ow1(p) (B(v, w)*) = (=1)"k!D#(v). (70)
Corollary 2.2.  Let X € spo(V)p(VT) be invertible.
1. If D € S*Y(V), we have ¢p#(X) = cp(—X~1) =0.

2. If D € S?*(V) we have ép#(X) =ep(X 1) Spf(X).
For R(\?) < 0 (in this case NX*X 1 € spo(V)p(V*) x ispo(V)p ):

m—n—2k k—

(=A%) (=D)'ep(X) = ép# (A X ) Spf(X).

Remark: We point out that in case V = Vp formula (2) is Wick’s calculus
(cf. for example [5, Chapter 9.1]).

Proof.  The first point is clear. We consider the second point. Let v € V@ V*
be the generic point of V. Let D € S**(V). Then:

Ow-1(p) exp(AB(v,w)) = (—\)* D# (v) exp(AB(v, w)). (71)

We apply ﬁﬁuﬂ([)) to the exponential of equality (66), we apply the
distribution dy and then, we take the value at (X,0). Since, cp(N2X ') =
Nep(X 1), formula (2) follows.

For the second formula, we need an auxiliary result. Consider the applica-
tion:

6 Fa(@) = /W duy () / dy (v)$(v) exp(AB(w(w), v)). (72)

It is defined for ¢ € Cy; (Vp) such that, v — ¢(v) exp(AB(w(w),v)) and all its
derivatives are rapidly decreasing on V' for any w € Wp. It is linear and ¢(0) =0
implies that Fy(¢) = 0. Thus, there is K € C such that Fy(¢) = K ¢(0). To
find K it is enough to consider a particular ¢. For example ¢(v) = exp(u(X,v))
(¢ = exp(fa(X))) for some X € spo(V)p(V*) fixed. In this case formula (66)
shows that:

2

Fa(exp(i(x)) = [ dy (@) exp(u(X.0) | dw(w) exp(—2-Blw(w), X w(w)).
1% w 2

hypothesis R(A\?) < 0 implies that A\>X~' € spo(V)p(V") and thus, the above
integral converges. More precisely, since exp(u(X,0)) = 1, we have:

Ky = Fi(exp((X))) = Spf(X) Spf(A*X). (73)
Since it does not depends on X it is sufficient to consider
Ja 0 0 0
B 0 Jy 0 0
X = 0 0 Jo 0 (74)
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0 —1
1 0

We multiply both sides of the exponential of equality (66) by D¥(w(w)),
we integrate on V' against dy(v) and integrate on W against dy (w). The right
hand side is straightforward. For the left hand side we have (the first equality is
obtained by integration by parts using equation (70)):

n—m
2

where Jy = < ) . We obtain: Ky = (—\?)

| awtD*ww) [ dvo)esp(u(X.0) + AB(w.w(w)
=07 [ awtw) [ av)(0nexpl)) (X0 exp(WB (0. w(w)

(=025 (9p exp((X)) ) = (=X)7(=2%) 7" (9 exp(i) (X) ) (0)

(=A%) (=D)fep(X).

(75)

In the end of this subsection, to avoid confusing notations, we denote by

B the symplectic form on V'; moreover, we denote by vg = > e;z* (resp. v; =
i

>~ f;€7) the generic point of Vg (resp. V7). Let P be a near superalgebra and D €

J

so(Vi)p. Let J € {0,1}". We define ¢;(D) by the formula: exp(—1B(v1, Dv1)) =
S &lcs(D). As a corollary of equation (65) we obtain:

Jef{0,1}n

Corollary 2.3.  Let P be a near superalgebra. Let A € sp(Vo)p(UT), B €
Hom(V1,Vo)@P1 and C € Hom(Vy, V1) ® Py such that (é, g) € spo(V)p.
Then for any J € {0,1}" with |J| even:

)& (A)er ,(C) = ;c CA™'B
IENTr%llJ( ) ( ) ,J( ) \/m J( ) (76)
[71(J1=1)
:—<_1()iet(j4) PE(CA'B),).

Proof. For v € Vy®Py and w € V3 ® Py. we have: B(v, Bw) = B(w,Cv).
The coefficient of £z in exp(—B(vo, Bv1)) = exp (—1(B(vo, Bv1)+B(v1, Cy)))
is ¢ 7(C). On the other hand, we have for w € V4 @ Py:

B(Bw, A"'Bw) = —B(w,CA™ ' Buw).

Consider equation (65) with V =V, W =V;, X = A, and: w(w) = Bw.

We apply (%)j" . (a%l)jl to (65) and take value at (X,0). Then equality (76)
. . . —_)IJI
follows by multiplying each side by ( A‘?,| : ]

Similarly, for I € N™ and A € sp(Vp)p, we define ¢;(A) by the formula
exp(—3B(vo, Avg)) = > a'ci(A). We obtain:

IeN™
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Corollary 2.4.  Let P be a near superalgebra. Let D € so(Vy)p invertible, B €
Hom(V1,Vo)®@P1 and C € Hom(Vp, V1) ® Py such that (g g) € spo(V)p.
Then for any I € N™ with |I| even:
S (L I)(=1)T T PED e (C) = PHD)e(BDTIO). (T7)
JeTn /I1=]J]

Proof.  Here we apply formula (65) with V. =V;, W =1, X = D and

w(w) = Cw. (78)

We apply %;gjjll g;n to (65) and take value at (X,0). Then, using (49) and
(1’7

(50), equality (77) follows from multiplication of each side by = n
Proposition 2.5.  We have in Cg,,,/(V").
Spf? = Ber™ . (79)

It is equivalent to say that for any near superalgebra P and X € spo(V)p(VT) X
tspo(V)p, we have:
Spf?(X) = Ber™ (X). (80)
Proof.  Proposition 2.1 with ¢ = X! gives:
Spf(—-X 1) = Ber(_ﬁo) (X~ Spf(X). (81)
Since on V7, Ber(’ﬁo) = Ber™, the result follows from multiplying both sides
by Ber™ (X) Spf(X) and using formula (73) with A = 4.
n

2.9. Product formulas.

First we consider the case X € spo(V)p(VT). Let X = (é g) We put

. (AT CF
Xt = B* D*
X € spo(V)p(V") implies that A is invertible. It follows that: A* = —A; D* =
—D; (C* = —B. Using the formula:

(é g) N <é A_1IB>* (61 D- C(*]A—lB) (é A_llB)a (82)

we obtain from (31) the formula:

A B\ . (A 0  PHD - CA'B)
Spf (C D) = Spf (o D— CA—lB> = o (83)

). Then, X € spo(V)p is equivalent to X* = —X. Moreover,

We explain the relation with formula (62). Taylor formula (48) for Pf(D —
CA™'B) gives:

Pf(D — CA™'B) = > e(J, ) PE((~CAIB) ;) Pf(Dy). (84)
Je€{0,1}/|J| even
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Compatibility with formula (62) follows from formula (76) because, for |J| even,
we have (—i)l/! = (—1)”'(“2”_1) :

Now, we consider the case where X € spo(V)p(V71) is invertible. As before

we put X = (é g) We assume moreover that D is invertible. Using the
formula
A B\ (1 0\ [A-BD'C 0 1 0 (85)
C D) \D'C 1 0 D) \D'C 1)’
We obtain:
A B A—BD™C O) Pf(D)
Spf = Spf = . 86
P (O D) P ( 0 D) \/det(A— BD-1C) (86)

Compatibility with formula (62) comes from formula (43) for the function
1

Vo pog nd equation (77).

2.10. Homogeneity.

Proposition 2.6. The superpfaffian is a homogeneous function of degree =5
on VT x ispo(V).
Proof. It follows from proposition 2.1. [ |

3. The Superpfaffian as a generalized function

In this section we define Spf as a generalized function on spo(V') by the formula:

Spf(X) = §77 /V v (v) eXp(—%B(v, X)) (87)

The meaning of this formula is the following: for any smooth compactly supported
distribution ¢ on spo(V'), we have:

X)Spf(X)=i"7" [ dy(v X)ex —EB v, Xv)). 88
[ ioseie0 =i [avw |00 ep—5 B0, x). 6)

where the inner integral of the right hand side is a rapidly decreasing function on
V (cf. below). This generalized function on the supermanifold spo(V’) coincides
on V' with the superpfaffian defined in the preceding section.

3.1. A well defined generalized function.

In this section we prove that formula (87) defines a generalized function on sp(Vjp),
with values in a finite dimensional subspace of S((so(Vy) @ spo(V)1)"). This
ensures that formula (87) defines generalized function on spo(V'). The point is to
show that

/ {(X) exp(—%B(v,Xv))
spo(V)

is rapidly decreasing on V.
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Let us fix some notations. Let v € V ® V* be the generic point of V. We
denote by 11 € spo(V)* ® S?(V*) the polynomial of degree 2 on V with values in
spo(V)* such that for any near superalgebra P and any X € spo(V)p:

p()(X) = p(X,v). (89)

In particular for v € Vp, p(u) € spo(V)5.

Let p be a smooth compactly supported distribution on sp(Vp). We denote
by p its Fourier transform. It is the smooth rapidly decreasing function on sp(V4)*
(in sense of Schwartz) which is defined for f € sp(Vp)* by the formula:

Af) = / p(X) exp(—if (X)), (90)
sp(Vo)

We fix J € Ut. Then B(v, Jv) is a positive definite quadratic form on Vj.
For u € Vg, we put: |lul| = /3B(u, Ju).

We fix a norm N’ on spo(V)e and denote by N the associated norm on

spo(V)§. For f € spo(V)§ we have: N(f) = Sup ‘J\];,(—(}Q)' Thus we have for
Yespo(V)o\{0}

) (D)l

'LLGV()Z

N (Gi0) vy = i 1
(,LL(U)| P(Vo)> N’(J) N’(J) (9 )
where fi(w)|sp(vp) is the restriction of fi(vg) to sp(Vo).
For X" € (so(V1) @ spo(V)1),,, we put:
" / i / "
H(X", ) :/( DX e (= 3B, (X + X)) (92)
sp(Vo

Lemma 3.1.  For any X" € (so(V;) EBEPO(V)1)P, O(X",v) is a well defined
rapidly decreasing function on V. Moreover, ¢ is polynomial in X" .

Proof. Let vg € Vp®Vy be the generic point of Vo and v; € V3 @ V] be
the generic point of V3. We have v = v + v1. Then: B(v, (X' + X")v) =
—20i(vo)(X') + B(v, X"v). It follows

" -~ ~ i "
¢(X 7U> = p( - ,U(U0>|5p(Vo)) exp ( - QB(/U? X ?))) (93)
Since b(X") € so(V1), we have:

B(v, X"v) = B(v1,b(X")v1) + B(v, (X" — b(X"))v). (94)
Hence, B(v, X"v) is nilpotent and X" + exp(—%B(v, X"v)) defines a polynomial
function on so(V7) @ spo(V); with values in S(V*). In particular ¢ is polynomial
in X”. Since p is rapidly decreasing on sp(Vp)*, formula (91) ensures that
the function p(—i(vo)lep(vp)) is rapidly decreasing on Vg. Thus, for any X" €
(so(Vh) @ 5p0(V)1)P, #(X",v) is a rapidly decreasing function on V. ]
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The integral:

B(X") = /V dy (V) $(X", v) = /

o) [ e (= 3B (X + X))
14 sp(Vo)

(95)
converges and it defines a polynomial function on so(V;) @ spo(V');. This means
that Spf is a generalized function on sp(Vp) with values in S ((so(V3)®spo(V)1)*).
3.2. Comparison with the analytic version of section 2..

In this section we denote by Spf,, the analytic superpfaffian defined on V' x
tspo(V) by formula (22) and by Spf . the generalized superpfaffian defined on
spo(V') by formula (87).

The function

gene

(X,iY) — i 7 Spf,, (i(X +iY)) (96)

is analytic on spo(V) x ¢V~. We consider it as an analytic function on the open
cone spo(V)g x 1V~ of spo(V ® C)o with values in A(spo(V)3).

We fix a relatively compact open neighborhood X of 0 in spo(V)g. Since
Spf is homogeneous of degree *5™ it follows that for any relatively compact open
subset W C spo(V)o, there exists a constant K,y such that for any (X,2Y) €
W x i(V~ NX) and any homogeneous differential operator D € A(spo(V);) we
have for some k € N:

’(D Spf,, ) (§(X + iY))‘ - ‘(D Spf,, ) (=Y + iX))’ < KwN'(Y) 5 (97)

(N’ is a norm on spo(V)o.)
Then [6, Theorem 3.1.15] shows that its limit when Y goes to 0 in V~
exists as a generalized function on spo(V)o with values in A(spo(V)7). We have:

Spf (X)) = lim 4"z Spf,, (i(X +3Y)). (98)

gene Y—0,YeVv-

Since Spf,, is the holomorphic extension of Spf,, |[y+. It is entirely de-
termined by Spf,, |y+. On the other hand, since Spf,,.(X) is the limit of
i"7 Spf,,(i(X + 1Y), Spf yene is determined by Spf,, and thus by Spf,, |v+.
In particular it follows that Spf,,,, possesses the properties of Spf,,.

Let P be a near superalgebra and X € spo(V)p(V71), let € > 0, we have:

gene(

St (€ +4)X) = (i + €)= Spf,,(X) (99)
It follows, taking the limit of (99) when € goes to zero that:

Spfgene ‘V+ = Spfan ’VJF' (100)

(¢|y+ denotes the restriction of the (generalized) function ¢ to the open set V1)
In particular, Spf,,,. is analytic on V*. From now on Spf stands for Spf,.,., and
for (X,Y) € spo(V @C)p (VT xispo(V)o) Spf(X +4Y) stands for Spf,, (X +3Y).
3.3. Evaluation of Spf on V,,.

We recall notations U, , and V,, from section 2..
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Proposition 3.1.  Let P be a near superalgebra. Let (p,q) € N* such that
p+q=m. Let X € spo(V)p(V,,). It means that X is represented in a symplectic

basis (€1, ... €m, f1,--, [n) by X = (é, g) € spo(V)p, with b(A) e U,,. We

have: (D — CA- 15
Spf(A B) 2! ) (101)

¢ D ,/ det ’

where we recall that Pt is the ordinary Pfaffian.

Proof.  The first equality in formula (83) implies that it is enough to prove the
formula for X € (spo(V,4)0) -

First, consider the particular case where X € spo(V)p(VT). In this case
(p,q) = (m,0), thus the coefficient is i = 1 and for X € spo(V)p(V*1), b(A) € Ut
and thus det(b(A)) > 0. The proposition reduces in this case to formula (83).
Since V,, is a purely even real manifold, it is enough to consider P = R and

XeV,,. Weput X = (A 0) , with A eU,, and D € s0(Vp). Then:

0 D

Spf(X):i%n/VdVO(vo)eXp(—gB(vo,Avo))/ dvl(vl)exp(—%B(vl,Dvl)).

Vi
(102)
On one hand:

/V dy (1) exp(—%B(vl, Duy)) = i3 PE(D). (103)

On the other hand, it is well known (cf. for example [6, formula 3.4.6]) that
for Aeld,,:

(2m)%
exp(e24m) ‘ det(A)‘

/ |da' ... da"™]exp ( — 3B(UO,AUO)) = (104)
Vo 2

exp(if7dm)
In particular, it implies that Spf is smooth on V (in fact it is analytic) and

that for any X € spo(V)p(V), we have: Spf(X)? = Ber™ (X).

3.4. Example: spo(2,2).

Let us consider as an example the case g = spo(2,2). Let P be a near superalge-

bra. The algebra spo(2,2)p is the set of matrices:

Since p+q =m, = 17 and the formula follows. [

a b 6 0
x A | B c —a —a —v )
“\clp ] | —« -8 0 —d (105)
-y =0 d 0

where a,b,c,d € Py and a,3,7,0 € P;. Here V = RZ? is endowed with the
symplectic form B given in the canonical base (ey, s, f1, f2) (|e;| =0 and |f;| = 1)
by B(fz,fj) = (SZJ, (61,62) = —B(eg,el) = 1, B(el,el) = B(eg,eg) = 0 and
B(e;, f;) = B(fj,e;) =0, and the orientation of V; defined by the basis (fi, f2).
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We have:

—1 _
cA B_a2+bc aad — bay + ¢ + afBy 0 ’

(106)

1 ( 0 —(aad — bay 4+ ¢f30 + afy)

We denote by Spf, the superpfaffian on sp(R?) = sl(2,R). For X €
sp0(2,2)p(V) (V=U x s0(2)), we get from (101):

Spi(X) = (d B a(a5+532);bbca’y + 055> Spf, (CCL _ba) | (107)
with (cf. formula (101)):

Spf, (Z _ba) = ﬁ if (Z‘ _ba) € Usy (108)

Spf, (‘CL _ba) — _(;—;H)c) if (‘CL _ba) € Uz (109)

Spf, (2‘ _ba) - \/ﬁ if (‘é _ba) e, (110)

We denote by (,y,&,n) the system of coordinates on R??) dual of (ey, es, f1, f2).
Let v = e1x + eay + f1€ + fon be the generic point of R?? . We have:

b
w(X,v) = dné + aéx + By + ynx + dny — gxz + axy + §y2. (111)

Since dy (v) = 5=|dx dy| we have:

9.9
o€ on>

[ dvlo)esplin(x.0) =

R(2,2
L |dx dy| (id — (ax + By)(yx + 5y))) expi(—Ex2 + axy + é?f) (112)
o oo 2 2V )

We compute the integral on the right hand side. We put

ad+By 5(5
— 2
H <—a’y _a5;ﬂ7> . (113)

If vo = e1x + ey is the generic point of R?, we have:
—(azx + By)(yx + dy) = B(ve, Huvop). (114)

Thus

. b
— | ldzdy| (az + By)(yx + 0y) expi(—=2> + azy + ~y?)
R 2 2 (115)

= 2i8H/ |dx dyl| exp—EB(vo,Avo).
R2 2
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Since

a

b 1 7
sof (&%) = 5 [ ldsdslexp -5 Bloo, Avo)

we have in C_ ) (spo(V)o):

ad + By 6 ) a b
SpE(X) = (d + 2( . 55% - M%» Spf, (C _&) . (116)

From this equation we deduce again (107).

3.5. The superpfaffian as the Fourier transform of a coadjoint orbit.

In this section we assume that V' = V4. Let Sp(V') be the corresponding symplectic
group, and sp(V) its Lie algebra. Recall, formula (89), the moment map p: V —
sp(V)*. The image (V') is the disjoint union of a nilpotent Sp(V')-orbit 2 and
of {0}. The coadjoint orbit  is a symplectic manifold. The Fourier transform of
its Liouville measure (defined as in [2], section 7.5) is a generalized function Fq
on sp(V). The restriction of z to V'\ {0} is a double cover of Q. It follows easily
that we have :

Spf = 2Fq. (117)

3.6. Singularities and wave front set.

We recall that a generalized function ¢ on spo(V) is a generalized function on
spo(V')o with values in A(spo(V);). The support of singularities of ¢, denoted by
singsupp(¢), and for any X € singsupp(¢) its wave front set at X, denoted by
W Fx(¢) is defined as usual (cf. for example [6, chapter 8]). For the superpfaffian
the Taylor formula (62) shows that the support of singularities and the wave front
set of Spf are those of its restriction to sp(Vp). The preceding section implies:

Proposition 3.2.  We have singsupp(Spf) = spo(V)o \ V and for any X €
singsupp(¢) W Fx(Spf) C (Vo) \ {0} .
3.7. Uniqueness results.
We put:
= {f €spo(V)5 /VX € V7, f(X) > 0}. (118)

We have 11(Vp) C (V7)°. As a direct application of [6, Theorem 8.4.15] we obtain.
Theorem 3.1.  Let V be a symplectic supervector space. Let V©, V=, (V7)°,

singsupp(Spf), be defined as above. Let ¢ € C_v, (spo(V)o) be a generalized
function on spo(V'), such that:

1. ¢ is smooth on VT and (¢|y+)* = Ber™
2. WF(¢) Cspa(V)o x (V7).

Then, we have ¢ = Spf or —Spf. More precisely, an orientation of Vi
chooses between Spf and — Spf.

Proof. Let ¢ € CSpo (5po(V)0) satisfying the above conditions. Condition
(2) and [6, Theorem 8.4. 15] imply that for any open convex cone I' with closure
included in V= [J{0}, there is an analytic function F' on spo(V') x ¢I" such that
on spo(V):

H(X)=_lim F(X+1iY). (119)

Y—0,Y el
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We choose an orientation of V3. Condition (1) implies that on V', ¢(X) =
+ Spf(X). Thus, by [6, Theorem 3.1.15 and Remark], we have on spo(V') x ¢’

F(X414Y)==+i 2z Spf(a(X +4Y)). (120)

where we recall that Spf(¢(X + 4Y")) is the analytic function on V* x ispo(V)
defined by formula (22). Thus equation (98) implies that ¢ = £ Spf.

Since changing the orientation of V3 changes Spf to — Spf, the last remark
follows.

[

Remark: In the definition of Spf besides the orientation of V;, we chose
a square root 4 of —1. Changing 4 into —i changes Spf(X) into Spf(X) which
is the limit of (—4)”7" Spf(—#(X +4Y)) when Y goes to 0 in V¥ = —V~. In
particular:

W F(Spf) = —W F(Spf). (121)

In [10] we proved an other unicity theorem for the superpfaffian in the case
of s[(2,R). In this article it is proved that the superpfaffian is the unique square
root of 1/det which is harmonic and Sp(2,R)-invariant up to sign and complex
conjugation.

3.8. Concluding Remarks.

One motivation for this study comes from differential supergeometry. The equiv-
ariant Fuler form of an equivariant real Euclidean oriented fiber bundle is equal
to the Pfaffian of the equivariant curvature of an equivariant connection. With
complications partly due to the fact that the superpfaffian is only a generalized
function, this is still true in supergeometry (cf [8, 9]). Formula (2) may be consid-
ered as particular typical case of the localization formula in supergeometry.

A second motivation is the close relationship between the superpfaffian and
the distribution character of the metaplectic representation of the simply connected
Lie supergroup with Lie superalgebra spo(V). This will be studied in another

paper.
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