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Abstract.  The alpha-determinant unifies and interpolates the notion of the
determinant and permanent. We determine the irreducible decomposition of the
cyclic module of gl,(C) defined by the alpha-determinant. The degeneracy of
the irreducible decomposition is determined by the content polynomial of a given
partition.
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1. Introduction

Let X = (z45)1<ij<n be a matrix with commutative variables z;;. For a complex
number «, the a-determinant of X is defined by

n

deto(X) = Z (@) Hl'ia(i)a

ceS, i=1

where &,, is the symmetric group of degree n and v, (¢) stands for the number of
cycles in the cycle decomposition of a permutation ¢ € &,,. The a-determinant is
nothing but the permanent if & = 1 and the (usual) determinant if « = —1, and
hence, it interpolates these two. It appears as a coefficient in the Taylor expansion
of the power det(I —aX)~"/® of the characteristic polynomial of X and defines a
generalization of the boson, poisson and fermion point processes, see [9, 10]. Also,
its Pfaffian analogue has been developed in [§].

It is a natural question whether the a-determinant can be interpreted as an
invariant like the usual determinant (and also the g-determinant in quantum group
theory). Denote by P(Mat,x,) the ring of polynomials in variables {z;;}1<; j<n-
Let {E;j}<ij<n be the natural basis of the Lie algebra g = gl,(C). When n = 2
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and « # 0, consider the linear map pga) of gly(C) on P(Mat,,x,) determined by
1

V-
(a)

1 a
Py (Ba1) =——= (—ax21011 + T22012) , pé )(E22) =T91091 + T22022,

Pga)(En) =211011 + T12012, Pga)(Em) = (%1521 - Oé$12322) )

|
Q

where 0;; = 5. Then py~ defines a representation of gl,(C) and

P (Ey)deta(X) = detq(X),

péa)(Eij)deta(X ) = 0 for ¢ # j. This is not, however, true for n > 3. Precisely,
although the map p{*) given by p£f‘>(Eij) = S, BliH=lI= g, 05, where 3 =
v—a, defines a representation of gl,(C) on P(Matyy,), pi™ (Ey)deta(X) # 0,
(1 # j) in general. (One can actually show that p%a) is equivalent to the usual
action of gl,(C) determined by p(E;;) = pngl)(Eij) = i TipOjr on P(Mat,x,,)
when a # 0. Indeed, the map f(z;;) — f(3"77z;;) is the intertwining operator
from (p, P(Matyxn)) to (o5, P(Matnxyn)).)

Then, a question which subsequently arises is what the structure of the
smallest invariant subspace of P(Mat,,x,) which contains det, (X) is. Thus, the
aim of the present paper is to investigate a cyclic module V;\® = U (g)detq(X),
under the representation p on P(Mat,,) for each a € C. Clearly, VY s the
one-dimensional determinant representation.

We adopt the notations for partitions used in [7] and for representations
of gl,,(C) used in [1] and [11]. A partition A is a weakly decreasing sequence
A = (A1, Ag, ... ) of non-negative integers such that A\; = 0 for sufficiently large j.
We usually identify a partition A with the corresponding Young diagram. Write
AbEmnif 30,0, A; =n and denote by X' = (A}, Ay, ...) the conjugate partition of
M. Let E* denote the Schur module (or called the Weyl module) corresponding
to A and f* the number of standard tableaux of shape \.

The following is our main result, which describes the irreducible decompo-
sition of V.

Theorem 1.1. For k=1,2,...,n—1,

1 _1
Vi = BEN and VP = BN (1)
An, An,
X <k A1<k
For a € C\ {£1,+3,...,+-15},
V(@) o (C)®n @(E’\)@JM. (2)
AFn

Example 1.2. When n = 3 the irreducible decomposition of Vi s given by

4

E®) if o =1,
E® @ EZY ¢ BV if o =1,
Vi) = ¢ pliy it =1,
E(271) EB E(Qvl) @ E(lvlvl) 1f o= —%’
E®) ¢ EGD ¢ EGYD @ EOLD - otherwise.
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Note that each Schur module possesses a canonial basis formed by a-
determinants (see Theorem 3.9). Although the a-determinant is not an invariant,
this fact implies that it has a rich symmetry.

Acknowledgement

We would like to thank Kazufumi Kimoto for his helpful comments.

2. The U(gl,)-module V,!”)
Let Vi = p(U(gl,))deta(X). Put [n] = {1,2,...,n} and

mzjl l’ilg . xiln

o , Tisl  Tig2 -+ Tign
D(O‘)(zl, G2y ...y 0p) = dety i

xinl x’ing Ce xinn

for any i, ...,i, € [n]. In particular, det,(X) = D)(1,2,...,n). We abbreviate
p(E;j) to E;; for simplicity. When there is no fear of confusion, we abbreviate v,
to v.

Lemma 2.1.

n
Epy - D@y, ... i) = Z 0i ¢ D (in, .. ik, Dy kgt - -+ s ). (3)
k=1

Proof. It is straightforward. In fact,

n

qu . D(a) (il, ce ,Zn> Z Z a™ —( LL’“J 1) Tipo(n)

j=1 J se6,
o —_—
= E > a" § pjOinaOo(k) i Tira(1) *** Tira(k) * " * Tino(n)
j*l O'EGTL
n—v(o) o
= E 5% q E Q (@) Lpo(k)Liro(1) " " Tigo(k) """ Lipo(n)
O’GGn

= Z Oin gD (i, i1, Dy iktts - in),

where 7;; stands for the omission of ;. |

Example 2.2.  Wesee that Ey -D(®(4,1,2,1)=D()(4,2,2,1)+D((4,1,2,2),
Ey - D@ (4,1,2,1) = 2D (4,1,2,1), and Ey3- D (4,1,2,1) = 0.

The symmetric group &,, acts also on V) from the right by
D(a)(il, e ,in) 0 = D(a)<ig(1), Ce ,ig(n)).
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Lemma 2.3.  The space V,\*) is the complex vector space spanned by
{D(o)(il, . 72n> | il, c.. ,in (- [n]}

Proof.  Since the vector space spanned by all D) (i;,...,4,) contains rAS

by Lemma 2.1, we prove that all D (i;,...,4,) are contained in V. For
1 <p<q<n, we have

V@ 5 (BB, —1)-D9(1,2,...,n) = D (r(1),...,7(n)),

where 7 is the transposition (p,q) of p and ¢. It follows that, for each o € &,,,
D@ (g(1),...,0(n)) =Y -D@W(1,....,n) for some Y =Y, € U(g). For any
1 <ip <iyp < -+ <, < n, suppose there exists X = X, ; € U(g) such
that D@ (iy,...,i,) = X - D@(1,...,n). For any ji,...,j5, € [n], we have
D@y, ..., jn) = D@ (io(1)s - - - lo(n)) for some o € &,, and iy < --- <i,,. Hence,
since the action of gl,,(C) and of &,, commute, we see that

D(a)(jl,vjn) = D(a)<21777/n> .o
—(X-D™(1,...,n)) -0 =X - (DY(,...,n)-0) = XY - D(1,... n)

and D@ (j;,...,4,) is contained in V. Therefore it is sufficient to prove
D@ (iy, ... in) € Vi for iy < - < iy
For any sequence (iy,...,4,) such that iy <k for any k, we have

D (i1 iy, ... ip) = Fi p-- EiyoFiy - D9(1,2,...,n) € V@),

In fact, by Lemma 2.1, we see that Ejj - D (iy,... i1,k k +1,...,n) =
D@ (i, . ig_1,ig, k4 1,...,n) because i; < --- < ip_y < k forany 1 <k <n.
Suppose there exists k such that i; < j for any j < k and ¢ > k. We prove
D@ (i, ... iy,) € Vi for such sequences (i1,...,1,) by induction with respect to
the lexicographic order. Since i1 < -+ < 1 <k <ip —1 <t <--- <4, and
D(a)(il, ey 1y — Ly, ooy 0y) € Vn(a) by the induction assumption, we have
D@ (iy, . i in) = By a1 - D@y, . ig—1,.. . ip) € Vi by Lemma 2.1.
Hence we obtain our claim. [ ]

The universal enveloping algebra U(g) of g = gl,(C) acts on the n-tensor
product (C")*" =C" ® --- ® C" from the left by

qu'<ei1®' . .®ein) = Z €, R - '®qu€z’k®' SRe; = Z 5ik,qez‘1®' CRe,R- Qe
k=1 k=1

where {ej}}_, is the natural basis of C". ;From this fact together with Lemma
2.1 and Lemma 2.3, we have the

Proposition 2.4.  Let ® be the linear map from (CM®™ to Vi) defined by
(I),(Ia)(eil R R ein) = D(a)(il, Ce ,Zn)

for each iy, ..., i, € [n]. Then ) s a U(g) -module homomorphism. In partic-
ular, Vi is isomorphic to a quotient module (C™)®n /Ker ) of (Cmyem.
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Notice that, when a = 0, the homomorphism <I>$LO)(eil ®- Qe =
DOy, ... i,) = 4124, is clearly bijective, and therefore VO =~ (Cm)en
Hence we have the irreducible decomposition of Vn(o) as

VO = P (4)

AFn

The symmetric group &,, acts on (C™)®" from the right by (e;, ®---®e; ) -0 =

i,y @ B €, for any 0 € G,,.

3. A formula for the number of cycles

A numbering of shape A F n is a way of putting distinct elements in [n] in each
box of the Young diagram A. Let R(T) be the row group (or called the Young
subgroup) of a numbering represented by a tableau T', i.e., permutations in R(T")
permutate the entries of each row among themselves. The column group C(T) is
also defined similarly.

Recall the Frobenius notation (aj,as,...,aq|b1,be,...,by) of a partition \,
where a; = \; —i > 0 and b; = X, —¢ > 0 for 1 < i < d. Then the content
polynomial fy(«) ([7, I-1]) for the partition A is written as

KAW)ZII{ITH+J@%Iiﬂ—j®}- (5)

i=1 \j=1 j=1

Note that fy(«) satisfies fy(a) = fv(—a). We have the following formula for the
number v = v, of cycles.

Proposition 3.1.  Let T be a numbering of shape A\ = n. Then

Z sgn(q Z o vpa) (6)

qEC(T) peR
_ [sgn(a)fi(a) Zfa — qopo for some gy € C(T) and po € R(T),
0 otherwise.

Proof. The formula

0@ =3 p (a)o(o) (7)

is a specialization of the Frobenius character formula, see [7, I-7, Example 17].
Here x* is the irreducible character of &,, corresponding to . Moreover, for a
numbering T of shape A and a partition pu, the well-known equation

n!
XH e = 5,\7MFCT (8)

in the group algebra C&,, holds, which is obtained by Young. Here cy is the

Young symmetrizer
er= ) seule) ) ap
qeC(T) peER(T)
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Define ¢ =Y, ce, @" 7o € C[S,]. It follows from (7) that
Do =D i %fﬂ(a)xﬂ. Hence by (8) we have

burer = 0 Lol rer = flader

pEn

In other words,

Z Z sgn(q) Z a””’(”q")azf)\(a) Z sgn(q Z qp.

c€6y qeC(T) pER(T) qeC(T) pER(T

This gives our desired formula. [ ]

Example 3.2. When 7' = we have
(1+a)(1—a) foro=(1 (12),

) or
Z sgn(q Z ¥ ) = L (14 a)(1—a) for o= (13) or (123),
4€C(T) pER(T 0 for o = (23) or (132).

Example 3.3. For T'=|1][2].-|n| Proposition 3.1 says

> 1:[(1 + ja). (9)

For a sequence (iy,...,7,) € [n|" and a numbering 7', we define
oSy, i) =D (i, z'n) o (10)
= Z sgn(q Z D¥(i, o lgpn)),
qeC(T) peER(T

where cr = > Coir) S810(q) D e pery g is the Young symmetrizer.

Corollary 3.4.  Let A+ n. For each sequence (i1, ...,i,) € [n]" and numbering
T of shape X, we have

VO (i, i) = @0 s ). (11)

Proof.  For a numbering T of shape A\, denote by WT(,O‘) the space spanned by
{U(TO‘) (i1, ,in) | i1, ..., in € [n]}. Since the Schur module E* is isomorphic to the
image of the map (C")®" — (C™)®™ given by ¢z for any numbering T, it follows
from Proposition 2.4 and (10) that W}a) is isomorphic to {0} or E*. If (11) is
proved for a certain sequence (j1,. .., jn) satisfying U(TO) (J15---5Jn) # 0, (11) holds
for any (iy,...,4,) € [n]" because W}a) is the cyclic module U(g)v(Ta) (J1s -+ Jn)
and the action of g is independent of «.
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We prove (11) for the case where (iy,1s,...,4,) = (1,2,...,n). Then we

have
Ugwa)(l, R ,n) = Z SgIl Z Z a” ¥ l’qu 1 Lgpo(n),n

qeC(T) pER(T) 0€6,
=D | D sen(a Z Q") g1 Ty
c€6n \qeC(T) peER(T

By Proposition 3.1 we see that

U(Ta)(l,...,n)
=A@ > sen(@0) D e Tapomn = M@ (1, n).
q0€C(T) po€R(T)

If g0 # g or po # py then qopo # qph. Indeed, if qopo = qjpy then C(T) >
(¢0)Yq0 = po(ph)~* € R(T). But, since C(T) N R(T) = {(1)}, we have gy = g
and po = p. Hence

0
U;)(l, BONOES Z sgn(qo) Z Laopo(1),1 " * Lgopo(n).n 7 0

q0€C(T) po€R(T)

and so we have proved the corollary. [ |

Example 3.5. For T' = , we have

o{(1,2,1) =D (1,2,1) - (1) + (13) — (12) — (132))
=2D@(1,2,1) — D®(2,1,1) — D(1,1,2)
2(1 + a)(l - OZ)(25E11$22$13 — T21T12013 — $11$12$23)-
Example 3.6. For T' = = , we have
u$(1,2,2,4)
= D9(1,2,2,4) + D(1,2,4,2) — 2D (1,4,2,2) + D'*(2,1,2,4)
+ D9(2,1,4,2) —2D®(2,2,1,4) — 2D'®(2,2,4,1) + D@ (2,4,1,2)
+ D(2,4,2,1) — 2D (4,1,2,2) + D'®(4,2,1,2) + D®(4,2,2,1)
=(1 + a)(1 — @) (11202723% 44 + V1102743724 — 2711 T42T23T24 + T21T12T23T 44
+ T21X19043%24 — 2X21T22X13T 44 — 2T21X22T43% 14 + T21T42713T24
+ D91 249T93714 — 2T41T12T03T 24 + T41T22T13T24 + T41T22T23T14).

For a semi-standard tableau S and a standard tableau 7' of the same shape,
we define the sequence ¢*37) = (igS’T), o '%S’T)) as follows. For each k, we let Bj,
be the box numbered by &k in T" and denote by i,gS’T) the number in box By of §.
For example, for

112[2]3] 113]5]6]
S=[33]4 and T=[214]9] ,
416 718
we have 57) = (1,3,2,3,2,3,4,6,4). Put viy = of (557,
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Example 3.7.

0§ =2D)(1,2,1) = D(2,1,1) = DW(1,1,2) for (8,7) = ([, 1),
v§ =D(1,3,2) — D'(3,1,2) + D*)(2,3,1) — D(2,1,3)

for (8.7) = (2, [3Y),

v§y =D@(1,2,3) — D©(2,1,3) + D®)(3,2,1) — D(3,1,2)

for (S,T) = ( )

Example 3.8. For

we have Uéa% = e sgn(q) D (q(1),. ..

Finally, we obtain the following theorem.

Theorem 3.9.  Denote by W}a) the image of the map ASIN VALY gz’ven by cr
for each standard tableau T of shape A\ =n. Then 7AS =P, D Ta , where
T run over standard tableaux, and

E>  otherwise.

@ {0}y forae{l,L ... = —1,-1 . .. —13
W}):fA(a) A { 2 N —1 2 -1
When W}a) >~ E*, the vga% = f,\(a)vg?)T, where S run over all semi-standard
tableauz of shape A\ with entries in [n], form a basis of W}a). Further, the vector
vga% is the highest weight vector of W}a) if all entries in the r-th row of S are r,

()

and vgp s the lowest weight vector if entries in each r-th column of S are given
asn—XN +1,...,n—1,n from the top.

Proof. By Proposition 2.4, it is clear that V;\”) =P, D, Ta and each W

is {0} or isomorphic to E*. The space W}a) is generated by U(T)(zl, ceyln),
where (i1,...,4,) € [n|". Since W}O) =~ E* by (4), it follows from Corollary 3.4
that W;a) =~ A unless f,(\) = 0. It is easy to see that f,()\) = 0 if and only if
a=1/kfor 1<k< AN —1lora=-1/kfor1<k<X\-—1.

Suppose W}a) ~ F*. Elements {véO)T | S are semi-standard tableaux}
are linearly independent. In fact, for any semi-standard tableau Sy, the term
DO (350 1)y — T sor) 17 Tso) |, Appears only in vg%)j among all vg?)T. Since the
dimension of E* is equal to the number of semi-standard tableaux of shape X, the

véf’% = f,\(a)vg’)gp form a basis of W}O‘). It is immediate to check the last claim. m
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Theorem 3.9 says that {D(iy,...,i,) | 41,...,9, € [n]} are linearly
independent if « € C\ {£1/k | k = 1,...,n — 1}. Theorem 1.1 follows from
Theorem 3.9 immediately.

A trick of doubling the variables (|
lary. In fact, since dimg(E* @ (E*)*)*(©)
determinants except a finite number of «.

3], [11]) suggests the following corol-
= 1, we can express det(X)? by a-

Corollary 3.10. Let a € C\ {% |1 <k < "T_l} Then there exists A\ = n
such that f\(a) # 0, which has the following property; for any standard tableau
T of shape \ there exists a sl,(C)-intertwining operator A : (W}a))* — W}a)

satisfying A ((UT%) )= vrfﬁ% and

det(X)? = fi(e) ™2 vy - AQ((W§n)). (12)
S

Here the sum runs over all semi-standard tableauz S of shape A\ and (vga:)r)* are

defined by (vga%)*(v(;f)T) = g5 . More precisely, one may take

0|3

n—1

2
R — ——

A=1(2,2,...,2) ifniseven or A=(2,...,2,1) if n is odd,

which satisfies the condition.

Proof. For a and X in the corollary, it is easy to see that fy(a) # 0. Con-
sider a standard tableau T of shape A. Then we see that W}a) = }0) and
(vS T) = fala)” (USO)T) . Suppose the corollary is true for v = 0. Using the in-
tertwining operator A(®), we define A(® by A®@ = f,(a)?A©. Then we see that

AL ((059)7) = fila )QA(O)(fA( )~ <v§9%>*>—v(;‘% and

sz A (S ZvST (057)7) = fr(a)? det(X)2.

It is hence sufficient to prove the corollary for the case a = 0.

In general, for a finite-dimensional irreducible U(sl,)-module V' and its
dual module V*,
I=) neueval”
defines an invariant of sl,(C), see [3]. Here v; are a basis of V and v} are
the dual basis, i.e, v}(v;) = d;;. Let X be a partition whose parts are 1 or 2.
Then V = W;O) ~ FA s self dual, ie., V' =4, V. Therefore there exists
an intertwining operator A’ from V* to V. Then the polynomial ) g U(SOE,,-

A’((UST) ) € P(Mat,x,) of degree 2n determined by J is an invariant of sl,

and hence
0 0) \x
S0l A((w§r)) = edet(X)? (13)
S

for some constant ¢. Comparing the coefficients of z%, - - - x2 in both sides in (13),

we have A’((UTO)T)*) = CTy1 Ty = cvg)T and so ¢ # 0. Hence A® = 14" is

our desired operator. [ |
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Example 3.11. Let 7" = [1]3]. The module W}a) has a basis consisting of
vy = ol = 2D (1,1), v = oY = D(1,2) + D®(2,1), v_ = o' =
2D()(2,2) if a # —1. The linear map A determined by

A(vy) = —50- AW*) =v, A(v") = —5U+

from (Wi%)* to Wi defines an intertwining operator of sly(C). Hence, by the
corollary, we have

(1+a)*det(X)? =v; - A(vL) +v - A(W*) +v- - A(v*) = v* — vy -0
=(D@(1,2) + D@(2,1))? — 4D (1,1)D®(2,2).

4. Concluding remarks

4.1. Quantum analogue.

We give here a brief comment on a possible generalization of our theorems
to the quantum group U,(gl,) because it produces new interesting phenomena
that have never appeared in the classical case.

Define the quantum a-determinant by

detq,q(X) = Z ™" Ty, (14)

O’GGn

where inv(o) is the inversion number of o; inv(o) = #{(i,j) | 1 < i < j <
n, o(i) > o(j)}. In particular, det,(X) = det_; ,(X) is the (usual) quantum

determinant, see e.g. [4]. We define quantum analogue vg?}q) of the element

vga% by the ¢-Young symmetrizers studied by Gyoja [2]. For each standard

tableau T, denote by W}Q’Q) the quantum analogue of W}a) given by the ¢-Young
symmetrizer. Let A be a partition of n and let T7,...,T, be all standard tableaux
of shape X\, where d = f*. Let v,(ca’Q) = véiqT),k be the highest weight vector of each

W}Z"q). Then there exists a d X d matrix Fy(«;q) such that
(Uia’Q), . ,Ufla’q)) = (v§0’q), . ,v((jo’q))FA(a; q).

In the classical case, as we have seen in Corollary 3.4, Fy(«; 1) is the scalar matrix
frla)I. Tt is observed, however, F)(«;q) is not, in general, a scalar matrix, not
even a diagonal matrix, see [6]. Therefore, it is necessary to find a new basis
other than the one obtained by the ¢-Young symmetrizers in order to diagonalize
F\(a;q). In particular, one notes that the ¢-Young symmetrizer does not provide
a formula like (6) in Proposition 3.1 in the quantum group case.

4.2. Immanant.

Recall the immanant. For a partition A of n, the A-immanant of X is
defined by

Imm, (X) = Z o) wa(i).

ceS,
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Then, if we use the formula (8), we find the cyclic module U(gl,)Imm,(X) is
decomposed as U(gl,)Imm,(X) 2 (E*)® as in the case of a-determinants. Also,
since the function o — v,(0) is a class function, the a-determinant is expanded
by immanants;

deto(X) =) % Fr(e)Immy (X))

AFn

by (7). Combining these facts, we have Vi =~ @ o (EM)®* . This agrees with
Ia(a)#0
Theorem 1.1. However, if we consider the quantum group case, this discussion can

not be applied, because the function o — inv(c) appeared in (14) is not a class
function.

4.3. The case where a = 0.

We consider the case “a = oco” and describe the irreducible decomposition
of V™). Since deto(X) is a polynomial of degree n — 1 in variable a, we can
define a limit

Y

deto(X) = lim o' "deto(X) = Y Zo)1 To(mn- (15)
o] =00 J(e?
vn(o)=1

For example,

X111 T12 T13
detoo | @21 22 @23 | = 1232713 + T31T12T23.
31 T32 X33

Denote by Vi the cyclic module U (g)detoo(X). Then we have the following
irreducible decomposition of V%) as a corollary of Theorem 3.9.

Corollary 4.1.

00) ~v A\ D fA - k.1n—k @(Z:})
Ve = (B (BN = <E<, >) ’

Athook k=1
where A run over all hook partitions of n.
Proof. The degree of polynomial fi(a) € Z[a] is equal to n — d, where
d is the number of the main diagonal of the Young diagram A. Therefore
limyq| oo @' 7" fr(c) is zero unless d = 1, i.e., A is a hook. For ahook A = (k,1"7%),

the number f* is given by the binomial coefficient (Zj) . Hence, the claim follows
from Theorem 3.9. [ |

Example 4.2. When n =5,

‘/5(00) ~ p0G) g (E(4,1))€94 o (E(3,1,1))@6 o (E(2,1,1,1))EB4 @ ELLLLY.
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Remark 4.3. By (9), for each @ > 0, we can define a probability measure
M on S, by

Qv (o)
M (0) = ——— for each 0 € &,,.
II j=1 (1+ja)
This is called the Ewens measure in [5] but the definition is slightly different from

ours. It is clear that 9 is the uniform measure on S,, and mO — lim, o4 m'e)
is the Dirac measure at the identity. Also we see that

M) () = lim M (o) = {1/(n—1)! if v (o) = 1,

a—+00 0 otherwise.

Given a matrix X with non-negative entries z;;, define a random variable X,
by X, = [\, is(y on &,. Then for o € [0,+00] the a-determinant of X is
essentially the mean value of X, with respect to me

det( Hl—l—ja ZXE))?(“)() for 0 < o < 400,
0'6611
detoo (X DY XM (o
O’GGn
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