Journal of Lie Theory
Volume 16 (2006) 155-219
(© 2006 Heldermann Verlag

Minimal polynomials and annihilators of
generalized Verma modules of the scalar type

Hiroshi Oda and Toshio Oshima

Communicated by S. Gindikin

Abstract. = We construct a generator system of the annihilator of a generalized
Verma module of a reductive Lie algebra induced from a character of a parabolic
subalgebra as an analogue of the minimal polynomial of a matrix. Mathematics
Subject Classification: 22E47, 16S30.

Key Words and Phrases: Generalized Verma modules, minimal polynomials,
Harish-Chandra homomorphisms.

1. Introduction

In the representation theory of a real reductive Lie group G the center
Z(g) of the universal enveloping algebra U(g) of the complexification g of the Lie
algebra of GG plays an important role. For example, any irreducible admissible rep-
resentation 7 of GG realized in a subspace F of sections of a certain G-homogeneous
vector bundle is a simultaneous eigenspace of Z(g) parameterized by the infinites-
imal character of 7. The differential equations induced from Z(g) are often used
to characterize the subspace E.

If the representation 7 is small, we expect more differential equations
corresponding to the primitive ideal I, that is, the annihilator of 7 in U(g).
For the study of I, and these differential equations it is interesting and important
to get a good generator system of I..

Let pe be a parabolic subalgebra containing a Borel subalgebra b of g and
let A\ be a character of pg. Then the generalized Verma module of the scalar type
is by definition

Mo(N) = U(g)/Jo(N) with Jo(A) = > U(g)(X — A(X)). (1)

Xepo

In this paper we construct generator systems of the annihilator Ann(M@(A)) of
the generalized Verma module Mg(A) in a unified way. If 7 can be realized in a
space FE of sections of a line bundle over a generalized flag manifold, the annihilator
of the corresponding generalized Verma module kills E.
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When g = gl,,, [20] and [21] construct such a generator system by gener-
alized Capelli operators defined through quantized elementary divisors. This is a
good generator system and in fact it is used there to characterize the image of the
Poisson integrals on various boundaries of the symmetric space and also to define
generalized hypergeometric functions. A similar generator system is studied by
[18] for g = 0, but it is difficult to construct the corresponding generator system
in the case of other general reductive Lie groups. On the other hand, in [22] we
give other generator systems as a quantization of minimal polynomials when g is
classical.

Associated to a faithful finite dimensional representation 7 of g and a
g-module M, [22] defines a minimal polynomial ¢, (z) as is quoted in Defini-
tion 2.3 and Definition 2.5. If g = gl,, and 7 is a natural representation of g,

¢r.m(2) is characterized by the condition g a(Fr)M = 0. Here F; = (EZ]>

1<i<n
1<5<n

is the matrix whose (i, j)-component is the fundamental matrix unit E;; and then
F, is identified with a square matrix with components in g C U(g). In this
case ¢r me(n () is naturally regarded as a quantization of the minimal polynomial
which corresponds to the conjugacy class of matrices given by a classical limit of
Mg (A). For example, if pg is a maximal parabolic subalgebra of gl , the minimal
polynomial ¢ ao(n) () is a polynomial of degree 2.

For general © and g, the matrix Fy is the image (p(El)> of (E;;) under

the contragredient map p of m and then F, is a square matrix of the size dim
with components in g. For example, if 7 is the natural representation of o,,, then
the (i,7)-component of F, equals 3(E; — Ej;).

In [22] we calculate the minimal polynomial g a(n)(2) for the natural
representation m of each type of classical Lie algebra g and by putting

fﬂ,@m:ng)qﬂ,%mmw > U, (2)

AeZ(g)NAnn Mg (X)

it is shown that

Jo(N) = Ine(M) +J(he) with J(Ae) = Y U(g)(X — A(X)) (3)

Xeb

for a generic A. This equality is essential because it shows that g,y (Fr)ij give
elements killing Mg(A) which cannot be described by Z(g) and define differential
equations characterizing the local sections of the corresponding line bundle of a
generalized flag manifold. Moreover (3) assures that I g(A) equals Ann(Mg()))
for a generic A (Proposition 3.11).

In this paper, m may be any faithful irreducible finite dimensional repre-
sentation of a reductive Lie algebra g. In Theorem 2.24 we calculate a polynomial
¢r0(x; A) which is divisible by the the minimal polynomial ¢ an () and it is
shown in Theorem 2.29 that the former polynomial equals the latter for a generic
A. If po = b, this result gives the characteristic polynomial associated to m as
is stated in Theorem 2.33, which is studied by [11]. We prove Theorem 2.24 in
a similar way as in [22] but in a more generalized way and the proof is used to
get the condition for (3). Another proof which is similar as is given in [11] is also
possible and it is based on the decomposition of the tensor product of some finite
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dimensional representations of g given by Proposition 2.27. The proof of Theo-
rem 2.29 uses infinitesimal Mackey’s tensor product theorem which is explained in
Appendix A.

In §3 we examine (3) and obtain a sufficient condition for (3) by Theo-
rem 3.21. Proposition 3.25 and Proposition 3.27 assure that a generic A satisfies
this condition if 7 is one of many proper representations including minuscule
representations, adjoint representations, representations of multiplicity free, and
representations with regular highest weights. In such cases the sufficient condi-
tion is satisfied if A is not in the union of a certain finite number of complex
hypersurfaces in the parameter space, which are defined by the difference of cer-
tain weights of the representation 7. On the other hand, in Appendix B, we give
counter examples for which our sufficient condition is never satisfied by any A. In
Proposition 3.3 we also study the element of Z(g) contained in I g(\).

A corresponding problem in the classical limit is to construct a generator
system of the defining ideal of the coadjoint orbit of g and in fact Theorem 3.28
is considered to be the classical limit of Corollary 3.22.

If 7 is smaller, the two-sided ideal I g(\) is better in general and therefore
in §4 we give examples of the characteristic polynomials of some small 7 for every
simple g and describe some minimal polynomials, especially in each case where
po is maximal. Note that the minimal polynomial is a divisor of the characteristic
polynomial evaluated at the infinitesimal character. In Proposition 4.12 we present
a two-sided ideal of U(g) for every (g,pe) and examine the condition (3) for this
ideal by applying Theorem 3.21. In particular, the condition is satisfied if the
infinitesimal character of Mg(\) is regular in the case when g = gl,,, 09,41, 5p,,
or Go. The condition is also satisfied if the infinitesimal character is in the positive
Weyl chamber containing the infinitesimal characters of the Verma modules which
have finite dimensional irreducible quotients.

Some applications of our results in this paper to the integral geometry will
be found in [22, §5] and [23].
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2. Minimal Polynomials and Characteristic Polynomials

For an associative algebra 2 and a positive integer N, we denote by
M(N,2() the associative algebra of square matrices of size N with components
in 2. We use the standard notation gl,, o, and sp, for classical Lie algebras over
C. The exceptional simple Lie algebra is denoted by its type Fg, E7, Eg, Fy or
GQ.

The Lie algebra gly is identified with M(N,C) ~ End(C") with the
bracket [X,Y] = XY — Y X. In general, if we fix a base {vy,...,uy} of an N-
dimensional vector space V' over C, we naturally identify an element X = (X;;)
of M(N,C) with an element of End(V) by Xv; = SN Xju. Let Ej; =

(5ui(5w' 1<p<ny € M(N,C) be the standard matrix units and put Ej; = Ej;. Note

1<v<N
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that the symmetric bilinear form
(X,Y) =Trace XY for X,Y €gly (4)
on gly is non-degenerate and satisfies
(Eijs Epw) = (EWE* ) = Oivdju;
X =2 (X BBy 5)
(Ad(¢9)X,Ad(9)Y) = (X,Y) for X,Y eglyand g € GL(N,C).

In general, for a Lie algebra g over C, we denote by U(g) and Z(g) the universal
enveloping algebra of g and the center of U(g), respectively. Then we have the
following lemma.

Lemma 2.1 ([22, Lemma 2.1]).  Let g be a Lie algebra over C and let (7w, C")
be a representation of g. Let p be a linear map of gly to U(w(g)) satisfying

p(IX,Y]) = [X,p(Y)] for X em(g) and Y € gly, (6)

that is, p € Homy(g) (gly, U(7(g))) .
Fiz q(z) € Clz] and put

F = (p(Ey)), iy € M(N,U(n(9))).
1<5<N 7
Qij) 1<isN =q(F) € M(N,U(r(g))) ()
Then
(p(Ad(9) B >>1<Z<N =9 Flg™" for g€ GL(n,C) (8)
and

X Qz] ZXWQM Z uQiV
pn=1

r=1
N

N
<X7 Eiu>@,uj - ZQiV<X7 Euj> fOT’ X = (X;w) 1<u<N € W(Q) (9)

'u,:l v=1 1§V§N

Hence the linear map gly — U(n(g)) defined by E;j — Qi; is an element of
Hom (g (gly, U(7(g))) . In particular, Zfil Qi € Z(m(g))-

Remark 2.2.  The referee suggested that we should give the reader the fol-
lowing conceptual explanation of Lemma 2.1: Since (gly)" ~ M(N,C)* is natu-
rally identified with M(N,C) via (4), the linear 7(g)-homomorphism p : gl —
U(m(g)) is considered as an element of (gly)* @ U(7(g)) ~ M(N,C) @ U(n(g)) ~
M(N,U(w(g))). By this identification, the image of p equals 'F and hence
(8) holds almost immediately. Furthermore, (9) is equivalent to the fact that
(M(N,C) ® U(x(g)))™™® is a subalgebra of M(N,C)®U (x(g)) ~ M(N,U(x(g))).

Now we introduce the minimal polynomial defined by [22], which will be
studied in this section.
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Definition 2.3 (characteristic polynomials and minimal polynomials). Given a
Lie algebra g, a faithful finite dimensional representation (7,C") and a g-
homomorphism p of End(CY) ~ gl to U(g). Here we identify g as a subalgebra
of gly through 7. Let Z(g) denote the quotient field of Z(g). (Recall Z(g) is an

integral domain.) Put F = (p(El)> e M(N,U(g)). We say qr(x) € Z(g)[z] is
the characteristic polynomial of F' if it is the monic polynomial with the minimal
degree which satisfies

in M(N, Z(g) ®z(g U(g)). Suppose moreover a g-module M is given. Then we
say qry () € Clz] is the minimal polynomial of the pair (F, M) if it is the monic
polynomial with the minimal degree which satisfies

Remark 2.4. The uniqueness of the characteristic (or minimal) polynomial
is clear if it exists. Suppose g is reductive. Then the characteristic polynomial
actually exists by [22, Theorem 2.6]. The same theorem assures the existence of
the minimal polynomial if M has a finite length or an infinitesimal character.

Definition 2.5.  If the symmetric bilinear form (4) is non-degenerate on m(g),
the orthogonal projection of gly onto 7(g) satisfies the assumption for p in
Lemma 2.1, which we call the canonical projection of gly to m(g) ~ g. In this case

we put Fp = (p(El)) . Then we call gp, (z) (resp. ¢r, m(2)) in Definition 2.3 the

characteristic polynomial of 7 (resp. the minimal polynomial of the pair (m, M))
and denote it by ¢, (z) (resp. ¢rm(z)).

Remark 2.6.  For a given involutive automorphism o of gly, put

g=1{X cgly; o(X) =X}

_ X+o(X)
5 .

and let 7 be the inclusion map of g C gly. Then p(X)

Hereafter in the general theory of minimal polynomials which we shall study,
we restrict our attention to a fixed finite dimensional representation (w, V) of g
such that

(10)

g is a reductive Lie algebra over C,
7 is faithful and irreducible.

Moreover we put N = dim V' and identify V with CV through some basis of V.
The assumption of Definition 2.5 is then satisfied.

Remark 2.7. i) The dimension of the center of g is at most one.

ii) Fix ¢ € GL(V). If we replace (m, V) by (79,V) with 79(X) = Ad(g)m(X)
for X € g in Lemma 2.1, F, € M(N,g) is naturally changed into ‘g='F,
under the fixed identification V' ~ CV. This is clear from Lemma 2.1 (cf. [22,
Remark 2.7 ii)]). iii) Exceptionally the condition (10) will not be assumed in
Definition 2.36 and Proposition 2.37.
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Definition 2.8 (root system).  We fix a Cartan subalgebra a of g and let X(g)
be a root system for the pair (g,a). We choose an order in ¥(g) and denote
by 3(g)™ and W(g) the set of the positive roots and the fundamental system,
respectively. For each root o € ¥(g) we fix a root vector X, € g. Let g = n®adn
be the triangular decomposition of g so that n is spanned by X, with a € 3(g)*.
We say p € a* is dominant if and only if

zég Zi ¢ {—1,-2,...} foranyac X(g)"

Let us prepare some lemmas and definitions.

Lemma 2.9. Let U be a k-dimensional subspace of gly such that { , )|u
1s non-degenerate. Let py be the orthogonal projection of gly to U and let
{v1, ..., v} be a basis of U with (vy,v;) = 0 for 2 < j < k. Suppose that
u € gly satisfies (u,v;) =0 for 2 <j <k. Then py(u) = {wor)

(v1,v2)
The proof of this lemma is easy and we omit it.

Lemma 2.10.  Choose a base {v;;i = 1,...,N} of V for the identification
V ~ CN so that v; are weight vectors with weights w; € a*, respectively. We
identify g with the subalgebra m(g) of gly ~ M(N,C) and put ay = vazl CE;;.
For F, = (F

ij ) 1<i<N
1<j<N

we have

N
Fy=w; =Y wi(Ej;)Ej,
=1

ad(H)(Ey) = (w; — ;) (H)E; (VH € a),

(Fj, EW) # 0 with i # j implies w;, — w; = w, — w, € X(g), (11)
a:ZCFiiCaN, n= Z CFj, n= Z CF;
i=1 w;—w; €X(g)T wj—w;€X(g)T

under the identification a* ~ a C ay ~ ajy by the bilinear form (4).

Proof. Note that H € a is identified with Zjvzl wi(H)E;; € ay C gly. Hence
ad(H)(EZJ) = (wz — wj)(H)EU and therefore ad(H)(E]) = (WZ — w])(H)E] In
particular we have Fj; € a. Since

(H,Fy;) = (H,Ey) = ij Ej;, Ey) = wi(H) (VH € a),

we get Fu = ;.

For each root «, the condition (X,);; = (Xa, Ej;) # 0 means w; —w,; = «.
Henceif i # j and X € a+3° vy ), aste;—w; CXa, then (Eij, X) = 0 and therefore
(Fij,X) = 0. Hence F;; =0 if ¢ 7é j and w; —w; ¢ X(g). On the other hand,
if w; —w; € X(g), we can easily get Fj; = CXg,_5, for some C' € C. Hence

(Fij, Eu) =0 if w; —w; # w, — w,. =
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Through the identification of a* ~ a C ay in the lemma, we introduce the
symmetric bilinear form (, ) on a*. We note this bilinear form is real-valued and
positive definite on g, Ra

Now we take a subset @ C ¥(g) with © # U(g) and fix it.
Definition 2.11 (generalized Verma module). — Put

ao={H €a;a(H) =0, VYae O},
go={X€g; [X,H] =0, VHEap},
me ={X €go; (X,H)=0, VHE€ag},
Y(g)” = {o; —a € X(g) "},
Y(ge) ={a € X(g); a(H) =0, VH €ao},
Y(go)" = (o) N(9)", X(ge)” ={-a; a € X(go)"},

Ng = Z (CXQ, ng = Z (CXQ,

aeX(g)T\X(go) aeX(g)"\E(go)
b :a+n Po = go + o,

Z a, :% Y a pe=p—pO)

aGZ a€X(go)™

For A € a* which satisfies QEA O‘> €{0,1,2,...} for o € ©, let Ug a) denote the
finite dimensional irreducible gg- module Wlth highest Welght A. By the trivial
action of ng, we consider U a) to be a pg-module. Put

Me,n) = U(8) ®upe) U A)- (12)

Then Mg ) is called a generalized Verma module of the finite type.

Remark 2.12. i) pg is a parabolic subalgebra containing the Borel subalgebra
b. po = me + ae + ne gives its direct sum decomposition.

ii) Every finite dimensional irreducible pg-module is isomorphic to U a) with a
suitable choice of A.

iii) M@ a) is nothing but the Verma module for the highest weight A € a*.

iv) Let us be a highest weight vector of U ay. Then 1 ® uy is a highest weight
vector of Mg ). Moreover 1 ® uy generates M a) because

Men) = U(8) ®ue) Uen) = Ue) ®c U(pe) ®u(pe) Uro,a)
= U(I_l@) KR U(@,A) = U(ﬁ@) K U(ﬁ N g@)uA = U(ﬁ)(l X uA).
Hence Mg a) is a highest weight module and is therefore a quotient of the Verma
module Mg ).

v) If (A,a) =0 for each o € ©, then dim Uy = 1 and we have the character
Ao of pg such that Xuy = A\g(X)uy for X € pg. Since

U(g) =U(ne) & Z Ug) (X — Xo(X))
Xepo

is a direct sum and Mg = U (ne) ®c Cuy, we have the kernel of the surjec-
tive U(g)-homomorphism U(g) — M) defined by D +— D(1 ® up) equals

> xepo UB) (X = Ao(X)).



162 ODpA AND OSHIMA

Definition 2.13 (generalized Verma module of the scalar type).  For A\ € a§
define a character A\g of pg by Aog(X + H) = A(H) for X € mg + ng and
H € ag. Put

Jo(\) = > U(g)(X — le(X)),

J(he) =Y Ulg)(X — le(X)), (13)

Xeb

Me(A) = U(g)/Jo(A), M(Xe) = U(g)/J(Ne)-

Then Meg(A) is isomorphic to Mg ), which is called a generalized Verma module
of the scalar type. If © = O, we denote Jy(A\) and Mg(A) by J(A) and M(N),
respectively.

Definition 2.14 (Weyl group).  Let W denote the Weyl group of ¥(g), which

(ps)
(v,

is generated by the reflections w, : a* > pu — p— 2 a € a* with respect to

a € Y(g). Put

We ={w e W; w(X(g)" \ X(go)) = X(g)" \ X(go)},
W(O) = {w e W; w(S(ge)") © S()*.

(14)

Then each element w € W(O) is a unique element with the smallest length in the
right coset wWg and the map W(0) x Wg 3 (wy, ws) — wiwy € W is a bijection.
For w e W and p € a*, define

w.p=w(p+p) —p. (15)
Here we note that Wy is generated by the reflections w, with a € © and
(po,a) =0 for a € X(go). (16)

Definition 2.15 (infinitesimal character).  Let D € U(g). We denote by D,
the element of U(a) which satisfies D — Dy € nU(g) + U(g)n and identify D, €
U(a) ~ S(a) with a polynomial function on a*. Then Ay(n) = Aq(w.p) for
AeZ(g), pea*,and we V.

Let p € a*. We say a g-module M has infinitesimal character p if each
A € Z(g) operates by the scalar Ay(p) in M. We say an infinitesimal character
p is regular if (pu + p,a) # 0 for any o € X(g).

Remark 2.16.  The generalized Verma module Mg ) in Definition 2.11 has
infinitesimal character A. It is clear by Remark 2.12 iv).

Definition 2.17 (Casimir operator).  Let {X;;i = 1,...,w} be a basis of g.
Then put

with the dual basis {X} of {X;} with respect to the symmetric bilinear form (4)
under the identification g C gl through 7 and call A, the Casimir operator of
g for m.
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Remark 2.18.  As is well-known, A, € Z(g) and A, does not depend on the
choice of {X;}.

We may assume in Definition 2.17 that {Xy,..., X} and { X, 11,..., X, }
be bases of go and ng + ng, respectively. Then X} € gg for i = 1,..., 0 and

=> XiX; (17)
i=1
is the Casimir operator of gg for 7.
Lemma 2.19.  Fiz a basis {H,,...,H,} of the Cartan subalgebra a of g.

i) Let {H{,...,H'} be the dual basis of {Hy,...,H,}. Put H, = [X,, X_a].
Then

XoX_ .
RPN SYRP B

I
=
E
+
S
ol
—~| e
:3:/-\
IS
SIE:
N——

:A_g+ 3 (&XaXa _a(Ha>Ha).

aeX(g)t\E(ge)

ii) Let M be a highest weight module of g with highest weight u € a*. Then
Ayv =, 1+ 2p)v for any v € M.
iii) Let v be a weight vector of m belonging to an irreducible representation of ge
realized as a subrepresentation of mle, and let w denote the lowest weight of the
irreducible subrepresentation. Then

= (T, = 2p)v,
= <w7w (@)>U7
Z %UZ%(W—’W,W—FW—Qp)U.

aeXi(g)t\E(ge)

Here 7 denotes the lowest weight of 7.

iv) Fiz § € X(g)" and put g(f) = CXg+ CX_5+ > ,CH;. Let v be a
weight vector of m belonging to an irreducible representation of g(3) realized as a
subrepresentation of |gs) and let w denote the lowest weight of the irreducible
subrepresentation. Let w + (3 be the weight of v. Then

XsX_s

{—1
mox e = (e 5.0 1)

v) Suppose g is simple. Let cumax s the mazimal root of X(g)™ and let B(, ) be
the Killing form of g. Then

B(amaxv Qmax + 2)0) =1.
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Proof. i) Note that
(Ha, Ho) = (Ha, [Xo, Xoa]) = ([Ha, Xo], Xoa) = a(Ho)(Xa, X_a) (19)

Since the dual base of {X,, H;; a € 3(g), i = 1,...,r} equals {<X —, HY;

X(g), i=1,...,r}, the claim is clear.
ii) Let v, be a highest weight vector of M. Then

H,
S =Y 3 S,
a€X(g @
_ * (Hﬂt )
_ZM(Hi) p(H v+ > <Ha7H A .
=1 aeX(g)t

Hence Ayv, = (i, t+2p)v, because H, is a non-zero constant multiple of o with
the identification a* ~ a by (, ) and therefore A v = (u, u+ 2p)v because M is
generated by v,,.

iii) Let vz be a lowest weight vector of w. Then we have Ayvz: = (7,7 —
2p)vy and therefore Ayv = (7,7 — 2p)v. Similarly we have A% = (@, @ —
2p(0))v.

Let @’ be the weight of v. Then we have

XoX o 1 1 o ,
DR S S T A
aeX(g)*\X(ge)

1

zé(ﬁ—w,ﬁ—l—w—va.

Here we note that (o', pe) = (w, pe).
iv) By the same argument as above we have

2XBX ﬁ PB(Hs)Hps
qufk = — .
(X5, X_5) Z ~ (Hy, Hy) (@ = fjo
Hence
2X5X_

mvz (@, = B)v — (@ + L0, + {B)v+ (B, @ + {B)v

= —(2l(em, B) + L(L — 1)(B,B))v

v) Suppose 7 is the adjoint representation of the simple Lie algebra g.
Then for H € a we have

(m(Ae)(H), Hy = > (X, [X_a, H]|, H)

aeX(g) <XO“ X_a>
_ _<[X—0HH]7[XOA7H]>
E CV;E) (Xas X-a)
= Z oH)?
a€¥(g)
— (H, H).

Hence 7(A,)(H) = H and B(Qmax, ¥max + 20) = B(—max, —Qmax — 2p) = 1. =
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Definition 2.20 (weights).  Let W(w) denote the set of the weights of the
finite dimensional irreducible representation m of g. For @w € W(w) define a
real constant

D, (w) = %(ﬂ—w,w—kw—Zp). (20)

Here 7 is the lowest weight of 7. Put R, = {Zaeq,(g) mae; my € {0,1,2,...}}.
We define a partial order among the elements of W(7) so that w < @’ if and only
if o —weR,.

Moreover we put

We () = {w are the highest weights of the irreducible components of 7|4, },

We () = {w are the lowest weights of the irreducible components of /4, },
W(T)|ae = {@lae; @ € W(m)}.

Let p and g/ € W(m)|ao- Then we define u <g g/ if and only if 4 — u €
{2 acu(gne Malaoi Ma € {0,1,2,.. . }}.

Remark 2.21. i) Wy(n) = Wg(r) = W(r) and We(r) = —We(n*). Here
(7*,V*) denotes the contragredient representation of (m, V') defined by

(m*(X)v")(v) = =v*(r(X)v) for X € g, v* € V' and v € V. (21)

i) W(m)lag = {@]ae; @ € Wo(m)} = {w@]a; @ € Wo(m)}.
iii) Suppose w and @’ € W(n) and put @’ —w =3 .y
@'|qe if and only if m, > 0 for any a € ¥(g) \ ©. Hence 7|4, is the smallest
element of W() Note that @w < @’ if and only if w <g w’.

oo

Lemma 2.22. Let w and @' € W(n).
) Ifa=w' —w e V(g), then Dy(w) — Dy(w') = (w,w’ — w).
i) Suppose @' € We(r), w < @' and @|ey = @'|ay. Then Dy(w) < Dp(z').

Proof.  ii) Note that

1
Dw(w) - Dﬂ’(w,) = 5('@/ - w7w+w, - 2p>

The assumption in ii) implies @' — @ = ) .o mea with m, > 0. Here at
least one of m, is positive. Hence (w’ — w,p) > 0. Since w’ are the lowest
weights of irreducible representations of gg, (a,w’) <0 for a € ©. Thus we have

(D nco Ma0, 2w =3 g maa —2p) < 0.
i) Put @« = @’ — w. Then

Dy(w) ~ Do(@) ~ (@, @ ~ @) = o2 — a),

which equals 0 if o € U(g) because w,(X(g)" \ {a}) = X(g)* \ {a}. ]

Now we give a key lemma which is used to calculate our minimal polynomial.
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Lemma 2.23.  Fiz an irreducible decomposition @;_,(m;, Vi) of (7|ge,V) and
a basis {vi1,...,Vim;} of Vi sothat v,; are weight vectors for a. Let w,; and w;
be the weight of v;; and the lowest weight of the representation w;, respectively.

Suppose w; j = wy jo. Then for a positive integer k with k > 2 and complex
numbers i, ..., U

k k-1
- V> E( b= ”) w; — px + Dr(w;
k—1
mod U(g)(m@ +n@ Z c <H :ul/)> " ’
(8,),(s"t"); v=1 (8" ") (s,t)

wslu@<@wz|u@
W, t =TIl 41!
.

Proof.  Note that w,; ; = w; mod U(g)meg. It follows from Lemma 2.10 that
Fls,t)(i,j) = 0si0¢5t0;  mod U(g)(me + ne)

if @y —w@i; & 5(a) \ E(ge)-
Put F* = [’ (Fy — p1,). Then Lemma 2.10 implies

K k1
Fii gy = Flrga (@ = 1)
= Z [F(IZ/_,J-l/)(S,t), Flsnipn] mod U(g)(me +ne) +1eU(g)

ws,t—wi,; €X(g) 7 \X(go)

(E(s)(i.d)) Xa) [ -1
= X Txax Feden X
a€n(g)t\2(go) ’

W, t =4, —

B Z (Es)(ij)s Xa) (Es ) (s747), X—a)
(Xay X_a)

a€x(g)\X(go)
Ws, t=Wi 5 —«
w ’ t/_w " t//_Oé

k—1
. (555”5tt”F )( /t/) - 6i/s/5j/t/Fs//7t//)(s’t))

1, _
:§<7T—w“7'r+w, 2>F(k/1/(zj)

> (B Xa) (B sy Xa) rp
(Xa, X_a) (") (st)"

aeX(g)T\X(go)

ws,t:wsx/,t//:wm—a
(22)
In the above the second equality follows from (11) and Lemma 2.9 with U = g.
The third equality follows from Lemma 2.1 with

X_a = Z <E(Sl,t/)(8/l7t//)7X—a>E(8N7t//)(S/,t/)

ws/yt/ —ws// ,t// =

which follows from the identification g C gl together with the property of (, ).
Put XV = —'X for X € M(N,C) ~ gly. Let {v;,} be the dual base of
{v;;} and consider the contragredient representation 7* of 7. Then 7*(X) = XV
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for X € g with respect to these basis. Then (X,Y) = (XY, YV) for X, Y € ¢
and

Z XV XV v* _ Z <E( )(’t’)aX ><E(w)(st) X >v*
<X_O”XV> <X\/ X\/> 5/7t/’

—Q)

acX(g)t\Z(go) aeX(g)t\X(go)

Ws,t=Wi,j —Q
ws/’t/zwi,j

which is proved to be equal to D(w;)v;; by Lemma 2.19 iii) because (7,;, p)
for 7 changes into (—7, —w;, —p) in the dual 7* with the reversed order of roots.
This implies the last equality in (22).

Note that if D € ngU(g) + U(g)(me + ne) satisfies [H, D] = 0 for all
H € ag, then D € U(g)(meo+ne). Since the condition w; ; —w,; € X(g)" \ X(go)

implies w;|qy <o Wilae, We have the lemma. ]

Theorem 2.24.  Retain the notation in Definition 2.20. For w € a* we identify
Wlae with a linear function on ag by wlq,(A) = (Ao, w) for A € ay. Put

Qﬂ',@ = {(w|a@7Dﬂ(w)); w e WG(W)}>
tro@N) = [ (z—nl)-0) (23)

(/J'vC)GQﬂ,@

Then gro(Fr; \)Mg(A) =0 for any X € af.

Proof. For any D € U(g) there exists a unique constant 7'(D) € C satisfying
T(D)=D modnU(g)+ Jo(N)

because the dimension of the space Mg(A)/nMg(A) equals 1. Notice that

Jo(\) = > U(g)(H — M(H)) + U(g)(me + ne).

Heag

Use the notation in Lemma 2.23. Since
ad(H ) gm0 (Fr; N (g i) = (@ir g — @i ) (H)qmo(Fr; N gy for H € a,

T (gm0 (Fr; N ) = 0 if @i # @iy
Next assume w; ; = wy ;7 and put

Qroi =11, C) € Qro; it <o Wilae }
troimN) =[] (z—pk-0C).

(NvC)EQﬂ',G,i

Then q(Fr) w96, € Jo(A) for any g(x) € Clz] which is a multiple of ¢, e (z; ).
It is proved by the induction on w;|, with the partial order <g. Take iy €
{1,...,k} so that w;, = 7. If i = iy then Lemma 2.10 and Lemma 2.23 with
D (w;) = D(7) = 0 imply our claim. If i # iy then 7|, <o wils, and therefore
deg, ¢ro.i(x;\) > 2. Hence we can use Lemma 2.23 again to prove our claim
inductively.
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Thus we get the condition
T(gr.0(Fr; A,y .5)) = 0 for any (4, 5) and (', j'). (24)

Let V(A) denote the C-subspace of U(g) spanned by ¢re(Fr; )@ i) - Then
V(A) is ad(g)-stable by Lemma 2.1. The g-module

My = V) Mo (M)
is contained in nMg(\) because putting uy = 1 mod Jg()\),
My=VANU@)uy =U@m)V(ANuy C Um)aU(g)uy = nMg(N).

On the other hand, since Mg(\) is irreducible if A belongs to a suitable
open subset of a, M, = {0} in the open set. If we fix a base {Y1,...,Y,,} of
ng, we have the unique expression

gro(Fei N i) = O Qu(N)YP' -+ Yrm mod Jo())

with polynomial functions @, (). All these Q,(\) vanish on the open set and
therefore they are identically zero and we have V(\) C Jg(A) for any A\. We have
then for any A

My = VA)U(g)ur =U(g)V(Nur = {0}. u

Theorem 2.24 is one of our central results since ¢ o(2; ) = ¢x, 1) (2) for
a generic A € a§. Before showing this minimality, which will be done in The-
orem 2.29, we mention the possibility of other approaches to Theorem 2.24. In
fact we have three different proofs. The first one given above has the importance
that the calculation in the proof is also used in §3. to study the properties of the
two-sided ideal of U(g) generated by ¢re(Fx;A);;. The second one comes from a
straight expansion of the method in [10] and [11] to construct characteristic polyno-
mials. In the following we first discuss it. The third one is based on infinitesimal
Mackey’s tensor product theorem which we explain in Appendix A. With this
method we shall get the sufficient condition for the minimality of ¢, o(x; A) (The-
orem 2.29) and slightly strengthen the result of Theorem 2.24 (Theorem 2.31).

Definition 2.25.  Let (7*,V*) be the contragredient representation of (w,V)
and {v},...,vy} the dual base of the base {vy,...,vy} of V. For a g-module M
define the homomorphism

Bz : M(N,U(g)) — End (M ® V)

of associative algebras by

(hman(@) Qs ©v7) = 3 D (Quuy) ® ] (25)

for uj € M and Q = (Qi) € M(N,U(g)). Then QM = 0, namely, Q;; €
Ann(M) for any ¢, if and only if A (@) = 0.

The following lemma is considered in [10] and [11].
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Lemma 2.26.  Let M be a g-module. For an element Z;V:1 u; vy of M@ V™
with u; € M, we have

N N

hinan (P (3 1 95) = 3 Belis) 05 + 3 10 2,3 Zu]@w
j=1 j=1 j=1

In particular hz a(Fr) € Endg(M @ V*).

Proof.  Let {Xi,...,X,} be abaseof g and let {X7,..., X’} be its dual base
with respect to (, ). Then

N
ZA (uj) ® v} —l—Zu]@A Zu]@)v
j=1
N
= — ZZX;"U]- ® X, v} — ZZX,,uj ® X v}
j=1v=1 j=1v=1
N w N N
-y (X*uj @3 (X, Byl + Xy @ 3 (X, Eij>v;)
j=1 v=1 =1 i=1
N N
23S B 6
i=1 j=1
Here we use the fact that Xv; = — SN (X, Ey)vr for X € g because Xv; =
it (X, Eji)oi. n

Now we examine the tensor product M ® V* in the preceding lemma when
M is realized as a finite dimensional quotient of a generalized Verma module

Mg (N).
Proposition 2.27 (a character identity for a tensor product).  Put

Y wew sgn(w)e?A+e)
HaEE(g)JF(e% —e7%)

for Aea*. If (A,a) =0 for any o € O, then

XA =

X XA = Z M= @ XA+w (26)

weW(r*)
by denoting
My o(w) = dim{v* € V*; Hv* = w(H)v" (VH € a), Xv" =0 (VX € goNn)}.

Here X+ is the character of the representation (7*,V*) and for u € a*, e denotes
the function on a which takes the value e*™) at H € a.
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Proof. It is sufficient to prove (26) under the condition that (A, «) is a suffi-
ciently large real number for any o € U(g) \ © because both hand sides of (26)
are holomorphic with respect to A € a*. Put

={pea;(pa)eR (Yaecx(g)},
={n€ag (p,a)>0 (Yo eX(g)")},
o > wewe sgn(w )6 w(hte)
A Han(gﬁ(e% — e—%) 3
> wrews, sen(w’)e (=@

HO&GE(Q@ +€

Xew =

Then Xrx = > cyyar) Mr+,0(@)Xw by Weyl's character formula and if @ € W(r™)
satisfies M+ g(w) > 0, then A + @ € a’ and

N N sen(w)e? (@ +r(©) ,
ot IT (e —e ) = 2o BT e $ o uern®
a€X(g)t H&EE(%)*(62 — ¢ 2) w'eWe
_ Z Sgn(w)ew(A+w+p)
weWg
= M7 mod Z Ze".
uea{;\aj

For any w € W\ Wg there exists a € 3(g)~ \ X(go) with wa € X(g)™ and then
the value —(w(A + p), wa) = —((A + p), o) is sufficiently large and therefore

agX(g)t nEag\al,
Hence
o
Xt XA H —e2)= E M o(w@)e T mod 5 Zet
aeX(g)t wEWeg (7*) pEaj\ay

and we have the proposition because Xz-Xa [ [,exg)+ +(e2 —e~?2) is an odd function
under . [

Lemma 2.28 (eigenvalue).  Let (ma,Va) be an irreducible finite dimensional
representation of g with highest weight A. Suppose (A,a) = 0 for a € © and
(A, a) >0 for w € We(m*) and o € U(g)\O. Then the set of the eigenvalues
of hr v, (Fr) € End(Va ® V*) without counting their multiplicities equals

(m" — @, 7" + @ + 2p); @ € Wae (")}

l\:)ln—

{(=(A @) +

={(A,w)+-(F— @, 7+ @ —2p); w € We(r)}.

1
2

Here we identify © with the highest weight of (7*, V*).
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Proof.  The assumption of the lemma and Proposition 2.27 imply

and hence by Lemma 2.19 ii) and Lemma 2.26 the eigenvalues of 2h, v, (F;) are
with @ € We(n*). Since We (1) = —Wa(7*), we have the lemma. ]

Proof of Theorem 2.24 (the 2nd version).  This proof differs from the previ-
ous one in how to deduce the condition (24). The rests of two proofs are the
same.

Note that for fixed (¢, j) and (¢, j") the value T'(gr.0(Fr; N j1yij)) depends
algebraically on the parameter A € ag. Since the set

S={Neay; Not+w,a)ec{0,1,2,...} for w € We(r*)U{0} and o € ¥(g)\ O}

is Zariski dense in ag, we have only to show (24) for A € S. In this case we have
from Lemma 2.28 and the definition of ¢, e(z; ),

hﬂ',V)\e (QW,G(FN; /\)) = Q7r,®<h7r,\/,\® (FT('); /\) = 0.

Hence ¢ro(Fr; N jne ) € Ann(Vy,) for any (i,7) and (¢/,5'). On the other
hand, if we take a h1ghest weight vector vy of V)., we get

qr, @(Fm)\> z])v)\ € T(Qﬂ' @(Fm)\) i.j (zg))v)\ +nv)\@
and therefore T'(¢r o(Fr; )\)(i@j/)(i,j)) =0. |

Theorem 2.29 (minimality).  Let \ € ag.

i) The set of the roots of ¢r () equals {{\e, @) + Dx(w); @ € We(r)}.

ii) If each root of qre(x; A) is simple, then ¢z eo(x;\) = ¢z Mo (z). Hence we call
¢ro(z; A) the global minimal polynomial of the pair (m, Me(N)).

Proof. i) Fix an irreducible decomposition @;_, U; of the gg-module V*|4, .
Let w; € a* be the highest weight of U;. With a suitable change of indices we
may assume wi|q, <o Wjle implies i > j. Then putting V; = @’ _, U, we get a
po-stable filtration

{0} =V CVig - CVi=V].

Note that V;/V;_1 ~ U; is an irreducible pg-module on which ng acts trivially.
Recall M@(}\) ~ M(@)\@) = U(g) QU (po) U(@)\e) and dim U(@,)\@) = 1. Hence
writing C, instead of U ,) we get by Theorem Al of Appendix A

Me(N) @ V* = (U(g) Quipe) Cr) @ V* = U(g) Qu(pe) (Cr @ V*pe) -

Since Cy ®c - and U(g) ®u(pe) - = U(e) ®c - are exact functors, putting M; =
U(g) ®upe) (Cr ® V;) we get a g-stable filtration

{0} =Mo S M, C--- C My =Me(N) @ V"
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with
M;/M;—1 = U(8) ®u(pe) (Cr @ Ui) = M@ retmy)- (27)

Now as a subalgebra of End (Mg(\) @ V*) we take
A={D; DM; C M, fori=1,... k}.

Then by Lemma 2.26 and Lemma 2.19 ii) we have h¢r aen)) (¢(Fr)) € A for any
polynomial ¢(z) € Clz]. Let n; : A — End (M;/M;_1) ~ End (Mg re+w)) be
a natural algebra homomorphism. Then using Lemma 2.26 and Lemma 2.19 ii)
again we get

i (M ato ) (Fr))

1 1
= §</\@,>\® +2p) + §<_7_T7 —7 +2p)

= <)\@, —wi> + DW(—wi).

1

5 (Mo + @i, Ao + i +2p) (28

and therefore

e rion) (Mo, =) + Da(—w1)) = drrtony (M (himato)) (Fr)))

=1 (him o) (1100 (Fr)))

=0.
Since {w;} = Wa(m*) = —We(r) we can conclude (\g, @) + Dx(w) is a root of
the minimal polynomial for each @w € Wg(m). Conversely Theorem 2.24 assures
any other roots do not exist.

ii) The claim immediately follows from i) and the definition of ¢, e(z;\).
]

Remark 2.30. In general it may happen for a certain A that ¢,e(z;\) #
qx Mo\ (%) . Such example is shown in [22] when g is 02, and A is invariant under
an outer automorphism of g, which is related to the following theorem. It gives
more precise information on our minimal polynomials.

Theorem 2.31.  Let A € afy. Let We(r) = Wi L Wi - UWY? be a division
of We(m) into non-empty subsets Wi such that the relation \e —w € {w.(Ae —
@');w € W} holds for w, @ € We(n) if and only if w, @’ € Wi for some €.
For each  we denote by kg the maximal length of sequences {w,@’,...,@"} of

weights in Wi such that the restriction of each weight to ag gives both strictly
and linearly ordered sequences:

w|a® <o w’|a@ <p - <e w”|a®.

1) (Mo, @) + Dr(w) = (Mo, @) + Di(w') if w, @’ € Wi for some (.
ii) Let q(x) € Clz] and suppose for each ¢ = 1,...,my, q(z) is a multiple of
(z — (No, @) — Dy(w))" with @ € Wy. Then q(Fy)Meo()) = 0.
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Proof. i) By the W-invariance of (, ) and the assumption, we have
<A9+p_wa)\@+p_w> - <)‘@+p_w/7A9+p_w,>a

which implies the claim.

ii) Use the notation in the proof of Theorem 2.29. Let M be a g-module and
1 € a*. We say that a non-zero vector v in M is a generalized weight vector for the
generalized infinitesimal character p if for any A € Z(g) there exists a positive
integer k& such that (A — Aq(p))fv = 0. We denote by (M), the submodule
of M spanned by the generalized weight vectors for the generalized infinitesimal
character p. Note that (M), = (M) if and only if g = w.u’ for some w € W.
By virtue of (27) and Remark 2.16, Mg(A) ® V* is uniquely decomposed as a
direct sum of submodules in {(Mg(\) ® V*)ag4mo); ¥ =1,...,1}.

For i =1,...,k using a pe-module

w=Ue & Uy
Vi @Wilag<e@vlag
define
M) = U(g) ®pe (Cr®@ V}y) = U(ne) ® Cy @ V.

It is naturally considered as a g-submodule of M; = U(ng) ® C\, ® V;. If we define
the surjective homomorphism

i)« My — M; — M;/M; 1 ~ Mo rg 1),

then
Ker Th) = Z M[,,}. (29)

v, wila@ <®wu|a@

Since M(g rg+w,) has infinitesimal character A\g + w; we get
My = (M) o +wi) + > M.
Vs wi‘u@<®wu‘u@
Therefore we get inductively
Mg =Moer=n+ Y, (Mi)oetm)- (30)
V; @ilag <o®@vlag

Notice that the g-homomorphism hx ) (Fr) leaves any g-submodule
of Mg(A) ® V* stable. Then from (28) and (29)

<h(7r,M@()\))(F7r) — (Mo, —mw;) — Dﬂ(_wi)> (M) (po )

C Z My,

V;wi|a(_)<(—)’wu|a@ (>\6+wz)

= > (M) peren

V; @ilag <o@ulag

(Ao+w@;)

= > (Mp)) potmn)-

Vs wila@ <®wu|a@a
lo+w,€{w.(N\o+w;); weW}
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By the relation {w;} = We(n*) = —We(nm) and the assumption of i) we get
inductively

P o)) ((Fr)) (M) o +0:) = QP00 0)) (B ) (M) (ro ) = 10}

for i =1,...,k. Now our claim is clear because by (30) we have

Me(N) @ V" =3 My =2 (Mp)oesm): "
=1 1

=

Corollary 2.32.  Let 7 be an involutive automorphism of g which corresponds
to an automorphism of the Dynkin diagram of g. Then 7(a) = a and 7(n) = n.
Furthermore we suppose T(pe) = pe, or equivalently, T(ag) = ag. For w € a*
we identify @|g)r as a linear function on (a§)” by @|ae)r(A) = (Ao, @) for
A€ (ag)". Put

Qror= {(w](ae)f, Dﬂ(w)); w € Weo(m)},
%r,@,‘r(m; >\> = H (33 — IU()\) — C)

(H?C)GQW,@,T

Then for X € (ay)™ we have the following.
1) q,I-,@’T(Fﬂ-; )\)M@()\) = O
ii) If each root of q=e-(x;\) is simple, then ¢z o (T;N) = ¢ 1o ().

Proof.  We naturally identify pg with an element in (af)”. For a given pair
of weights w, @’ € We (1) with @ls, <e @'|s , choose the non-negative integers
{ma; o € U(g)\ O} so that @'|eg — @ae = D scu(gno Malla - Then @'|o, (pe) —
@lae (PE) = D pcwgro Mala, po) > 0. It simply shows

(@ae) Dr(@)) # (@'l(ae) Dr(c")).-
Hence from Theorem 2.31 we get i). Now ii) is clear from Theorem 2.29. u

We will shift a* by p so that the action w.u = w(u + p) — p for p € a*
and w € W changes into the natural action of W and then we can give the
characteristic polynomial as a special case of the global minimal polynomials. The
result itself is not new and it has already been studied in [11].

Theorem 2.33 (Cayley-Hamilton [11]).  The characteristic polynomial ¢(z)
of m 1s given by

e

under the identification Clx]®S(a*)V ~ Clz]®@S(a)V ~ Z(g)[z] by the symmetric
bilinear form ( , ) and the Harish-Chandra isomorphism.:

Z(g) ~U(a); A= T(A),
T(A)(1) = Aa(p — p) for p € a”.

Here m is identified with its highest weight. In particular q.(x) € Z(g)[z].
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Proof. Note that (m,7m + 2p) = (7,7 — 2p). Let ¢.(z) be the element of
Z(g)[x] identified with the right-hand side of (31). Put V =}, - Cgr(F);; and
V.= {Dy D € V}. Then Theorem 2.24 with © = ) shows Q(u) = 0 for any
p € a* and @ € Vg, which implies V, = {0}. Since V is ad(g)-stable, we have
V = {0} as is shown in [19, Lemma 2.12]. Since the minimality of G.(x) follows
from Theorem 2.29, we get ¢.(x) = ¢.(z). [

Corollary 2.34. i) Let g be a simple Lie algebra. Then the characteristic
polynomial of the adjoint representation of g is given by

dome (@) =[] (x o L@"O‘))

2
aeXi(g)u{0}

Here B( , ) denotes the Killing form of g.

ii) Suppose that the representation w is minuscule, that is, W(7) is a single

W -orbit. Then
Gx(7) = H (x — @ — (m, p)).
weW(m)

Proof.  This is a direct consequence of Theorem 2.33 and Lemma 2.19 v). =

Corollary 2.35.  Put q,(z) = 2™+ A 2™ '+ -+ A1z + A, with A € Z(g)
and define

Fr=—F"1' - A\F™2 . — A,y

™

Then

- - 9,) —
FrFr = Folr = Apldy = H <_w_<7rj7r+ 0 <w’w>)INa
2
weW(r)

In particular, F, is invertible in M(N,Z(g) ®z(g U(g)) with the quotient field
Z(g) of Z(g).

In the next definition and the subsequent proposition, we do not assume
(10). Namely, g is a general reductive Lie algebra and (m,V) denotes a finite
dimensional irreducible representation which is not necessarily faithful. Moreover
we use the symbol ( , ) for the symmetric bilinear form on a* defined by the
restriction of the Killing form of g.

Definition 2.36 (dominant minuscule weight). ~ We say a weight my;, of 7 is
dominant and minuscule if

(Tmin, @) >0 for all € X(g)"
and
(Tmin, Tmin) < (@, @) for all @ € W(r).

If the highest weight of 7 is dominant and minuscule, then (7,V) is called a
minuscule representation.
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Proposition 2.37.  Put ¥(g) = {a1,...,a.} and define ¥ = % for a €
Y(g). Let (m,V) be a finite dimensional irreducible representation of g. Let Tpin
be a dominant minuscule weight of 7.

i) If the highest weight of m is in the root lattice, then Ty, = 0.

i) Tin 18 uniquely determined by w. Moreover if (n',V') is a finite dimensional
irreducible representation of g such that the difference of the highest weight of '
and that of 7 is in the root lattice of Y(g), then Tymin = Thy, -

iii) w € W(n) is a dominant minuscule weight if and only if

(w,a") €{0,1} foralla € X(g)". (32)

iv) If © is a minuscule representatz’on then W(m) = W Ttin -

v) Suppose g is simple. Let X(g)" := {a¥; a € X(g)} be the dual root system of
Y(g). Let 8 be the mazimal root of X(g)¥ and put 5 = >, ne). Define the
fundamental weights A; by (Az,a ) = 0i;. Then m is a minuscule representation
if and only if its highest weight is 0 or A with n; = 1.

Proof. For o € ¥(g) we denote by g* the Lie algebra generated by the root
vectors corresponding to a and —a. Note that g is isomorphic to sls.

i) Suppose the highest weight of 7 is in the root lattice. Put w =
Yo imi(w)a; for w € W(r). Note that m;(w) are integers. Let wy € W(n)
such that m;(wp) > 0 and >"._, m;(wo) < > ., mi(w) for w € W(m) satisfying
mi(w) > 0 for i = 1,...,r. The existence of wy is clear because m;(m) > 0 for
i=1,...,r. Suppose wy # 0. Since 0 < (wo, wo) = Y _;_, m;(wo){wo, o), there
exists an index k such that (cg, o) > 0 and my (o) > 0. Hence wy—ay € W(m)
by the representation m|gew, which contradicts the assumption for wy. Thus
0=1wy € W(mr) and 7y, = 0.

ii) — iv) Suppose the existence of « € X(g)* with (7, ") > 1. Then
it follows from the representation m|g that mpm —a € W(m) and (Tmin, Tmin) —
(Tmin — @, Tin — @) = 2(Tin, @) — (@, &) > 0, which contradicts the assumption
of Tmin. Thus we have (32) for @ = mpiy.

Suppose 7 is an irreducible representation of g with the highest weight w
satisfying (32). Suppose W(m) # Ww. Then there exist p € Ww and ¢/ € W(r)
such that p/ ¢ Ww with a := p—p’ € ¥(g). By the W-invariance we may assume
p = w and therefore p/ = w — a with o € 3(g)". Then by the representation
Tge together with the condition (32) we have (w,a") =1 and p/ = w,w, which
is a contradiction. Thus we have iv).

Let @ and @’ be the elements of a* satisfying the condition (32). Then
w" = w — w’ satisfies (@w”, ") € {—1,0,1} for a € ¥(g). Suppose that w”
in the root lattice. Let wy € Ww” such that (wp,a) > 0 for a € X(g)*. Since
wy also satisfies (32), the finite dimensional irreducible representation 7y with the
highest weight wy is minuscule by the argument above. Since wy is in the root
lattice, wy = 0 by i) and hence w = w’. Thus we obtain ii) and iii).

v) Let a € X(g)". If we denote a¥ = >"'_ n;(a)a), then n;(«) < n; for

t=1,...,r. Hence the claim is clear. |
Remark 2.38.  Equivalent contents of Proposition 2.37 are found in exercises
of [3], Ch. VL.

Restore the previous setting (10) on g and (m, V).
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Proposition 2.39. i) Let V,, denote the weight space of V with weight w €
W(m). Define the projection map pe : W(w) — W(7)|ae by Po(w) = wle, and
put V(A) =3 cporny Ve Jor A€ W(m)lag . Then

V= @ V@) (33)

AEW(W)|u@

15 a direct sum decomposition of the go-module V .
Let V(AN) =V(A)1 @ - @V (A, be a decomposition into irreducible go -
modules. We denote by wy the dominant minuscule weight of (7|ge, V(A)1). Then

ka
Ve, = @ Vo  NV(A);  with dim Vi, NV(A); > 0. (34)
i=1

In particular, V(A) is an irreducible go-module if dimV,, = 1.
ii) Put U(g) = {1, - ,a,} and put ¥(g) \ © = {ay,,...,q; }, define the map

Pe : Y(g) — z>

and put

Lo = {0} U {pe(a); a € X(g)},
y X, if m#0,
V(m) = 4 e |
a-+ CX, if m=0

a€pg' (m)

for m € Lg. Then

g= P V(m) (35)

is a decomposition of the go-module g. If m # 0, then V(m) is an irreducible
go-module. On the other hand, V(0) = ggo is isomorphic to the adjoint repre-
sentation of go = ag D mg. Let © = O LU O, L--- LI O, be the division of
© into the connected parts of vertexes in the Dynkin diagram of V(g). Then
me = Mg, Dme, ®--- B me, gwes a decomposition into irreducible ge-modules.
iii) Suppose that the representation (m, V') is minuscule. Put W™ = {w € W; wr =
7}. Here we identify m with its highest weight. Let {wy,...,wi} be a represen-
tative system of WT\W/Wg such that w; € W(O). Then with the notation in
i)
k

V=PV (w;'|e) (36)

=1

gies a decomposition into irreducible gg-modules. Moreover the geg-submodule
V(w; '7|ay) has highest weight w; 'r.
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Proof. i) Since al,, = 0 for a € O, (33) is a decomposition into ge-
modules. Then Proposition 2.37 ii) implies that w, is the minuscule weight for
any (7|ge, V(A);) and therefore the other statements in i) are clear.

ii) Note that a, |ag,-- -, | are linearly independent and go = V/(0).
Then the statements in ii) follows from i).

iii) From i) each V(w; '7|q,) is an irreducible ge-module and

V(W 'lag) DY AVi1ei w € Wrw;We .

Since w; € W(O) we have w; 'm+a ¢ W(r) for a € $(ge)™. It shows the highest
weight of V(w; '7]ag) is w; 'w. Since w; 'w # w; 'w if i # j we have (36). ]

We give the minimal polynomials for some representations in the following
proposition as a corollary of Lemma 2.19 v) and Proposition 2.39.

Proposition 2.40.  Retain the notation in Theorem 2.24 and Proposition 2.39.
i) (multiplicity free representation) Suppose dimV,, =1 for any w € W(rw). Let

A be the lowest weight of (7|ge, V(A)) for A € W(m)|ao . Then

qro(T;\) = H l’—()\@,l_\>—%<ﬂ—/_\,7r+/_\—2p>)
AEW(TF)IC(@ (37)
- _ (7, 7) — (A, A)
= x-()\@+p,A>+<7T,p>— .
B =)

ii) (adjoint representation) Suppose g is simple and © # ). Let © = ©,U---LUO,
be the division in Proposition 2.39 ii). Let o', denote the mazimal root of the
simple Lie algebra me, for 1 =1,... 0. Put

Q@ - {B(arlnaxv arlnax + 2p(@1))7 R B(O‘fnax’ afnax + 2p(@g))}.

Let am be the smallest root in pg'(m) for m € Lg \ {0} under the order in
Definition 2.20. Then for the adjoint representation of g,

Qo053 X) = (x _ %) 11 (m B %>

CeQo
1-B m>; 4m
I1 (x—B()\@—i—p,ozm)— ((; a )>. (38)
meLeg\{0}
iii) (minuscule representation) Suppose (w, V') is minuscule. Then with wy, ..., wy
in Proposition 2.39 iii),
k
tro(iN) = [ (2~ (wiho + po — p(©)) + p,7)). (39)

=1

Proof. It is easy to get i) and ii).
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iii) Let wg denote the longest element in Wg. Then the gg-module
V(w; '7|a,) has lowest weight wew; ‘7. The claim follows from the next cal-
culation:

(Mo, Wow; 'm) + 5(7? — Weow; 'm, T + Wew; 'T — 2p)

= (o +p,u_)@w;17r> + (p, )
= (wiwe (e + p) + p,m) = (wi(Xe + po — p(©)) +p,7). =

3. Two-sided ideals

Our main concern in this paper is the following two-sided ideal.
Definition 3.1 (gap). Let A € aj. If a two-sided ideal Ig(\) of U(g) satisfies

Jo(A) = Te(A) + J(Xe), (40)
then we say that Ig(\) describes the gap between the generalized Verma module

Mg(\) and the Verma module M (Ag).

It is clear that there exists a two-sided ideal Ig(\) satisfying (40) if and
only if
Jo(N) = Ann(M@()\)) + J(No). (41)
This condition depends on A but such an ideal exists and is essentially unique for
a generic A (cf. Proposition 3.11, Theorem 3.12, Remark 4.14). The main purpose
in this paper is to construct a good generator system of the ideal from a minimal
polynomial.

Definition 3.2 (two-sided ideal).  Using the global minimal polynomial defined
in the last section, we define a two-sided ideal of U(g):

[ﬂ@ Z U qﬂ@ F7T) )\ 2] Z U A - Aa()\@))' (42)

i A€Z(g
From Theorem 2.24 and Remark 2.16 this ideal satisfies
I o(A) C Jo(N). (43)
In this section we will examine the condition so that
Jo(A) = Ire(A) + J(Xe). (44)

Proposition 3.3 (invariant differential operators).  For A € Z(g) and a non-
negative integer k we denote by AE{“) the homogeneous part of A, with degree k
and put

™ = Z M (w)w”. (45)

weW ()

Here m,(w) is the multiplicity of the weight w of ™ and we use the identification
wea*~aCU(a). Let {Ay,...,A.} be a system of generators of Z(g) as an
algebra over C and let d; be the degree of (A;)g for i = 1,...,r. We assume
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that (Al)gdl), - (A,)Ef“) are algebraically independent. Suppose a subset A of
{1,...,r} satisfies
dkzdegm%r,@(xa)‘) kae {1,...,7’}\A, (46)
ClADY, . (A =C[(A) i ie A, ke {1,...,r}\ A

Then
Lro(N) = D U(@)aro(Fri Ny + 3 U@) (A = (M) (47)

€A

Proof. Note that Z” U(9)qro(Fr;N)ij 2 Trace(Fjr’qm@(F,r; )\)) if v>0. On

the other hand, since Trace(F,f’fqm@ (Fﬂ;)\))‘(jdk) = T by Lemma 2.23 with
O = O if the integer ¢} = dj — deg, (qm@(Fﬂ; )\)) is non-negative, the assumption
implies that for £ € A, A, may be replaced by Trace(kaqm@ (Fﬂ;)\)), which
implies the proposition. [ |

Lemma 3.4.  Let V be an ad(g)-stable subspace of U(g) and let V= _V
be the decomposition of 'V into the weight spaces V with weight w € a*. Suppose
Dqo(Xe) =0 for D € V. Then the following three conditions are equivalent.

) Jo(N) C U@V +J().

ii) For any o € © there exists D € V_,, such that D — X_, € J(Xo).

iii) For any a € © there exists D € Vg such that Dy(Ae — ) # 0.

Proof. Let U(g) = @_U(g)= be the decomposition of U(g) into the weight
spaces U(g), with weight w € a*. Let p € a*. Since U(g) = U(n) & J(u), to
D € U(g), there corresponds a unique D* € U(n) such that D — D* € J(u).
Here we note that D € U(g), implies D* € U(n), and that D* = Dy(u) € C
whenever D € U(g)o.

Put V¥ = {D"*; D € V}. Since ad(X)V C V for X € b, we have
PD € V + J(u) and therefore (PD)* € V# for every P € U(b) and D € V.
Owing to U(g) = U(n) ® U(b), we have

{D*";D € U(g)V} =U(n)V*". (48)
Note that
VH = @{(Vw)“; w=— Z n.7y for some non-negative integers n,}.  (49)
ve¥(g)

Supposei). Let o € ©. Since X_, € Jo(A)\J(Ae), there exists D € U(g)V
with D* = X _,. On the other hand, we can deduce (U(ﬁ)V)‘@)_a = (V_,)e
from (49) because the assumption of the lemma assures (Vo)*¢ = 0. Hence from
(48) we may assume D € V_,. Thus we have ii).

It is clear that ii) implies i) because Jg(A) = J(Xe) + > co U(9)X_q.

Let o € ©. Since ad(H)X_, = —a(H)X_, for H € a, we have

H1 . 'HkX_a = X_Q(Hl — Oé(Hl)) s (Hk — Oé(Hk)) for H17 .. .,Hk € a.
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We also have X, X_, € J(Xo) for v € X(g)" because Ao([Xa, X_o]) = 0 and
(X, X_,] €nif v # . Hence for any D € U(g)o,

(ad(X_qa)D)* = [X_,, Do) = (Da(Ne) — Da(Xe — a)) X_,. (50)

Now it is clear that iii) implies ii).
Conversely suppose ii). Let o« € ©. Since V_, = ad(X_,)Vy, there exists

D € Vg with (ad(X_,)D)* = X_,, and we have iii) from (50). ]
Remark 3.5. In the above lemma Ag — o = wy. Ao for o« € O because
</\@, Oé> =0.

By the Duflo theorem ([6]), Ann(M(p)) = Y AcZ(a) U(g) (A — Aq(p)) for
any g € a*. Then, by the following theorem, each Ann(M(u)) has the same
ad(g)-module structure.

Theorem 3.6 (the Kostant theorem [14]).  There exists an ad(g)-submodule H
of U(g) such that U(g) is naturally isomorphic to Z(g) @ H by the multiplication.
For any finite dimensional g-module V, dim Homgy (V,H) = dim V.

Similarly on the annihilators of generalized Verma modules we have

Proposition 3.7.  Suppose Ae+p is dominant. Then for any finite dimensional
g-module V and H in Theorem 3.6,

dim Homg (V, Ann(Me(X))/ Ann(M(Xe)))
= dim Hom, (V, H N Ann(Meg()))) = dim V — dim V%

where V9 ={v e V; Xv =0 (VX € go)}.
Before proving the proposition, we accumulate some necessary facts from
2], [1] and [13].

Definition 3.8 (category O [2]). Let O be the abelian category consisting of
the g-modules which are finitely generated, a*-diagonalizable and U(n)-finite. All
subquotients of Verma modules are objects of O. For u € a* we denote by L(u)
the unique irreducible quotient of the Verma module M (u). There exists a unique
indecomposable projective object P(u) € O such that Homg(P(u), L(t)) # 0.

Proposition 3.9 ([2], [1]). i) If p+ p is dominant, then P(n) = M (p) and

1 if =,

dim Homg(M<M)a M(l/)) - {O if 1 # .

ii) For any u,p € a*

: L odfp'=np
dim Homg(P(u), L(y)) = 7
o(P(), L(1)) {0 i 4
iii) For any finite dimensional g-module V and p € a*, V® P(u) is a projective
object in O.
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Proposition 3.10 ([1], [13]).  Suppose p € a* and p+ p is dominant. Then
the map

{I C U(g); two-sided ideal, I > Ann(M(pn))} — {M C M(p); submodule} (51)

defined by I — IM () is injective and hence Ann(M (p)/IM(p)) = I for any
two-sided ideal I with I > Ann(M(p)). The image of the map (51) consists of
the submodules which are isomorphic to quotients of direct sums of P(y') with

/
2<u<;—g’>ﬁ> €{0,—1,-2,...} for any B € X(g)" such that {u+p,3) =0. (52)
Proof of Proposition 3.7.  We first show the map
Homgy (V,H) 3 ¢ — ® € Homy (V @ M(Xe), M(Ne)) (53)

defined by ®(v ® u) = ¢(v)u is a linear isomorphism. Since U(g) = H &
Ann(M ()\@)) the map is injective. To show the surjectivity we calculate the
dimensions of both spaces. By Theorem 3.6 dim Homy (V,H) = dim V. On the
other hand, note that
Homgy (V ® M(Xo), M(Xo)) =~ Homg (M(Xe), M(Xe) ® V)

and there exist a sequence {u1,..., e} C a* and a g-stable filtration

{0} =My CM S-S My=M(No) V"
such that M;/M; 1 ~ M(p;) for i = 1,...,¢. Here the number of appearances
of \g in the sequence {py,...,ue} equals dimV§ = dim Vg (cf. the proof of
Theorem 2.29). Since A\g + p is dominant, it follows from Proposition 3.9 i) that
dim Homg (M (Xe), M(Xe) ® V*) = dim V. Thus (53) is isomorphism.

Secondly, consider the exact sequence

It is clear that under the isomorphism (53) the subspace

Hom, (V,H N Ann(Me()))) C Homg (V,H)
corresponds to the subspace

Homy (V ® M(Xo), Jo(N)/J(Xe)) C Homgy (V @ M(Xe), M (X)) .

Let us calculate the dimension of the latter space. By Proposition 3.9 i) and iii),
V ® M(Xe) is projective and therefore

dim Homy (V @ M(Xe), Jo(N)/J(Ne))
= dim Homy (V ® M (Xe), M (o)) — dim Homy (V ® M(Xe), Me(N)).

Here we know

Homg (V @ M(Xo), Mo(A)) ~ Homgy (M(Xe), Mo(N) ® V)
and there exist a sequence {j1,..., s} C a* and a g-stable filtration

{0} =My & My G- C My = Me(A) @ V™

such that M;/M;_, ~ Me,, for i = 1,...,¢'. The number of appearances
of Ae in the sequence {u1,...,ur} equals dim(V*)% = dim V% (cf. the proof
of Theorem 2.29). Since the generalized Verma module Mg ,,) is a quotient of

M (p;), Proposition 3.9 i) implies dim Homg (M (o), Me(A) ® V*) = dim Ve,
Thus the proposition is proved. [ |
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Proposition 3.11 (Harish-Chandra homomorphism). Let I be a two-sided ideal
of U(g). Put V(I) ={p € a; Dy(n) =0 (VD € I)}.
i) Fiz a € ¥(g). If peV(I) and

(n+p )
B AURENEE (54)
then wq.p € V(I).
ii) Suppose \ € ag and
Jo(A) =1+ J(Xe). (55)

Then w. e ¢ V(I) for w e Weo \ {e}.

iii) In addition to the assumption of ii), suppose Ag + p is dominant and
I > Ann(M(Xe)). (56)
Then I = Ann(Meg())) and
V(D) = {whe: w € W(O)}. (57)

Proof. i) Note that p € V(I) if and only if I C Ann(L(y)). It is known by
[12] that Ann(L(u)) C Ann(L(wa.p)) if (54) holds, which implies i).

ii) Since I C Ann(Mg())) C Ann(L(Xe)) we have A\g € V(I). Put
W' ={w e We \{e}; wre € V(I)}. Then, by Lemma 3.4 with V =1, w, ¢ W’
for any a € ©. Suppose W’ # ). Let w' be an element of W’ with the minimal
length. Then there exists a € © such that the length of w” = w,w’ is smaller
than that of w’. Then w” # e and

w' Ao + p, @) :z(w’p,a) <o
(o, a) (o, )

N

Hence by i), we have w”.; € V(I), which is a contradiction.

iii) It immediately follows from Proposition 3.10 that I = Ann(Meg())).
Since Ann(M(Xe)) = Yaczp U(9)(A = Ad(Xe)), V(I) C {w.de; w € W}. Let
w = w(Owe € W with w(©) € W(O) and weg € Wg. Suppose w(O) # e.
Then there exists a € U(g) such that the length of w,w(©) is less than that of
w(O). For this root a we have w,w(©) € W(0) and w(0) o, wg'w(O)la €
¥(g)” \ X(ge). The assumption thereby implies

(w. e + p, @)

T ara)

¢ {1,2,3,...}.

Hence (waw).Ao € V(I) provided that w.\g € V(I), which assures
V(I) N {(W(O)we).re; we € Wo \ {e}} =0 (58)

by ii) and the induction on the length of w(©). Similarly we can show that
V(I) D {w.Xe; w e W(O)} if

<>‘® + P, Oé>

o)

¢{1,2,3,...} (VaeZ(g)"\X(ge)). (59)
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Let us remove the condition (59) by use of Proposition 3.7. Since U(g) = H &
Ann(M(Xe)), we have only to show for each finite dimensional g-module V

(p(v) (w-Ae) =0 (¥ € Homg (V,H N Ann(Mo(1))) , Yo € V, ¥ € W(6)),

(60)
For D € U(g) we denote by D* a unique element of U(fg) such that D — D* €
Jo(A). Then ¢ € Homg(V,H) belongs to Homg (V,H N Ann(Me(}))) if and
only if p(v)* =0 for v € V. Let k = dim V; and take ¢, ..., ¢ € Homg (V,H)
so that they constitute a basis. Note that for v € V and i = 1,... k, ¢;(v)* are
U(ng)-valued polynomials in A\. Let ¢ = k — dim V% . Then by Proposition 3.7
there exist an open neighborhood S C a§ of the point in question and complex-
valued rational functions a;;(A) on S such that

ai;(N) 1 + agj(N)pa + - +ar;(Ner (j=1,...,0)

form a basis of Homg (V,H N Ann(Me(N))) for any A € S. Since generic A € S
satisfy (59), (60) holds for any A € S. ]

On the existence of a two-sided ideal Ig(\) satisfying (40), we have

Theorem 3.12.  Suppose g + p is dominant. Then the following four condi-
tions are equivalent.

i) Jo(A) = Ann(Mo(N)) + J(Xe).

i) If € X(g)" \ X(go) satisfies (Ao + p,B) =0, then (5,a) =0 for all a € ©.
iii) W(0). Ao NWo. Ao = {)o}.

iv) If wg € Wg satisfies (W(@)wg).)\@ NW(O) e # O, then wg = e.

In particular, if \g + p is reqular, these conditions are satisfied.

Proof. iv) = iii) is obvious.
iii) = ii). Suppose there exist 3 € 3(g)" \ X(ge) and « € O such that
(Ao +p,0) =0 and (B,a) # 0. For v € 3(ge)™ we have

2<>\@—|—,0,w,67> _ 2<)‘®+p7’7> _ 2<pa’7> c {172’.”}7
(wgy, wg7) (v:7) ()
which shows (5,7) < 0 and wg € W(O). In particular (3,«) < 0 and hence
waws € W(O). Now we get (waws).Ae = wy.Ae, a contradiction.
ii) = i). For each a € © we define the g-homomorphism M(Ae — a) —
M(Xe) by D mod J(Ae — a) — DX_,mod J(Ag). This is an injection and
therefore we identify its image with M (Ae — ). Note that

> M6 —a) = (J(e) + D U@)X ) /T(De) = Jo(A)/J (Ne)

a€e® ac®

and we have a surjection P(Ag —a) — M (Ag —a) by Proposition 3.9 ii). Moreover
it is clear that the condition (52) with (u,pu’) = (Ae,Ae — «) holds for each
a € ©. Hence by Proposition 3.10 we have a two-sided ideal I containing
Ann(M(Xe)) such that IM(Xe) = Jo(N)/J(Xe). Then I = Ann(Mg(N)) and
Jo(A\) =1+ J(Ne).

i) = iv) follows from (57) and (58). ]
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Remark 3.13.  Through I ¢, we will get in §4. many sufficient conditions for
(41), which are effective even if Ag + p is not dominant.

Definition 3.14 (extremal low weight).  For a simple root a € U(g), we call a
minimal element of {@w € W(r); (w, ) # 0} under the order < in Definition 2.20
an extremal low weight of ™ with respect to «.

Since 7 is a faithful representation, 7(X_,) is not zero and therefore an extremal

low weight w, with respect to a always exists but it may not be unique. The
main purpose in this section is to calculate the function

1 3 3 = (dr6(Fri N, ) (o =) (61)

on ag. If for any a € © there exists w, such that the value of the corresponding
function (61) does not vanish, Lemma 3.4 assures (44).

Lemma 3.15. Fiz o € U(g) and let w, be an extremal low weight of m with
respect to . For N = 3 gy meB € a* put [N = > g5y ms. Then there
exists {v1,..., vk} C V(g) with vk = « such that the following (63)—(69) hold by

denoting
W; = Wa — Z Yo (62)

i<v<K

K =|wy —7|+1 and wy =T, (63)
(wi,vi) <0 fori=1,..., K, (64)

(i) =04if1<i<j<K, (65)

(vis ) # 0 if and only if |i — j| < 1, (66)
{w1,...,wx_1} ={&d e W(r); @’ < wa.}, (67)
w; 1s an extremal low weight of ™ with respect to ~; fori=1,... K, (68)
the multiplicity of the weight space of the weight w; equals 1. (69)

The sequence 71, ...,vk 1S unique by the condition w, ..., wx € W(r). The part
of the partially ordered set of the weights of ™ which are smaller or equal to w, s
as follows:

- m 72 V3 TK—-1 VK=
W) =T — Wy — W3 —> +- -+ —— W = Wy ——— (70)

Proof.  Let 7,...,7x be a sequence of ¥(g) satisfying (63), 7x = «a, and
w1,...,wg € W(m) under the notation (62). The existence of such a sequence is
clear. We shall prove by the induction on K that such a sequence is unique and
that it satisfies (64)-(68).

By the minimality of w, we have (w;,a) =0 for i =1,..., K — 1. Hence
(vi,a) = (w1 —wi,a) =0fori=1,..., K—2 and (yx_1,a) = (W —wg_1, Q) =
(@Wa, ) < 0. Thus we get v; #a for i =1,..., K — 1. Moreover w, —v; € W(r)
fori=1,..., K —2 because (w, — Vi, ) = (w,, ) # 0 and w, is minimal. This
means {w' € W(n); @’ < wo} = {wg_1} U{w' e W(n); @’ < wr_1}.

Suppose (wr_1,Vk-1) > 0. Then wg_; — yx_1 € W(m) because wg_; +
VK1 = wWa € W(m). Hence (wr_ 1 — vx_1,0) = —(yx_1,) > 0, which
contradicts with the minimality of w,. Thus we get (wx_1,vKk_1) < 0.
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Suppose wx_1 is not an extremal low weight with respect to yx_1. Then
there exists an extremal low weight @’ with respect to yx_1 such that @’ < wg_;.
Then W(r) 2 @' 4+ vk-1 < ws and (@' + vx_1,a) = {(yx_1,a) = 0 by the
minimality of w,. It is a contradiction. Hence wg _; is an extremal low weight
with respect to yx_1.

Now by the induction hypothesis we obtain the uniqueness and (64)-(68).
Note that (69) follows from the uniqueness and the following lemma because
V = U(n)vz with a lowest weight vector vz of 7. n

Lemma 3.16.  U(n) is generated by {X,; v € ¥(g)} as a subalgebra of U(g).

Proof.  Let U denote the algebra generated by {X,; v € ¥(g)}. It is sufficient
to show that Xz € U for § € X(g)*, which is proved by the induction on |3
as follows. If |B] > 1, there exists v € ¥(g) such that ' =  —~v € X(g)".
Then X3 = C(X,Xg — XpX,) with a constant C' € C. Hence the condition
Xy, Xgp € U implies Xg € U. [ |

Remark 3.17. By virtue of (66) the Dynkin diagram of the system {~,..., vk}
in Lemma 3.15 is of type Ax or Bg or Ck or F; or Gy where v, and i corre-
spond to the end points of the diagram. Note that

(m,71) <0and (m,7;) =0fori=2,..., K. (71)

Conversely if a subsystem {v1,...,7x} C ¥(g) satisfies (66) and (71) then 7 +
Y1+ -+ Yx_1 is an extremal low weight with respect to vx. Hence we have at
most three different extremal low weights of 7 with respect to a fixed a € ¥(g).

The next lemma is studied in [22, Lemma 3.5]. It gives the solutions for
the recursive equations which play key roles in the calculation of (61).

Lemma 3.18. For k=0,1,... and £ = 1,2,..., define the polynomial f(k,?)
in the variables sy, ..., S¢_1, 41, fo, . .. Tecursively by

1 if k=0,
Fl =100 =) + 5 s (b= 10) if k21,

Moreover for k = 1,2,... and ¢ = 1,2,..., define the polynomial g(k,{) in the

f(kvo = (72)

variables t, sy, ..., Sp_1, 1, fho, - . . recursively by
1 if k=1,
gk, 0) = . (73)
Then the following (74)—(76) hold.
flk,0) =0 for k>¥, (74)
-1
f(ﬁ—l,é) :H(ué_,uu_'_sl/)? (75)
v=1
-1 k
gk, O) = [[t = +s0) T =) for k> (76)

v=1 v=0+1
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Now recall (22) with © = @. Let Ff € U(a) be the element in (22)
corresponding to the weight w; for ¢ = 1, ..., K under the notation in Lemma 3.15.
Then Lemma 3.15 and Lemma 2.19 iv) with ¢ = 1, § = w; — w, € X(g)"
(1 <v <) and w = w, show that (22) is reduced to

Fff = F7 (@i — i + Dr(wy)) = Z (w,, w; —w@,)F*1 mod U(g)n.  (77)

1<v<i
Since (w;, Ae) = (wi, Ao —a) for i =1,..., K — 1, (77) inductively implies
(). (Re) = (Fi) (he — )

fori=1,..., K —1land k=0,1,.... (78)
From (65) we have

(wy, w; — wy,) = (Wy, Yo + -+ + Yiz1) = (@Wy, Vo)
and hence

Fﬁfuﬂ - Fl]: = Eﬁ%ﬂ (wi+1 — Hi + Dw(wi—i-l))

+ Filz_l(wi, Wiyl — W) — Fi]f_l (wi — g+ Dw(wi)) mod U(g)n
= (Ffoh = F Y (wim — ks + Da(wi)) + F

The last equality above follows from Lemma 2.22 i) with w = w; and @’ = w; 1
because 7; = w;y1 — w; € Y(g). Hence by the induction on k we have

Fi]i1i+1 = Fz]f mod U(g)n + U(g)v:-

Now consider general © C ¥(g).

Define integers ng, ni,
ng=0<n; <---<np =K such that

..o.o,ng, with

{ni,...,np1}={rve{l,... . K —1};v, ¢ O}
If ng_y < v <ny, then v, € O, which implies (7,, Ag) = 0 and hence

(Ff+1u+1)a()‘®) = (Ffu>a()‘@)-

We note that @,y+1|ae <6 @ny+1lae <o+ <6 Wn;_;+1]ae and
{@not1s > Tny_141} = {0 € We(m); @' < @}

Put py = (wn,_,+1, Ae) + Da(wn,_,41) for £=1,..., L. Since H£:1(5C_W)
is a divisor of ¢, o(x; \), we can take p, for ¢ = L+1, L+2,..., L' = deg, ¢ro(x; \)
so that ¢re(z;\) = Hle(x — ).

For k=0,1,...,L and £ =1,2,..., L we define

[k, 0) = (F:£71+1,n471+1)u(A6> == (Fk )a()‘@))'

ng,mg

Then putting

S¢ = Z <w1/7 71/>7

ne_1<v<ng
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we have from (77) with ¢ =ny_; + 1

-1
Fllt)y = f(k—1,0) (e — ) + Y s;f(k—1,j).
j=1
From (78) and (77) with i = ny = K we also have

(Frr) Qe — @) = (Fig') (Mo — @) ((a; Ao — @) + Dr(wa) — )

+Z‘9]f(k_1>])+ ( 2 <wua7V>) f(k_LL)

v=nr_1+1

Hence by Lemma 2.22 i)

fk, L) = (Fii) (Ao —a)

<wa= O‘)
k—1,L)— (F) (Qe —
= =1 h) (w(a ZI;)“( 0 ) ((@a, Ao — @) + Dr(wa) — )
+ f(k—1,L)
Now applying Lemma 3.18 to
sy = 201 = (Pl 00 )
’ (@Wa, )
with ¢ = (wa, Ae — @) + Dr(w,), we obtain
(QW,G(Fﬂ; /\)wawa) a<)\® - Oé)
= (Fix) Go—a)
L-1
= —(Wa, @) H ((wa, Ao — a) + Di(wy) — pe + Sg)
=1
o
. H ((wa, Xo — ) + Dy(w,) — ,ug)
(=L+1

= — (W, @) T 1<<w; — Wpy, No) + Dr(w)) — Dw(wng—l—l))

1

~
Il

H ((w; — i, No) + Dy (@) — C).

(M?C)eQTF,@\Q:%
Here we put @/, = w, +a € W(r) and
0o = {(@ao, Da(@)); @ € Wo(7), @ < wo} (79)
for wy € W(r). To deduce the last equality, we have used

He — Sg = <ww,)\@>—|—Dﬂ-(’ww+1) f1<e<L-—1.
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Definition 3.19.  Suppose a € © and w, is an extremal low weight of 7 with
respect to . Put @/, = w, + a € W(r) and

{wy,..., ok} ={w e W(n); w < @,}
with ) < wy < -+ < wi and define ng =0 <n; < --- <nyp < K so that
{@noit1s- > Tngi1} = {w € We(n); @ < w,}.

Under the notation in Definition 2.20 and (79), define

remN = II (0ol —u+Da(wl) - C)
(,LL:C)EQW,@\Q:%
L

: H<</\97woc — @p,;) = (¥ Wa) + Dr(@a) — DW(wnH—l))- (80)

i=1

If there is no extremal low weights with respect to « other than w,, we use the
simple symbol () for 74 o, (A).

Remark 3.20. In the above definition we have the following.

i) If the lowest weight 7 is an extremal low weight of 7 with respect to «, then
L=0.
ii) The second factor

L

[1((Xe: %0 = @) = (@ ) + Dal(@a) = Dal@nis1))

=1

is not identically zero because @y, |oe <6 @n;+1]ae <6 Walag -
iii) For w and @’ € W(r)

(w', @) — (w, w)

(Mo, @ — @)+ Do(w) — Dp(@') = (Mo + pyw — @) + (81)

2
iv) Put v, =w,41 —w, forv=1,...,K —1 and v = . If
—2—<<j”’3”>> (- —2—<Z;1:y7>”> ity >1) =1, (82)

then (w,,w,) = (W11, Wpy1) -

v) Suppose % = —1 and the Dynkin diagram of the system {vi,...,vx} is

of type Ak or of type By with short root vx or of type Gy with short root ;.
Then it follows from Lemma 3.15 and Lemma 2.22 i) that

<)\®7wa - wm> - <a7wa> + Dw<wa) - D7r<wni+1)
== <)\97wa - wm) + Dﬂ'(wa) - Dﬂ'(wnz)
= (Ao + 0, @a — @n;) = (Ao + 0, Yn; + - +yx-1)  (83)

fori=1,...,L.
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Theorem 3.21 (gap).  Let w, be an extremal low weight with respect to o € © .
Then
X o€lLioN)+J(Ne) if raw,(A) #0.

If for all o € © there exists an extremal low weight w, with respect to o such
that ro.m,(A) # 0, then
Jo(A) = I;o(N) + J(Ne).

By Proposition 3.11 iii) we have the following corollary.
Corollary 3.22 (annihilator).  If A\e+p is dominant and if for all o € © there

exists an extremal low weight w, with respect to a such that ro 5, (X) # 0, then
Iﬂ’@()\) = AHD(M@(}\)) .

Remark 3.23. It does not always hold that for each o € © there exists an
extremal low weight w, with respect to a such that the function r, o, () is not
identically zero. In fact we construct counter examples in Appendix B. However
this condition is valid for many 7 as we see below.

Recall the notation in Proposition 2.39.

Lemma 3.24.  Suppose w, is an extremal low weight with respect to o € O.
The function 14w, (N\) is not identically zero if the space

V(wa‘ae) = Z Ve

wEW(T); Wlag=@alag

15 irreducible as a go -module.

Proof.  In this case we have jifq, # @, |ae for (11,C) € Qr0\Q27s and the first
factor of (80) is not identically zero. [

Proposition 3.25. Use the notation in Lemma 3.15 and suppose vx = « €
©. The function T4, () is not identically zero if either one of the following
conditions is satisfied.

i) {n,...,x CO.

ii) The connected component of the Dynkin diagram of © containing « is orthog-
onal to m. ©O\{m,...,vk} is orthogonal to {v1,...,vk-1}. Moreover the Dynkin
diagram of the system {v1,...,vk—1} is of type Ax_1.

Proof. i) Since wylee = Tlae and V(7| ) is an irreducible geo-module, the
claim follows from Lemma 3.24.
ii) Suppose @ € We () satisfies @|q, = @Walae - Then we can write

w=T7 + Zmi%' + Z ngf3

i=1 BEO\{V15-- 7K }

with non-negative integers m, and ng. Put

O = {vi; m; > 0},
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0" ={3; ng > 0},

and define
V=Y (Veiad'er + ) LB}

Beorue”

Since V' is an irreducible ge/uer-module with lowest weight 7 and {0} C V,, C V|
each connected component of the Dynkin diagram of the system ©' U ©” is not
orthogonal to 7.

Suppose vk € ©’. Then the condition ii) implies ©" = {71,...,7x} and
therefore @/, = @, + o < w. However it is clear dimV,, =1 and @, & We(r).
Thus we have w!, < w. In this case, by Lemma 2.22 ii), we have D(w)) < D(w).

Suppose vk ¢ ©'. Then ©' is orthogonal to ©” and hence we have the
direct sum decomposition

goruer = teruer b Mo B mgr.

Since w is the lowest weight of a megr-submodule of V' which is an irre-
ducible mg: @ mer-module, ©” must be empty. On the other hand, we see
© = {v,...,7x} with K’ < K. Now we can find each weight @’ of the geo/ -
module V’ is in the form

<ﬁ> 71>
(Y1, 71)

>my>my > >mh >0

KI
@ =%+ Y my  with —2
=1

and its multiplicity is one (cf. Example 4.2 ii)). Fix v € V \ {0}. Take i =
1,..., K" so that m; > m;1;. Then X_., v # 0 and therefore v; ¢ ©. Since
Wlae = Walae» We conclude i = K’ and my = 1. It shows

w=mt YK S Wa

Thus we have proved the function (80) is not identically zero. ]

Remark 3.26.  The condition i) of the proposition is satisfied if the lowest
weight 7 (or equivalently, the highest weight 7) of (m, V) is regular.

Proposition 3.27. i) (multiplicity free representation) Suppose dimV, = 1
for any w € W(m). Then for any extremal low weight w, with respect to o € O,
the function 14w, (\) is not identically zero.

ii) (adjoint representation) Suppose g is simple and w is the adjoint representation
of . Suppose a € ©. If the Dynkin diagram of V(g) is of type A,, then we have
gust two extremal low weights w, with respect to «. If the diagram is not of type
A, , then we have a unique w, . In either case, there is at least one w, such that
Ta.ma (A) is not identically zero.

iii) (minuscule representation) Suppose (w,V') is minuscule. Then for any o € ©
there is a unique extremal low weight w, with respect to o. Moreover the function
ro(A) is not identically zero.
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Proof. i) Thanks to Proposition 2.39 1), V(w,|q,) is an irreducible gg-module.
Hence our claim follows from Lemma 3.24.

ii) The lowest weight of the adjoint representation is —au.. Hence by
Remark 3.17 we can determine the number of extremal low weights from the
completed Dynkin diagram of each type, which is shown in §4..

Note that W(r) = ¥(g) U {0}. Suppose w, ¢ X(ge). Then Proposi-
tion 2.39 ii) assures the irreducibility of V(walqe,). Hence 74 o, (A) is not identi-
cally zero.

Suppose w, € X(go). Take {m,...,7x} C ¥(g) as in Lemma 3.15 and
put

Wi = —Qmax + 71+ + Vi1 fori=1,..., K.

Let ©; denote the connected component of the Dynkin diagram of © contain-
ing yx = «. Then we can find an integer K’ € {1,...,K — 1} such that
{7, -7} € ¥(g) \ ©1 and {vkri1,...,7x} C O1. Then it follows from
Lemma 3.15 that the root vectors X, for i =1,..., K’ are lowest weight vectors
of W’mel- These lowest weight vectors generate the irreducible mg, -submodules
belonging to the same equivalence class because {v,...,vx/_1} is orthogonal
to ©;. On the other hand, we have wg 1 € We(n). Then it follows from
Proposition 2.39 ii) that w1 € X(ge,)” . Since wxgr — W41 = —Yx € 2(9),
[X_wK,+1,XwK,] # 0. It shows the equivalence class above is not the class of the
trivial representation. Hence ©; is not orthogonal to @ = w;. Now we can take
another extremal low weight w!, with respect to a which satisfies the condition 1)
of Proposition 3.25.

iii) Since a minuscule representation is of multiplicity free, we have only
to show the uniqueness of w,. Let [g,g] = g1 ® -+ ® g, be the decomposition
into simple Lie algebras. Then 7|54 is a tensor product of faithful minuscule
representations of g; for ¢ = 1,...,m. Hence, from Proposition 2.37 v), each
connected component of the Dynkin diagram of W(g), which corresponds to some
U(g;), has just one root 7 which is not orthogonal to 7. Now the uniqueness
follows from Remark 3.17. ]

We conclude this section with a discussion of the commutative case. Con-

sider F, = <F> as an element of M (N, S(g)). Then we have

iJ | 1<i<N
1<<N

Theorem 3.28 (coadjoint orbit).  Put
Qro = {@oe; @ € We(m)}

Iro(T;\) = H (93 - N()\)),
uEQm@ (84)

e = T () =10

o ' EQr 0, pFEW
Then if Fe(X) #0,
ZS 9)rx0(Fr; Ny + Z S(g)(f — f(xe)) ={f € S(9); flaa)re =0}

fel(g

Here I(g) is the space of the ad(g) -invariant elements in the symmetric algebra
S(g) of g and G a connected complex Lie group with Lie algebra g.
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Proof. Let {v;;i =1,...,N} be a base of V' such that each v; is a weight
vector with weight w;. Then

0 if (wi—wj,k@ #0,

dq_rr, Fﬂ'; A ij = i
ol iilre {Hueﬂﬁ,@\{wme}“wi’ No) — p(N)dFy; if (@i — @), Ne) = 0.

For a € ¥(g) \ X(go) there exists a pair of weights of = whose difference
equals « and therefore 7g(A) # 0 implies (o, Ag) # 0, which assures that the
centralizer of A\g in g equals gg. Since

Jo = Z CF;;

i=j or w;—w; is a root of gg

and [H, Fj;] = (w; — w;)(H)F;; for H € a, we can prove the theorem as in the
same way as in the proof of [22, Theorem 4.11]. [

Remark 3.29.  There is a natural projection pr e : Qre — Qre. We say that
p € Qo is ramified in the quantization of Gre to ¢re if ]3;1@(“) is not a single
element.

If 7 is of multiplicity free, then there is no ramified element in Qg
(cf. Proposition 2.39 i)). In this case, consider g as an abelian Lie algebra acting
on S(g) by the multiplication and define the g-module

ME(\) = S(8)/ Y S(a)(X = re(X)).

Xepo

Then taking a “classical limit” as in [22], we can prove Gre(Fr; A)MJ(A) = 0.
Moreover if 7g(A) # 0, the polynomial G, e(z;A) is minimal in the obvious sense.

4. Examples

In this section we give the explicit form of the characteristic polynomials of
some small dimensional representations 7 of classical and exceptional Lie algebras
g. (As in the previous sections, we always assume that g and 7 satisfy (10).) In
some special cases we also calculate the global minimal polynomials. Note that if
¢-(2) = [ (x—w;—C;) with suitable w; € a* and C; € C is the characteristic
polynomial, then the global minimal polynomial ¢, e(z, ) for a given © equals
[Lic; (@ = (@i, Ae + p) — C;) with a certain subset I of {1,...,m}.

It is clear that if the dimension of 7 is small, then the degree of ¢, o(z, A) is
small, which means the corresponding ideal I ¢()) is generated by elements with
small degrees. In such a case, for an extremal low weight w, of m with respect
to a € O, the degree of the polynomial 7,4, (A) defined by (80) is also small
and hence the assumptions on A of Theorem 3.21 and Corollary 3.22 become very
weak.

Lemma 4.1 (bilinear form).  Let (, ) be a symmetric bilinear form on a* and
let a* = ai @ aj be a direct sum of linear subspaces with (af,a3) = (aj,a5) =0. If
there ezists C € C\ {0} such that

(o i) = O, i’y (Y, i’ € a7),
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then

C= Z M ( )(a,w)2 for a € aj such that (o, ) # 0
- eW(r) ™ (a,a) 1 | |

Here m,(w) denotes the multiplicity of the weight w € W(r).

Proof. Let H, € a correspond to « by the bilinear form (, ). Then we have

C(a,a) = C*{a,a) = C* Trace(H,)?
=C* > ma(@) (@)’ = > ma(@) (e, @) n

weW(r) weW(r)

In the following examples €1, €5, ... constitute a base of a vector space with
symmetric bilinear form (, ) defined by (&;,¢;) = 6;;. We consider a* a subspace
of this space where €1 — ey etc. are suitable elements in W(g) (cf. [4]).

Cr equals the constant C' in the above lemma for a; = an[g,g]. C. is
the similar constant in the case when a; is the center of g. Then we can calculate
(, ) under the base {e1,¢€9,...} by the above lemma.

Example 4.2 (A, ;).

a1 Qo Qp_o Qp_1 1 1 1 1
o—0o—+++—0—0 o—O0o—:+-—O0—0

U={og=¢61—¢2,...,001 =61 —En}

n n— n—1 v(n—v
p=u (5 = (v = 1)z = X0 D5 a,

i) g=gl,
T = wy, ::€1+---+€k:/\kw1 (minuscule, k =1,...,n—1)
dim wwy, = (Z)
k(n—k

(wkap) = %

W(w) ={e,, ++e,; 1< <--- <y <n}

ka = %Zl§u1<---<zxk§n(€lﬂ +otey,8 — 52)2 = (Z:f)

Ol = 2 i cvcoczn(En + ey, + - &) = k(D))
(g5, 85) = BRI (0= (g — 1) + 1)

k!'(n—k)!
Gy, (T) = H1§i1<~-<ik§n (5’7 — (e + o te) — ﬁ)
i) g = gl,
V =V, := {homogeneous polynomials of (z1,...,z,) with degree m}
m = me; (multiplicity free, m =1,2,--+)

W(mey) = {mae1 + - +mpen; my + - +my =m, m; € Lo}
dimme; =, Hy, = (") = Ll

Crne, = % Zm1+...+mn:m(m1€1 + o mpEn, E1 — €9)
= 3 200 Somco(k = 2mu )% o Hop

= 51 Lo k(k + 1) (k + 2) 50

= s reo k(E + 1)(k+2)(m +n— (k+3)) - (m+n— (k+n—1))

2
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_ _ (m4n)!
o T (nt+1D)!(m—1)!

r 1 2 _ m?
Crner = 7 2omytotmpem (MIEL + o F My, €14 -+ + €)= T Hypy
_ (n+m—1)!m _ m(m+1)---(m+n—1)m

(m—1)!n! n!
n m(m4n—1)-3""  m?
Gmeq (CC') = Hm1+---+mn:m (l' - Zi:l m;e; — 2Cme, ! l)
m;E€L>0

iii) g = sl,

T =1w + w1 =& — &, (adjoint)

dim(w; + @,) =n?—1

Coitw, , =210

(w1 + wp_1,p) =n—1

Qoo a1 (T) = (T — %) H1§i<j§n<(x - n2_;1)2 — (& — 53’)2)

In [22] we choose V' = {a)] = ea—¢1,...,al,_| = e,—€,1} as a fundamental
system of gl, and then 7 = w; is the lowest weight of the natural representation
7 of gl,. For a strictly increasing sequence

ngp=0<n; <---<np=n (85)

we put n; = n; —n;_; and © = UL, Un,_ <ven, 100} and study the minimal
polynomial ¢re(z; ) in [22] for A = (A\y) € C* ~ a,. Define p' = —p and put

;\1€1+"'+;\n8n:pl+2/\k< Z €V>. (86)
k=1 ng—1<v<ng
The partially ordered set of the weights of 7 is as follows
o o 0‘;1;(1 . a;kﬂ Y
E] —— Eg — > s gnk gnk+1 ...... — €.

1
gro(r,N) = [[(z =M - §<€1 — Enp_y+1,E1 T Eny_y 41 — 20))

T
I

= ﬁ(:f; — A\ — nk_l)

B
Il
—

and it follows from Remark 3.20 that

L k—1
TO‘;()\) - H (j\iJrl - j\nu—l+1) H(j\l - j\n,,)
v=k+1 v=1

in Definition 3.19 if n;_; < i < ng. This result coincides with [22, Theorem 4.4].
Note that if )\ satisfies the condition:

(A+p,8) =0with g € X(g) = Vo' €O (5,d) =0, (87)

then 7, (A\) # 0 for each o/ € ©.
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Let 7, be the minuscule representation wy in i) and we here adopt the
fundamental system ¥’ as above. The decomposition

7T‘Wk|g® = @ Tky,.. kL (88)

ki4-+kr=Fk
0<k;<n}; (j=1,...,L)

is a direct consequence of Proposition 2.39 i). Here 7y, . x, denotes the irreducible
representation of gg with lowest weight Z][./:l(gnjﬂ 1+ +En,_14k,). Then by
Proposition 2.40 i) we have

L Kk

n N K(n - k)!
Grey (T3 A) = II <CC = 3> Nileinen,ie) — m)
k4 Ak =k i=1 j=1 v=1 ‘
0<k;<n!s (j=1,...,L)
- kj—k
kit +kp=k j=1

0<k;<n’; (j=1,...,L)

+ C;k(k - 1) Zn;()\J + nj—1 + nj _ n))

2
7j=1
with C = % To deduce the final form we have used the relation
n2-"L
Zle ninj_1 = Z2J:1 t.

Remark 4.3 (A,-1). Put gg = [go,86]. Then the irreducible decomposition
of 7, | o, 1s not of multiplicity free if and only if there exist an integer K and
subsets I and J of {1,..., L} such that

K:Zn;:ZnQSk‘, K<n—kandI#J.
icl jeJ
This is clear from (88) because 7Tk17m7kL|ge = 7Tk/17m7ki|g/® if and only if k; = k] or
(ki, ki) = (0,n%) or (n;,0) for i=1,...,L.
Example 4.4 (B,). g = 09,41

o Qg Qp_1 Qp 1 2 2
O—O0—+:++—0=—>0 O—O0O0—:+++—0— O nZS

U={ag=¢e1—€...,0h1 =Ep_1—Epn, Ay =&y}
n n v(2n—v
p=Sni(n—v+e =3 Lra,
i) m = w; = e; (multiplicity free)
dimw; =2n+1
(wbp) =n-= %
Coy = (£e,,61)* 4+ (0,61)* =2
Geor () = (x — 5) [T, (v = 2271)? = €7)

ii) 7 =w, = 3(e1 + - +¢,) (minuscule)
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dim w,, = 2"
_ (@n-1D)+(2n—-3)+-+1 __
(wm P) = 1 —

Co, =D (a1 £+ de,,6)>=2"

2
Gy (T) = Hclzil,-n,cn:il (37 - %(0151 ot ngn) — QZLLW)

ISES

iii) m = wy := &1 + &2 (adjoint) --- wy is not a fundamental weight if n = 2.
dimwsy = n(2n + 1)
Comy =4n —2
(g, p) =2n — 2
E1 =Wy — Qg — =+ — Oy

Gy (%) = (2 = 3) [Ticicjen (@ — 3575)% = (e — £5)?) ((z — 3:=5)°
—(ei+e)*) I (@ — =92 — )
Choose V' = {a}] = ey —€1,...,a/,_ | = €, —€p_1, ), = —e,} as a
fundamental system. Then the partially ordered set of the weights of the natural
representation 7 of 05,1 is shown by

o] al Xnp—1 o, np+1 Qg o,
€] —> g — >+ e gnk 5”k+1 s i — &, — 0
’ / ’
ail o ank+1 ank O‘nkfl a’l
— =€, —— e LN gTLk-‘rl — gnk — e — —£&1

Here we use the same notation as in (85) and (86). Put © = U£:1 Un, <vemiant
and © = O U {c,}. Then

We () = {engt1r - »Enp i1 —Enp_1s- > —Em }s
We (1) = We (1) U {0, —¢,}.
Hence by Theorem 2.24

Iro(T;\) = (x - 3(51,51 - 2p’)>

L 1. 1
. H(a} — _>‘j — 1(81 — 87'74]'—1“1‘17 &1+ €nj_1+1 — 2p/))
L

1 1
(x + 5)\] — 1—1(61 + En].,€1 — Snj — 2p/)>
j=1
n\ A n A 2n —n
Y (P A R 2T
_<x 2>E<x 2 2 ><m+2 2 )
1 /
dr (:)(LU, >‘) =\T— 1(61 —Enp 1 +1,€1 T Enp 41 — 2:0 ))
L-1 1 1 /
. H(.CE — 5/\] — 1(51 — €nj71+1751 + €nj71+1 — 2p ))
j=1
L-1

1 1
(x + -\ - 1(51 +€n, €1 — En; — 2,0’))

- _TLL_I _ﬁ_nj_1)< ﬁ_?n—n])
= (v 2)(“@ 2~ 2 )T A
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Moreover if n,_; <1 < ng,

227 6(N) = ﬁ(x = ﬁ QUTED —
v=1 v=k+1
<>‘z+1 - %) H(/_\i—i-l + Am)
1 k=1 _y:1 L B B
L
(AZ + AZH) E(AZH + Am),
k—1 L L-1
22L_2ra;’é()\) = H(;\l — 5\%) H (5\141 - 5\”%1+1> H (Ais1 + 5\%),
C S
20,6 =1 (A =2n,) I1 (5+ ) = (D= II (=)

Here we denote r,()\) corresponding to © and © by rqe(A) and r, (), respec-
tively. Note that . () # 0 for o/ € © under the condition (87) for ©. Moreover
suppose A+ p/ is dominant. Then A\; + A\jy1 = 2X\ipq — 1 = —2% —1#0
and hence 1, g(\) # 0 for o/ € © under the condition (87).

Example 4.5 (C,,). g=sp,

o] Qo Q1 Oy 2 2 2 1
O——0—+++—0<4<=0 e—0—0—-:--—0<&=0 n>2
\Ij:{alz‘sl_éQJ"’?an—l:677,—1_8%7 Oén:2€n}

-1 v(2n—v+1 1
p=Y1(n—v+1)e, = Y0 Hegrtla, 4t

i) m = w; := ¢; (minuscule)
dimw; = 2n
Coy =Y (Fey,81)? =2
(@1,p) =7
G () = TT12y (2 = 5)2 — &)
ii) ™ = 2w = 2¢; (adjoint)
dim 2wy = n(2n + 1)
Cow, =4(n+1)
(2w, p) =2n
e, (1) = (7 — %) H?:l((x - 2,312)2 - 2522) H1§i<j§n(<x - 32_14102
—(ei — &)%) ((z — 32E)* — (& + 5)?)
/

Choose V' = {a} = ey —¢e1,...,a,, | = &, — €1, 0, = —2¢,} as a

fundamental system. The partially ordered set of the weights of the natural
representation m of sp,, is shown by
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Under the same notation as in the previous example, we have

W(:)(ﬂ-) = {EnoJrla v Enp 41 TEnp g5 ey _€n1}>

We (1) = We(m) U{—e,}.

If np_1 < i <ny, it follows from Theorem 2.24, and Remark 3.20 that

Iro(Ti ) =ﬁ<$—%_ %)ﬁ(er%_ %_—;JH>’
=1

i=1 i=
Gro(T;\) = }j(x - % - njz_l) <x * % N W>
2271y o(N) kﬁ(/—\z —5"”) ﬁ (5‘”1 = A 1“) ﬁ< >
o T o
222, ()) = H(S" —5\%> H (5\@ — Ao 1+1) ( >

v=1 v=k+1 v=1

If the condition (87) holds, then we have 7,6()) # 0 and r, g(\) # 0 for o/ € ©.
Moreover suppose (A, al) =0 and A+ p' is dominant. In this case A, = —1 and
Ay, = —QM 1 # 0. Hence 7, g(\) # 0 under the condition (87) for

(en—€ny ,En—En

0.
Example 4.6 (D,,). g = 09,
) Qo Qp_o Q1 1 2 2 1
O—CHH-I—O o—i—---I—o n>4
o, 1
U={ag=¢e1—€2..., 0n 1 =6y 1—En, O =Ep_1+En}

p=3" (n—v)e, =S e Na, 4 2 (g, )+ )

i) m = wy := €1 (minuscule)
dimw; = 2n
Coy = (£e,,61)* =2
(w17p> =n—1

G (2) =TTy (2 = 251)% = €7)

i) Wp1 1= %(z—:l +---+¢e,-1—¢,) (minuscule)
i) ™=
Wy 1= %(51 + -t en1 tEn) (minuscule)

dimw,_; = dimw,, = 2"!

Cop i =Com, =S (Fe1 £ -t e,,6)2 =271
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(wn—lap) = (wmp) = n(nT—l)
n(n—1)

Qw1 (l’) - HC1=i1,...,Cn=1i1 (.%‘ - %(6151 + -+ Cngn) — Tontl )

ClCp=—

Goon () = [ermt 1=t (T — S(cr161 + -+ + cogp) — S l)

ey
iii) m = wy := &1 + &2 (adjoint)

dimwy =n(2n — 1)

Copye, =4(n—1)

(wg,p) =2n —3

G (7) = (2= 3) [T1<icjen (£ = 2=3)7 = (e —€;)%) (2 — 253)% — (ei +¢5)?)

Note that the coefficient of €15 --¢, in the polynomial > ¢,—+1,. c,=+1(c181 +

c1en=1
<o+ cpen)” of (e1,...,6,) does not vanish. Hence
2 4 2(n—1 m
Z(g) = C[Trace F; , Trace F_ , ..., Trace Fw(1 ), Trace F ]. (89)
Choose W' = {a) = g9 —€1,...,0), | = €y — Ep_1,Ql, = —€, — Ep_1} as a

fundamental system. Then the partially ordered set of the weights of the natural
representation 7 of 0y, is shown by

n—2 -
61 —_— 82 —> e e e e e e —)é‘n 1 R —— gn
Lo Lo
QA1 oo af af
J— gn _ _8'(],—1 —_—> e e e e e — —82 e —81'

Use the notation as in (85) and (86). Put © = |J;_, U, cvemiant- faj,_ €0,
we also put © = O U {,}.
Then

L—1 L L—1 L—1
7lge = @ﬂ-an]-+l 52 EBW—anjv T|ge = @Wanj+l b @W—anj-
§=0 =1 §=0 j=1

Here 7. denotes the irreducible representation of gg or gg with lowest weight ¢.
Hence if n,_1 <1 < ny,

Il
=

gro(x; \)

<.
I
—_

Iz o(T; N)

> <.
[
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<
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'Y =0and i +1 = np < n, then A\iy1 + A, = 2(Nip1 + An). Hence
Tor6(A) # 0 for o/ € © under the condition (87) for ©.

Now suppose o, ; ¢ ©. Then n;,_y =n—1. If A\, =0, then
Iro(Fr; \)Me(X) = 0 by Corollary 2.32 with

A n—1 L i Mg A 2n—n;—1
/ ) j j j j
qﬂ»@W)—(x—?— 3 )H(“?— ety =)

The analogue of 7/ e(A) in this case is

If (Ao
)

k—1 L—-1 L—-1
Mo o(N) = 27220 H(x@- - )\> I1 (xM - anH) I1 (Xm + )\)
v=1 v=k+1 v=1

If i+1=ny then A\iyy + Ay, = 2(Xis1 +An). Hence 7, 5(A) # 0 for o’ € © under
the condition (87). ’

Let 7, _, be the half spin representation w,_; in ii) and we here use the
fundamental system W’ defined above.

where

Ko ={(ki,....kp) €Z";0<k; <n) (j=1,...,L),
n—k —--—kp=1 mod 2},
Kg = {(k1,..., k1) € Ko; kp >n; — 1} (Note o/, ;, € © and n;, > 1)

and 7y, .k, is the irreducible representation of geg or gg with lowest weight
L
1
Z 5(5n171+1 T+t Enj_1+k; — Enjqtk;+l T T g”j)
j=1

Then for ©® =0 or ©

TR | (Rt

1 _ _ _ _
~ on Z()‘njfﬂrl +-+ )\n171+kj - )\nj—1+kj+1 - Am))
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If n}, > 1, then

Tag, 00 (A) = II 21"

(kl,..‘,kL)GKG)/
(k1,..,kp)#(n .m0 —1)
L
(O, b o+ A A) = A
j=1
Example 4.7 (Eg).
ap a3 g Q5 O 1 2 3 2 1
O O I O [e] O O C‘) O
02
(6] L
U = {051 = %(614-88) — %(82—{—634-54—1-854—664-57), Qo = €1+€2,043 =

€2 — €1, Uy = €3 — €2, A5 = €4 — €3, Qg = €5 — €4}
p = 82+283+3€4+4€5+4(88—87—66) = 8a1+11a2+15a3+21a4+15a5+8a6

1

wy = 2(es — &7 — &) (minuscule)
we = 3(€s — €7 — &) + &5 (minuscule)

dim w; = dimwg = 27

Cpy =Cgy =6 (see below)

(wlap> = (wﬁvp) =38

I, (T) = HWEWEGWi (r—w—1%) for i =1 and 6.

i) 7=ty := %(61 +eg+e3t+e4+e5—e6—e7+es) (adjoint)

dim wy = 78
Coy =24
(w27p) =11

G, = (T — %> HaEE(EG)(I —a- %)

Expressing a weight by the linear combination of the fundamental weights
w;, we indicate the weight by the symbol arranging the coefficients in the cor-

responding position of the Dynkin diagram. For example, w = Z?:l m;w; is
indicated by the symbol mimsmsmsmg. Moreover for a positive integer m we

mo
will sometimes write m in place of —m.
Let 7 be the minuscule representation w; in i). Then the partially ordered
set of the weights of 7 is shown by the following. Here the number j beside an
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arrow represents —Qy.

0 10000
0
N 1
1 11000
0
N3
2 01100
0
\ 4
3 00}10
72 N\
4 00010 00011
1 1
NS 20 N6
5 00111 00001
1
J4 N6 2
6 01101 00101
1
/3 N6 4
7 11001 01111
1 N6 /3 \/b
8 10001 11811 01010
N6 1T NS 3
9 10011 11110
N5 S N\ 4
10 10110 10100
0 1
N4 ST N2
11 11100 10000
1 1
73 N2 /1
12 01900 11000
1
N2 /3
13 01100
1
S 4
14 00110
0
/5
15 00011
0
/6
16 00801

The type As corresponding to {ay,as,...,as} is contained in type Eg.
The highest weights of the restriction (FEg,m)|a, are w; = 10800, Wy — Wy =
wowgwswiw; = 00010 and wy — we = wowwswewswws(ws — wy) = 10000.

1
Here we put w; = w,,;. Hence (g, m)[a; = 2(As,@1) + (A5, 4) and Cg, =

5-1 5—1
Coe =2(17,) + (5-,) =6.

Now use the fundamental system V' = {a} = —ay,...,af = —ag}. Then
the lowest weight 7 of 7 equals w;. Putting ©; = ¥\ {«/}, we have

We, (1) = {10800, 11800, 10801},

We, (1) = {10800, 00010, 10000},
1 1

W, (7) = {10000, 01100, 11001, 01000},

e () = {1000, 01300, 11001, 01000}

We, (m) = {10000, 00110, 01101, 10100, 00110},
o (m) = {10900, 00110, 01301, 10300, 00310}

We, () = {10800, 00(1)11, 01010, 00811},

We, () = {10800, 00(1)01, 00801}.
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If we identify ag, with C by e, = Aw; andput 7—A =}, mha; for A € W(r),
then Proposition 2.40 i) implies

mo(N = [[ (v-(F=) - milowm)A =Y milasp)).  (90)

AEW@i(ﬂ) J
Since (aj, w;) = (aj, p) %(aj,aj> % and
2 1 5
(wl,w1> = 57 <w1,wz> = 6’ <w1,w3> = E7
1 2 1
(wl,w4> = 5, <w1,w5> = 5, <W1,w6> 57
we get
2 1 1 1 4
dmon(5:X) = (r = gA) (= g2 =) (g2 —3)
1 2 1 11
tmon(N) = (v = gN) (v = 3) (7 + g2 =),
18 1 1 1 7 2
s ) = (1= N) (v = 52— 3) (e + 52— ) (e + 52— 2),
1 1 1 1 5 1 7
toiiiN) = (1= (s A=) () (s = 5) (32 35).
2 1 2 1 4 5 5
s ) = (1= g (o= 57 = 3) (e + g2 = 5) (e 592~ 3):
1 1 5 2 8
o= (o= )+ - Do),
dros(ti M) = (T =g (e g2 —5) [z + g2 =3
Example 4.8 (E;).
(03] (0% Qg (071 (675 (074 2 3 3 2 1
O O O O (@] ® — O O O O

i

(%)

N O—O W~

U={a;=3(e1+es) —5(c2+es+estes+eg+er), ap=c1+es,a3=
€2 —E&1, Yy = €3 — €2, (5 = €4 — €3, (g = €5 — &4, 047256—55}

p = s+ 263+ 3es + 4des + Deg — Heg + Heg = 17a1 + Las + 333 + 48ay
‘|‘%Oé5 —|—26a6 + %Cw

i) ™=y =6+ 3(es — e7) (minuscule)

dim ww; = 56.
Cw, =12 (see below)
(w77p) - %

qw7 (37) = H’WEWE7W7 (QZ —w— %)

i) m = w; = e5 — &2 (adjoint)

dim w; = 133
Cr, = 36
(wbp) =17

Qw, (I) - (I - %) HaGZ(E7) (‘T —a- %)
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Let 7 be the minuscule representation wy in i). Then the diagram of the
partially ordered set of the weights of 7 is as follows.

0 008001
N7
1 000011
0
\, 6
2 000110
0
A}
3 001100
0
\ 4
4 01}000
) N3
5 010000 119000
1
N3 /2 Nl
6 111000 109000
1
/4 N1 )
7 101100 101000
0 1
e N1 /4
8 108110 11%100
/6 Nl /5 N3
9 108011 118110 018100
a N1 /6 N3 /5
10 100001 110011 011110
0 0 0
Nl a N3 /6 N4
11 11001 011011 001010
0 0 1
N3 ST N4 /612
12 011001 001111 000010
0 1 1
N4 ST 12X8
13 00}101 000111 009101
1
2] X% X512
14 000101 00?111 001101
1 1
XE 2T N4
15 00?010 001111 016001
1
21 /6 N4 ST N3
16 001010 011011 110001
1 0 0
\ 4 /6 3 S 7 \.1
17 01%110 118011 108001
/5 N3 /6 N1 a
18 010100 110110 100011
0 0 0
N3 e N1 /6
19 115100 108110
/4 N1 /5
20 10}000 106100
/2 N1 4
21 100000 11}000
1
N1 S 2 N3
22 110000 019000
1
N3 2
23 011000
1
\ 4
24 00%100
D
25 008110
\. 6
26 008011

27 000001
0
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Here we use the similar notation as in Example 4.7.

The type Ag corresponding to {ay,as, ..., a7} is contained in type E;.

The highest weights of the restriction (E7,7)|a, are wr = 008001, w3 — W

wowywswewrwor = 010000, g — wy = wywswswwswasws(ws — we) = 000010 and

W) — Wy = Wl WsWeWrw3wswswe(wwg — wz) = 100000. Therefore (E7, )|,
1

(Ag, @6) + (As, @2) + (Ag, @s) + (Ag, @1) and oy = (7)) + (20) + (52) + (120)
12.
Now use ¥ = —¥ and put ©; = ¥\ {«/}. Then

We, (m {000001 10(1)00 100001}
We, (7 {000001 010000, 000010, 100000},
1 1 1
We, () = {008001, 01(1)000, 018100, 118001, 01(1)000},
We, (m) = {000001, 011000, 101100, 001010, 011001, 101000, 001100},
0 1 0 1 0 1 0
We, (1) = {008001, 00(1)100, 108110, 00(1)101, 018100, 008110},
We,(m) = {000001, 000110, 100011, 000010, 000011},
0 0 0 1 0
We, () = {008001, 008011, 108001, 008001}.

From (90) with (o, @;) = (a, p) = (v, o) = 15 and

1 1 1
<w7,w1> = E’ (w7,wQ) = g, <w7,w3> = 6’ (W7,W4> Z’
5 1 1
<w7,w5> = ﬂ’ <w7;w6> = 6’ <w7,w7> = §7
we have
1 1 1 17
tron () = (7= 5A) (7= ) (7 + 57— 33)

1 5 7

|
ExﬂA 12)(x+2_141A_1>(“’+éA—1),
- e b e - D1

A
(=D o)
5 1 1 1 2 13
o X) = (v = 5\ (= A= ) (- 52 - 3) (@ )

1. 3 5 925
(b Yeria)
(H TN T 13

et = (=) (== D= e - Do - )

tronli) = (1= ) (o= A= D) e A= D) (e 1a29),

"””_izA 152)<x_2><$+%A_§)<$+ék_%l)’
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Example 4.9 (Ey).

a1 a3 g Qa5 g Qp Qg 2 4
O O I O O O O O O

(8%

W O—0 O

U={a;=3(e1+es) —3(c2+es+es+es+egter), ap=c1+es,a3=

€2 —€1, Qg = E3—E2, A5 = &4 — €3, Qg = €5 — &y, Q7 = Eg — &5, A8 = 57—86}

p = €9+ 2e3 + 34 + 4es + beg + b7 4 23eg = 4601 + 68 + 91ag + 13bay
+1100[5 + 84066 + 57047 + 290&8

1) T = Qmax = €7 + €3 (adjoint)
dim apax = 248 (Mg, (0) = 8)

CYOlmax = 60

(Qmax, p) = 29

qamax (:L') = (x - %) HO&EE(Es) (l’ —a- %)

Let m be the adjoint representation au.x and . = Z?:1 n;o;, that

is, ny = 2, ng = 3,.... Put ©; = ¥\ {ay} for i = 1,...,8. The irreducible
decomposition of g as a ge,-module is given by Proposition 2.39 ii). In this case
Le, in the proposition equals {—n;, —n;+1,...,n;}. Suppose m € Lo, \{0}. Then
V' (m) is a minuscule representation since Fyg is simply-laced. Let w; (j =1,...,8)
be the fundamental weights. If we write the lowest weight and the highest weight
of V(m) by am =35, ¢;m; and o, = S2°_, ¢w; respectively, we clearly have

J=1 J=1"]
1 ifm#1,—n,, , —1 ifm# —1,n;,
Ci = C = .
2 ifm=1, -2 ifm= -1,
and oy, = —a’ . Since we know the highest weights and the lowest weights of

minuscule representations of ge, by the previous examples, starting with aax =
wy = 0080001, we can determine oy, and ol for m € Lg, \ {0} step by step.

For example, suppose ¢ = 4. Then Lg, = {—6,—5,...,6} and we have

0000001 h.w. ) )
vie):{ U — 0011000 — a; = 0110000 is a weight of V(5)
0017000 Lw. 0 1
0110000 h.w.
V(5) i< - 1010000 — g = 1111000 i ight of V(4
) 1010000 1w, 10 a1 = 1111000 is a weight of V(4)
1

(1011000 h.w.

V(4) : { 1111000 — 0160001 —ay = 00%1001 is a weight of V(3)
0001 Lw.

1001 — 0010010 — ay = 0131010 is a weight of V/(2)
_ 1
0010010 Lw.
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’01(1)0010 h.w.

V(2) : 4 01%1010 — 1060100 —ay = 11}1100 is a weight of V(1)
10(1)0100 Lw.

'10}0001 how.

.
_1_
0121000 1w
1

On the other hand, the non-trivial irreducible subrepresentations of V/(0)
correspond to the connected parts of Dynkin diagram of ©,. If Z?Zl c;w; is a
lowest weight of such subrepresentations, then ¢; = 1. Hence, if ¢ = 4, the lowest
weights of the non-trivial irreducible subrepresentations of V'(0) are

ﬁ(l)OOOO, OO%OOOO, 00(1)1001.

Thus we get

We, (1) = {00(1)1000, 10%0000, 01(1)0001, 00%0010, 10(1)0100, 01%1000}
u{0}U {11(1)0000, 00%0000, 00(1)1001}

U {—10}0001, —OlgOOlO, —00}0100, —10(1)1000, —01}0000, —0080001}.

Put Ae, = Aw;. Then, by (38), we have

q ( /\) ( 1 )( 5) >( 1 >11< )1( 13>\ )1 17
() 3) ot 50) 50 3)
. <x_Qlio)\_%2)<I+6%1>\_2101)<x+3i01)\_%><x+%)\_%>
(1) ) (e 592):
Similarly we get
We, (1) = {1080001, 2180000} u{0}u {1080010} U {—10(1)0000, —0080001},
We, (1) = {10(110000, 00(1)0010, 0030000} u{0}u {10(1)0001}

U {—0000100, —0100000, —0080001},
1 1

Wa, () = {0100000, 1180001, 0180100, 12(1)0000} u{0}u {2180000, 0100001}
1 1

U {—1180010, —0181000, —11(1)0000, —0080001},

We, (1) = {0081100, 0181000, 0001001, 1081010, 00(1)2100}
1

U {0} U {1001000, 0081101}
1
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U {—0181001, —00(1)1010, —1081100, —00(1)1000, ~0000001},

We, () = {0080110, 00(1)0100, 1080101, 0081210} u{o} U {0180100, 0080111}
U {—0090101, —1080110, —0081100, —0000001},

W, (r) = {0080011, 1080010, 0080121} U {0} U {00(1)0010, 0080012}
U {—1080011, —0080110, ~0000001},

Weo,(r) = {oogooo, 0080012} u {0} U {1080001} U {—0080011, ~0000001},

and

L L i L
| <x ' 6_(1)\ ’ @>1S %)\1)7 17 1 2 1 1
tronleiN) = (o= 5) (o= 55) (7= 57 = 35) (= 502 = 5) (o= 02 = 2)
'("“L%A_gﬂ +3_10A 110>(“"+210A>’
tronr ) = (v = 3) (= 35) (e 55)
() D) o)
(et g a0) (50— ) (5t 19) (4 15)
o) = (7= ) (e 13) (= 50) (o~ 1~ 1) (o~ 532 2)
(10 52 ) ()
(g0 30) (ot a) (4 a5 35) (0 1)
tren) = (v = 3) (e 55) (7~ 50)
L e ) ICE S ICEE PO DGR B
(g 13) (g 6) (g 1><+ >’
= (e o= D)o Do oo -
D) 3) (o)
o= (=) e~ Do 3= )=

1 1 1
(i) )
(H 60" " 60\ T 307

Example 4.10 (Fy).

(03] (6] Qa3 Yy 2 3 4 2
o——o0=—>0—0 e 0 —0—>0—0



210 ODpA AND OSHIMA

U ={o) =¢eg—€3, ap =63 — &4, a3 = €4, 0442%(51—52—53—54)}
p= %51 + 352 + %53 + %54 = 8a; + 15 + 21z + 11y

i) m =y :=¢e1 = a1 + 203 + 3ag + 2a4 (dominant short root)
dimwy =26 (Mg, (0) =2)
Coy = Zizl(:lzs,,,el)Z + 3> (terteatestesa)? =2+ % =6
(w4vp) = %

Gy () = (37 - 1) [1 a€X(Fy) (:L‘ - B- %)

18] <|cmax|
i) m =y := &1 + &2 (adjoint)
dim wy = 52

Cw =18
(wla p) = 8
Gy (x) = (J: - %) HlaeE(F4) (:L’ — Q= %) H BEX(Fy) (I —5—= %)

a|=|emax| |8l <[ cmax|

Let 7 be the representation w, in i). Then the diagram of the partially
ordered set of the weights of 7 is as follows. Here the weight 00)00 is the only
weight with the multiplicity 2 and hence indicated by [00)00].

0 00)01
N4
1 00)11
3
2 01)10
2
3 11)10
S0 N3
4 10)10 10)11
N3 ST N4
5 i 10)01
S22 N4 1
6 01)11 1101
730 N4 2
7 00)12 01)21
N4 3
8 (00)00]
J4 N3
9 00)12 01)21
N34 N2
10 01)11 11)01
N2 4 N
11 11)11 10)01
730 N1 4
12 10)10 10)11
N3
13 inio
)
14 01)10
/3
15 00)11
/A
16 00)01

Now use U/ = {a} = —ay,...,a), = —au} and put ©; = ¥\ {a’}. Then we have
We, (m) = {00)01, 10)10, 10)01},

We, () = {00)01, 11)10, 01)11, 11)01, 01)10},
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We, () = {00)01, 01)10, 10)11, 00)12, 00)00, 01)21, 10)10, 00)11},
We, () = {00)01, 00)11, 10)01, 00)00, 00)12, 00)01 }

6
D)
'<x1‘1 W?‘iﬂ“aj‘g)(“?—z)’
o) = (o - ) (o= am Dy o= D) (- 1)

-<x+%/\—l>(x+é)\—%).

The extremal low weights of 7 with respect to U’ are as follows:

<
(DD Db
<
|

wa/l :w4—044—063—042:a1+a2+2043+a47
wa’Q :w4—044—0432061+2042+2053+0447
waé :w4—O[4:Oél+2Oé2+3a3+a47
Wo, = W4 = Q1 + 2ai9 + 33 + 20.
None of them is a member of ¥(gg) U {0} for any © C ¥'. Hence by Proposi-

tion 2.39 i) and Lemma 3.24, the functions r, () (i = 1,2,3,4) are not identically
7€10.

Example 4.11 (G2).

a1 Qo 3 2
o0& o o0& o—e

U = {041 = €] — &9, vy = —251+52+€3}
p=—&1— 262 + 363 = 5061 +3Oé2
1) m =1 = —ey + &3 = 204 + ay (multiplicity free)
dimw; =7
Coy = %(2 Zl§i<j§3(€i —ej,61—62)° + (0,61 — 52)2) =6

(@1,p) =5
G (2) = (2= 1) [1cicjes((z = )2 = (61 — &)%)
i) ™=ty :=—e; — ey + 265 = 3 + 202 (adjoint)
dimwy = 14
Cop, = 24
(w2,p) =9
Ger (1) = (2 — 3) Hlaez(og) (z == 2) 1 pesien) (=B - 3)

alz‘amax| ‘ﬂ|<|amax‘
Consider the representation 7 with the highest weight ;. Then as is
shown in [8], the weights of 7 are indicated by

[e%1 a9 [e%1 [e%) [e D] aq
€g—E3 —> €1 —E3 — —E1 + &y — 0 — €] — €&y —> —€1 + &3 — —€3 1+ €3
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and therefore
Wia} () = {e2 — €3, —€1 + €2, —€1 + €3},
Wian}(m) = {2 — €3, 61 — €3, 0, €1 — €2, —€2 + €3}

For X\ € af we put Ao = Ay + Aewa. Then A\ =0 (resp. Ay =0) if © = {ay}
(resp. {as}) and

o (@ 0) = (04 22) (o - 022Ny (2 (Bt 2020))
()65 )
L R L R T

S O [ =]
Moreover, from Remark 3.20, we get

Tal ()\) = <)\@ + pa (_wl + al) - (_wl —+ (o5} + 062)>
(Mo + p, (w1 + 1) — (=1 + 3a; + 2a))
= 2</\@ + p, 062><)\@ + p, 01 + 042>

:éu,+m@&+4%
mxn:(u&@mn+my4—wm-4%,ﬁa+mg

: (O\@, (=1 + a1+ az) — 0) + (=@ + oy + s, 041>>

(Ao +p, (@1 + a1 + ag) — (=1 + 3a; + az))
(Ao + p, (w1 + a1 + az) — (—w1 + 4dag + 2a2))
2

= —§<()\@ + p, 041>> <(>\@ +p, 300 + 2a2>> (O\e + p, 3o + a2>>2

1

- _2—16(A1 + 1) (M +2)* (A + 3).

Here we have used the following relations:

(p,3c1 + 2a2)
3 Y
, 301 + «
(—wrﬂh+a%m>:—wbm):—@—%T—ﬁ.
Note that ay + ag, 3aq + 20, 3aq + an € X(g) and r,,(A) # 0 if the condition ii)
of Theorem 3.12 (we do not assume here that Ag + p is dominant) is satisfied.
Let S(a)™ denote the space of the elements of the symmetric algebra over
a whose degree are at most m. Note that

—{ag, —w1 + 1) = —(ag, 1) =

(Trace F2™)a = 2(e1 — £2)*" + 2(e2 — £3)°™ + 2(e1 — £5)*"  mod §(a)®™ Y
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2(81 — 82)2m + 2(61 + 262)2m + 2(281 + 62)2m
mod S(Cl)(é?l + &2 + 83),

(Trace F2) = 12(e2 + e165 4+ €2)  mod S(a)V + S(a)(eq + €2 + €3),
1
(Trace F)q = + ((Trace F2))? mod S(a)® + S(a)(e; + e + €3).

Moreover (Trace F), and ((Trace Fﬁ)a)3 are linearly independent in

S(a) /(S(a)<5> +S(a) (e + 60+ g3>).

Thus we have
Z(g) = C|Trace F2, Trace F?]. (91)

Proposition 4.12. We denote by «; the elements in V(g) which are specified
by the Dynkin diagrams in the examples in this section.
For a € ¥(g) define A, € a* by

(Ao, B) _ 1 if B=a,
“3.8) {o if € W(g)\ {a}. (92)

Let % be the irreducible representation of g with the lowest weight —A, and let
A} be the highest weight of 7.

i) Suppose g = gl,,, sl,, sp, or 09,41 and m is the natural representation of g.
Then (44) holds for any © if the infinitesimal character of the Verma module
M (Xe) is regular, that is

(Ao +p,0) #0 (Vo € X(g)). (93)

If Ao+ p is dominant, then (44) is equivalent to (41). Moreover in Proposition 3.3
we may put A ={i; d; < deg, ¢z 0}-

ii) Suppose g = Gy and 7 is the non-trivial minimal dimensional representation
of g. Then the same statement as above holds.

iii) Suppose g = 09, with n >4 and w is the natural representation of g.

Suppose © D {a,_1,a,}. Then (44) holds if Ao + p is reqular and (44) is
equivalent to (41) if e + p is dominant.

Suppose O N{a,_1,,} =D and (Ao, a, —avy_1) = 0. In this case we may
replace qre(x; \) in the definition of Iy e by ¢, o(x; A) given in Example 4.6. Then
the same statement as the previous case holds. Note that deg, q, ¢ = deg, ¢ —1.

In other general cases, (44) holds if the infinitesimal character of M (Ae) is
strongly reqular, that is, Ao + p is not fived by any non-trivial element of the Weyl
group of the non-connected Lie group O(2n,C). In particular, if © N{a,_1,0,} =
@, then (44) holds under the conditions (93) and

(Ao + 0,20 + -+ + 2002 + Q1 + ) £ 0
fori=2,...,n—1 satisfying a;_1 € © and o;; ¢ ©. (94)

Suppose © N {a,_1,a,} ={a,_1}. Then

Jo(A) = Ire(A) + Iny  0(A)+ J(Xe) (95)



214 ODpA AND OSHIMA

if (93), (94) and

<)‘® +p,w@+ Aan—l - an*1> 7é 0
for any @ € We(n, |) satisfying @ > ay_1 — Aq,_,  (96)

hold.

In Proposition 3.3 we may put v = n and Ay, ..., A,_1 are invariant
under the outer automorphism of g corresponding to e, — —e, and A = {i;d; <
deg, gro} U{n}.

iv) Suppose g = E,, with n =6, 7 or 8 (cf. Example 4.7, 4.8, 4.9). For «; € ¥(g)
put

a; ifi=1 or3, Q; ifi=1 or?2,
o) =< ay ifi=2, & =< ar +as if i =3, (97)
o, ifi >4, o+ Fa, ifi >4

Here (o) satisfies #{6 € ¥(g); («(a;), ) < 0} <1 and & is the smallest root
with & > a and & > 1(«). Let X € ag. If (93) holds and moreover X satisfies

2<)\@ + P, W + AL(oz) - OA-/> 7é <’Zﬂ7 ’ZD) - <AL(O¢)7 AL(a)>
for a € © and w € We(n},)) satisfying @ > & — Nya), (98)

then
Jo(N) = Y Lo\ +J(Ne). (99)
a€L(O)

In particular, under the notation in Definition 2.20 the condition

</\@ + P, M>
27— ¢ [-1,0]
(M), Aue))
fora€© and p € Ry with 0 < pp < Aoy + A,y — & (100)

*
Qn ?

assures (98). Moreover, if m = m, or 7, , we may put A = {i; d; < deg, ¢r o}
in Proposition 3.3.

v) Suppose g = Fy. For o; € Y(g) put

o o ifi =1 or4,
aq Zfl S 27 ~ .
o) = S G =qatay ifi=2, (101)
oy if i >3, .
az+ oy if i = 3.

Then the same statement as iv) holds for m = 7}, (cf. Example 4.10).

Proof.  The statements i) and iii) are direct consequences of [22, Theorem 4.4]
(or Theorem 3.21) and Theorem 3.12. The statement ii) is a consequence of
Example 4.11.

Suppose g is Fg, E7, Eg, Fy or G5 and 7 is a minimal dimensional non-
trivial irreducible representation of g. Then in Proposition 3.3 it follows from [17]
that the elements >y my(w)ww® (i =1,...,n) generate the algebra of the
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W -invariants of U(a) (For G we confirm it in Example 4.11) and hence we may
put A= {i; d; < deg, ¢r0}.

Suppose g is Fg, F7, Eg or Fy. Fix a € ©. Then Theorem 3.21 assures
X_ o € ij(ay@()\) + J(Aeo) if ram,(A) # 0. Here rq o, () is defined by (80) with
T =T, and @Wa = —Ayq) + (& — @). Then the assumption of Remark 3.20 v)

holds and therefore the second factor Hle(- ++) of ram.(A) in (80) does not
vanish under the condition (93). On the other hand, w € W(r,,) which does
not satisfy @w < —A,(,) + & always satisfies @w > —A, (o) + & because {v1,..., 7k}
in Remark 3.20 is of type Ax and (A, ), 8) = (15,8) =0for i =1,..., K —1 and
BeW(g)\{1,-..,vx}. Hence (98) assures that the first factor of r, ,(A) does
not vanish. Thus we have X_, € [ﬂz«(ay@()\) + J(Xe). It implies (99). It is clear

that (98) follows from (100) since (A,(a), Ai(a)) = (@, @) for @ € W(m} ). m

Remark 4.13.  Suppose g = gl,, or g is simple. In the preceding proposition
we explicitly give a two sided ideal Ig(A) of U(g) which satisfies Jo(A) = Ig(\) +
J(Xe) if at least

Re(Ae + p,a) >0 for a € U(g). (102)

In particular, this condition is valid when A = 0.

Remark 4.14.  Suppose g = gl,. Then in [20], the generator system of
Ann (M@()\)) is constructed for any © and A\ through quantizations of elementary
divisors. It shows that the zeros of the image of the Harish-Chandra homomor-
phism of Ann(Me()\)) equals {w.he; w € W(O)} and proves that (41) holds if
and only if (103) is not valid for any positive numbers j and k which are smaller
or equal to L. Here we note that this condition for (41) follows from this descrip-
tion of the zeros and Lemma 3.4 and the following Lemma with the notation in
Example 4.2.

Lemma 4.15. Let ng =0<ny <ng <---<np=mn be a strictly increasing
sequence of non-negative integers. Let A = (A1,...,A\r) € CE. Define A\ =
(Al,...,/\n)E(Cn by

_ n—1

)\V:>\k+(V—1)— B

ifnk_l <v < ng

and put

Ak — {)\nk71+1, )\nk71+2’ e 75\77«]9}'

Then there exists v with nj_; < v < n; satisfying (v,v + )X € W(O)X if and
only if there exists k € {1,..., L} such that

AN #0, Ay & Ay, and (M € M\ Ay, W €Ny = (W —p)(k—3) > 0)- (103)
Here (i,j) € S, is the transposition of i and j and

W(O) ={o € &,; a(i) < a(j) if there exists k with ng_y <i < j < ng},
o= (fto-1(1)s - - s Mo—1(my) Jor pr=(pa, ..., pn) € C".
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Proof.  Suppose (103). Then there exists m such that

{j<k, 1<m<n;—nj_qand ng_1 +n; —nj_1 —m < ny,

Anj_14v = Anj_y4v—m for m < v <n; —nj_
or

{j>k, 1<m<n;—nj_qand ny —m-+1>n,_,

Anj_14v = /_\nk+l,_m forl1 <v<m.
Defining o € W(©) by

o= (nj_1+m,n;_1+m+1) H (nj_1 +v,ng—1 + v —m),

m<v<n;—mn;_1

or

o= (nj_1+m,n;_1 +m+1) H (nj_1 +v,n, +v —m),
1<v<m
respectively, we have (v,v 4+ 1)\ = o\ € W(O)\ with v =n;_; +m.

Conversely suppose (v, v+ 1)\ = o for suitable v € {n; 1 +1,...,n; — 1}
and o € W(O). Put

{gl, c. 7€m} = {g, 14 S nj—1 and 5\3 = an—l"l‘l}?
{Oriar ol } = {05 0>y and Ay = A, }
and define
E;:&—F(nj—nj_l—l) lflgma
&:@—(nj—nj_l—l) 1f22m—|—2,
€m+1 ="Nj + 1, g;n+1 ="n;.
Assume that (103) is not valid for any k. Then for i € [ :={1,...,m +m' + 1},
there_exist_integers N; with ny, , < {; < 0; < ny, and therefore )\, = Anj_ 141
and )\4 = Ap, -
Note that #I; < m+ 1 and #I, < m' by denoting

L={iel,ol;)<n;} and I, = {i € I; o({;) > n,}.

Since o(¢;) < o(l;), we have [;UI, = I and therefore #I; = m+1 and #1, = m/.
Then there exists igp with n;_y < o(¢;,) < n;. Since I} NIy = O, we have
o(t;,) < ny, which implies o' (v/) = £y, + 1/ —n;y — 1 for n;y < v/ < ny. It
contradicts to the assumption (v,v + 1)\ = oA. [

Remark 4.16.  Suppose g = gl, and 7 is its natural representation. Then the
condition 7,(\) # 0 for any o € © is necessary and sufficient for (44) (cf. [22,
Remark 4.5]). Under the notation in the preceding lemma, it is easy to see that
the condition is equivalent to the fact that

AyNA; # 0O, Aj ¢ Ay and (El,u € Aj\ Ay, 3u' € Ay such that (¢ —p)(k—j) > O)

does not hold for any positive numbers k£ and j smaller or equal to L.
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A Infinitesimal Mackey’s Tensor Product Theorem

In this appendix we explain nfinitesimal Mackey’s tensor product theorem
following the method given in [16].

Let g be a finite dimensional Lie algebra over C and p a subalgebra of
g. Let V and U be a U(g)-module and a U(p)-module, respectively. We denote
by V|, and IndjU the restriction of the coefficient ring U(g) to U(p) and the
induced representation U(g) ®up) U in the usual way.

Theorem A1 (infinitesimal Mackey’s tensor product theorem). The map de-

fined by
U(g) ®up) (U @c Vl]p) — (U(G) Qo U) ®c 'V,

104
D ®u(p) (u®cv) = D - [(1®u(p) u) @c ] (104

gives a canonical U(g)-module isomorphism
Ind$(U @¢ V|y) ~ (Ind§U) ®c V. (105)

To prove this we need two lemmas.

Lemma A2. Let R be a ring and R-Mod the category of left R-modules. For
M, N € R-Mod consider Fyy : - — Hompg(M,-) and Fy : - — Hompg(N,-), which
are functors from R-Mod to the category of abelian groups. Suppose that Fy and
Fy are naturally equivalent, namely, there exists an assignment A — T4 for each
object A € R-Mod of an isomorphism 74 : Homg(M, A) — Hompg(N, A) such that
Fn(f)oTa =10 Fp(f) for each f € Homg(A, B). Then M ~ N as R-modules.

Proof. Put ¢ = 75" (idy) € Homp(M, N) and ¢ = 7,(idys) € Homp(N, M).
Then ot = Fn(p)(¥) = Fn(p) o u(idn) = 7v 0 Fu () (idyr) = 7v () = idw -
Similarly ¥ o ¢ =id;;. Hence M ~ N. [ |

Lemma A3.  Let (m;, Vi) (i = 1,2,3) be U(g)-modules. Consider Home(Va, V3)
as a U(g)-module by X® = m3(X) o ® — ® o my(X) for & € Home(Va, V) and
X € g. Then naturally

HOHIU (‘/1 Qc ‘/27 %) HomU(g)(‘/la Hom(C(‘/Qa %))

Proof. @ We have only to define the mapping ¢ +— ® from the left-hand side to
the right-hand side by (®(v1)) (ve) = p(v1 ® vy) for vy € Vi and vy € V5. ]

Proof of Theorem Al. Lemma A3 implies the following isomorphism for a
given U(g)-module A:

Homy () ((U(8) ®u U) @c V, A) ~ Homy (g (U(g) Qv U, Home(V, A))
~ Homyp) (U, Home(V],, Al,p))
~ HOIHU (p) (U Xc V|p7 A| )
~ Homy g (U(g) Qv (U c V), A) :
It gives a natural equivalence between Fu(gey,,v)2cv and Fu(gey,, Usecv),) under

the notation of Lemma A2 with R = U(g). Hence by Lemma A2, we have (105).
It is easy to see the isomorphism is explicitly given by (104). [
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B Undesirable Cases

In this appendix we give counter examples stated in Remark 3.23. Let
g = sl, and use the notation in §2. and §3.. Suppose the Dynkin diagram of
the fundamental system ¥ = {ay,...,a,_1} is the same as in Example 4.2. Let
{A1,...,N\,,_1} be the system of fundamental weights corresponding to W. Let 7
be the irreducible representation of g with lowest weight 7 = —m;A; — maAs.
Here m; and my are positive integers. Then the multiplicity of the weight
w' =T+ a3+ a € W(rm) equals 2.

Now take © = U\ {an} = {a1,a3,04,...,0,-1}. Since the multiplicity
of the weight 7 + a is 1, both @’ and 7 + ay belong to We(7). On the other
hand, by Remark 3.17, the weight w,,, , :=7 +as+ag+ -+ a,_2 is a unique
extremal low weight of 7 with respect to a,_;. Note that {@w € We(r); @ <

Way, 1} = {7, T+ o} and the weight @], | =7 +as+az+ -+ + o, satisfies

@y, lae = @'ae = (T 4 @2)|ag 7 T|ae - Moreover, it follows from Lemma 2.22
my+ 1
Di(@') = Da(7 + ag) = —(T + g, 1) = 12 (o, ),
n—3

D(w, ) — Di(7+ag) = —(ag,a3) — - — (Q_2, Q1) = 5 (o, ).
It shows the first factor of the function (80) with (o, w,) = (@n_1,@a,_,) IS
identically zero if n = mq + 4.
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