Coadjoint Orbits for A_{n-1}^+, B_n^+, and D_n^+

Shantala Mukherjee

Communicated by B. Ørsted

Abstract. A complete description of the coadjoint orbits for A_{n-1}^+, the nilpotent Lie algebra of $n \times n$ strictly upper triangular matrices, has not yet been obtained, though there has been steady progress on it ever since the orbit method was devised. We apply methods developed by André to find defining equations for the elementary coadjoint orbits for the maximal nilpotent Lie subalgebras of the orthogonal Lie algebras, and we also determine all the possible dimensions of coadjoint orbits in the case of A_{n-1}^+.

Mathematics Subject Index 2000: 17B30, 17B35.

Keywords and phrases: Coadjoint orbit, nilpotent Lie algebra.

1. Introduction

The orbit method was created by Kirillov in an attempt to describe the unitary dual \hat{N}_n for the nilpotent Lie group N_n of $n \times n$ upper triangular matrices with 1’s on the diagonal (the unitriangular group). It turned out that the orbit method had much wider applications. In Kirillov’s words:

‘...all main questions of representation theory of Lie groups: construction of irreducible representations, restriction-induction functors, generalized and infinitesimal characters, Plancherel measure, etc., admit a transparent description in terms of coadjoint orbits’ ([6]).

The Lie algebra of N_n is n_n, which consists of all $n \times n$ strictly upper triangular matrices. The group N_n acts on the dual space n_n^* by the coadjoint action, which will be explained later. A complete description of the set of coadjoint orbits $n_n^*/N_n \simeq \hat{N}_n$ in general is still not available, though progress had been made in the case of the unitriangular group over a finite field. André in [2] defined “basic sums” of elementary coadjoint orbits and their defining equations for the unitriangular group over an arbitrary field and showed that the dual space n_n^* is a disjoint union of these basic sums of orbits. Similar results have been obtained by N.Yan, in his work on double orbits and cluster modules ([8]) of the unitriangular group over a finite field. Using André’s results, we determine

* This work is part of the author’s doctoral dissertation, written at the University of Wisconsin-Madison under the supervision of Prof. Georgia Benkart, and financially supported in part by NSF grant #DMS-0245082

ISSN 0949–5932 / $2.50 © Heldermann Verlag
all possible dimensions of the coadjoint orbits of the unitriangular group over \(\mathbb{C} \). Elementary coadjoint orbits (defined later) are in some sense the “smallest” coadjoint orbits. Adapting the methods of André, we derive the defining equations for the elementary coadjoint orbits in the case that the Lie algebra is a maximal nilpotent subalgebra of an orthogonal Lie algebra over the field \(\mathbb{C} \) of complex numbers. The case of the symplectic Lie algebra has so far failed to yield a consistent pattern, therefore it is not discussed here.

2. The Lie algebras \(A^+_{n-1}, B^+_n, D^+_n \)

Let \(L = \mathfrak{sl}_n(\mathbb{C}) \), the Lie algebra of \(n \times n \) complex matrices of trace 0. Let \(E_{ij} \) denote the standard matrix unit with 1 in the \((i, j)\) position and 0 elsewhere. Thus \(L \) has a basis

\[
\{ E_{ij} \mid 1 \leq i \neq j \leq n \} \cup \{ E_{ii} - E_{i+1,j+1} \mid i = 1, \ldots, n - 1 \}.
\]

Relative to the Cartan subalgebra \(\mathfrak{h} \) spanned by the diagonal matrices \(E_{ii} - E_{i+1,j+1}, i = 1, \ldots, n - 1 \); \(L \) decomposes into root spaces (common eigenspaces). Thus

\[
L = \mathfrak{h} \oplus \bigoplus_{1 \leq i \neq j \leq n} L_{\epsilon_i - \epsilon_j},
\]

where \(\epsilon_i : \mathfrak{h} \to \mathbb{C} \) denotes the projection onto the \((i, i)\) entry, and

\[
L_{\epsilon_i - \epsilon_j} = \{ x \in L \mid [h, x] = (\epsilon_i - \epsilon_j)(h)x \forall h \in \mathfrak{h} \} = \mathbb{C}E_{ij}.
\]

The roots \(\epsilon_i - \epsilon_j \) are linear combinations of the simple roots \(\epsilon_1 - \epsilon_2, \epsilon_2 - \epsilon_3, \ldots, \epsilon_{n-1} - \epsilon_n \), and the coefficients are either all nonpositive or all nonnegative integers. The positive roots are given by

\[
\Phi^+(A_{n-1}) = \{ \epsilon_i - \epsilon_j \mid 1 \leq i < j \leq n \}.
\]

Thus, there are \(\frac{1}{2}(n - 1)n \) positive roots.

The sum \(\bigoplus_{\alpha \in \Phi^+(A_{n-1})} L_\alpha \) of the root spaces corresponding to the positive roots is the nilpotent Lie algebra \(\mathfrak{n}_n \) of strictly upper triangular matrices. Here we denote this Lie algebra by \(A^+_{n-1} \). It has a basis of root vectors \(\{ e_\alpha \mid \alpha \in \Phi^+(A_{n-1}) \} \) where \(e_\alpha = E_{ij} \) for \(\alpha = \epsilon_i - \epsilon_j, 1 \leq i < j \leq n \).

Now we establish our conventions for the root systems \(B_n \) and \(D_n \). The following definitions can be found in [4, Sec. 18.1]. Let \(J_m \) be the \(m \times m \) matrix with 1’s along the antidiagonal and 0’s elsewhere. The orthogonal Lie algebra \(\mathfrak{so}_m(\mathbb{C}) \) is the Lie algebra of \(m \times m \) matrices \(X \) satisfying the relation \(X^T J_m + J_m X = 0 \). Thus the matrices in \(\mathfrak{so}_m(\mathbb{C}) \) are antisymmetric about the antidiagonal.

Relative to the Cartan subalgebra \(\mathfrak{h} \) spanned by the diagonal matrices \(E_{ii} - E_{2n+2-i,2n+2-i} \), the odd orthogonal Lie algebra \(L = \mathfrak{so}_{2n+1}(\mathbb{C}) \) decomposes into root spaces

\[
L = \mathfrak{h} \oplus \bigoplus_{1 \leq i \neq j \leq n} L_{\epsilon_i \pm \epsilon_j} \oplus \bigoplus_{1 \leq i \leq n} L_{\epsilon_i},
\]

where \(\epsilon_i : \mathfrak{h} \to \mathbb{C} \) denotes the projection onto the \((i, i)\) entry. The roots are linear combinations of the simple roots \(\epsilon_1 - \epsilon_2, \epsilon_2 - \epsilon_3, \ldots, \epsilon_{n-1} - \epsilon_n, \epsilon_n \), with coefficients
that are either all nonnegative or all nonpositive integers. The positive roots are given by
\[\Phi^+(B_n) = \{ \epsilon_i \pm \epsilon_j \mid 1 \leq i < j \leq n \} \cup \{ \epsilon_i \mid 1 \leq i \leq n \} \]
and \(|\Phi^+(B_n)| = n^2 \).

We partition the set of positive roots into two subsets

Definition 2.1. \(\Phi^+_1(B_n) = \{ \epsilon_i - \epsilon_j \mid 1 \leq i < j \leq n \} \cup \{ \epsilon_i \mid i = 1, \ldots, n \} \)

Definition 2.2. \(\Phi^+_2(B_n) = \{ \epsilon_i + \epsilon_j \mid 1 \leq i < j \leq n \} \)

The sum of spaces \(\bigoplus_{\alpha \in \Phi^+(B_n)} L_\alpha \) is a finite-dimensional nilpotent Lie algebra consisting of all strictly upper triangular matrices of size \(2n + 1 \) which are anti-symmetric about the antidiagonal (and have zeroes on the antidiagonal). We denote this Lie algebra by \(B^+_n \). It has a basis of root vectors \(\{ e_\alpha \mid \alpha \in \Phi^+(B_n) \} \) where

\[
e_\alpha = \begin{cases}
E_{ij} - E_{2n+2-j,2n+2-i}, & \text{if } \alpha = \epsilon_i - \epsilon_j, \ 1 \leq i < j \leq n; \\
E_{i,n+1} - E_{n+1,2n+2-i}, & \text{if } \alpha = \epsilon_i, \ 1 \leq i \leq n; \\
E_{i,2n+2-j} - E_{j,2n+2-i}, & \text{if } \alpha = \epsilon_i + \epsilon_j, \ 1 \leq i < j \leq n.
\end{cases}
\] (1)

Relative to the Cartan subalgebra \(\mathfrak{h} \) spanned by the matrices \(H_i = E_{ii} - E_{2n+1-i,2n+1-i} \), the even orthogonal Lie algebra \(L = \mathfrak{so}_{2n}(\mathbb{C}) \) decomposes into root spaces

\[L = \mathfrak{h} \oplus \bigoplus_{1 \leq i \neq j \leq n} L_{\epsilon_i \pm \epsilon_j} \]

where \(\epsilon_i: \mathfrak{h} \rightarrow \mathbb{C} \) denotes the projection onto the \((i,i) \) entry. The roots are linear combinations of the simple roots \(\epsilon_1 - \epsilon_2, \epsilon_2 - \epsilon_3, \ldots, \epsilon_{n-1} - \epsilon_n, \epsilon_n - 1 + \epsilon_n \), and the coefficients are either all nonnegative or all nonpositive integers. The positive roots are given by

\[\Phi^+(D_n) = \{ \epsilon_i \pm \epsilon_j \mid 1 \leq i < j \leq n \} \]
and \(|\Phi^+(D_n)| = n^2 - 1 \).

The elements of \(\Phi^+(D_n) \) can be partitioned into two subsets:

Definition 2.3. \(\Phi^+_1(D_n) = \{ \epsilon_i - \epsilon_j \mid 1 \leq i < j \leq n \} \),

Definition 2.4. \(\Phi^+_2(D_n) = \{ \epsilon_i + \epsilon_j \mid 1 \leq i < j \leq n \} \)

The sum of root spaces \(\bigoplus_{\alpha \in \Phi^+(D_n)} L_\alpha \) is a finite-dimensional nilpotent Lie algebra consisting of all strictly upper triangular matrices of size \(2n \) which are anti-symmetric about the antidiagonal (and have zeroes on the antidiagonal). We denote this Lie algebra by \(D^+_n \). It has a basis of root vectors \(\{ e_\alpha \mid \alpha \in \Phi^+(D_n) \} \) where

\[
e_\alpha = \begin{cases}
E_{ij} - E_{2n+1-j,2n+1-i}, & \text{if } \alpha = \epsilon_i - \epsilon_j, \ 1 \leq i < j \leq n; \\
E_{i,2n+1-j} - E_{j,2n+1-i}, & \text{if } \alpha = \epsilon_i + \epsilon_j, \ 1 \leq i < j \leq n.
\end{cases}
\] (2)
3. Singular and Regular Roots

For a positive root α in any one of the sets $\Phi^+(A_{n-1}), \Phi^+(B_n)$, or $\Phi^+(D_n)$, we will define two sets: $S(\alpha)$, the set of α-singular roots; and $R(\alpha)$, the set of α-regular roots. The set $S(\alpha)$ is the union of sets of two positive roots which sum up to α.

For a positive root of the form $\epsilon_i - \epsilon_j$, $1 \leq i < j \leq n$, in the sets $\Phi^+(A_{n-1})$, $\Phi^+_1(B_n)$, and $\Phi^+_1(D_n)$, we have

$$S(\epsilon_i - \epsilon_j) = \begin{cases} \bigcup_{k=i+1}^{j-1} \{ \epsilon_i - \epsilon_k, \epsilon_k - \epsilon_j \}, & \text{if } j - i > 1 \\ \emptyset, & \text{otherwise} \end{cases}$$

We see that $|S(\epsilon_i - \epsilon_j)| = 2(j - i - 1)$.

For a positive root of the form ϵ_i, $1 \leq i \leq n$, in $\Phi^+_1(B_n)$ we have

$$S(\epsilon_i) = \begin{cases} \bigcup_{k=i+1}^{n} \{ \epsilon_i - \epsilon_k, \epsilon_k \}, & \text{if } 1 \leq i \leq n - 1 \\ \emptyset, & \text{if } i = n. \end{cases}$$

Here $|S(\epsilon_i)| = 2(n - i)$.

For the roots $\epsilon_i + \epsilon_j$, $1 \leq i < j \leq n$, in $\Phi^+_2(B_n)$ we have:

$$S(\epsilon_i + \epsilon_j) = \bigcup_{k=i+1}^{j-1} \{ \epsilon_i - \epsilon_k, \epsilon_k + \epsilon_j \} \cup \bigcup_{k=j+1}^{n} \{ \epsilon_i - \epsilon_k, \epsilon_j + \epsilon_k \}$$

$$\cup \{ \epsilon_i, \epsilon_j \} \cup \bigcup_{k=j+1}^{n} \{ \epsilon_i + \epsilon_k, \epsilon_j - \epsilon_k \}$$

(3)

Notice that $|S(\epsilon_i + \epsilon_j)| = 2(2n - (i + j))$.

For the positive roots $\epsilon_i + \epsilon_j$, $1 \leq i < j \leq n$, in $\Phi^+_2(D_n)$ we have:

$$S(\epsilon_i + \epsilon_j) = \bigcup_{k=i+1}^{j-1} \{ \epsilon_i - \epsilon_k, \epsilon_k + \epsilon_j \} \cup \bigcup_{k=j+1}^{n} \{ \epsilon_i - \epsilon_k, \epsilon_j + \epsilon_k \}$$

$$\cup \bigcup_{k=j+1}^{n} \{ \epsilon_i + \epsilon_k, \epsilon_j - \epsilon_k \}$$

(4)

In this case, $|S(\epsilon_i + \epsilon_j)| = 2(2n - i - j - 1)$.

For $\alpha \in \Phi^+(A_{n-1}), \Phi^+(B_n)$, or $\Phi^+(D_n)$, we define $R(\alpha)$ to be the complement of the set $S(\alpha)$ in the respective set of positive roots. Clearly, $\alpha \in R(\alpha)$.

4. Elementary Coadjoint Orbits

The definitions and results in this subsection are taken from [2, Sec. 1]. Let Φ^+ denote one of the sets of positive roots $\Phi^+(A_{n-1}), \Phi^+(B_n)$, or $\Phi^+(D_n)$. Let \mathfrak{g} denote the corresponding nilpotent Lie algebra A^+_{n-1}, B^+_n, or D^+_n. The group $G = \exp(\mathfrak{g})$ acts on the dual space \mathfrak{g}^* by the coadjoint action

$$(g.f)(x) = f(g^{-1}xg), \quad \forall g \in G, \; f \in \mathfrak{g}^*, \; x \in \mathfrak{g}.$$
$U(\mathfrak{g})$-modules, constructed as follows: For any f in the G-orbit, a simple \mathfrak{g}-module is obtained by inducing a one-dimensional module of a maximal subalgebra of \mathfrak{g} that is subordinate to f, up to a \mathfrak{g}-module ([3, Thm. 6.1.1]). The annihilator in $U(\mathfrak{g})$ of this module is the primitive ideal $I(f)$ that corresponds to the G-orbit Ω_f of f. By [3, Thm. 4.7.9(iii)], factoring $U(\mathfrak{g})$ by a primitive ideal gives a Weyl algebra \mathcal{A}_m, which is the non-commutative algebra of algebraic differential operators on a polynomial ring $\mathbb{C}[x_1, \ldots, x_m]$.

Definition 4.1. $\mathfrak{g}^f = \{x \in \mathfrak{g} : f([x,y]) = 0 \ \forall y \in \mathfrak{g}\}$ is the radical of the form f.

Then $\dim \mathfrak{g}/\mathfrak{g}^f = \dim \Omega_f = 2m$, where $U(\mathfrak{g})/I(f) = \mathcal{A}_m$.

For any $\alpha \in \Phi^+$, let e^*_α denote the element of the dual vector space \mathfrak{g}^* defined as follows: for any $\beta \in \Phi^+$,

$$e^*_\alpha(\beta) = \begin{cases} 1, & \text{if } \alpha = \beta; \\ 0, & \text{otherwise.} \end{cases}$$

Then $\{e^*_\alpha | \alpha \in \Phi^+\}$ is a basis of \mathfrak{g}^*. Let $c \in \mathbb{C}$ be non-zero. Then, under the coadjoint action of the group $G (= \exp(\mathfrak{g}))$ on \mathfrak{g}^*, the coadjoint orbit $O_\alpha(c)$ that contains the element ce^*_α is called the α-th elementary orbit associated with c. Note that if $f = ce^*_\alpha$, then $\mathfrak{g}^f = \{x \in \mathfrak{g} : f([x,y]) = 0 \ \forall y \in \mathfrak{g}\}$ is spanned by the e_β, $\beta \in R(\alpha)$, so

$$\dim(O_\alpha(c)) = \dim(\mathfrak{g}/\mathfrak{g}^f) = \dim \mathfrak{g} - \dim \mathfrak{g}^f = |\Phi^+| - |R(\alpha)| = |S(\alpha)|. \quad (5)$$

Let t be an arbitrary scalar in \mathbb{C} and let $\beta \in \Phi^+$. Then, the matrix $\exp(te_\beta) \in G$. So, by the definition of the coadjoint representation, we have for any $\gamma \in \Phi^+$:

$$\exp(te_\beta).e^*_\alpha(e_\gamma) = e^*_\alpha(\exp(-te_\beta)e_\alpha\exp(te_\beta))$$

$$= e^*_\alpha(\exp(ad(-te_\beta)(e_\gamma))$$

$$= e^*_\alpha(e_\gamma - t[e_\beta, e_\gamma] + \frac{1}{2}t^2[e_\beta, [e_\beta, e_\gamma]] + \ldots). \quad (6)$$

It is clear that for any simple root $\alpha_i \in \Phi^+$ and any $c \in \mathbb{C}$, the coadjoint orbit containing ce^*_α is equal to $\{ce^*_\alpha\}$, because $ce^*_\alpha([\mathfrak{g}, \mathfrak{g}]) = 0$.

By Prop. 8.2 in [5], any coadjoint orbit is an irreducible variety in \mathfrak{g}^*, so in particular, the elementary coadjoint orbit $O_\alpha(c)$ is an irreducible variety of dimension $|S(\alpha)|$.

André in [1, Lem. 2] describes the elementary orbit $O_\alpha(c)$, for any $\alpha \in \Phi^+(A_{n-1})$ and any non-zero scalar c.

If $g \in G$, then $g.(ce^*_\alpha) = c(g.e^*_\alpha)$, so

$$f \in O_\alpha(c) \ \text{if and only if} \ \frac{1}{c}f \in O_\alpha(1).$$

Thus, it is enough to determine the defining equations for $O_\alpha(1)$. Adapting André’s proof, we obtain the defining equations for elementary orbits $O_\alpha(1)$, where $\alpha \in \Phi^+(A_{n-1}), \Phi^+_1(B_n)$, or $\Phi^+_1(D_n)$:
Theorem 4.2. (a) Let $\alpha = \epsilon_i - \epsilon_j \in \Phi^+(A_{n-1}), \Phi_1^+(B_n)$, or $\Phi_1^+(D_n)$, where $1 \leq i < j \leq n$. Let \mathfrak{g} denote the corresponding nilpotent Lie algebra A_{n-1}^+, B_n^+, or D_n^+. Then $O_\alpha(1)$ consists of all elements $f \in \mathfrak{g}^*$ which satisfy the equations

$$f(e_{e_i}) = \begin{cases} 1, & \text{if } \beta = \alpha; \\ f(e_{i+1} - e_i) f(e_{i-1}, e_i), & \text{if } \beta = e_r - e_s, \ i < r < s < j; \\ 0, & \text{otherwise,} \end{cases}$$

(7)

for $\beta \in R(\alpha)$, and f takes arbitrary values on e_{e_i} for $\beta \in S(\alpha)$.

(b) Let \mathfrak{g} denote the nilpotent Lie algebra B_n^+. For $\epsilon_i \in \Phi_1^+(B_n)$, $1 \leq i \leq n$, the elementary orbit $O_{\epsilon_i}(1)$ consists of all elements $f \in \mathfrak{g}^*$ that satisfy the equations

$$f(e_{e_i}) = \begin{cases} 1, & \text{if } \beta = \epsilon_i; \\ f(e_{i+1} - e_i) f(e_{i-1}, e_i), & \text{if } \beta = e_r - e_s, \ i < r < s \leq n; \\ 0, & \text{otherwise,} \end{cases}$$

(8)

for $\beta \in R(\epsilon_i)$, and f takes arbitrary values on e_{e_i} for $\beta \in S(\epsilon_i)$.

Proof. (a) Let \mathcal{V} be the variety in \mathfrak{g}^* consisting of all $f \in \mathfrak{g}^*$ that satisfy the equations (7) and let $f \in \mathcal{V}$. Then

$$f = \left(\prod_{k=i+1}^{j-1} \exp(f(e_{i+1} - e_k) e_{e_k - e_j}) \right) \prod_{k=i+1}^{j-1} \exp(-f(e_{i+1} - e_k) e_{e_i - e_k}) \cdot e_\alpha^* \in O_\alpha(1),$$

so $\mathcal{V} \subseteq O_\alpha(1)$. To show that equality holds, let $T : \mathcal{V} \rightarrow \mathbb{C}^{2(j-i-1)}$ be the map defined by applying f to pairs in $S(\alpha)$ as follows:

$$T(f) = (f(e_{i+1} - e_{i+1}), f(e_{i+1} - e_j), \ldots, f(e_{i-1} - e_j)).$$

for all $f \in V$. (For example, if $\mathfrak{g} = A_3^+$ and $\alpha = \epsilon_1 - \epsilon_4$, then $T(f) = (f(e_{i+1} - e_2), f(e_{i+1} - e_4), f(e_{i-1} - e_3), f(e_{i-1} - e_4)).$)

Then T is an isomorphism of algebraic varieties, and since $\mathbb{C}^{2(j-i-1)}$ is an irreducible variety, it follows that \mathcal{V} is irreducible and $\dim \mathcal{V} = 2(j-i) - 1$.

The coadjoint orbit $O_\alpha(1)$ is also an irreducible algebraic variety of dimension $2(j-i-1)$, and we have two irreducible varieties \mathcal{V} and $O_\alpha(1)$ of the same dimension and $\mathcal{V} \subseteq O_\alpha(1)$, so it follows that $\mathcal{V} = O_\alpha(1)$.

(b) Let \mathcal{V} be the variety in \mathfrak{g}^* consisting of all $f \in \mathfrak{g}^*$ that satisfy the equations (8). Let $f \in \mathcal{V}$. Then

$$f = \left(\prod_{k=i+1}^n \exp(f(e_{i+1} - e_k) e_{e_k} - e_k) \right) \prod_{k=i+1}^n \exp(-f(e_{i+1} - e_k) e_{e_i - e_k}) \cdot e_\alpha^* \in O_\alpha(1),$$

so $\mathcal{V} \subseteq O_\alpha(1)$. To show that equality holds, let $T : \mathcal{V} \rightarrow \mathbb{C}^{2(n-i)}$ be the map defined by:

$$T(f) = (f(e_{i+1} - e_{i+1}), f(e_{i+1} - e_j), \ldots, f(e_{i-1} - e_{i-1}), f(e_{i-1} - e_n)).$$
for all $f \in \mathcal{V}$.
(For e.g., if $\mathfrak{g} = B_3^+$ and $\alpha = \epsilon_1$, then
\[T(f) = (f(e_{\epsilon_1 - e_2}), f(e_{e_2}), f(e_{\epsilon_1 - \epsilon_3}), f(e_{\epsilon_3})). \]
Then T is an isomorphism of algebraic varieties, and because $\mathbb{C}^{2(n-i)}$ is an irreducible variety, \mathcal{V} is irreducible and $\dim \mathcal{V} = 2(n - i)$.

The coadjoint orbit $O_\alpha(1)$ is also an irreducible algebraic variety of dimension $2(n-i)$. We have two irreducible varieties \mathcal{V} and $O_\alpha(1)$ of the same dimension and $\mathcal{V} \subseteq O_\alpha(1)$, so it follows that $\mathcal{V} = O_\alpha(1)$.

Next, we can describe the defining equations of the elementary orbit $O_\alpha(1)$ for the positive roots $\alpha = \epsilon_i + \epsilon_j, 1 \leq i < j \leq n$ in $\Phi_2^+(B_n)$ or $\Phi_2^+(D_n)$.

Theorem 4.3.
(i) Let $\mathfrak{g} = B_n^+$. For a positive root $\epsilon_i + \epsilon_j, 1 \leq i < j \leq n$ in $\Phi_2^+(B_n)$, $f \in O_{\epsilon_i + \epsilon_j}(1)$ if and only if f satisfies:
\[
\begin{align*}
f(\epsilon_\beta) & = \begin{cases}
1 & \text{if } \beta = \epsilon_i + \epsilon_j; \\
f(\epsilon_{r-e}_s) f(\epsilon_{e_++e_+}) & \text{if } \beta = \epsilon_r - \epsilon_s, \ i \leq r < s \leq j; \\
f(\epsilon_{r-e}_s) \left(\frac{1}{2} f(\epsilon_r) + \sum_{k=j+1}^{n} (-1)^k f(\epsilon_{r-e_k}) f(e_{\epsilon_+e_k}) \right) & \text{if } \beta = \epsilon_r - \epsilon_j, \ i \leq r < j; \\
f(\epsilon_{r-e}_s) f(\epsilon_{e_+e_+}) & \text{if } \beta = \epsilon_r \pm \epsilon_s, \ i < r < j < s \leq n; \\
f(e_{r-e}) f(e_{e_+e_+}) & \text{if } \beta = \epsilon_r \pm \epsilon_s, \ j < r < s \leq n; \\
f(\epsilon_r) f(e_{e_+e_+}) & \text{if } \beta = \epsilon_r, \ j < r \leq n; \\
0 & \text{otherwise,}
\end{cases}
\end{align*}
\]
for all $\beta \in R(\epsilon_i + \epsilon_j)$, and f takes arbitrary values on e_β for all $\beta \in S(\epsilon_i + \epsilon_j)$.

(ii) Let $\mathfrak{g} = D_n^+$. For a positive root $\epsilon_i + \epsilon_j, 1 \leq i < j \leq n$ in $\Phi_2^+(D_n)$, $f \in O_{\epsilon_i + \epsilon_j}(1)$ if and only if f satisfies:
\[
\begin{align*}
f(\epsilon_\beta) & = \begin{cases}
1 & \text{if } \beta = \epsilon_i + \epsilon_j; \\
f(\epsilon_{r-e}_s) f(\epsilon_{e_+e_+}) & \text{if } \beta = \epsilon_r - \epsilon_s, \ i \leq r < s \leq j; \\
f(\epsilon_{r-e}_s) \left(\sum_{k=j+1}^{n} (-1)^k f(\epsilon_{r-e_k}) f(e_{\epsilon_+e_k}) \right) & \text{if } \beta = \epsilon_r - \epsilon_j, \ i \leq r < j; \\
f(e_{r-e}) f(e_{e_+e_+}) & \text{if } \beta = \epsilon_r \pm \epsilon_s, \ i < r < j < s \leq n; \\
f(\epsilon_{r-e}) f(e_{e_+e_+}) - f(e_{\epsilon_+e_+}) f(e_{\epsilon_+e_+}) & \text{if } \beta = \epsilon_r \pm \epsilon_s, \ j < r < s \leq n; \\
0 & \text{otherwise,}
\end{cases}
\end{align*}
\]
for all $\beta \in R(\epsilon_i + \epsilon_j)$, and f takes arbitrary values on e_β for all $\beta \in S(\epsilon_i + \epsilon_j)$.
Proof. (i) Recall that

\[
S(\epsilon_i + \epsilon_j) = \bigcup_{k=i+1}^{j-1} \{\epsilon_i - \epsilon_k, \epsilon_k + \epsilon_j\} \cup \bigcup_{k=j+1}^{n} \{\epsilon_i - \epsilon_k, \epsilon_j + \epsilon_k\} \\
\cup \{\epsilon_i, \epsilon_j\} \cup \bigcup_{k=j+1}^{n} \{\epsilon_i + \epsilon_k, \epsilon_j - \epsilon_k\},
\]

and \(|S(\epsilon_i + \epsilon_j)| = 2(2n - (i + j)) = \dim O_{\epsilon_i + \epsilon_j}(1)|. The set \(S(\epsilon_i + \epsilon_j)\) can be written as the disjoint union of two subsets \(S_{(i)}\) and \(S_{(j)}\) defined as follows:

\[
S_{(i)} = \bigcup_{k=i+1}^{j-1} \{\epsilon_i - \epsilon_k\} \cup \bigcup_{k=j+1}^{n} \{\epsilon_i - \epsilon_k\} \cup \{\epsilon_i\} \cup \bigcup_{k=j+1}^{n} \{\epsilon_i + \epsilon_k\}
\]

and

\[
S_{(j)} = \bigcup_{k=i+1}^{j-1} \{\epsilon_k + \epsilon_j\} \cup \bigcup_{k=j+1}^{n} \{\epsilon_j + \epsilon_k\} \cup \{\epsilon_j\} \cup \bigcup_{k=j+1}^{n} \{\epsilon_j - \epsilon_k\}.
\]

For \(\gamma \in S_{(i)}\), let \(\gamma'\) be the unique element of \(S_{(j)}\) such that \(\gamma + \gamma' = \epsilon_i + \epsilon_j\). Let \(n(\gamma, \gamma')\) be the integer such that \([\epsilon_\gamma, \epsilon_\gamma'] = n(\gamma, \gamma')\epsilon_{\epsilon_i + \epsilon_j}\). It follows from equations (1) that \(n(\gamma, \gamma') = \pm 1\).

Let \(V\) be the variety in \(g^*\) consisting of all \(f \in g^*\) satisfying equations (9). Let \(f \in V\). Then

\[
f = \left(\prod_{\gamma, \gamma'} \exp(n(\gamma, \gamma')f(\epsilon_\gamma)e_{\gamma'}) \prod_{\gamma, \gamma'} \exp(-n(\gamma, \gamma')f(\epsilon_\gamma)e_{\gamma'})\right) e_{\epsilon_i + \epsilon_j}^*,
\]

where \(\gamma \in S_{(i)}\) and \(\gamma' \in S_{(j)}\).

Thus \(V \subseteq O_{\epsilon_i + \epsilon_j}(1)\). To show equality, let us define a map \(T : V \to \mathbb{C}^{2(2n - (i + j))}\) by

\[
T(f) = \left(f(\epsilon_{\gamma_1}), f(\epsilon_{\gamma_2}), f(\epsilon_{\gamma_3}), \ldots, f(\epsilon_{\gamma_{2n - (i + j)}}, f(\epsilon_{\gamma_{2n - (i + j)}})\right)
\]

where \(\gamma_k \in S_{(i)}\), for all \(k\). (For example, if we have \(\epsilon_1 + \epsilon_3 \in \Phi_2^+(B_3)\), then

\[
T(f) = \left(f(\epsilon_{\gamma_1 - \epsilon_3}), f(\epsilon_{\gamma_2 + \epsilon_3}), f(\epsilon_{\gamma_1}), f(\epsilon_{\gamma_3})\right).
\]

Then \(T\) is an isomorphism of algebraic varieties, hence \(V\) is irreducible and \(\dim V = 2(2n - (i + j))\).

As the coadjoint orbit \(O_{\epsilon_i + \epsilon_j}(1)\) is an irreducible variety of dimension \(2(2n - (i + j))\), also, we must have \(V = O_{\epsilon_i + \epsilon_j}(1)\).

(ii) In this case, we have

\[
S(\epsilon_i + \epsilon_j) = \bigcup_{k=i+1}^{j-1} \{\epsilon_i - \epsilon_k, \epsilon_k + \epsilon_j\} \cup \bigcup_{k=j+1}^{n} \{\epsilon_i - \epsilon_k, \epsilon_j + \epsilon_k\} \\
\cup \bigcup_{k=j+1}^{n} \{\epsilon_i + \epsilon_k, \epsilon_j - \epsilon_k\},
\]
Examples (i) Let $S(n) = \{\epsilon_i - \epsilon_j\} \cup \{\epsilon_i - \epsilon_k\} \cup \{\epsilon_i + \epsilon_k\}$ and

$$
S(n) = \bigcup_{k=1}^{n} \{\epsilon_i - \epsilon_k\} \cup \bigcup_{k=1}^{n} \{\epsilon_i - \epsilon_k\} \cup \bigcup_{k=1}^{n} \{\epsilon_i + \epsilon_k\},
$$

(For example, if we have $\epsilon_1 + \epsilon_3 \in \Phi^+(D_3)$, then $S(1) = \{\epsilon_1 - \epsilon_2\}$ and $S(3) = \{\epsilon_2 + \epsilon_3\}$. As in Part (i), for $\gamma \in S(n)$, let γ' be the unique element of $S(n)$ such that $\gamma + \gamma' = \epsilon_i + \epsilon_j$. Let $n(\gamma, \gamma')$ be the integer such that $[\epsilon_i, \epsilon_j] = n(\gamma, \gamma')\epsilon_i + \epsilon_j$. It follows from equations (2) that $n(\gamma, \gamma') = \pm 1$.

Let V be the variety consisting of all $f \in g^*$ satisfying equations (10). As in Part (ii), we have that $V = O_{\epsilon_i + \epsilon_j}(1)$.

Examples (i) Let $g = A_3^+$ and let $\alpha = \epsilon_1 - \epsilon_4$. Then

$$S(\alpha) = \{\epsilon_1 - \epsilon_2, \epsilon_2 - \epsilon_4, \epsilon_1 - \epsilon_3, \epsilon_3 - \epsilon_4\},$$

$$R(\alpha) = \{\epsilon_1 - \epsilon_4, \epsilon_2 - \epsilon_3\}.$$

So $O_\alpha(1)$ consists of all f which satisfy the equations

$$f(\epsilon_1 - \epsilon_4) = 1, \ f(\epsilon_2 - \epsilon_3) = f(\epsilon_1 - \epsilon_3)f(\epsilon_2 - \epsilon_4)$$

and f takes arbitrary values on ϵ_β for all $\beta \in S(\alpha)$.

(ii) Let $g = B_3^+$. Consider the roots $\epsilon_1 - \epsilon_3, \epsilon_1, \epsilon_1 + \epsilon_3 \in \Phi^+(B_3)$. Then we have

$$S(\epsilon_1 - \epsilon_3) = \{\epsilon_1 - \epsilon_2, \epsilon_2 - \epsilon_3\},$$

$$R(\epsilon_1 - \epsilon_3) = \{\epsilon_1 - \epsilon_3, \epsilon_1 - \epsilon_2, \epsilon_2 - \epsilon_3, \epsilon_3 - \epsilon_2, \epsilon_1 + \epsilon_3, \epsilon_2 + \epsilon_3, \epsilon_1 + \epsilon_2\},$$

$$S(\epsilon_1) = \{\epsilon_1 - \epsilon_2, \epsilon_2 - \epsilon_3, \epsilon_3 - \epsilon_2\},$$

$$R(\epsilon_1) = \{\epsilon_2 - \epsilon_3, \epsilon_2 + \epsilon_3, \epsilon_1 + \epsilon_3, \epsilon_1 + \epsilon_2\},$$

$$S(\epsilon_1 + \epsilon_3) = \{\epsilon_1 - \epsilon_2, \epsilon_2 + \epsilon_3, \epsilon_3, \epsilon_1\},$$

$$R(\epsilon_1 + \epsilon_3) = \{\epsilon_1 + \epsilon_3, \epsilon_1 - \epsilon_3, \epsilon_2 - \epsilon_3, \epsilon_2, \epsilon_1 + \epsilon_2\}.$$

Then $O_{\epsilon_1 - \epsilon_3}(1)$ consists of all $f \in g^*$ that satisfy the equations

$$f(\epsilon_1 - \epsilon_3) = 1, \ f(\epsilon_\gamma) = 0 \text{ for all other } \gamma \in R(\epsilon_1 - \epsilon_3)$$

and f takes arbitrary values on ϵ_β for all $\beta \in S(\epsilon_1 - \epsilon_3)$.

The elementary orbit $O_{\epsilon_1}(1)$ consists of all $f \in g^*$ that satisfy the equations

$$f(\epsilon_1) = 1, \ f(\epsilon_2 - \epsilon_3) = f(\epsilon_1 - \epsilon_3)f(\epsilon_2), \ f(\epsilon_\gamma) = 0 \text{ for all other } \gamma \in R(\epsilon_1),$$

and f takes arbitrary values on ϵ_β for all $\beta \in S(\epsilon_1)$.
The elementary orbit $O_{e_1+e_3}(1)$ consists of all $f \in g^*$ that satisfy the equations

$$f(e_{e_1+e_3}) = 1, \ f(e_{1-e_3}) = \frac{1}{2} f(e_1)^2, \ f(e_{2-e_3}) = f(e_{2+e_3})(-\frac{1}{2} f(e_2)^2),$$

and f takes arbitrary values on e_β for all $\beta \in S(e_1 + e_3)$.

(iii) Let $g = D_3^+$. Consider the roots $e_1 - e_3, e_1 + e_3 \in \Phi^+(D_3)$. Then we have

$$S(e_1 - e_3) = \{e_1 - e_2, e_2 - e_3\},$$

$$R(e_1 - e_3) = \{e_1 - e_3, e_1 + e_3, e_2 + e_3, e_1 + e_2\},$$

$$S(e_1 + e_3) = \{e_1 - e_2, e_2 + e_3\},$$

and

$$R(e_1 + e_3) = \{e_1 \pm e_3, e_2 - e_3, e_1 + e_2\}.$$

Then $O_{e_1-e_3}(1)$ consists of all $f \in g^*$ that satisfy the equations

$$f(e_{1-e_3}) = 1, \ f(e_\gamma) = 0 \text{ for all other } \gamma \in R(e_1 - e_3),$$

and f takes arbitrary values on e_β for all $\beta \in S(e_1 - e_3)$.

The elementary orbit $O_{e_1+e_3}(1)$ consists of all $f \in g^*$ that satisfy the equations

$$f(e_{1+e_3}) = 1, \ f(e_{1-e_3}) = 1, \ f(e_{2-e_3}) = f(e_{2+e_3}), \ f(e_{1+e_2}) = 0,$$

$f(e_\beta)$ is arbitrary for all $\beta \in S(e_1 + e_3)$.

5. Basic Sums of Elementary Orbits for A_{n-1}^+

Here, we consider the set of positive roots $\Phi^+(A_{n-1})$ and the corresponding nilpotent Lie algebra $g = A_{n-1}^+$ of strictly upper triangular matrices. Then $G = \exp(g)$ is the group of all $n \times n$ unitriangular matrices with entries in \mathbb{C}. For $f \in g^*$, we define $\text{Supp}(f)$, the support of f, as follows:

$$\text{Supp}(f) = \{\alpha \in \Phi^+(A_{n-1}) \mid f(\alpha) \neq 0\}.$$

A subset $D \subset \Phi^+(A_{n-1})$ is called a basic subset if $\alpha - \beta \notin \Phi^+(A_{n-1})$ for any $\alpha, \beta \in D$. For example, $D = \{e_1 - e_3, e_2 - e_5, e_3 - e_4\}$ is a basic subset of $\Phi^+(A_3)$. In particular, the empty set is a basic subset of $\Phi^+(A_{n-1})$.

Let \mathbb{C}^* denote the set of non-zero complex numbers. Given a non-empty basic subset $D \subset \Phi^+(A_{n-1})$ and a map $\phi : D \to \mathbb{C}^*$, we define the basic sum $O_D(\phi)$ to be the set

$$O_D(\phi) = \sum_{\alpha \in D} O_\alpha(\phi(\alpha)) \subset g^*. \quad (11)$$

If D is empty, we may consider the empty function $\phi : D \to \mathbb{C}^*$, and in this case we define $O_D(\phi) = 0$. If D is a basic subset of $\Phi^+(A_{n-1})$, we define by $S(D)$ the subset

$$S(D) = \bigcup_{\alpha \in D} S(\alpha) \quad (12)$$

of $\Phi^+(A_{n-1})$. A root $\alpha \in \Phi^+(A_{n-1})$ will be called a D-singular root if $\alpha \in S(D)$. In particular, if $D = \emptyset$ then we have $S(D) = \emptyset$.

We recall some important results:

Proposition 5.1. [2]

1. \(O_D(\phi) \) is an irreducible subvariety of \(g^* \), of dimension \(s(D) := |S(D)| \).

2. For any \(f \in g^* \) there exists a unique basic subset \(D \) of \(\Phi^+(A_{n-1}) \) and a unique map \(\phi : D \to \mathbb{C}^\# \) such that \(f \in O_D(\phi) \).

Proof.

1. Irreducibility of \(O_D(\phi) \) is shown in [2, Sec. 2, Cor. 1] and its dimension is given by [2, Sec. 3, Thm. 2].

2. The fact that \(f \) is contained in \(O_D(\phi) \) for a unique \(D, \phi \) is proved in [2, Sec. 2, Prop. 3 & Prop. 4].

\[\blacksquare \]

6. Homogeneous Basic Subvarieties

The definitions and results in this subsection are taken from [2, Sec.4].

For any basic subset \(D \subset \Phi^+(A_{n-1}) \) and any map \(\phi : D \to \mathbb{C}^\# \), the basic sum \(O_D(\phi) \) is invariant under the coadjoint action of \(G \), hence it is a union of coadjoint orbits. What are the pairs \((D, \phi)\) for which \(O_D(\phi) \) is a single coadjoint orbit? That depends on the geometric configuration of the basic subset \(D \) of \(\Phi^+(A_{n-1}) \). We start with the following definition:

A subset \(C \) of \(\Phi^+(A_{n-1}) \) is called a chain if

\[C = \{\epsilon_{i_1} - \epsilon_{i_2}, \epsilon_{i_2} - \epsilon_{i_3}, \ldots, \epsilon_{i_{r-1}} - \epsilon_{i_r}\}. \]

The cardinality \(|C|\) is referred to as the length of the chain \(C \). It is clear that a chain \(C \) is a basic subset of \(\Phi^+(A_{n-1}) \). Now we define the \(D \)-derived roots for any basic subset \(D \) of \(\Phi^+(A_{n-1}) \) as follows: Let

\[C = \{\epsilon_{i_1} - \epsilon_{i_2}, \epsilon_{i_2} - \epsilon_{i_3}, \ldots, \epsilon_{i_{r-1}} - \epsilon_{i_r}\} \quad \text{and} \quad C' = \{\epsilon_{j_1} - \epsilon_{j_2}, \epsilon_{j_2} - \epsilon_{j_3}, \ldots, \epsilon_{j_{s-1}} - \epsilon_{j_s}\} \]

be two chains in \(D \). Then the pair \((C, C')\) will be called a special pair of chains (with respect to \(D \)) if the following conditions are satisfied:

(i) \(C, C' \) have the same length, i.e. \(r = s \).

(ii) \(C, C' \) intertwine, i.e. \(i_1 < j_1 < i_2 < j_2 < \cdots < i_r < j_r \).

(iii) If there exists \(j_0, 1 \leq j_0 < j_1 \), such that \(\epsilon_{j_0} - \epsilon_{j_1} \in D \), then \(i_1 < j_0 \).

(iv) If there exists \(i_{r+1}, i_r < i_{r+1} \leq n \), such that \(\epsilon_{i_r} - \epsilon_{i_{r+1}} \in D \), then \(i_{r+1} < j_r \).

Then the root \(\epsilon_{i_1} - \epsilon_{j_1} \) is called the \((C, C')\)-derived root. In general, a root \(\epsilon_i - \epsilon_j \in \Phi^+(A_{n-1}) \) will be called a \(D \)-derived root if there exists a special pair of chains \((C, C')\) in \(D \) such that \(\epsilon_i - \epsilon_j \) is the \((C, C')\)-derived root. The set of all \(D \)-derived roots is referred to as the derived set of \(D \) and it is denoted by \(D' \). It is clear that \(D' \subset S(D) \). For example, let \(D \) be the basic set \(\{\epsilon_1 - \epsilon_3, \epsilon_3 - \epsilon_5, \epsilon_2 - \epsilon_4, \epsilon_4 - \epsilon_6\} \subset \Phi^+(A_5) \). Then \(D \) contains a special pair of chains \((C, C')\) where

\[C = \{\epsilon_1 - \epsilon_3, \epsilon_3 - \epsilon_5\} \]
Assume \(m\) set of \(D\) there exist basic subsets \(\phi\) that contains \(f\) and \(g\) pair such that \(\beta / \in D\). Since \(\dim \Omega = 2\), the derived set \(\Omega\) is as in (12).

Proof. Suppose \(\epsilon_r - \epsilon_s \in \text{Supp}(f)\) and \(s - r > 2\). Then \(|S(\epsilon_r - \epsilon_s)| = 2(s - r - 1) \geq 4\). Thus, \(\text{span}\{\epsilon_\beta \mid \beta \in \Phi^+(A_{n-1}), \beta \notin S(\epsilon_r - \epsilon_s)\}\). So, \(\dim \Omega_f = \text{codim}(g^f) \geq 4\), which is a contradiction of the hypothesis.

Using this lemma, we can show the following:

Theorem 6.1. ([2, Sec. 4, Thm. 3]) Let \(D\) be a basic subset of \(\Phi^+(A_{n-1})\) and let \(\phi: D \rightarrow \mathbb{C}\) be a map. Then \(O_D(\phi)\) is a single coadjoint orbit if and only if the derived set \(D'\) of \(D\) is empty.

(In this case, \(O_D(\phi)\) is the coadjoint orbit of \(f = \sum_{\alpha \in D} \phi(\alpha)e^\alpha\).)

7. Dimensions of Coadjoint Orbits for \(g = A^+_{n-1}\)

In this section, we describe the properties of basic subsets that contain two-dimensional coadjoint orbits and then determine all the possible dimensions of coadjoint orbits in \(g^*\), for \(g = A^+_{n-1}\). First, we prove the following lemma.

Lemma 7.1. Let \(g = A^+_{n-1}\). If \(f \in g^*\) and the coadjoint orbit containing \(f\) is two-dimensional, then \(\text{Supp}(f) \subset \{\epsilon_i - \epsilon_j \in \Phi^+(A_{n-1}) \mid 1 \leq j - i \leq 2\}\).

Proof. Suppose \(\epsilon_r - \epsilon_s \in \text{Supp}(f)\) and \(s - r > 2\). Then \(|S(\epsilon_r - \epsilon_s)| = 2(s - r - 1) \geq 4\). Thus, \(g^f \subseteq \text{span}\{\epsilon_\beta \mid \beta \in \Phi^+(A_{n-1}), \beta \notin S(\epsilon_r - \epsilon_s)\}\). So, \(\dim \Omega_f = \text{codim}(g^f) \geq 4\), which is a contradiction of the hypothesis.

Using this lemma, we can show the following:

Theorem 7.2. Assume \(g = A^+_{n-1}\). Let \(f \in g^*\), and let \((D, \phi)\) be the unique pair such that \(f \in O_D(\phi)\) where \(O_D(\phi)\) is as in (11). Let \(\Omega_f\) denote the coadjoint orbit that contains \(f\). If \(\dim(\Omega_f) = 2\), then \(s(D) = |S(D)| = 2\) or 3 where \(S(D)\) is as in (12).

Proof. Since \(\dim \Omega_f = 2\), therefore \(f \neq 0\) and \(s(D) \geq 1\).

Suppose \(s(D) \geq 4\). Then there are \(\epsilon_{i_1} = \epsilon_{j_1}, \epsilon_{i_2} = \epsilon_{j_2} \in D\) such that \(j_1 - i_1 = 2 = j_2 - i_2\) and \(i_2 - i_1 \geq 1\). Again, \(\{\epsilon_\beta \mid \beta \in S(\epsilon_{i_1} - \epsilon_{j_1}) \cup S(\epsilon_{i_2} - \epsilon_{j_2})\}\) is not contained in \(g^f\), so \(\dim \Omega_f \geq 4\), which is a contradiction.

Lemma 7.3. There exist basic subsets \(D_m\) of \(\Phi^+(A_{n-1})\) such that the derived set of \(D_m\) is empty, and \(s(D_m) = 2m\) where

(i) \(m = 0, 1, 2, 3, \ldots, \frac{1}{4}(n-2)(n)\) if \(n\) is even,

(ii) \(m = 0, 1, 2, 3, \ldots, \frac{1}{4}(n-1)^2\) if \(n\) is odd.
Proof. If $n = 2$ then $\Phi^+(A_1) = \{e_1 - e_2\}$. The only non-empty basic set $D_0 = \{e_1 - e_2\}$ has no derived roots and $s(D_0) = 0 = \frac{1}{4}(2 - 2)(2)$, so this case is trivial.

We will use induction on $n \geq 3$. We start with the cases $n = 3$ and $n = 4$.

$\Phi^+(A_2) = \{e_1 - e_2, e_2 - e_3, e_1 - e_3\}$:

The basic subset $D_0 = \{e_2 - e_3\}$ has no derived roots and $s(D_0) = 0$. The basic subset $D_1 = \{e_1 - e_3\}$ has no derived roots and $s(D_1) = 2 = \frac{1}{2}(3 - 1)^2$. We observe that there are no basic sets D with $s(D)$ higher than 2.

$\Phi^+(A_3) = \{e_1 - e_2, e_2 - e_3, e_3 - e_4, e_1 - e_3, e_2 - e_4, e_1 - e_4\}$:

The basic subset $D_0 = \{e_2 - e_3\}$ has no derived roots and $s(D_0) = 0$. The basic subset $D_1 = \{e_2 - e_4\}$ has no derived roots and $s(D_1) = 2$. The basic subset $D_2 = \{e_1 - e_4\}$ has no derived roots and $s(D_2) = 4 = \frac{1}{2}(4 - 2)(4)$. We observe that there are no basic sets D with $s(D)$ higher than 4.

Now let $n > 4$ be even. Assume that (i) is true for all even numbers bigger than 3 and less than n. Let

$$D_0 = \{e_{\frac{n}{2}} - e_{\frac{n}{2} + 1}\}, \quad D_1 = \{e_{\frac{n}{2}} - e_{\frac{n}{2} + 2}\},$$

$$D_2 = \{e_{\frac{n}{2} - 1} - e_{\frac{n}{2} + 2}\}, \ldots, D_{n-2} = \{e_1 - e_n\}.$$ (For example, if $n = 6$, then $D_0 = \{e_3 - e_4\}, D_1 = \{e_3 - e_5\}, D_2 = \{e_2 - e_5\}, D_3 = \{e_2 - e_6\}.)

These are basic subsets of $\Phi^+(A_{n-1})$ whose derived sets are empty and we see that $s(D_r) = 2r$ for $r = 0, 1, 2, \ldots, n-2$. The set $\{e_i - e_j \mid 2 \leq i \leq j \leq n-1\} \subset \Phi^+(A_{n-1})$ can be identified with the set of roots $\Phi^+(A_{n-3})$. But $n - 2$ is an even number smaller than n, so (i) holds for $\Phi^+(A_{n-3})$. Thus, there exist basic subsets D_m of $\Phi^+(A_{n-3})$ whose derived sets are empty, such that $s(D_m) = 2m$, where $m = 0, 1, 2, 3, \ldots, \frac{1}{4}(n - 4)(n - 2)$. If D_m is a basic subset of $\Phi^+(A_{n-3})$ which has no derived roots, then $D_m = D_m \cup \{e_1 - e_n\}$ is a basic subset of $\Phi^+(A_{n-1})$ which has no derived roots, and also $s(D_m) = 2(n - 2) + s(D_m)$. Thus, there exist basic subsets D_m of $\Phi^+(A_{n-1})$ whose derived sets are empty such that $s(D_m) = 2m$, where $m = 0, 1, 2, 3, \ldots, n - 2, (n - 2) + 1, (n - 2) + 2, \ldots, (n - 2) + \frac{1}{4}(n - 4)(n - 2)$. But $(n - 2) + \frac{1}{4}(n - 4)(n - 2) = \frac{1}{4}(n - 2)(n)$, so the result holds in the even case.

Now let $n > 3$ be odd, and assume that (ii) is true for all odd numbers less than n. Let

$$D_0 = \{e_{\frac{n+1}{2}} - e_{\frac{n+1}{2} + 1}\}, \quad D_1 = \{e_{\frac{n+1}{2} - 1} - e_{\frac{n+1}{2} + 1}\},$$

$$D_2 = \{e_{\frac{n+1}{2} - 1} - e_{\frac{n+1}{2} + 2}\}, \ldots, D_{n-2} = \{e_1 - e_n\}.$$ (For example, if $n = 5$ then $D_0 = \{e_3 - e_4\}, D_1 = \{e_2 - e_4\}, D_2 = \{e_2 - e_5\}, D_3 = \{e_1 - e_5\}.$)

These are basic subsets of $\Phi^+(A_{n-1})$ which have no derived roots and we see that $s(D_r) = 2r$ for $r = 0, 1, 2, \ldots, n - 2$. The set $\{e_i - e_j \mid 2 \leq i \leq j \leq n-1\} \subset \Phi^+(A_{n-1})$ can be identified with $\Phi^+(A_{n-3})$. Since $n - 2$ is an odd number less than n, (ii) is true for $\Phi^+(A_{n-3})$. Therefore by the induction hypothesis, there exist basic subsets D_m of $\Phi^+(A_{n-3})$ which have no derived roots, such that $s(D_m) = 2m$, where $m = 0, 1, 2, 3, \ldots, \frac{1}{4}(n - 3)^2$. Now, if D_m is a basic subset of $\Phi^+(A_{n-1})$ which has no derived roots, then $D_m = D_m \cup \{e_1 - e_n\}$ is a basic subset of $\Phi^+(A_{n-1})$.

Mukherjee 467
which has no derived roots. Also, \(s(D_m) = 2(n - 2) + s(D_m) \). Thus, there exist basic subsets \(D_m \) of \(\Phi^+(A_{n-1}) \) which have no derived roots such that \(s(D_m) = 2m \), where \(m = 0, 1, 2, 3, \ldots, n - 2, (n - 2) + 1, (n - 2) + 2, \ldots, (n - 2) + \frac{1}{2}(n - 3)^2 \). As \((n - 2) + \frac{1}{4}(n - 3)^2 = \frac{1}{4}(n - 1)^2 \), this gives the desired conclusion.

Theorem 7.4. There exist elements \(f_m \in (A^+_{n-1})^* \) such that \(\dim \Omega_{f_m} = 2m \), where

(i) \(m = 0, 1, 2, 3, \ldots, \frac{1}{4}(n - 2)n \) if \(n \) is even,

(ii) \(m = 0, 1, 2, 3, \ldots, \frac{1}{4}(n - 1)^2 \) if \(n \) is odd.

Proof. From Lemma 7.3 and [2, Sec. 4, Thm. 3], we see that there exist basic subsets \(D_m \) of \(\Phi^+(A_{n-1}) \) such that for any map \(\phi_m : D_m \to \mathbb{C}^\# \), the variety \(O_{D_m}(\phi_m) \) is a single coadjoint orbit containing \(f_m = \sum_{\alpha \in D_m} \phi_m(\alpha)e_\alpha^* \). Since \(\dim O_{D_m}(\phi_m) = s(D_m) \), we have dim \(\Omega_{f_m} = 2m \), where

(i) \(m = 0, 1, 2, 3, \ldots, \frac{1}{4}(n - 2)n \) if \(n \) is even,

(ii) \(m = 0, 1, 2, 3, \ldots, \frac{1}{4}(n - 1)^2 \) if \(n \) is odd.

Theorem 7.5. If \(g = A^+_{n-1} \), then for any \(f \in g^* \),

\[
\dim \Omega_f \leq \begin{cases} \frac{1}{2}(n - 2)n & \text{if } n \text{ is even} \\ \frac{1}{2}(n - 1)^2 & \text{if } n \text{ is odd} \end{cases}
\]

Proof. Let \((D, \phi) \) be the unique pair such that \(f \in O_D(\phi) \). Then \(\Omega_f \subset O_D(\phi) \), therefore \(\dim \Omega_f \leq s(D) \), by Proposition 5.1.

If \(n \) is odd, then the basic subset \(D = \{ \epsilon_1 - \epsilon_n, \epsilon_2 - \epsilon_{n-1}, \ldots, \epsilon_{n+1} - \epsilon_{n+1} - 1 \} \) is the basic subset with the largest number of \(D \)-singular roots (i.e. with the largest value of \(s(D) \)), and \(s(D) = \frac{1}{2}(n - 2)n \).

If \(n \) is even, then the basic subset \(D = \{ \epsilon_1 - \epsilon_n, \epsilon_2 - \epsilon_{n-1}, \ldots, \epsilon_{2n} - \epsilon_{2n+1} \} \) is the basic subset with the largest number of \(D \)-singular roots (i.e. with the largest value of \(s(D) \)), and \(s(D) = \frac{1}{2}(n - 1)^2 \).

Hence the theorem follows.

Corollary 7.6. Let \(g = A^+_{n-1} \) and let \(U \) be the universal enveloping algebra of \(g \). Then, for any primitive ideal \(I \) of \(U \) we have \(U/I \cong A_m \) where

(i) \(m = 0, 1, 2, 3, \ldots, \frac{1}{4}(n - 2)n \) if \(n \) is even,

(ii) \(m = 0, 1, 2, 3, \ldots, \frac{1}{4}(n - 1)^2 \) if \(n \) is odd;

and \(A_m \) is the \(m \)-th Weyl algebra.

Proof. This is clear from Theorem 7.4, Theorem 7.5, and the remarks at the beginning of Section 4.
References

Shantala Mukherjee
22 West Mayfield
Edinburgh EH9 1TQ
United Kingdom
sh.mukherjee@gmail.com

Received April 7, 2005
and in final form December 5, 2005