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Abstract. In this article we focus on the reduced 1-cohomology spaces of
locally compact connected groups with coefficients in unitary representations.
The vanishing of these spaces for every unitary irreducible representation char-
acterizes Kazhdan’s property (T). The main theorem states that for a connected
locally compact group, there are only a finite number of unitary irreducible rep-
resentations for which the reduced 1-cohomology does not vanish. Moreover, a
description of these representations is given.
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1. Introduction

The vanishing of the reduced 1-cohomology spaces for every unitary irreducible
representation characterizes Kazhdan’s property (T) (see Y.Shalom [14]) for a
compactly generated locally compact group (in particular a connected group).
For connected solvable Lie groups, P. Delorme [5] showed that for every unitary
irreducible representations of dimension at least 2 of a connected solvable Lie
group, the reduced 1-cohomology vanishes and that there are only finitely many
characters for which the reduced 1-cohomology is not zero.

As (non compact) solvable Lie groups do not have property (T) we can
interpret this result by saying that the lack of property (T) of such groups is, from
a cohomological point of view, concentrated in the 1-dimensional representations.

The main goal of this paper is to understand for connected Lie groups where
the lack of property (T) is concentrated. Delorme’s theorem provides the answer
for connected solvable Lie groups. The main theorem that will be proven is the:

Theorem 6.3. Let G be a connected locally compact group. Then, up to unitary
equivalence, there are only finitely many irreducible unitary representations with
non vanishing H1(G, π).

Moreover, any such representation π is either trivial or factors through an irre-
ducible unitary representation σ of a group H isomorphic to PO(n, 1), PU(m, 1),
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or to a non-compact amenable non-nilpotent group H such that H1(H, σ) ∼=
H1(G, π) 6= 0.

This goal is achieved by enlarging the class of solvable groups in several
steps:

1) In section 3, we focus on the class of amenable groups. We show:

Theorem 3.3 Let G be a connected amenable Lie group. Up to unitary equiv-
alence, there are finitely many irreducible unitary representations π of G with
H1(G, π) 6= 0. Moreover all these representations are finite dimensional and their
dimensions are less than the (real) dimension of the solvable radical of G.

An interesting corollary of this fact is the vanishing of H1(G, L2(G)) for
these groups (Theorem 7.2). As this vanishing result is also true for discrete
amenable groups (see [12]), we conjecture that H1(G, L2(G)) is zero for every
amenable locally compact group.

2) In section 4, a much larger class of groups is investigated: the groups
having the Haagerup property. Recall that a locally compact group G has the
Haagerup property if there exists a proper conditionally negative definite function
on G . For such connected locally compact groups, we show that there are only
finitely many irreducible representations which characterize the lack of property
(T). However these representations are not finite dimensional in general.

3) In section 5, some known facts on the (reduced) 1-cohomology of group
having the relative property (T) with respect to a closed normal subgroup are
recalled.

4) Finally in section 6, the proof of theorem 6.3 is given.

In the theorem 6.3, the irreducible representations for which the reduced
1-cohomology space does not vanish (and hence the non-reduced 1-cohomology)
are described algebraically.

The topological description of the irreducible representations π of a group
G for which H1(G, π) 6= 0 is given by the Vershik-Karpushev theorem (see [17]
and [11]). Let us recall that the support of a representation π of a group G is the
set of irreducible representations of G which are weakly contained in π and that
the cortex of the group, Cor (G), is the set of all irreducible representation which
are not separated from the trivial representation for the Fell-Jacobson topology on
the dual space Ĝ (see [11] for a nice presentation of this). The Vershik-Karpushev
theorem states that if π is a unitary factorial representation of a second countable
locally compact group G with H1(G, π) 6= 0 then supp π ⊂ Cor (G). This
result can be interpreted by saying that the lack of property (T) is topologically
concentrated in the cortex of the group.

In the last section, these vanishing results are applied to

- The description of the reduced 1-cohomology of a locally compact amenable
group with coefficients in the regular representation;

- The study of smooth µ-harmonic Dirichlet finite functions on smooth man-
ifolds which are homogeneous spaces of connected unimodular Lie groups.
We show (Theorem 7.6) that if G is a unimodular connected Lie group
acting transitively on a smooth connected non-compact manifold M with
H1(G, L2(M)) = 0, and if µ is a symmetric probability measure on G whose
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support is a compact generating set of G , then the only smooth Dirichlet-
finite µ-harmonic functions on M are the constant functions.

In [12], the authors proved the analogous result in the case where the groups
are discrete. In [1], G. Alexopoulos proved this kind of result for the bounded
functions on discrete polycyclic groups.

2. 1-cohomology and reduced 1-cohomology

Let G be a locally compact σ -compact separable group and let (π,Hπ) be a
strongly continuous unitary representation of G .

Definition 2.1. 1) A continuous map b : G → Hπ is a 1-cocycle with
respect to π if it satisfies the following relation:

b(gh) = b(g) + π(g)b(h) (∗)

for all g, h ∈ G . The space of cocycles endowed with the topology of uniform
convergence on compact sets of G is a Frechet space, denoted by Z1(G, π).

2) A cocycle b is a coboundary if there exists an element ξ ∈ Hπ such that
b(g) = π(g)ξ− ξ . The set of coboundaries is a subspace of Z1(G, π) denoted
by B1(G, π). The closure of the coboundaries in Z1(G, π) will be denoted
by B1(G, π). An element of this space is called an almost coboundary.

3) The 1-cohomology of G with coefficients in π is the quotient space

H1(G, π) = Z1(G, π)/B1(G, π).

4) The 1- reduced -cohomology of G with coefficients in π is the Hausdorff
quotient space

H1(G, π) = Z1(G, π)/B1(G, π).

We have a nice geometrical interpretation of these spaces in terms of affine
isometric actions of the group G .

Definition 2.2. Let H be an affine Hilbert space. An affine isometric action
of G on H is a strongly continuous group homomorphism α : G → Is(H) to the
group of affine isometries of H .

The next lemma establishes a relationship between affine isometric actions,
unitary representations and 1-cocycles.

Lemma 2.3. Any affine isometric action α : G → Is(H) can be written as
α(g)v = π(g)v + b(g) (v ∈ H) where π is an unitary representation of G on the
underlying Hilbert space of H and b : G → H is a 1-cocycle.The representation
π is called the linear part of α and b is the translation part of α. Conversely,
given π an unitary representation of G on a Hilbert space H and b : G → H a
1-cocycle, we can define an affine isometric action by setting α(g)ξ = π(g)ξ+b(g),
∀ξ ∈ Hπ .
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For the proof, we refer to [10]. It is an easy exercise to show that, given an
unitary representation π of G , the coboundaries b ∈ B1(G, π) correspond to affine
isometric actions with linear part π which have fixed points. Moreover, almost
coboundaries b ∈ B1(G, π) correspond to those actions α which almost have fixed
points in the sense that for every ε > 0 and for every compact subset K of G ,
there exists an element ξ ∈ Hπ such that

max
k∈K

‖α(k)ξ − ξ‖ < ε

2.1. Some general facts on 1-cohomology.

For a given unitary representation π of a locally compact group G , one can ask if
the associated 1-cohomology and reduced 1-cohomology coincide. The answer is
given by A.Guichardet in [7]:

Proposition 2.4. Let π be a unitary representation of G (σ -compact) without
non zero invariant vectors. The following are equivalent:

i) π does not almost have invariant vectors (i.e. there exists ε > 0,a compact
subset K of G, such that max

k∈K
‖π(k)ξ − ξ‖ ≥ ε‖ξ‖) for all ξ ∈ Hπ ;

ii) B1(G, π) is closed in Z1(G, π);

iii) H1(G, π) = H1(G, π).

In the case where π has a non zero invariant vector, one can decompose
π into an orthogonal direct sum of the form π0 ⊕ 1 where π0 has no non zero
invariant vectors and where 1 denotes the trivial action of G . As H1(G, 1) =
H1(G, 1) = Z1(G, 1), one can compare the 1-cohomology with the reduced 1-
cohomology spaces by using the following property [6]:

Lemma 2.5. Let π1, ..., πn be a finite set of unitary representations of a group
G. Then

H1(G,⊕n
i=1πi) = ⊕n

i=1H
1(G, πi)

One can show (see [7]) that this statement is no longer true in general for
an infinite family of unitary representations. However, we have:

Lemma 2.6. (see [2]) If π is a unitary representation of a locally compact
σ -compact group G, then

H1(G, π) = 0 ⇔ H1(G,∞ · π) = 0

If we deal with reduced 1-cohomology these kind of properties behave quite
nicely (see [7]):

Proposition 2.7. Let (X, µ) be a measured space and (πx)x∈X a measurable
field of unitary representations of a locally compact group G. If H1(G, πx) = 0
for µ-almost every x ∈ X , then

H1(G,

∫ ⊕

X

πx dµ(x)) = 0.
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2.2. Normal subgroups.

The aim of this section is to study rigidity phenomena of the following type: If the
restriction of an affine action of a group G to a closed normal subgroup N admits
a fixed point (resp. almost fixed points) what can be said about the existence of
a G-fixed point (resp. almost fixed points)?

Lemma 2.8. Let N be a closed normal subgroup of a locally compact group
G and α an affine isometric action of G whose linear part has no non zero N-
invariant vectors. If the restriction of α to N has a fixed point, then α has a fixed
point.

We can give a short geometrical proof if this fact:

Let α be an affine isometric action with linear part π ,whose restriction to
N has a fixed point. Let HN be the set of α(N)-fixed points. If ξ, η ∈ HN , then
ξ − η = α(n)ξ − α(n)η = π(n)(ξ − η). But we assume π not to have N -invariant
non zero vectors; so we conclude that HN is reduced to a single point. On the
other hand, HN is α(G)-invariant by normality of N in G .

The preceding lemma can be also stated as : Let N be a closed normal
subgroup of G and π a unitary representation of G without non zero N -invariant
vectors. Then the restriction map induced by restriction of cocycles from G to N ,
Res : H1(G, π) → H1(N, π) is injective.

As an immediate consequence:

Corollary 2.9. Let G be a locally compact group and π an irreducible unitary
representation of G such that H1(G, π) 6= 0. If N is a closed normal subgroup of
G having the property (T) then π|N = 1.

The analogous statement of Lemma 2.8 in the context of non-reduced
cohomology is not true in general (see [12]). Under cocompactness condition on
the normal subgroup, we can state:

Proposition 2.10. Let G be a locally compact group and N a closed, normal,
cocompact subgroup of G. Let π be a unitary representation of G. Then the
restriction map Res : H1(G, π) → H1(N, π|N) is injective.

In particular if H1(N, π|N) = 0 then H1(G, π) = 0.

Proof. By [9], there exists a Borel regular section s : G/N → G whose
image is relatively compact. For all x ∈ G/N , and all g ∈ G , gs(x), s(gx)
has the same image in G/N . Let us define a cocycle σ : G/N × G → N ;
σ(x, g) = (s(gx)−1gs(x))−1 . So that σ(x, g) is the unique element of N satisfying
gs(x)σ(x, g) ∈ s(G/N). Remark that σ(G/N,K) is relatively compact whenever
K is a compact subset of G .

Let α be an affine action of G such that α|N almost has fixed points and
let us show that it almost has fixed points. Let K be a compact subset of G , it
is contained in a compact subset of the form K0 s(G/N), where K0 is a compact
subset of N . Let KX be the compact subset (by normality of N ) of N defined
by:

KX = ClN{s(x)−1ns(x)σ(x, x−1
0 ) |n ∈ K0, x ∈ G/N, x0 ∈ s(G/N)}.
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Then for ε > 0 fixed, there exists by assumption a point ξ in the Hilbert space of
π such that

sup
n∈KX

‖ α(n)ξ − ξ ‖< ε.

Denote by dx the finite G-invariant normalized measure (for the action g · s(x) =
gs(x)σ(x, g)) induced by the Haar measure on G/N .

For g0 ∈ G , there exists a unique x0 ∈ s(G/N) and a unique n0 ∈ N such
that g0 = n0x0 . For g0 ∈ K , we have:

‖ α(g0)

∫
G/N

α(s(x))ξdx−
∫

G/N

α(s(x))ξdx ‖

= ‖ α(n0x0)

∫
G/N

α(s(x))ξdx−
∫

G/N

α(s(x))ξdx ‖

= ‖ α(n0)

∫
G/N

α(x0s(x)σ(x, x0)σ(x, x0)
−1)ξdx−

∫
G/N

α(s(x))ξdx ‖

= ‖ α(n0)

∫
G/N

α(x0 · s(x)σ(x, x0)
−1)ξdx−

∫
G/N

α(s(x))ξdx ‖

= ‖ α(n0)

∫
G/N

α(s(x)σ(x−1
0 · x, x0)

−1)ξdx−
∫

G/N

α(s(x))ξdx ‖

= ‖ α(n0)

∫
G/N

α(s(x)σ(x, x−1
0 ))ξdx−

∫
G/N

α(s(x))ξdx ‖

= ‖
∫

G/N

α(n0s(x)σ(x, x−1
0 ))ξdx−

∫
G/N

α(s(x))ξdx ‖

= ‖
∫

G/N

α(n0s(x)σ(x, x−1
0 ))ξ − α(s(x))ξdx ‖

≤ sup
x∈G/N

‖ α(n0s(x)σ(x, x−1
0 ))ξ − α(s(x))ξ ‖

= sup
x∈G/N

‖ α(s(x)−1n0s(x)σ(x, x−1
0 ))ξ − ξ ‖ .

So,

sup
g0∈K

‖ α(g0)

∫
G/N

α(s(x))ξdx−
∫

G/N

α(s(x))ξdx ‖≤ sup
n∈KX

‖ α(n)ξ − ξ ‖< ε.

We recall now some results of Guichardet [7] which describe the relationship
between the 1-cohomology (resp., reduced 1-cohomology) of a group G and the
1-cohomology (resp., reduced 1-cohomology) of a quotient by a closed normal
subgroup, with value in a unitary representation of G which is trivial on this
normal subgroup .

Theorem 2.11. Let G be a locally compact group, N a closed normal subgroup
of G and π a unitary representation of G such that π|N = 1. Then:

i) Let A(G, N, π) be the image of the restriction map Z1(G, π) → Z1(N, 1).
We have the isomorphisms:

H1(G, π) ∼= H1(G/N, π̇)⊕ A(G, N, π);
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H1(G, π) ∼= H1(G/N, π̇)⊕ A(G, N, π).

Notice that A(G, N, π) is contained in HomG(N, π), the space of G-equivar-
iant homomorphisms from N to the additive group Hπ .

ii) If G is the semi-direct product N oH for some group H , then A(G, N, π) =
HomG(N, π).

Corollary 2.12. Let K be a compact normal subgroup of a locally compact
group G and let π a unitary representation of G which is trivial on K . Then:

H1(G, π) ∼= H1(G/K, π)

and

H1(G, π) ∼= H1(G/K, π).

Let K be the closed normal subgroup of N/[N, N ] generated by the closure
of the union of the compact subgroups of N/[N, N ] , and set V = (N/[N, N ])/K .
The group G acts by conjugation on N and this give rise to an action of G on
V . The latter factors through an action of G/N on V which will be denoted by
σ . Every continuous morphism f from N to Hπ factors through a continuous
morphism f̃ from V to Hπ , and f belongs to HomG(N, π) if and only if f̃ satisfies

f̃(σ(g)(v)) = π(g)(f̃(v))

for all g ∈ G/N and all v ∈ V .

If moreover N is a connected Lie group, N/[N, N ] can be identified to
Rn × Tk for some n , k . Consequently V = Rn , and in this case, σ is a real finite
dimensional representation (non unitary in general) of G/N . Hence the following
result from [7]:

Proposition 2.13. Let N be a connected Lie group; HomG(N, π) is isomor-
phic to the space of R-linear maps from V to Hπ which intertwine σ and π .

If (σC, V C) is the complexified representation obtained from (σ, V ), the
space HomG(N, π) can be identified with the space of C-linear maps from V C

to Hπ which intertwine σC and π .

Corollary 2.14. Let π be a unitary irreducible representation of a connected
Lie group N ; then HomG(N, π) does not vanish if and only if π is equivalent
to a subrepresentation of σC . In particular there are only finitely many such
representations and there are all of dimension at most dim(σ) ≤ dim(N/[N, N ]).

In the case where N is a central subgroup, we have [7]:

Lemma 2.15. Let π a non trivial irreducible unitary representation of G and
let C be a closed central subgroup of G. If H1(G, π) 6= 0, then π|C = 1 and
H1(G, π) ∼= H1(G/C, π̇).
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3. H1(G, π) of connected amenable locally compact groups

In this section we will establish an analogue of Delorme’s theorem (see introduc-
tion) for connected amenable locally compact groups. More precisely, we will show
that the reduced 1-cohomology of such a group is zero for all irreducible unitary
representation except a finite number of finite dimensional ones.

We first establish the result for a connected amenable Lie group:

Theorem 3.1. Let G be a connected amenable Lie group. Up to unitary equiv-
alence, there are finitely many irreducible unitary representations π of G with
H1(G, π) 6= 0. Moreover all these representations are finite dimensional and their
dimensions are less or equal than the (real) dimension of the solvable radical R of
G.

Proof. Let π be an irreducible unitary representation of G such that
H1(G, π) 6= 0. Let us prove the theorem in three steps:

Step 1: The restriction π|R has a finite dimensional subrepresentation.

Indeed, assume by contradiction that this is not the case. Then, as R is a
connected solvable Lie group, H1(R, π|R) = 0 by Delorme’s theorem and proposi-
tion 2.7. Proposition 2.10 implies H1(G, π) = 0, contradicting our assumption.

Step 2: π is finite dimensional.

Consider the Lévi decomposition G=RS of G , where R is the radical
and S is semisimple (hence compact by amenability of G). Let χ be a finite
dimensional subrepresentation of π|R . Then we have that π|R ⊗ χ contains the
trivial representation which implies that IndG

R(π|R ⊗ χ) = π ⊗ IndG
Rχ contains

λG/R = IndG
R 1. But the quasi-regular representation λG/R contains the trivial

representation by compactness of G/R . So π must be finite dimensional.

Step 3: There are only finitely many finite-dimensional irreducible repre-
sentations of G with H1(G, π) 6= 0.

Let G̃ be the universal cover of G . If π is a unitary representation of
G and if π̃ denotes the G̃-representation obtained by pulling π back , then
H1(G, π) ∼= H1(G̃, π̃) (see [5]). So we can assume G to be simply connected.
The Lvi decomposition of G is then a semi-direct product R o S . Let π be
a finite dimensional irreducible unitary representation of G . By Lie’s theorem,
π|[R,R] = 1 and because [R,R] is a closed normal subgroup of G (see [8] Chap.
XII Thm. 2.2), theorem 2.11 applies and gives

H1(G, π) ∼= H1(G/[R,R], π̇)⊕ A(G, [R,R], π).

where π̇ denotes the representation of the quotient group defined by π = q ◦ π̇
where q is the canonical projection of G on its quotient. By Corollary 2.14,
A(G, [R,R], π) is non zero only for finitely many representations π , of dimension
at most dim(R) . So we will show that H1(G/[R,R], π̇) is non zero only for finitely
many irreducible unitary representations.By connectedness of R , G/[R,R] =
(Rn × Tk) o S for some n, k . If π̇ does not have non-zero (Rn × Tk)-invariant
vectors, then by proposition 2.9 and by the vanishing of the space H1(Rn×Tk, σ)
for all unitary representations without non-zero invariant vectors (see [7]), we have
H1(G/[R,R], π̇) = 0.
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If π̇ has non-zero (Rn×Tk)-invariant vectors, we get by irreducibility that
π̇|(Rn×Tk) = 1.
So by applying theorem 2.11 i):

H1(G/[R,R], π̇) ∼= H1(S, π̇)⊕ A(G/[R,R], (Rn × Tk), π̇).

But S is compact, so H1(S, π̇) = 0 and we apply the Corollary 2.14 to conclude
that the space A(G/[R,R], (Rn × Tk), π̇) is non zero for only finitely many irre-
ducible finite dimensional unitary representations, whose dimensions are less than
the (real) dimension of the radical of G .

Example 3.2. Let G = Cn o U(n) be the rigid motion group of Cn ; and let
π be the unitary irreducible representation of G in Cn given by

π(x, g) = g.

Define a cocycle in Z1(G, π) by setting b(x, g) = x . The corresponding affine
action is the tautological one on the affine space underlying Cn . This cocycle is
not almost a coboundary, so H1(G, π) 6= 0.

This example shows that in the previous theorem the upper bound on the
dimension of irreducible unitary representations with non vanishing reduced 1-
cohomology, is optimal.

In the sequel, we will use several times the well-known theorem by Mont-
gomery-Zippin (see [13]): Let G be a connected locally compact group. Then
for every neighborhood V of the neutral element there exists a normal compact
subgroup KV of G contained in V , such that G/KV is a real Lie group.

Theorem 3.3. Let G a connected amenable locally compact group. The unitary
irreducible representations with non vanishing reduced 1-cohomology are all finite
dimensional and there are only finitely many such representations up to unitary
equivalence.

Proof. By Montgomery-Zippin’s theorem, there exists a normal compact sub-
group K of G such that G/K is a Lie group. If π is a unitary irreducible
representation of G , then:

i) Either π|K has no non zero invariant vectors and then Lemma 2.8 implies
that H1(G, π) = 0 which implies H1(G, π) = 0.

ii) Or π|K has non zero invariant vectors, and by irreducibility, π|K = 1. So by
Corollary 2.12, H1(G, π) = H1(G/K, π̇), and the previous theorem applies.

Recently, Y. Shalom introduced the property (HFD ) for a locally compact
group (see [15]):

A locally compact group G has the property (HFD ) if for all irreducible
representation π , H1(G, π) 6= 0 implies that π is finite dimensional. He shows
in particular that this property is a quasi-isometry invariant among the class of
finitely generated amenable groups.

Corollary 3.4. A connected locally compact amenable group has the property
(HFD).
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4. H1(G, π) and the Haagerup property

In [3], the authors classify connected Lie groups having the Haagerup property.
They show that such a group is necessarily locally isomorphic to a product M ×
SO(n1, 1)× ...×SO(nk, 1)×SU(m1, 1)× ...×SU(ml, 1), where M is an amenable
Lie group. By using Delorme’s theorem [5] on the 1-cohomology of the groups
SO(n, 1) and SU(m, 1), we will classify the irreducible unitary representations
of a connected group having Haagerup property that give rise to non zero first
reduced cohomology space. Delorme’s theorem that we will need is the following:

Theorem 4.1. Let G be a connected Lie group with Lie algebra so(n, 1) or
su(n, 1). Then there exists at least one irreducible unitary representation and
at most two with non trivial 1-cohomology. Moreover, these representations are
infinite dimensional.

From this and the previous theorem, we deduce:

Theorem 4.2. Let G be a connected locally compact group with the Haagerup
property. There are finitely many irreducible unitary representations with non
vanishing H1(G, π).

Proof. As in the proof of Theorem 3.1, we can assume G to be simply con-
nected. Because G has the Haagerup property, it is isomorphic to a product ([3],
thm 4.0.1)

M × ˜SO(n1, 1)× ...× ˜SO(nk, 1)× ˜SU(m1, 1)× ...× ˜SU(ml, 1).

where M is amenable.

Let us show the result by induction on the number of factors in the preceding
direct product. If there is only one factor, then the result follows from theorem 3.1
and 4.1. Let us assume that there are n factors in the direct product decomposition
of G and let π be an irreducible unitary representation of G .

If π has no non zero invariant vectors for each factor, then H1(G, π) = 0
(see [14]). If π has a nonzero invariant vector by at least one factor, set N to be the
product of those factors where π has non zero invariant vectors. By irreducibility,
π|N = 1 so by theorem 2.11

H1(G, π) = H1(G/N, π̇)⊕HomG(N, π).

then we conclude, by the induction assumption and Corollary 2.14.

5. H1(G, π) and the relative property (T)

Now we shall study 1-cohomology and the reduced 1-cohomology with values in
an irreducible unitary representation of a locally compact group G having a closed
normal subgroup N such that the pair (G, N) has the relative property (T).
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Proposition 5.1. Let G be a locally compact and N a closed normal subgroup
such that (G, N) has relative property (T). Let π be an irreducible unitary repre-
sentation of G. We have the following alternative :

i) either π|N does not have non zero invariant vectors, and then
H1(G, π) = H1(G, π) = 0;

ii) or π|N = 1 and we have the isomorphisms H1(G, π) ∼= H1(G/N, π̇),
H1(G, π) ∼= H1(G/N, π̇).

Proof. By definition of relative property (T), the restriction map
Res : H1(G, π) → H1(N, π|N) is identically zero. So if π|N does not have non
zero invariant vectors, H1(G, π) = 0, by Lemma 2.8. If π|N has non zero invariant
vectors then by irreducibility, π|N = 1, and we apply theorem 2.11 to get the
isomorphisms:

H1(G, π) ∼= H1(G/N, π)⊕ A(G, N, π),

H1(G, π) ∼= H1(G/N, π)⊕ A(G, N, π).

But by the relative property (T), the second summand is zero.

6. H1(G, π) of locally compact connected groups

Recently, Y. de Cornulier showed the following nice result [4]:

Theorem 6.1. Let G be a non compact connected Lie group. Then either G
has the Haagerup property, or there exists a closed non compact characteristic
subgroup N such that the pair (G, N) has the relative property (T) and G/N has
the Haagerup property.

Remark 6.2. Theorem 6.1 improves on Theorem 4.0.1 of [3], where it was
shown that, for a connected Lie group G , either G has the Haagerup property or
there exists a closed non-compact subgroup H such that (G, H) has the relative
property (T).

Theorem 6.3. Let G be a connected locally compact group. Then, up to uni-
tary equivalence, there are only finitely many irreducible unitary representations
with non vanishing H1(G, π).

Moreover, any such representation π is either trivial or factors through an
irreducible unitary representation σ of a group H isomorphic to
PO(n, 1), PU(m, 1), or to a non-compact amenable non-nilpotent group H such
that H1(H, σ) ∼= H1(G, π) 6= 0.
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Proof. By Montgomery-Zippin’s theorem and Corollary 2.12, G can be as-
sumed to be a real Lie group.

Step 1: There are only finitely many irreducible unitary representations π
with non vanishing H1(G, π).

If G is compact then the result is clear. Assume that G is non-compact.
If G has the Haagerup property, we use Theorem 4.2. If it is not the case, by
Theorem 6.1, there exists a non compact closed normal subgroup N such that
(G, N) has the relative property (T) and G/N has the Haagerup property. By
proposition 5.1, the irreducible unitary representations π of G that have non
vanishing reduced-1 cohomology satisfy π|N = 1 and then proposition 5.1 applies
to give :

H1(G, π) ∼= H1(G/N, π̇).

If the only irreducible representation having non trivial reduced 1-cohomo-
logy is the trivial representation there is nothing to prove. Let π be a non trivial
unitary representation of G with H1(G, π) 6= 0.

Step 2: There exists a non compact closed connected subgroup N such that
GN

.
= G/N has the Haagerup property, π|N = 1, and H1(GN , π) ∼= H1(G, π) 6= 0.

Indeed if G has the Haagerup property, we end here. If not, by theorem
6.1, there exists a closed normal subgroup N0 of G such that (G, N0) has relative
property (T) and G/N0 has the Haagerup property. By proposition 5.1, π|N0 = 1
and H1(G/N0, π̇) ∼= H1(G, π) 6= 0.

Step 3: Factorization through an irreducible unitary representation σ of a
group H isomorphic either to PO(n, 1), PU(m, 1) or to a non-compact amenable
non-nilpotent group H such that H1(H, σ) ∼= H1(G, π) 6= 0.

Let π̃ be the representation defined canonically on the universal cover G̃N

of GN . By [5], H1(G̃N , π̃) ∼= H1(GN , π) 6= 0. Applying the classification theorem

of [3], G̃N is a product of (simply connected) groups ˜SO(n, 1), and/or ˜SU(n, 1)
and/or amenable groups. By proposition 3.2 of [14], π is trivial on at least one
factor. But then, by proposition 2.13 (applied to σC = 1), and as π̃ is not trivial,

π̃ is trivial on all factors except one, that we will denote by H̃ . Moreover we have
H1(G, π) ∼= H1(H̃, π̃) 6= 0. However, π̃ is trivial on the center Z(H̃) of H̃ . So if

we denote by H the quotient H̃/Z(H̃), we have that H1(H, π̃) ∼= H1(H̃, π̃) 6= 0.
Notice that as π̃ is irreducible and non trivial, H cannot be nilpotent (because if
it was the case the reduced 1-cohomology should vanish [7]) .

By construction, G maps onto H , π is trivial on the kernel of this surjec-
tion, and π = π̃ on H . So H1(GN , π) ∼= H1(H, π) 6= 0 and by construction, H is
isomorphic to either PO(n, 1) or PU(n, 1) or an amenable group.

Remark 6.4. There is no analogue of the Theorem 6.3 for non-connected
groups. To see this, consider the free group G = F2 on 2 generators. A.Guichardet
[7] observed that H1(G, π) 6= 0 for every unitary representation π of G . Now, if π
is finite dimensional, we even have H1(G, π) 6= 0. In particular, for every character
χ of G , H1(G, χ) 6= 0, so we get a continuum of irreducible representations
carrying reduced 1-cohomology.
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7. Applications

7.1. H1(G, L2(G)) and amenability.

In this section, we will focus on the reduced 1-cohomology with coefficient in the
regular representation for amenable connected locally compact groups. It is shown
in [12], that for a discrete amenable group Γ, H1(Γ, l2(Γ)) = 0. In this section, the
analogous result will be proved for a connected amenable locally compact group.

Lemma 7.1. Let G be a locally compact group. If for every neighborhood V of
the identity , there exists a normal compact subgroup K contained in V such that
H1(G/K, λG/K) = 0, then H1(G, λG) = 0.

Proof. Let b ∈ Z1(G, λG). For any compact normal subgroup K let us define
a cocycle in Z1(G, L2(G)K) (where L2(G)K is the space of (right) K -invariant
vectors in L2(G)) by:

(bK(g))(h) =

∫
K

b(g)(hk) dk

(dk is the normalized Haar measure on K ). So we have (ρ denotes the right
regular representation):

‖ bK(g)− b(g) ‖2
2 =

∫
G

| bK(g)(h)− b(g)(h) |2 dh

=

∫
G

|
∫

K

(b(g)(hk)− b(g)(h))dk |2 dh

≤
∫

G

∫
K

| b(g)(hk)− b(g)(h) |2 dkdh

=

∫
K

∫
G

| b(g)(hk)− b(g)(h) |2 dhdk

=

∫
K

‖ ρ(k)b(g)− b(g) ‖2
2 dk.

Finally as ρ is strongly continuous at the neutral element, there exists for
every ε > 0, every compact subset Q of G , a neighborhood V of e such that
‖ ρ(k)b(g) − b(g) ‖2≤ ε , ∀g ∈ Q , ∀k ∈ V . We easily conclude by using the
cohomological assumption.

Theorem 7.2. Let G be a locally compact connected group. If G is amenable,
then H1(G, L2(G)) = 0.

Proof. Let us recall that if N is a closed subgroup of G , then λG|N = [G :
N ] · λN and so H1(N, λG|N) = 0 ⇔ H1(N, λN) = 0 (see e.g. [12]). So by
proposition 2.9, we can replace G by its connected component of 1; i.e. we can
assume that G is connected and non compact.

By Montgomery-Zippin’s theorem, for every neighborhood V of the identity
in G , there exists a compact normal subgroup KV , such that G/KV is a Lie
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group. So G/KV is an amenable connected Lie group. Since G/KV is non-
compact a finite set of finite dimensional representations cannot appear discretely
in the direct integral decomposition into irreducible representations of the regular
representation of G/KV . So by Theorem 3.3, H1(G/KV , λG/KV

) = 0 and by

Lemma 7.1, H1(G, λG) must vanish.

This result leads to the following conjecture:

Conjecture 7.3. Let G be an amenable separable locally compact group then
H1(G, L2(G)) = 0.

7.2. Application to harmonic analysis.

Let G be a connected unimodular Lie group and let (M, ν) a smooth non compact
connected manifold on which G acts transitively by diffeomorphisms and preserv-
ing a σ -finite measure ν . If µ is a probability measure on G , we say that a smooth
function f on M is µ-harmonic if f(x) =

∫
G

f(q−1 · x) dµ(q) (where · denote the
action of G on M ).

Recall that if (X1, . . . , Xn) is a Hrmander system of smooth G-invariants
vector fields (i.e. a family of smooth vector fields such that the Lie algebra they
generates is the whole tangent space at each point), the gradient of a function

f ∈ C∞(M) is defined by ∇f = (X1f, . . . , Xnf) and that |∇f | = (
n∑

i=1

|Xif |2)
1
2 .

A right invariant Hrmander system always exists on G . Consequently as G
acts transitively by diffeomorphisms, we obtain a G-invariant Hrmander system
on M . Fix once and for all a G-invariant Hrmander system on M .

Finally, f ∈ C∞(M) is said to be Dirichlet finite, if
||∇f ||L2(M,ν) < ∞ . We will denote by π the action of G on C∞(M) defined by
π(g)f(x) = f(g−1 · x).

With these definitions and notations, we will establish in this section a
link between the existence of Dirichlet-finite harmonic functions on M and the
reduced 1-cohomology of G with values in L2(M). Some preliminary technical
lemmas (adapted from [16]) are needed:

Lemma 7.4. Let M be a manifold, (X1, . . . , Xn) a Hrmander system and
γ : [0, a] → M a differentiable path on M tangent to the Hrmander system (i.e
γ′(t) is in the vector subspace generated by (X1, . . . , Xn )) with ‖γ′(t)‖2 ≤ 1. For
f ∈ C∞(M), we have the following inequality:

|f(γ(a))− f(γ(0))| ≤
∫ a

0

|∇f(γ(t))|dt.

Proof. For t ∈ [0, a] we have:

|f(γ(a))− f(γ(0))| = |
∫ a

0

d

dt
f(γ(t)) dt|

≤
∫ a

0

|dfγ(t)(γ
′(t))| dt.
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Moreover if we write γ′(t) =
k∑

i=0

ai(t)Xi(γ(t)), we have as dfγ(t)(Xi(γ(t))) =

Xif(γ(t)), using the Cauchy-Schwartz inequality:

|dfγ(t)(γ
′(t))| = |

k∑
i=0

ai(t)Xif(γ(t))|

≤ ‖γ′(t)‖|∇f(γ(t))|
≤ |∇f(γ(t))|

Hence the claimed inequality.

Lemma 7.5. Let f be a smooth Dirichlet finite function on M . Then for all
h ∈ G, there exists a = a(h) > 0 such that

‖π(h)f − f‖L2(M,ν) ≤ a · ||∇f ||L2(M,ν).

Proof. Let h ∈ G and let γ : [0, a] → G be an absolutely continuous path

such that γ(0) = e , γ(a) = h , and γ′(t) =
n∑

i=1

ai(t)Xi(γ(t)) a.e. with
n∑

i=1

a2
i (t) ≤ 1

(such a path always exists, see [16] III.4). As the action is smooth and the
Hrmander system is invariant, we apply the preceding lemma to the path t 7→
γ(t)−1 · x and we get:

|f(h−1 · x)− f(x)| ≤
∫ a

0

|∇f(γ(t)−1 · x)|dt.

So by Cauchy-Schwarz, |f(h−1 · x)− f(x)|2 ≤ a

∫ a

0

|∇f(γ(t)−1 · x)|2dt .

Therefore,∫
M

|f(h−1 · x)− f(x)|2dx ≤ a

∫
M

∫ a

0

|∇f(γ(t)−1 · x)|2dtdν(x)

= a

∫ a

0

∫
M

|∇f(γ(t)−1 · x)|2dν(x)dt

= a

∫ a

0

∫
M

|∇f(x)|2dν(x)dt

= a2‖∇f‖2
2.

which proves the lemma.

Here is the main theorem of this section:

Theorem 7.6. Let G be a connected unimodular Lie group acting smoothly
and transitively on a non-compact connected smooth manifold M endowed with a
G-invariant (σ -finite) measure ν and let µ be a probability measure on G with
compact symmetric support generating G. If H1(G, L2(M, ν)) = 0, then every
Dirichlet-finite µ-harmonic smooth function on M is constant.
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Proof. Set L2(M) = L2(M, ν) and let D(M) be the following quotient space:
{f ∈ C∞(M) | ||π(g)f − f ||2 < ∞∀g ∈ G}/C . Consider the pre-Hilbert structure
on D(M) given by ||f ||2D(M) =

∫
G
||π(q)f − f ||2L2(M)dµ(q). Notice that D(M) is

Hausdorff because ||f ||2D(M) = 0 iff π(g)f = f , ∀g ∈ supp(µ), which is equivalent

to π(g)f = f , ∀g ∈ G (because supp(µ) generates G) and which is also equivalent
to the fact that f is constant (this follows from the transitivity of the action). Let
i be the canonical embedding of C∞(M) ∩ L2(M) in D(M). For all f ∈ D(M),
denote by θ(f) the algebraic cocycle given by g 7→ π(g)f − f . This cocycle
is weakly measurable, so by [7], it is continuous for the topology of uniform
convergence on compact subsets (we use here the fact that G is separable).

By assumption θ(f) is almost a coboundary. As C∞(M) ∩ L2(M) is
|| ||2−dense in L2(M), there exists a sequence (ξn)n≥1 in C∞(M) ∩ L2(M) such
that θ(f)(g) = limn→∞ π(g)ξn − ξn uniformly on compact subsets of G . Hence∫

G
||π(q)(f − ξn)− (f − ξn)||2L2(M)dµ(q)

n7→∞
−→ 0 since µ has compact support.

This shows that i(ξn)
n7→∞
−→ f in D(M). In other words, i(C∞(M)∩L2(M))

is dense in D(M). So i(C∞(M) ∩ L2(M))⊥ = 0, because D(M) is Hausdorff.

Let us compute this orthogonal complement :

f ∈ i(C∞(M) ∩ L2(M))⊥

⇔
∫

G
〈ρ(q)f − f | ρ(q)ξ − ξ〉2dµ(q) = 0 , ∀ξ ∈ C∞(M) ∩ L2(M)

⇔
∫

G
〈ρ(q)f − f | ρ(q)ξ〉2dµ(q)−

∫
G
〈ρ(q)f − f | ξ〉2dµ(q) = 0 ,

∀ξ ∈ C∞(M) ∩ L2(M)

⇔
∫

G
〈f − ρ(q−1)f | ξ〉2dµ(q)−

∫
G
〈ρ(q)f − f | ξ〉2dµ(q) = 0 ,

∀ξ ∈ C∞(M) ∩ L2(M)

⇔ −2
∫

G
〈ρ(q)f − f | ξ〉2dµ(q) = 0 , ∀ξ ∈ C∞(M) ∩ L2(M)(as µ is symmetric)

⇔ 〈
∫

G
(ρ(q)f − f)dµ(q) | ξ〉2 = 0 , ∀ξ ∈ C∞(M) ∩ L2(M)

⇔
∫

G
(ρ(q)f − f)dµ(q) = 0

⇔
∫

G
ρ(q)fdµ(q) = f

⇔
∫

G
f(q−1 · x)dµ(q) = f(x) , ∀x ∈ M

So the orthogonal complement of i(C∞(M) ∩ L2(M)) is nothing else than
the space of µ-harmonic functions in D(M).

Now, let f be a smooth Dirichlet finite function. By the preceding lemma,

||π(g)f − f ||L2(M) ≤ a(g)||∇f ||L2(M), ∀g ∈ G.

So such a f is (modulo constant functions) in D(M). So if f is µ-harmonic and
Dirichlet finite, then it is constant.

We get immediately the following corollary

Corollary 7.7. Let G be a connected Lie group having property (T). If G
acts smoothly and transitively on a non-compact connected smooth manifold M
endowed with a G-invariant (σ -finite) measure ν and if µ is a probability measure
on G with compact symmetric support generating G, then a Dirichlet-finite µ-
harmonic smooth function on M is constant.

In the case where G acts by translation on itself, we obtain immediately:
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Corollary 7.8. Let G be a connected unimodular Lie group such that
H1(G, L2(G)) = 0 and let µ be a probability measure on G with compact symmetric
support generating G. Then a Dirichlet-finite µ-harmonic smooth function on G
is constant.

By Theorem 3.6, we also have

Corollary 7.9. Let G be a amenable connected unimodular Lie group and let
µ be a probability measure on G with compact symmetric support generating G.
Then a finite Dirichlet µ-harmonic smooth function on G is constant.
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