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Alpha-determinant Cyclic Modules of gln(C)
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Abstract. The alpha-determinant unifies and interpolates the notion of the
determinant and permanent. We determine the irreducible decomposition of the
cyclic module of gln(C) defined by the alpha-determinant. The degeneracy of
the irreducible decomposition is determined by the content polynomial of a given
partition.
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1. Introduction

Let X = (xij)1≤i,j≤n be a matrix with commutative variables xij . For a complex
number α , the α-determinant of X is defined by

detα(X) =
∑

σ∈Sn

αn−νn(σ)

n∏
i=1

xiσ(i),

where Sn is the symmetric group of degree n and νn(σ) stands for the number of
cycles in the cycle decomposition of a permutation σ ∈ Sn . The α-determinant is
nothing but the permanent if α = 1 and the (usual) determinant if α = −1, and
hence, it interpolates these two. It appears as a coefficient in the Taylor expansion
of the power det(I −αX)−1/α of the characteristic polynomial of X and defines a
generalization of the boson, poisson and fermion point processes, see [9, 10]. Also,
its Pfaffian analogue has been developed in [8].

It is a natural question whether the α-determinant can be interpreted as an
invariant like the usual determinant (and also the q -determinant in quantum group
theory). Denote by P(Matn×n) the ring of polynomials in variables {xij}1≤i,j≤n .
Let {Eij}1≤i,j≤n be the natural basis of the Lie algebra g = gln(C). When n = 2
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and α 6= 0, consider the linear map ρ
(α)
2 of gl2(C) on P(Matn×n) determined by

ρ
(α)
2 (E11) =x11∂11 + x12∂12, ρ

(α)
2 (E12) =

1√
−α

(x11∂21 − αx12∂22) ,

ρ
(α)
2 (E21) =

1√
−α

(−αx21∂11 + x22∂12) , ρ
(α)
2 (E22) =x21∂21 + x22∂22,

where ∂ij = ∂
∂xij

. Then ρ
(α)
2 defines a representation of gl2(C) and

ρ
(α)
2 (Eii)detα(X) = detα(X),

ρ
(α)
2 (Eij)detα(X) = 0 for i 6= j. This is not, however, true for n ≥ 3. Precisely,

although the map ρ
(α)
n given by ρ

(α)
n (Eij) =

∑n
k=1 β|i−k|−|j−k|xik∂jk , where β =√

−α , defines a representation of gln(C) on P(Matn×n), ρ
(α)
n (Eij)detα(X) 6= 0,

(i 6= j) in general. (One can actually show that ρ
(α)
n is equivalent to the usual

action of gln(C) determined by ρ(Eij) = ρ
(−1)
n (Eij) =

∑n
k=1 xik∂jk on P(Matn×n)

when α 6= 0. Indeed, the map f(xij) 7→ f(β|i−j|xij) is the intertwining operator

from (ρ,P(Matn×n)) to (ρ
(α)
n ,P(Matn×n)).)

Then, a question which subsequently arises is what the structure of the
smallest invariant subspace of P(Matn×n) which contains detα(X) is. Thus, the

aim of the present paper is to investigate a cyclic module V
(α)
n = U(g)detα(X),

under the representation ρ on P(Matn×n) for each α ∈ C . Clearly, V
(−1)
n is the

one-dimensional determinant representation.

We adopt the notations for partitions used in [7] and for representations
of gln(C) used in [1] and [11]. A partition λ is a weakly decreasing sequence
λ = (λ1, λ2, . . . ) of non-negative integers such that λj = 0 for sufficiently large j .
We usually identify a partition λ with the corresponding Young diagram. Write
λ ` n if

∑
j≥1 λj = n and denote by λ′ = (λ′1, λ

′
2, . . . ) the conjugate partition of

λ . Let Eλ denote the Schur module (or called the Weyl module) corresponding
to λ and fλ the number of standard tableaux of shape λ .

The following is our main result, which describes the irreducible decompo-
sition of V

(α)
n .

Theorem 1.1. For k = 1, 2, . . . , n− 1,

V
( 1

k
)

n
∼=

⊕
λ`n,
λ′1≤k

(Eλ)⊕fλ

and V
(− 1

k
)

n
∼=

⊕
λ`n,
λ1≤k

(Eλ)⊕fλ

. (1)

For α ∈ C \ {±1,±1
2
, . . . ,± 1

n−1
},

V (α)
n

∼= (Cn)⊗n ∼=
⊕
λ`n

(Eλ)⊕fλ

. (2)

Example 1.2. When n = 3 the irreducible decomposition of V
(α)
n is given by

V
(α)
3

∼=



E(3) if α = 1,

E(3) ⊕ E(2,1) ⊕ E(2,1) if α = 1
2
,

E(1,1,1) if α = −1,

E(2,1) ⊕ E(2,1) ⊕ E(1,1,1) if α = −1
2
,

E(3) ⊕ E(2,1) ⊕ E(2,1) ⊕ E(1,1,1) otherwise.
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Note that each Schur module possesses a canonial basis formed by α-
determinants (see Theorem 3.9). Although the α-determinant is not an invariant,
this fact implies that it has a rich symmetry.
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2. The U(gln)-module V
(α)
n

Let V
(α)
n = ρ(U(gln))detα(X). Put [n] = {1, 2, . . . , n} and

D(α)(i1, i2, . . . , in) = detα


xi11 xi12 . . . xi1n

xi21 xi22 . . . xi2n
...

...
. . .

...
xin1 xin2 . . . xinn


for any i1, . . . , in ∈ [n] . In particular, detα(X) = D(α)(1, 2, . . . , n). We abbreviate
ρ(Eij) to Eij for simplicity. When there is no fear of confusion, we abbreviate νn

to ν .

Lemma 2.1.

Epq ·D(α)(i1, . . . , in) =
n∑

k=1

δik,qD
(α)(i1, . . . , ik−1, p, ik+1, . . . , in). (3)

Proof. It is straightforward. In fact,

Epq ·D(α)(i1, . . . , in) =
n∑

j=1

xpj
∂

∂xqj

∑
σ∈Sn

αn−ν(σ)xi1σ(1) · · ·xinσ(n)

=
n∑

j=1

∑
σ∈Sn

αn−ν(σ)

n∑
k=1

xpjδik,qδσ(k),jxi1σ(1) · · · x̂ikσ(k) · · ·xinσ(n)

=
n∑

k=1

δik,q

∑
σ∈Sn

αn−ν(σ)xpσ(k)xi1σ(1) · · · x̂ikσ(k) · · ·xinσ(n)

=
n∑

k=1

δik,qD
(α)(i1, . . . , ik−1, p, ik+1, . . . , in),

where x̂kl stands for the omission of xkl .

Example 2.2. We see that E21 ·D(α)(4, 1, 2, 1)=D(α)(4, 2, 2, 1)+D(α)(4, 1, 2, 2),
E11 ·D(α)(4, 1, 2, 1) = 2D(α)(4, 1, 2, 1), and E43 ·D(α)(4, 1, 2, 1) = 0.

The symmetric group Sn acts also on V
(α)
n from the right by

D(α)(i1, . . . , in) · σ = D(α)(iσ(1), . . . , iσ(n)).
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Lemma 2.3. The space V
(α)
n is the complex vector space spanned by

{D(α)(i1, . . . , in) | i1, . . . , in ∈ [n]}.

Proof. Since the vector space spanned by all D(α)(i1, . . . , in) contains V
(α)
n

by Lemma 2.1, we prove that all D(α)(i1, . . . , in) are contained in V
(α)
n . For

1 ≤ p < q ≤ n , we have

V (α)
n 3 (EpqEqp − 1) ·D(α)(1, 2, . . . , n) = D(α)(τ(1), . . . , τ(n)),

where τ is the transposition (p, q) of p and q . It follows that, for each σ ∈ Sn ,
D(α)(σ(1), . . . , σ(n)) = Y · D(α)(1, . . . , n) for some Y = Yσ ∈ U(g). For any
1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ n , suppose there exists X = Xi1...in ∈ U(g) such
that D(α)(i1, . . . , in) = X · D(α)(1, . . . , n). For any j1, . . . , jn ∈ [n] , we have
D(α)(j1, . . . , jn) = D(α)(iσ(1), . . . , iσ(n)) for some σ ∈ Sn and i1 ≤ · · · ≤ in . Hence,
since the action of gln(C) and of Sn commute, we see that

D(α)(j1, . . . , jn) = D(α)(i1, . . . , in) · σ
=

(
X ·D(α)(1, . . . , n)

)
· σ = X ·

(
D(α)(1, . . . , n) · σ

)
= XY ·D(α)(1, . . . , n)

and D(α)(j1, . . . , jn) is contained in V
(α)
n . Therefore it is sufficient to prove

D(α)(i1, . . . , in) ∈ V
(α)
n for i1 ≤ · · · ≤ in .

For any sequence (i1, . . . , in) such that ik ≤ k for any k , we have

D(α)(i1, i2, . . . , in) = Einn · · ·Ei22Ei11 ·D(α)(1, 2, . . . , n) ∈ V (α)
n .

In fact, by Lemma 2.1, we see that Eikk · D(α)(i1, . . . , ik−1, k, k + 1, . . . , n) =
D(α)(i1, . . . , ik−1, ik, k + 1, . . . , n) because i1 ≤ · · · ≤ ik−1 < k for any 1 ≤ k ≤ n .
Suppose there exists k such that ij ≤ j for any j < k and ik > k . We prove

D(α)(i1, . . . , in) ∈ V
(α)
n for such sequences (i1, . . . , in) by induction with respect to

the lexicographic order. Since i1 ≤ · · · ≤ ik−1 < k ≤ ik − 1 < ik+1 ≤ · · · ≤ in and

D(α)(i1, . . . , ik−1, ik − 1, ik+1, . . . , in) ∈ V
(α)
n by the induction assumption, we have

D(α)(i1, . . . , ik, . . . , in) = Eik,ik−1 ·D(α)(i1, . . . , ik−1, . . . , in) ∈ V
(α)
n by Lemma 2.1.

Hence we obtain our claim.

The universal enveloping algebra U(g) of g = gln(C) acts on the n-tensor
product (Cn)⊗n = Cn ⊗ · · · ⊗ Cn from the left by

Epq·(ei1⊗· · ·⊗ein) =
n∑

k=1

ei1⊗· · ·⊗Epqeik⊗· · ·⊗ein =
n∑

k=1

δik,qei1⊗· · ·⊗ep⊗· · ·⊗ein ,

where {ek}n
k=1 is the natural basis of Cn . ¿From this fact together with Lemma

2.1 and Lemma 2.3, we have the

Proposition 2.4. Let Φ
(α)
n be the linear map from (Cn)⊗n to V

(α)
n defined by

Φ(α)
n (ei1 ⊗ · · · ⊗ ein) = D(α)(i1, . . . , in)

for each i1, . . . , in ∈ [n]. Then Φ
(α)
n is a U(g)-module homomorphism. In partic-

ular, V
(α)
n is isomorphic to a quotient module (Cn)⊗n

/
Ker Φ

(α)
n of (Cn)⊗n .
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Notice that, when α = 0, the homomorphism Φ
(0)
n (ei1 ⊗ · · · ⊗ ein) =

D(0)(i1, . . . , in) = xi11 · · ·xinn is clearly bijective, and therefore V
(0)
n

∼= (Cn)⊗n .

Hence we have the irreducible decomposition of V
(0)
n as

V (0)
n

∼=
⊕
λ`n

(Eλ)⊕fλ

. (4)

The symmetric group Sn acts on (Cn)⊗n from the right by (ei1 ⊗ · · · ⊗ ein) · σ =
eiσ(1)

⊗ · · · ⊗ eiσ(n)
for any σ ∈ Sn .

3. A formula for the number of cycles

A numbering of shape λ ` n is a way of putting distinct elements in [n] in each
box of the Young diagram λ . Let R(T ) be the row group (or called the Young
subgroup) of a numbering represented by a tableau T , i.e., permutations in R(T )
permutate the entries of each row among themselves. The column group C(T ) is
also defined similarly.

Recall the Frobenius notation (a1, a2, . . . , ad|b1, b2, . . . , bd) of a partition λ ,
where ai = λi − i ≥ 0 and bi = λ′i − i ≥ 0 for 1 ≤ i ≤ d . Then the content
polynomial fλ(α) ([7, I-1]) for the partition λ is written as

fλ(α) =
d∏

i=1

{
ai∏

j=1

(1 + jα) ·
bi∏

j=1

(1− jα)

}
. (5)

Note that fλ(α) satisfies fλ(α) = fλ′(−α). We have the following formula for the
number ν = νn of cycles.

Proposition 3.1. Let T be a numbering of shape λ ` n. Then∑
q∈C(T )

sgn(q)
∑

p∈R(T )

αn−ν(pqσ) (6)

=

{
sgn(q0)fλ(α) if σ = q0p0 for some q0 ∈ C(T ) and p0 ∈ R(T ),

0 otherwise.

Proof. The formula

αn−νn(σ) =
∑
µ`n

fµ

n!
fµ(α)χµ(σ) (7)

is a specialization of the Frobenius character formula, see [7, I-7, Example 17].
Here χµ is the irreducible character of Sn corresponding to µ . Moreover, for a
numbering T of shape λ and a partition µ , the well-known equation

χµ · cT = δλ,µ
n!

fµ
cT (8)

in the group algebra CSn holds, which is obtained by Young. Here cT is the
Young symmetrizer

cT =
∑

q∈C(T )

sgn(q)
∑

p∈R(T )

qp.
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Define φα =
∑

σ∈Sn
αn−ν(σ)σ ∈ C[Sn] . It follows from (7) that

φα =
∑

µ`n
fµ

n!
fµ(α)χµ . Hence by (8) we have

φα · cT =
∑
µ`n

fµ

n!
fµ(α)δλ,µ

n!

fµ
cT = fλ(α)cT .

In other words,∑
σ∈Sn

∑
q∈C(T )

sgn(q)
∑

p∈R(T )

αn−ν(pqσ)σ = fλ(α)
∑

q∈C(T )

sgn(q)
∑

p∈R(T )

qp.

This gives our desired formula.

Example 3.2. When T = 1 2
3

we have

∑
q∈C(T )

sgn(q)
∑

p∈R(T )

α3−ν(pqσ) =


(1 + α)(1− α) for σ = (1) or (12),

−(1 + α)(1− α) for σ = (13) or (123),

0 for σ = (23) or (132).

Example 3.3. For T = 1 2 ·· n Proposition 3.1 says

∑
σ∈Sn

αn−ν(σ) =
n−1∏
j=1

(1 + jα). (9)

For a sequence (i1, . . . , in) ∈ [n]n and a numbering T , we define

v
(α)
T (i1, . . . , in) =D(α)(i1, . . . , in) · cT (10)

=
∑

q∈C(T )

sgn(q)
∑

p∈R(T )

D(α)(iqp(1), . . . , iqp(n)),

where cT =
∑

q∈C(T ) sgn(q)
∑

p∈R(T ) qp is the Young symmetrizer.

Corollary 3.4. Let λ ` n. For each sequence (i1, . . . , in) ∈ [n]n and numbering
T of shape λ, we have

v
(α)
T (i1, . . . , in) = fλ(α)v

(0)
T (i1, . . . , in). (11)

Proof. For a numbering T of shape λ , denote by W
(α)
T the space spanned by

{v(α)
T (i1, . . . , in) | i1, . . . , in ∈ [n]} . Since the Schur module Eλ is isomorphic to the

image of the map (Cn)⊗n → (Cn)⊗n given by cT for any numbering T , it follows

from Proposition 2.4 and (10) that W
(α)
T is isomorphic to {0} or Eλ . If (11) is

proved for a certain sequence (j1, . . . , jn) satisfying v
(0)
T (j1, . . . , jn) 6= 0, (11) holds

for any (i1, . . . , in) ∈ [n]n because W
(α)
T is the cyclic module U(g)v

(α)
T (j1, . . . , jn)

and the action of g is independent of α .
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We prove (11) for the case where (i1, i2, . . . , in) = (1, 2, . . . , n). Then we
have

v
(α)
T (1, . . . , n) =

∑
q∈C(T )

sgn(q)
∑

p∈R(T )

∑
σ∈Sn

αn−ν(σ)xqpσ(1),1 · · ·xqpσ(n),n

=
∑

σ∈Sn

 ∑
q∈C(T )

sgn(q)
∑

p∈R(T )

αn−ν(pqσ)

 xσ(1),1 · · ·xσ(n),n.

By Proposition 3.1 we see that

v
(α)
T (1, . . . , n)

= fλ(α)
∑

q0∈C(T )

sgn(q0)
∑

p0∈R(T )

xq0p0(1),1 · · ·xq0p0(n),n = fλ(α)v
(0)
T (1, . . . , n).

If q0 6= q′0 or p0 6= p′0 then q0p0 6= q′0p
′
0 . Indeed, if q0p0 = q′0p

′
0 then C(T ) 3

(q′0)
−1q0 = p0(p

′
0)
−1 ∈ R(T ). But, since C(T ) ∩ R(T ) = {(1)} , we have q0 = q′0

and p0 = p′0 . Hence

v
(0)
T (1, . . . , n) =

∑
q0∈C(T )

sgn(q0)
∑

p0∈R(T )

xq0p0(1),1 · · ·xq0p0(n),n 6= 0

and so we have proved the corollary.

Example 3.5. For T = 1 3
2

, we have

v
(α)
T (1, 2, 1) =D(α)(1, 2, 1) · ((1) + (13)− (12)− (132))

=2D(α)(1, 2, 1)−D(α)(2, 1, 1)−D(α)(1, 1, 2)

=(1 + α)(1− α)(2x11x22x13 − x21x12x13 − x11x12x23).

Example 3.6. For T = 1 2
3 4

, we have

v
(α)
T (1, 2, 2, 4)

= D(α)(1, 2, 2, 4) + D(α)(1, 2, 4, 2)− 2D(α)(1, 4, 2, 2) + D(α)(2, 1, 2, 4)

+ D(α)(2, 1, 4, 2)− 2D(α)(2, 2, 1, 4)− 2D(α)(2, 2, 4, 1) + D(α)(2, 4, 1, 2)

+ D(α)(2, 4, 2, 1)− 2D(α)(4, 1, 2, 2) + D(α)(4, 2, 1, 2) + D(α)(4, 2, 2, 1)

=(1 + α)(1− α)(x11x22x23x44 + x11x22x43x24 − 2x11x42x23x24 + x21x12x23x44

+ x21x12x43x24 − 2x21x22x13x44 − 2x21x22x43x14 + x21x42x13x24

+ x21x42x23x14 − 2x41x12x23x24 + x41x22x13x24 + x41x22x23x14).

For a semi-standard tableau S and a standard tableau T of the same shape,
we define the sequence i(S,T ) = (i

(S,T )
1 , . . . , i

(S,T )
n ) as follows. For each k , we let Bk

be the box numbered by k in T and denote by i
(S,T )
k the number in box Bk of S .

For example, for

S =
1 2 2 3
3 3 4
4 6

and T =
1 3 5 6
2 4 9
7 8

,

we have i(S,T ) = (1, 3, 2, 3, 2, 3, 4, 6, 4). Put v
(α)
S,T = v

(α)
T (i(S,T )).
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Example 3.7.

v
(α)
S,T =2D(α)(1, 2, 1)−D(α)(2, 1, 1)−D(α)(1, 1, 2) for (S, T ) =

(
1 1
2

, 1 3
2

)
,

v
(α)
S,T =D(α)(1, 3, 2)−D(α)(3, 1, 2) + D(α)(2, 3, 1)−D(α)(2, 1, 3)

for (S, T ) =
(

1 2
3

, 1 3
2

)
,

v
(α)
S,T =D(α)(1, 2, 3)−D(α)(2, 1, 3) + D(α)(3, 2, 1)−D(α)(3, 1, 2)

for (S, T ) =
(

1 3
2

, 1 3
2

)
.

Example 3.8. For

S = T =

1
2
:
n

we have v
(α)
S,T =

∑
q∈Sn

sgn(q)D(α)(q(1), . . . , q(n)) =
∏n−1

j=1 (1− jα) det(X).

Finally, we obtain the following theorem.

Theorem 3.9. Denote by W
(α)
T the image of the map V

(α)
n → V

(α)
n given by cT

for each standard tableau T of shape λ ` n. Then V
(α)
n =

⊕
λ`n

⊕
T W

(α)
T , where

T run over standard tableaux, and

W
(α)
T

∼= fλ(α)Eλ =

{
{0} for α ∈ {1, 1

2
, . . . , 1

λ′1−1
,−1,−1

2
, . . . ,− 1

λ1−1
},

Eλ otherwise.

When W
(α)
T

∼= Eλ , the v
(α)
S,T = fλ(α)v

(0)
S,T , where S run over all semi-standard

tableaux of shape λ with entries in [n], form a basis of W
(α)
T . Further, the vector

v
(α)
S,T is the highest weight vector of W

(α)
T if all entries in the r -th row of S are r ,

and v
(α)
S,T is the lowest weight vector if entries in each r -th column of S are given

as n− λ′r + 1, . . . , n− 1, n from the top.

Proof. By Proposition 2.4, it is clear that V
(α)
n =

⊕
λ

⊕
T W

(α)
T and each W

(α)
T

is {0} or isomorphic to Eλ . The space W
(α)
T is generated by v

(α)
T (i1, . . . , in),

where (i1, . . . , in) ∈ [n]n . Since W
(0)
T

∼= Eλ by (4), it follows from Corollary 3.4

that W
(α)
T

∼= Eλ unless fα(λ) = 0. It is easy to see that fα(λ) = 0 if and only if
α = 1/k for 1 ≤ k ≤ λ′1 − 1 or α = −1/k for 1 ≤ k ≤ λ1 − 1.

Suppose W
(α)
T

∼= Eλ . Elements {v(0)
S,T | S are semi-standard tableaux}

are linearly independent. In fact, for any semi-standard tableau S0 , the term
D(0)(i(S0,T )) = x

i
(S0,T )
1 ,1

· · ·x
i
(S0,T )
n ,n

appears only in v
(0)
S0,T among all v

(0)
S,T . Since the

dimension of Eλ is equal to the number of semi-standard tableaux of shape λ , the
v

(α)
S,T = fλ(α)v

(0)
S,T form a basis of W

(α)
T . It is immediate to check the last claim.
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Theorem 3.9 says that {D(α)(i1, . . . , in) | i1, . . . , in ∈ [n]} are linearly
independent if α ∈ C \ {±1/k | k = 1, . . . , n − 1} . Theorem 1.1 follows from
Theorem 3.9 immediately.

A trick of doubling the variables ([3], [11]) suggests the following corol-
lary. In fact, since dimC(Eλ ⊗ (Eλ)∗)sln(C) = 1, we can express det(X)2 by α-
determinants except a finite number of α .

Corollary 3.10. Let α ∈ C \ { 1
k
| 1 ≤ k ≤ n−1

2
}. Then there exists λ ` n

such that fλ(α) 6= 0, which has the following property; for any standard tableau

T of shape λ there exists a sln(C)-intertwining operator A(α) : (W
(α)
T )∗ → W

(α)
T

satisfying A(α)((v
(α)
T,T )∗) = v

(α)
T,T and

det(X)2 = fλ(α)−2
∑

S

v
(α)
S,T · A

(α)((v
(α)
S,T )∗). (12)

Here the sum runs over all semi-standard tableaux S of shape λ and (v
(α)
S,T )∗ are

defined by (v
(α)
S,T )∗(v

(α)
S′,T ) = δS,S′ . More precisely, one may take

λ = (

n
2︷ ︸︸ ︷

2, 2, . . . , 2) if n is even or λ = (

n−1
2︷ ︸︸ ︷

2, . . . , 2, 1) if n is odd,

which satisfies the condition.

Proof. For α and λ in the corollary, it is easy to see that fλ(α) 6= 0. Con-

sider a standard tableau T of shape λ . Then we see that W
(α)
T = W

(0)
T and

(v
(α)
S,T )∗ = fλ(α)−1(v

(0)
S,T )∗ . Suppose the corollary is true for α = 0. Using the in-

tertwining operator A(0) , we define A(α) by A(α) = fλ(α)2A(0) . Then we see that

A(α)((v
(α)
T,T )∗) = fλ(α)2A(0)(fλ(α)−1(v

(0)
T,T )∗) = v

(α)
T,T and∑

S

v
(α)
S,T · A

(α)((v
(α)
S,T )∗) = fλ(α)2

∑
S

v
(0)
S,T · A

(0)((v
(0)
S,T )∗) = fλ(α)2 det(X)2.

It is hence sufficient to prove the corollary for the case α = 0.

In general, for a finite-dimensional irreducible U(sln)-module V and its
dual module V ∗ ,

I =
∑

i

vi ⊗ v∗i ∈ V ⊗ V ∗

defines an invariant of sln(C), see [3]. Here vi are a basis of V and v∗i are
the dual basis, i.e, v∗i (vj) = δij . Let λ be a partition whose parts are 1 or 2.

Then V = W
(0)
T

∼= Eλ is self-dual, i.e., V ∗ ∼=sln(C) V . Therefore there exists

an intertwining operator A′ from V ∗ to V . Then the polynomial
∑

S v
(0)
S,T ·

A′((v
(0)
S,T )∗) ∈ P(Matn×n) of degree 2n determined by I is an invariant of sln

and hence ∑
S

v
(0)
S,T · A

′((v
(0)
S,T )∗) = c det(X)2 (13)

for some constant c . Comparing the coefficients of x2
11 · · ·x2

nn in both sides in (13),

we have A′((v
(0)
T,T )∗) = cx11 · · ·xnn = cv

(0)
T,T and so c 6= 0. Hence A(0) = c−1A′ is

our desired operator.
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Example 3.11. Let T = 1 2 . The module W
(α)
T has a basis consisting of

v+ = v
(α)
1 1 , 1 2 = 2D(α)(1, 1), v = v

(α)
1 2 , 1 2 = D(α)(1, 2) + D(α)(2, 1), v− = v

(α)
2 2 , 1 2 =

2D(α)(2, 2) if α 6= −1. The linear map A determined by

A(v∗+) = −1

2
v−, A(v∗) = v, A(v∗−) = −1

2
v+

from (W
(α)
T )∗ to W

(α)
T defines an intertwining operator of sl2(C). Hence, by the

corollary, we have

(1 + α)2 det(X)2 =v+ · A(v∗+) + v · A(v∗) + v− · A(v∗−) = v2 − v+ · v−
=(D(α)(1, 2) + D(α)(2, 1))2 − 4D(α)(1, 1)D(α)(2, 2).

4. Concluding remarks

4.1. Quantum analogue.

We give here a brief comment on a possible generalization of our theorems
to the quantum group Uq(gln) because it produces new interesting phenomena
that have never appeared in the classical case.

Define the quantum α-determinant by

detα,q(X) =
∑

σ∈Sn

qinv(σ)αn−ν(σ)xσ(1)1 · · ·xσ(n)n, (14)

where inv(σ) is the inversion number of σ ; inv(σ) = #{(i, j) | 1 ≤ i < j ≤
n, σ(i) > σ(j)} . In particular, detq(X) = det−1,q(X) is the (usual) quantum

determinant, see e.g. [4]. We define quantum analogue v
(α,q)
S,T of the element

v
(α)
S,T by the q -Young symmetrizers studied by Gyoja [2]. For each standard

tableau T , denote by W
(α,q)
T the quantum analogue of W

(α)
T given by the q -Young

symmetrizer. Let λ be a partition of n and let T1, . . . , Td be all standard tableaux
of shape λ , where d = fλ . Let v

(α,q)
k = v

(α,q)
Sk,Tk

be the highest weight vector of each

W
(α,q)
Tk

. Then there exists a d× d matrix Fλ(α; q) such that

(v
(α,q)
1 , . . . , v

(α,q)
d ) = (v

(0,q)
1 , . . . , v

(0,q)
d )Fλ(α; q).

In the classical case, as we have seen in Corollary 3.4, Fλ(α; 1) is the scalar matrix
fλ(α)I . It is observed, however, Fλ(α; q) is not, in general, a scalar matrix, not
even a diagonal matrix, see [6]. Therefore, it is necessary to find a new basis
other than the one obtained by the q -Young symmetrizers in order to diagonalize
Fλ(α; q). In particular, one notes that the q -Young symmetrizer does not provide
a formula like (6) in Proposition 3.1 in the quantum group case.

4.2. Immanant.

Recall the immanant. For a partition λ of n , the λ-immanant of X is
defined by

Immλ(X) =
∑

σ∈Sn

χλ(σ)
n∏

i=1

xiσ(i).
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Then, if we use the formula (8), we find the cyclic module U(gln)Immλ(X) is
decomposed as U(gln)Immλ(X) ∼= (Eλ)⊕fλ

as in the case of α-determinants. Also,
since the function σ → νn(σ) is a class function, the α-determinant is expanded
by immanants;

detα(X) =
∑
λ`n

fλ

n!
fλ(α)Immλ(X)

by (7). Combining these facts, we have V
(α)
n

∼=
⊕

λ`n
fλ(α) 6=0

(Eλ)⊕fλ
. This agrees with

Theorem 1.1. However, if we consider the quantum group case, this discussion can
not be applied, because the function σ 7→ inv(σ) appeared in (14) is not a class
function.

4.3. The case where α = ∞.

We consider the case “α = ∞” and describe the irreducible decomposition
of V

(∞)
n . Since detα(X) is a polynomial of degree n − 1 in variable α , we can

define a limit

det∞(X) = lim
|α|→∞

α1−ndetα(X) =
∑

σ∈Sn
νn(σ)=1

xσ(1),1 · · ·xσ(n),n. (15)

For example,

det∞

x11 x12 x13

x21 x22 x23

x31 x32 x33

 = x21x32x13 + x31x12x23.

Denote by V
(∞)
n the cyclic module U(g)det∞(X). Then we have the following

irreducible decomposition of V
(∞)
n as a corollary of Theorem 3.9.

Corollary 4.1.

V (∞)
n

∼=
⊕

λ:hook

(Eλ)⊕fλ

=
n⊕

k=1

(
E(k,1n−k)

)⊕(n−1
k−1)

,

where λ run over all hook partitions of n.

Proof. The degree of polynomial fλ(α) ∈ Z[α] is equal to n − d , where
d is the number of the main diagonal of the Young diagram λ . Therefore
lim|α|→∞ α1−nfλ(α) is zero unless d = 1, i.e., λ is a hook. For a hook λ = (k, 1n−k),
the number fλ is given by the binomial coefficient

(
n−1
k−1

)
. Hence, the claim follows

from Theorem 3.9.

Example 4.2. When n = 5,

V
(∞)
5

∼= E(5) ⊕
(
E(4,1)

)⊕4 ⊕
(
E(3,1,1)

)⊕6 ⊕
(
E(2,1,1,1)

)⊕4 ⊕ E(1,1,1,1,1).
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Remark 4.3. By (9), for each α > 0, we can define a probability measure

M
(α)
n on Sn by

M(α)
n (σ) =

αn−νn(σ)∏n−1
j=1 (1 + jα)

for each σ ∈ Sn .

This is called the Ewens measure in [5] but the definition is slightly different from

ours. It is clear that M
(1)
n is the uniform measure on Sn and M

(0)
n = limα→0+ M

(α)
n

is the Dirac measure at the identity. Also we see that

M(∞)
n (σ) = lim

α→+∞
M(α)

n (σ) =

{
1/(n− 1)! if νn(σ) = 1,

0 otherwise.

Given a matrix X with non-negative entries xij , define a random variable Xσ

by Xσ =
∏n

i=1 xiσ(i) on Sn . Then for α ∈ [0, +∞] the α-determinant of X is

essentially the mean value of Xσ with respect to M
(α)
n :

detα(X) =
n−1∏
j=1

(1 + jα)
∑

σ∈Sn

XσM
(α)
n (σ) for 0 ≤ α < +∞,

det∞(X) =(n− 1)!
∑

σ∈Sn

XσM
(∞)
n (σ).
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