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1. Introduction

In the representation theory of a real reductive Lie group G the center
Z(g) of the universal enveloping algebra U(g) of the complexification g of the Lie
algebra of G plays an important role. For example, any irreducible admissible rep-
resentation τ of G realized in a subspace E of sections of a certain G-homogeneous
vector bundle is a simultaneous eigenspace of Z(g) parameterized by the infinites-
imal character of τ . The differential equations induced from Z(g) are often used
to characterize the subspace E .

If the representation τ is small, we expect more differential equations
corresponding to the primitive ideal Iτ , that is, the annihilator of τ in U(g).
For the study of Iτ and these differential equations it is interesting and important
to get a good generator system of Iτ .

Let pΘ be a parabolic subalgebra containing a Borel subalgebra b of g and
let λ be a character of pΘ . Then the generalized Verma module of the scalar type
is by definition

MΘ(λ) = U(g)/JΘ(λ) with JΘ(λ) =
∑

X∈pΘ

U(g)
(
X − λ(X)

)
. (1)

In this paper we construct generator systems of the annihilator Ann
(
MΘ(λ)

)
of

the generalized Verma module MΘ(λ) in a unified way. If τ can be realized in a
space E of sections of a line bundle over a generalized flag manifold, the annihilator
of the corresponding generalized Verma module kills E .
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When g = gln , [20] and [21] construct such a generator system by gener-
alized Capelli operators defined through quantized elementary divisors. This is a
good generator system and in fact it is used there to characterize the image of the
Poisson integrals on various boundaries of the symmetric space and also to define
generalized hypergeometric functions. A similar generator system is studied by
[18] for g = on but it is difficult to construct the corresponding generator system
in the case of other general reductive Lie groups. On the other hand, in [22] we
give other generator systems as a quantization of minimal polynomials when g is
classical.

Associated to a faithful finite dimensional representation π of g and a
g-module M , [22] defines a minimal polynomial qπ,M(x) as is quoted in Defini-
tion 2.3 and Definition 2.5. If g = gln and π is a natural representation of g ,

qπ,M(x) is characterized by the condition qπ,M(Fπ)M = 0. Here Fπ =
(
Eij

)
1≤i≤n
1≤j≤n

is the matrix whose (i, j)-component is the fundamental matrix unit Eij and then
Fπ is identified with a square matrix with components in g ⊂ U(g). In this
case qπ,MΘ(λ)(x) is naturally regarded as a quantization of the minimal polynomial
which corresponds to the conjugacy class of matrices given by a classical limit of
MΘ(λ). For example, if pΘ is a maximal parabolic subalgebra of gln , the minimal
polynomial qπ,MΘ(λ)(x) is a polynomial of degree 2.

For general π and g , the matrix Fπ is the image
(
p(Eij)

)
of

(
Eij

)
under

the contragredient map p of π and then Fπ is a square matrix of the size dim π
with components in g . For example, if π is the natural representation of on , then
the (i, j)-component of Fπ equals 1

2
(Eij − Eji).

In [22] we calculate the minimal polynomial qπ,MΘ(λ)(x) for the natural
representation π of each type of classical Lie algebra g and by putting

Iπ,Θ(λ) =
∑
i,j

U(g)qπ,MΘ(λ)(Fπ)ij +
∑

∆∈Z(g)∩Ann MΘ(λ)

U(g)∆, (2)

it is shown that

JΘ(λ) = Iπ,Θ(λ) + J(λΘ) with J(λΘ) =
∑
X∈b

U(g)
(
X − λ(X)

)
(3)

for a generic λ . This equality is essential because it shows that qπ,MΘ(λ)(Fπ)ij give
elements killing MΘ(λ) which cannot be described by Z(g) and define differential
equations characterizing the local sections of the corresponding line bundle of a
generalized flag manifold. Moreover (3) assures that Iπ,Θ(λ) equals Ann

(
MΘ(λ)

)
for a generic λ (Proposition 3.11).

In this paper, π may be any faithful irreducible finite dimensional repre-
sentation of a reductive Lie algebra g . In Theorem 2.24 we calculate a polynomial
qπ,Θ(x;λ) which is divisible by the the minimal polynomial qπ,MΘ(λ)(x) and it is
shown in Theorem 2.29 that the former polynomial equals the latter for a generic
λ . If pΘ = b , this result gives the characteristic polynomial associated to π as
is stated in Theorem 2.33, which is studied by [11]. We prove Theorem 2.24 in
a similar way as in [22] but in a more generalized way and the proof is used to
get the condition for (3). Another proof which is similar as is given in [11] is also
possible and it is based on the decomposition of the tensor product of some finite
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dimensional representations of g given by Proposition 2.27. The proof of Theo-
rem 2.29 uses infinitesimal Mackey’s tensor product theorem which is explained in
Appendix A.

In §3 we examine (3) and obtain a sufficient condition for (3) by Theo-
rem 3.21. Proposition 3.25 and Proposition 3.27 assure that a generic λ satisfies
this condition if π is one of many proper representations including minuscule
representations, adjoint representations, representations of multiplicity free, and
representations with regular highest weights. In such cases the sufficient condi-
tion is satisfied if λ is not in the union of a certain finite number of complex
hypersurfaces in the parameter space, which are defined by the difference of cer-
tain weights of the representation π . On the other hand, in Appendix B, we give
counter examples for which our sufficient condition is never satisfied by any λ . In
Proposition 3.3 we also study the element of Z(g) contained in Iπ,Θ(λ).

A corresponding problem in the classical limit is to construct a generator
system of the defining ideal of the coadjoint orbit of g and in fact Theorem 3.28
is considered to be the classical limit of Corollary 3.22.

If π is smaller, the two-sided ideal Iπ,Θ(λ) is better in general and therefore
in §4 we give examples of the characteristic polynomials of some small π for every
simple g and describe some minimal polynomials, especially in each case where
pΘ is maximal. Note that the minimal polynomial is a divisor of the characteristic
polynomial evaluated at the infinitesimal character. In Proposition 4.12 we present
a two-sided ideal of U(g) for every (g, pΘ) and examine the condition (3) for this
ideal by applying Theorem 3.21. In particular, the condition is satisfied if the
infinitesimal character of MΘ(λ) is regular in the case when g = gln , o2n+1 , spn

or G2 . The condition is also satisfied if the infinitesimal character is in the positive
Weyl chamber containing the infinitesimal characters of the Verma modules which
have finite dimensional irreducible quotients.

Some applications of our results in this paper to the integral geometry will
be found in [22, §5] and [23].

Acknowledgments

The referee gave the authors many helpful comments to make the paper
more accessible. The authors greatly appreciate it.

2. Minimal Polynomials and Characteristic Polynomials

For an associative algebra A and a positive integer N , we denote by
M(N,A) the associative algebra of square matrices of size N with components
in A . We use the standard notation gln , on and spn for classical Lie algebras over
C . The exceptional simple Lie algebra is denoted by its type E6 , E7 , E8 , F4 or
G2 .

The Lie algebra glN is identified with M(N,C) ' End(CN) with the
bracket [X, Y ] = XY − Y X . In general, if we fix a base {v1, . . . , vN} of an N -
dimensional vector space V over C , we naturally identify an element X = (Xij)

of M(N,C) with an element of End(V ) by Xvj =
∑N

i=1Xijvi . Let Eij =(
δµiδνj

)
1≤µ≤N
1≤ν≤N

∈M(N,C) be the standard matrix units and put E∗
ij = Eji . Note
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that the symmetric bilinear form

〈X, Y 〉 = TraceXY for X, Y ∈ glN (4)

on glN is non-degenerate and satisfies

〈Eij, Eµν〉 = 〈Eij, E
∗
νµ〉 = δiνδjµ,

X =
∑
i,j

〈X,Eji〉Eij,

〈Ad(g)X,Ad(g)Y 〉 = 〈X, Y 〉 for X, Y ∈ glN and g ∈ GL(N,C).

(5)

In general, for a Lie algebra g over C , we denote by U(g) and Z(g) the universal
enveloping algebra of g and the center of U(g), respectively. Then we have the
following lemma.

Lemma 2.1 ([22, Lemma 2.1]). Let g be a Lie algebra over C and let (π,CN)
be a representation of g. Let p be a linear map of glN to U(π(g)) satisfying

p([X, Y ]) = [X, p(Y )] for X ∈ π(g) and Y ∈ glN , (6)

that is, p ∈ Homπ(g)

(
glN , U(π(g))

)
.

Fix q(x) ∈ C[x] and put
F =

(
p(Eij)

)
1≤i≤N
1≤j≤N

∈M
(
N,U(π(g))

)
,(

Qij

)
1≤i≤N
1≤j≤N

= q(F ) ∈M
(
N,U(π(g))

)
.

(7)

Then (
p(Ad(g)Eij)

)
1≤i≤N
1≤j≤N

= tg F tg−1 for g ∈ GL(n,C) (8)

and

[X,Qij] =
N∑

µ=1

XµiQµj −
N∑

ν=1

XjνQiν

=
N∑

µ=1

〈X,Eiµ〉Qµj −
N∑

ν=1

Qiν〈X,Eνj〉 for X =
(
Xµν

)
1≤µ≤N
1≤ν≤N

∈ π(g). (9)

Hence the linear map glN → U(π(g)) defined by Eij 7→ Qij is an element of

Homπ(g)

(
glN , U(π(g))

)
. In particular,

∑N
i=1Qii ∈ Z(π(g)).

Remark 2.2. The referee suggested that we should give the reader the fol-
lowing conceptual explanation of Lemma 2.1: Since (glN)∗ ' M(N,C)∗ is natu-
rally identified with M(N,C) via (4), the linear π(g)-homomorphism p : glN →
U(π(g)) is considered as an element of (glN)∗ ⊗ U(π(g)) 'M(N,C)⊗ U(π(g)) '
M(N,U(π(g))). By this identification, the image of p equals tF and hence
(8) holds almost immediately. Furthermore, (9) is equivalent to the fact that

(M(N,C)⊗ U(π(g)))π(g) is a subalgebra of M(N,C)⊗U(π(g)) 'M(N,U(π(g))).

Now we introduce the minimal polynomial defined by [22], which will be
studied in this section.
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Definition 2.3 (characteristic polynomials and minimal polynomials). Given a
Lie algebra g , a faithful finite dimensional representation (π,CN) and a g-
homomorphism p of End(CN) ' glN to U(g). Here we identify g as a subalgebra
of glN through π . Let Ẑ(g) denote the quotient field of Z(g). (Recall Z(g) is an

integral domain.) Put F =
(
p(Eij)

)
∈ M(N,U(g)). We say qF (x) ∈ Ẑ(g)[x] is

the characteristic polynomial of F if it is the monic polynomial with the minimal
degree which satisfies

qF (F ) = 0

in M
(
N, Ẑ(g) ⊗Z(g) U(g)

)
. Suppose moreover a g-module M is given. Then we

say qF,M(x) ∈ C[x] is the minimal polynomial of the pair (F,M) if it is the monic
polynomial with the minimal degree which satisfies

qF,M(F )M = 0.

Remark 2.4. The uniqueness of the characteristic (or minimal) polynomial
is clear if it exists. Suppose g is reductive. Then the characteristic polynomial
actually exists by [22, Theorem 2.6]. The same theorem assures the existence of
the minimal polynomial if M has a finite length or an infinitesimal character.

Definition 2.5. If the symmetric bilinear form (4) is non-degenerate on π(g),
the orthogonal projection of glN onto π(g) satisfies the assumption for p in
Lemma 2.1, which we call the canonical projection of glN to π(g) ' g . In this case

we put Fπ =
(
p(Eij)

)
. Then we call qFπ(x) (resp. qFπ ,M(x)) in Definition 2.3 the

characteristic polynomial of π (resp. the minimal polynomial of the pair (π,M))
and denote it by qπ(x) (resp. qπ,M(x)).

Remark 2.6. For a given involutive automorphism σ of glN , put

g = {X ∈ glN ; σ(X) = X}

and let π be the inclusion map of g ⊂ glN . Then p(X) = X+σ(X)
2

.

Hereafter in the general theory of minimal polynomials which we shall study,
we restrict our attention to a fixed finite dimensional representation (π, V ) of g

such that {
g is a reductive Lie algebra over C,
π is faithful and irreducible.

(10)

Moreover we put N = dimV and identify V with CN through some basis of V .
The assumption of Definition 2.5 is then satisfied.

Remark 2.7. i) The dimension of the center of g is at most one.

ii) Fix g ∈ GL(V ). If we replace (π, V ) by (πg, V ) with πg(X) = Ad(g)π(X)
for X ∈ g in Lemma 2.1, Fπ ∈ M(N, g) is naturally changed into tg−1Fπ

tg
under the fixed identification V ' CN . This is clear from Lemma 2.1 (cf. [22,
Remark 2.7 ii)]). iii) Exceptionally the condition (10) will not be assumed in
Definition 2.36 and Proposition 2.37.
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Definition 2.8 (root system). We fix a Cartan subalgebra a of g and let Σ(g)
be a root system for the pair (g, a). We choose an order in Σ(g) and denote
by Σ(g)+ and Ψ(g) the set of the positive roots and the fundamental system,
respectively. For each root α ∈ Σ(g) we fix a root vector Xα ∈ g . Let g = n⊕a⊕n̄

be the triangular decomposition of g so that n is spanned by Xα with α ∈ Σ(g)+ .
We say µ ∈ a∗ is dominant if and only if

2
〈µ, α〉
〈α, α〉

/∈ {−1,−2, . . .} for any α ∈ Σ(g)+.

Let us prepare some lemmas and definitions.

Lemma 2.9. Let U be a k -dimensional subspace of glN such that 〈 , 〉|U
is non-degenerate. Let pU be the orthogonal projection of glN to U and let
{v1, . . . , vk} be a basis of U with 〈v2, vj〉 = 0 for 2 ≤ j ≤ k . Suppose that

u ∈ glN satisfies 〈u, vj〉 = 0 for 2 ≤ j ≤ k . Then pU(u) = 〈u,v1〉
〈v1,v2〉v2 .

The proof of this lemma is easy and we omit it.

Lemma 2.10. Choose a base {vi; i = 1, . . . , N} of V for the identification
V ' CN so that vi are weight vectors with weights $i ∈ a∗ , respectively. We
identify g with the subalgebra π(g) of glN ' M(N,C) and put aN =

∑N
i=1 CEii .

For Fπ =
(
Fij

)
1≤i≤N
1≤j≤N

we have

Fii = $i =
N∑

j=1

$i(Ejj)Ejj,

ad(H)(Fij) = ($i −$j)(H)Fij (∀H ∈ a),

〈Fij, Eµν〉 6= 0 with i 6= j implies $i −$j = $ν −$µ ∈ Σ(g),

a =
N∑

i=1

CFii ⊂ aN , n =
∑

$i−$j∈Σ(g)+

CFij, n̄ =
∑

$j−$i∈Σ(g)+

CFij

(11)

under the identification a∗ ' a ⊂ aN ' a∗N by the bilinear form (4).

Proof. Note that H ∈ a is identified with
∑N

j=1$j(H)Ejj ∈ aN ⊂ glN . Hence
ad(H)(Eij) = ($i −$j)(H)Eij and therefore ad(H)(Fij) = ($i −$j)(H)Fij. In
particular we have Fii ∈ a . Since

〈H,Fii〉 = 〈H,Eii〉 = 〈
N∑

j=1

$j(H)Ejj, Eii〉 = $i(H) (∀H ∈ a),

we get Fii = $i .

For each root α , the condition (Xα)ij = 〈Xα, Eji〉 6= 0 means $i−$j = α .
Hence if i 6= j and X ∈ a+

∑
α∈Σ(g), α 6=$j−$i

CXα , then 〈Eij, X〉 = 0 and therefore

〈Fij, X〉 = 0. Hence Fij = 0 if i 6= j and $j − $i 6∈ Σ(g). On the other hand,
if $j − $i ∈ Σ(g), we can easily get Fij = CX$i−$j

for some C ∈ C . Hence
〈Fij, Eµν〉 = 0 if $i −$j 6= $ν −$µ .
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Through the identification of a∗ ' a ⊂ aN in the lemma, we introduce the
symmetric bilinear form 〈 , 〉 on a∗ . We note this bilinear form is real-valued and
positive definite on

∑
α∈Ψ(g) Rα .

Now we take a subset Θ ⊂ Ψ(g) with Θ 6= Ψ(g) and fix it.

Definition 2.11 (generalized Verma module). Put

aΘ = {H ∈ a; α(H) = 0, ∀α ∈ Θ},
gΘ = {X ∈ g; [X,H] = 0, ∀H ∈ aΘ},
mΘ = {X ∈ gΘ; 〈X,H〉 = 0, ∀H ∈ aΘ},

Σ(g)− = {α; −α ∈ Σ(g)+},
Σ(gΘ) = {α ∈ Σ(g); α(H) = 0, ∀H ∈ aΘ},

Σ(gΘ)+ = Σ(gΘ) ∩ Σ(g)+, Σ(gΘ)− = {−α; α ∈ Σ(gΘ)+},

nΘ =
∑

α∈Σ(g)+\Σ(gΘ)

CXα, n̄Θ =
∑

α∈Σ(g)−\Σ(gΘ)

CXα,

b = a + n, pΘ = gΘ + nΘ,

ρ =
1

2

∑
α∈Σ(g)+

α, ρ(Θ) =
1

2

∑
α∈Σ(gΘ)+

α, ρΘ = ρ− ρ(Θ).

For Λ ∈ a∗ which satisfies 2 〈Λ,α〉
〈α,α〉 ∈ {0, 1, 2, . . .} for α ∈ Θ, let U(Θ,Λ) denote the

finite dimensional irreducible gΘ -module with highest weight Λ. By the trivial
action of nΘ , we consider U(Θ,Λ) to be a pΘ -module. Put

M(Θ,Λ) = U(g)⊗U(pΘ) U(Θ,Λ). (12)

Then M(Θ,Λ) is called a generalized Verma module of the finite type.

Remark 2.12. i) pΘ is a parabolic subalgebra containing the Borel subalgebra
b . pΘ = mΘ + aΘ + nΘ gives its direct sum decomposition.

ii) Every finite dimensional irreducible pΘ -module is isomorphic to U(Θ,Λ) with a
suitable choice of Λ.

iii) M(Ø,Λ) is nothing but the Verma module for the highest weight Λ ∈ a∗ .

iv) Let uΛ be a highest weight vector of U(Θ,Λ) . Then 1⊗ uΛ is a highest weight
vector of M(Θ,Λ) . Moreover 1⊗ uΛ generates M(Θ,Λ) because

M(Θ,Λ) = U(g)⊗U(pΘ) U(Θ,Λ) = U(n̄Θ)⊗C U(pΘ)⊗U(pΘ) U(Θ,Λ)

= U(n̄Θ)⊗C U(Θ,Λ) = U(n̄Θ)⊗C U(n̄ ∩ gΘ)uΛ = U(n̄)(1⊗ uΛ).

Hence M(Θ,Λ) is a highest weight module and is therefore a quotient of the Verma
module M(Ø,Λ) .

v) If 〈Λ, α〉 = 0 for each α ∈ Θ, then dimU(Θ,Λ) = 1 and we have the character
λΘ of pΘ such that XuΛ = λΘ(X)uΛ for X ∈ pΘ . Since

U(g) = U(n̄Θ)⊕
∑

X∈pΘ

U(g)
(
X − λΘ(X)

)
is a direct sum and M(Θ,Λ) = U(n̄Θ) ⊗C CuΛ , we have the kernel of the surjec-
tive U(g)-homomorphism U(g) → M(Θ,Λ) defined by D 7→ D(1 ⊗ uΛ) equals∑

X∈pΘ
U(g)

(
X − λΘ(X)

)
.



162 Oda and Oshima

Definition 2.13 (generalized Verma module of the scalar type). For λ ∈ a∗Θ
define a character λΘ of pΘ by λΘ(X + H) = λ(H) for X ∈ mΘ + nΘ and
H ∈ aΘ . Put

JΘ(λ) =
∑

X∈pΘ

U(g)
(
X − λΘ(X)

)
,

J(λΘ) =
∑
X∈b

U(g)
(
X − λΘ(X)

)
,

MΘ(λ) = U(g)/JΘ(λ), M(λΘ) = U(g)/J(λΘ).

(13)

Then MΘ(λ) is isomorphic to M(Θ,λΘ) , which is called a generalized Verma module
of the scalar type. If Θ = Ø, we denote JØ(λ) and MØ(λ) by J(λ) and M(λ),
respectively.

Definition 2.14 (Weyl group). Let W denote the Weyl group of Σ(g), which

is generated by the reflections wα : a∗ 3 µ 7→ µ − 2 〈µ,α〉
〈α,α〉α ∈ a∗ with respect to

α ∈ Ψ(g). Put

WΘ = {w ∈ W ; w
(
Σ(g)+ \ Σ(gΘ)

)
= Σ(g)+ \ Σ(gΘ)},

W (Θ) = {w ∈ W ; w
(
Σ(gΘ)+

)
⊂ Σ(g)+}.

(14)

Then each element w ∈ W (Θ) is a unique element with the smallest length in the
right coset wWΘ and the map W (Θ)×WΘ 3 (w1, w2) 7→ w1w2 ∈ W is a bijection.

For w ∈ W and µ ∈ a∗ , define

w.µ = w(µ+ ρ)− ρ. (15)

Here we note that WΘ is generated by the reflections wα with α ∈ Θ and

〈ρΘ, α〉 = 0 for α ∈ Σ(gΘ). (16)

Definition 2.15 (infinitesimal character). Let D ∈ U(g). We denote by Da

the element of U(a) which satisfies D −Da ∈ n̄U(g) + U(g)n and identify Da ∈
U(a) ' S(a) with a polynomial function on a∗ . Then ∆a(µ) = ∆a(w.µ) for
∆ ∈ Z(g), µ ∈ a∗ , and w ∈ W .

Let µ ∈ a∗ . We say a g-module M has infinitesimal character µ if each
∆ ∈ Z(g) operates by the scalar ∆a(µ) in M . We say an infinitesimal character
µ is regular if 〈µ+ ρ, α〉 6= 0 for any α ∈ Σ(g).

Remark 2.16. The generalized Verma module M(Θ,Λ) in Definition 2.11 has
infinitesimal character Λ. It is clear by Remark 2.12 iv).

Definition 2.17 (Casimir operator). Let {Xi; i = 1, . . . , ω} be a basis of g .
Then put

∆π =
ω∑

i=1

XiX
∗
i

with the dual basis {X∗
i } of {Xi} with respect to the symmetric bilinear form (4)

under the identification g ⊂ glN through π and call ∆π the Casimir operator of
g for π .
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Remark 2.18. As is well-known, ∆π ∈ Z(g) and ∆π does not depend on the
choice of {Xi} .

We may assume in Definition 2.17 that {X1, . . . , Xω′} and {Xω′+1, . . . , Xω}
be bases of gΘ and n̄Θ + nΘ , respectively. Then X∗

i ∈ gΘ for i = 1, . . . , ω′ and

∆Θ
π =

ω′∑
i=1

XiX
∗
i (17)

is the Casimir operator of gΘ for π .

Lemma 2.19. Fix a basis {H1, . . . , Hr} of the Cartan subalgebra a of g.

i) Let {H∗
1 , . . . , H

∗
r } be the dual basis of {H1, . . . , Hr}. Put Hα = [Xα, X−α].

Then

∆π =
∑

α∈Σ(g)

XαX−α

〈Xα, X−α〉
+

r∑
i=1

HiH
∗
i

=
r∑

i=1

HiH
∗
i +

∑
α∈Σ(g)+

(
2X−αXα

〈Xα, X−α〉
+
α(Hα)Hα

〈Hα, Hα〉

)

= ∆Θ
π +

∑
α∈Σ(g)+\Σ(gΘ)

(
2XαX−α

〈Xα, X−α〉
− α(Hα)Hα

〈Hα, Hα〉

)
.

ii) Let M be a highest weight module of g with highest weight µ ∈ a∗ . Then
∆πv = 〈µ, µ+ 2ρ〉v for any v ∈M .

iii) Let v be a weight vector of π belonging to an irreducible representation of gΘ

realized as a subrepresentation of π|gΘ
and let $ denote the lowest weight of the

irreducible subrepresentation. Then

∆πv = 〈π̄, π̄ − 2ρ〉v,
∆Θ

π v = 〈$,$ − 2ρ(Θ)〉v,∑
α∈Σ(g)+\Σ(gΘ)

XαX−α

〈Xα, X−α〉
v =

1

2
〈π̄ −$, π̄ +$ − 2ρ〉v.

Here π̄ denotes the lowest weight of π .

iv) Fix β ∈ Σ(g)+ and put g(β) = CXβ + CX−β +
∑r

i=1 CHi . Let v be a
weight vector of π belonging to an irreducible representation of g(β) realized as a
subrepresentation of π|g(β) and let $ denote the lowest weight of the irreducible
subrepresentation. Let $ + `β be the weight of v . Then

XβX−β

〈Xβ, X−β〉
v = −

(
`〈$ +

`− 1

2
β, β〉

)
v. (18)

v) Suppose g is simple. Let αmax is the maximal root of Σ(g)+ and let B( , ) be
the Killing form of g. Then

B(αmax, αmax + 2ρ) = 1.
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Proof. i) Note that

〈Hα, Hα〉 = 〈Hα, [Xα, X−α]〉 = 〈[Hα, Xα], X−α〉 = α(Hα)〈Xα, X−α〉 (19)

Since the dual base of {Xα, Hi; α ∈ Σ(g), i = 1, . . . , r} equals { X−α

〈Xα,X−α〉 , H
∗
i ; α ∈

Σ(g), i = 1, . . . , r} , the claim is clear.

ii) Let vµ be a highest weight vector of M . Then

∆πvµ =
r∑

i=1

HiH
∗
i vµ +

∑
α∈Σ(g)+

α(Hα)Hα

〈Hα, Hα〉
vµ

=
r∑

i=1

µ(Hi)µ(H∗
i )vµ +

∑
α∈Σ(g)+

α(Hα)µ(Hα)

〈Hα, Hα〉
vµ.

Hence ∆πvµ = 〈µ, µ+2ρ〉vµ because Hα is a non-zero constant multiple of α with
the identification a∗ ' a by 〈 , 〉 and therefore ∆πv = 〈µ, µ+ 2ρ〉v because M is
generated by vµ .

iii) Let vπ̄ be a lowest weight vector of π . Then we have ∆πvπ̄ = 〈π̄, π̄ −
2ρ〉vπ̄ and therefore ∆πv = 〈π̄, π̄ − 2ρ〉v . Similarly we have ∆Θ

π v = 〈$,$ −
2ρ(Θ)〉v .

Let $′ be the weight of v . Then we have∑
α∈Σ(g)+\Σ(gΘ)

XαX−α

〈Xα, X−α〉
v =

1

2
∆πv −

1

2
∆Θ

π v + 〈$′, ρΘ〉v

=
1

2
〈π̄ −$, π̄ +$ − 2ρ〉v.

Here we note that 〈$′, ρΘ〉 = 〈$, ρΘ〉 .
iv) By the same argument as above we have

2XβX−β

〈Xβ, X−β〉
v +

r∑
i=1

HiH
∗
i v −

β(Hβ)Hβ

〈Hβ, Hβ〉
v = 〈$,$ − β〉v.

Hence

2XβX−β

〈Xβ, X−β〉
v = 〈$,$ − β〉v − 〈$ + `β,$ + `β〉v + 〈β,$ + `β〉v

= −
(
2`〈$, β〉+ `(`− 1)〈β, β〉

)
v

v) Suppose π is the adjoint representation of the simple Lie algebra g .
Then for H ∈ a we have

〈π(∆π)(H), H〉 =
∑

α∈Σ(g)

〈[Xα, [X−α, H]], H〉
〈Xα, X−α〉

=
∑

α∈Σ(g)

−〈[X−α, H], [Xα, H]〉
〈Xα, X−α〉

=
∑

α∈Σ(g)

α(H)2

= 〈H,H〉.

Hence π(∆π)(H) = H and B(αmax, αmax + 2ρ) = B(−αmax,−αmax − 2ρ) = 1.
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Definition 2.20 (weights). Let W(π) denote the set of the weights of the
finite dimensional irreducible representation π of g . For $ ∈ W(π) define a
real constant

Dπ($) =
1

2
〈π̄ −$, π̄ +$ − 2ρ〉. (20)

Here π̄ is the lowest weight of π . Put R+ = {
∑

α∈Ψ(g)mαα; mα ∈ {0, 1, 2, . . .}} .

We define a partial order among the elements of W(π) so that $ ≤ $′ if and only
if $′ −$ ∈ R+ .

Moreover we put

WΘ(π) = {$ are the highest weights of the irreducible components of π|gΘ
},

WΘ(π) = {$ are the lowest weights of the irreducible components of π|gΘ
},

W(π)|aΘ
= {$|aΘ

; $ ∈ W(π)}.

Let µ and µ′ ∈ W(π)|aΘ
. Then we define µ ≤Θ µ′ if and only if µ′ − µ ∈

{
∑

α∈Ψ(g)\Θmαα|aΘ
; mα ∈ {0, 1, 2, . . .}} .

Remark 2.21. i) WØ(π) = WØ(π) = W(π) and WΘ(π) = −WΘ(π∗). Here
(π∗, V ∗) denotes the contragredient representation of (π, V ) defined by

(π∗(X)v∗)(v) = −v∗(π(X)v) for X ∈ g, v∗ ∈ V ∗ and v ∈ V. (21)

ii) W(π)|aΘ
= {$|aΘ

; $ ∈ WΘ(π)} = {$|aΘ
; $ ∈ WΘ(π)} .

iii) Suppose $ and $′ ∈ W(π) and put $′ −$ =
∑

α∈Ψ(g)mαα . Then $|aΘ
≤Θ

$′|aΘ
if and only if mα ≥ 0 for any α ∈ Ψ(g) \ Θ. Hence π̄|aΘ

is the smallest
element of W(π)|aΘ

. Note that $ ≤ $′ if and only if $ ≤Ø $′ .

Lemma 2.22. Let $ and $′ ∈ W(π).

i) If α = $′ −$ ∈ Ψ(g), then Dπ($)−Dπ($′) = 〈$,$′ −$〉.
ii) Suppose $′ ∈ WΘ(π), $ < $′ and $|aΘ

= $′|aΘ
. Then Dπ($) < Dπ($′).

Proof. ii) Note that

Dπ($)−Dπ($′) =
1

2
〈$′ −$,$ +$′ − 2ρ〉.

The assumption in ii) implies $′ − $ =
∑

α∈Θmαα with mα ≥ 0. Here at
least one of mα is positive. Hence 〈$′ − $, ρ〉 > 0. Since $′ are the lowest
weights of irreducible representations of gΘ , 〈α,$′〉 ≤ 0 for α ∈ Θ. Thus we have
〈
∑

α∈Θmαα, 2$
′ −

∑
α∈Θmαα− 2ρ〉 < 0.

i) Put α = $′ −$ . Then

Dπ($)−Dπ($′)− 〈$,$′ −$〉 = −1

2
〈α, 2ρ− α〉,

which equals 0 if α ∈ Ψ(g) because wα(Σ(g)+ \ {α}) = Σ(g)+ \ {α} .

Now we give a key lemma which is used to calculate our minimal polynomial.
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Lemma 2.23. Fix an irreducible decomposition
⊕κ

i=1(πi, Vi) of (π|gΘ
, V ) and

a basis {vi,1, . . . , vi,mi
} of Vi so that vi,j are weight vectors for a. Let $i,j and $i

be the weight of vi,j and the lowest weight of the representation πi , respectively.

Suppose $i,j = $i′,j′ . Then for a positive integer k with k ≥ 2 and complex
numbers µ1, . . . , µk

( k∏
ν=1

(Fπ − µν)
)

(i′,j′)(i,j)
≡

( k−1∏
ν=1

(Fπ − µν)
)

(i′,j′)(i,j)

(
$i − µk +Dπ($i)

)
mod U(g)(mΘ + nΘ) +

∑
(s,t),(s′′,t′′);

$s|aΘ
<Θ$i|aΘ

$s,t=$s′′,t′′

C
( k−1∏

ν=1

(Fπ − µν)
)

(s′′,t′′)(s,t)
.

Proof. Note that $i,j ≡ $i mod U(g)mΘ . It follows from Lemma 2.10 that

F(s,t)(i,j) ≡ δsiδtj$i mod U(g)(mΘ + nΘ)

if $s,t −$i,j 6∈ Σ(g)− \ Σ(gΘ).

Put F ` =
∏`

ν=1(Fπ − µν). Then Lemma 2.10 implies

F k
(i′,j′)(i,j) − F k−1

(i′,j′)(i,j)

(
$i − µk

)
≡

∑
$s,t−$i,j∈Σ(g)−\Σ(gΘ)

[F k−1
(i′,j′)(s,t), F(s,t)(i,j)] mod U(g)(mΘ + nΘ) + n̄ΘU(g)

=
∑

α∈Σ(g)+\Σ(gΘ)
$s,t=$i,j−α

〈E(s,t)(i,j), Xα〉
〈Xα, X−α〉

[F k−1
(i′,j′)(s,t), X−α]

=
∑

α∈Σ(g)+\Σ(gΘ)
$s,t=$i,j−α

$s′,t′−$s′′,t′′=α

〈E(s,t)(i,j), Xα〉〈E(s′,t′)(s′′,t′′), X−α〉
〈Xα, X−α〉

·
(
δss′′δtt′′F

k−1
(i′,j′)(s′,t′) − δi′s′δj′t′F

k−1
(s′′,t′′)(s,t)

)
=

1

2
〈π̄ −$i, π̄ +$i − 2ρ〉F k−1

(i′,j′)(i,j)

−
∑

α∈Σ(g)+\Σ(gΘ)
$s,t=$s′′,t′′=$i,j−α

〈E(s,t)(i,j), Xα〉〈E(i′,j′)(s′′,t′′), X−α〉
〈Xα, X−α〉

F k−1
(s′′,t′′)(s,t).

(22)
In the above the second equality follows from (11) and Lemma 2.9 with U = g .
The third equality follows from Lemma 2.1 with

X−α =
∑

$s′,t′−$s′′,t′′=α

〈E(s′,t′)(s′′,t′′), X−α〉E(s′′,t′′)(s′,t′)

which follows from the identification g ⊂ glN together with the property of 〈 , 〉 .
Put X∨ = −tX for X ∈ M(N,C) ' glN . Let {v∗i,j} be the dual base of

{vi,j} and consider the contragredient representation π∗ of π . Then π∗(X) = X∨
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for X ∈ g with respect to these basis. Then 〈X, Y 〉 = 〈X∨, Y ∨〉 for X , Y ∈ g

and ∑
α∈Σ(g)+\Σ(gΘ)

X∨
−αX

∨
α

〈X∨
−α, X

∨
α 〉
v∗i,j =

∑
α∈Σ(g)+\Σ(gΘ)
$s,t=$i,j−α
$s′,t′=$i,j

〈E(s,t)(s′,t′), X
∨
−α〉〈E(i,j)(s,t), X

∨
α 〉

〈X∨
−α, X

∨
α 〉

v∗s′,t′ ,

which is proved to be equal to Dπ($i)v
∗
i,j by Lemma 2.19 iii) because (π̄, $i, ρ)

for π changes into (−π̄,−$i,−ρ) in the dual π∗ with the reversed order of roots.
This implies the last equality in (22).

Note that if D ∈ n̄ΘU(g) + U(g)(mΘ + nΘ) satisfies [H,D] = 0 for all
H ∈ aΘ , then D ∈ U(g)(mΘ +nΘ). Since the condition $i,j−$s,t ∈ Σ(g)+\Σ(gΘ)
implies $s|aΘ

<Θ $i|aΘ
, we have the lemma.

Theorem 2.24. Retain the notation in Definition 2.20. For $ ∈ a∗ we identify
$|aΘ

with a linear function on a∗Θ by $|aΘ
(λ) = 〈λΘ, $〉 for λ ∈ a∗Θ . Put

Ωπ,Θ = {
(
$|aΘ

, Dπ($)
)
; $ ∈ WΘ(π)},

qπ,Θ(x;λ) =
∏

(µ,C)∈Ωπ,Θ

(
x− µ(λ)− C

)
. (23)

Then qπ,Θ(Fπ;λ)MΘ(λ) = 0 for any λ ∈ a∗Θ .

Proof. For any D ∈ U(g) there exists a unique constant T (D) ∈ C satisfying

T (D) ≡ D mod n̄U(g) + JΘ(λ)

because the dimension of the space MΘ(λ)/n̄MΘ(λ) equals 1. Notice that

JΘ(λ) =
∑

H∈aΘ

U(g)(H − λ(H)) + U(g)(mΘ + nΘ).

Use the notation in Lemma 2.23. Since

ad(H)qπ,Θ(Fπ;λ)(i′,j′)(i,j) = ($i′,j′ −$i,j)(H)qπ,Θ(Fπ;λ)(i′,j′)(i,j) for H ∈ a,

T (qπ,Θ(Fπ;λ)(i′,j′)(i,j)) = 0 if $i,j 6= $i′,j′ .

Next assume $i,j = $i′,j′ and put

Ωπ,Θ,i = {(µ,C) ∈ Ωπ,Θ; µ ≤Θ $i|aΘ
},

qπ,Θ,i(x;λ) =
∏

(µ,C)∈Ωπ,Θ,i

(
x− µ(λ)− C

)
.

Then q(Fπ)(i′,j′)(i,j) ∈ JΘ(λ) for any q(x) ∈ C[x] which is a multiple of qπ,Θ,i(x;λ).
It is proved by the induction on $i|aΘ

with the partial order ≤Θ . Take i0 ∈
{1, . . . , κ} so that $i0 = π̄ . If i = i0 then Lemma 2.10 and Lemma 2.23 with
Dπ($i) = Dπ(π̄) = 0 imply our claim. If i 6= i0 then π̄|aΘ

<Θ $i|aΘ
and therefore

degx qπ,Θ,i(x;λ) ≥ 2. Hence we can use Lemma 2.23 again to prove our claim
inductively.
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Thus we get the condition

T (qπ,Θ(Fπ;λ)(i′,j′)(i,j)) = 0 for any (i, j) and (i′, j′). (24)

Let V(λ) denote the C-subspace of U(g) spanned by qπ,Θ(Fπ;λ)(i′,j′)(i,j) . Then
V(λ) is ad(g)-stable by Lemma 2.1. The g-module

Mλ = V(λ)MΘ(λ)

is contained in n̄MΘ(λ) because putting uλ = 1 mod JΘ(λ),

Mλ = V(λ)U(n̄)uλ = U(n̄)V(λ)uλ ⊂ U(n̄)n̄U(g)uλ = n̄MΘ(λ).

On the other hand, since MΘ(λ) is irreducible if λ belongs to a suitable
open subset of a∗Θ , Mλ = {0} in the open set. If we fix a base {Y1, . . . , Ym} of
n̄Θ , we have the unique expression

qπ,Θ(Fπ;λ)(i′,j′)(i,j) ≡
∑

ν

Qν(λ)Y ν1
1 · · ·Y νm

m mod JΘ(λ)

with polynomial functions Qν(λ). All these Qν(λ) vanish on the open set and
therefore they are identically zero and we have V(λ) ⊂ JΘ(λ) for any λ . We have
then for any λ

Mλ = V(λ)U(g)uλ = U(g)V(λ)uλ = {0}.

Theorem 2.24 is one of our central results since qπ,Θ(x;λ) = qπ,MΘ(λ)(x) for
a generic λ ∈ a∗Θ . Before showing this minimality, which will be done in The-
orem 2.29, we mention the possibility of other approaches to Theorem 2.24. In
fact we have three different proofs. The first one given above has the importance
that the calculation in the proof is also used in §3. to study the properties of the
two-sided ideal of U(g) generated by qπ,Θ(Fπ;λ)ij . The second one comes from a
straight expansion of the method in [10] and [11] to construct characteristic polyno-
mials. In the following we first discuss it. The third one is based on infinitesimal
Mackey’s tensor product theorem which we explain in Appendix A. With this
method we shall get the sufficient condition for the minimality of qπ,Θ(x;λ) (The-
orem 2.29) and slightly strengthen the result of Theorem 2.24 (Theorem 2.31).

Definition 2.25. Let (π∗, V ∗) be the contragredient representation of (π, V )
and {v∗1, . . . , v∗N} the dual base of the base {v1, . . . , vN} of V . For a g-module M
define the homomorphism

h(π,M) : M(N,U(g)) → End (M ⊗ V ∗)

of associative algebras by

(
h(π,M)(Q)

)( N∑
j=1

uj ⊗ v∗j
)

=
N∑

i=1

N∑
j=1

(
Qijuj

)
⊗ v∗i (25)

for uj ∈ M and Q =
(
Qij

)
∈ M(N,U(g)). Then QM = 0, namely, Qij ∈

Ann(M) for any i, j if and only if h(π,M)(Q) = 0.

The following lemma is considered in [10] and [11].
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Lemma 2.26. Let M be a g-module. For an element
∑N

j=1 uj⊗v∗j of M ⊗V ∗

with uj ∈M , we have

2h(π,M)(Fπ)
( N∑

j=1

uj ⊗ v∗j
)

=
N∑

j=1

∆π(uj)⊗ v∗j +
N∑

j=1

uj ⊗∆π(v∗j )−∆π

( N∑
j=1

uj ⊗ v∗j
)
.

In particular h(π,M)(Fπ) ∈ Endg(M ⊗ V ∗).

Proof. Let {X1, . . . , Xω} be a base of g and let {X∗
1 , . . . , X

∗
ω} be its dual base

with respect to 〈 , 〉 . Then

N∑
j=1

∆π(uj)⊗ v∗j +
N∑

j=1

uj ⊗∆π(v∗j )−∆π

( N∑
j=1

uj ⊗ v∗j
)

= −
N∑

j=1

ω∑
ν=1

X∗
νuj ⊗Xνv

∗
j −

N∑
j=1

ω∑
ν=1

Xνuj ⊗X∗
νv

∗
j

=
N∑

j=1

ω∑
ν=1

(
X∗

νuj ⊗
N∑

i=1

〈Xν , Eij〉v∗i +Xνuj ⊗
N∑

i=1

〈X∗
ν , Eij〉v∗i

)
= 2

N∑
i=1

N∑
j=1

(p(Eij)uj)⊗ v∗i .

Here we use the fact that Xv∗j = −
∑N

i=1〈X,Eij〉v∗i for X ∈ g because Xvj =∑N
i=1〈X,Eji〉vi .

Now we examine the tensor product M ⊗V ∗ in the preceding lemma when
M is realized as a finite dimensional quotient of a generalized Verma module
MΘ(λ).

Proposition 2.27 (a character identity for a tensor product). Put

χΛ =

∑
w∈W sgn(w)ew(Λ+ρ)∏
α∈Σ(g)+(e

α
2 − e−

α
2 )

for Λ ∈ a∗ . If 〈Λ, α〉 = 0 for any α ∈ Θ, then

χπ∗χΛ =
∑

$∈W(π∗)

mπ∗,Θ($)χΛ+$ (26)

by denoting

mπ∗,Θ($) = dim{v∗ ∈ V ∗; Hv∗ = $(H)v∗ (∀H ∈ a), Xv∗ = 0 (∀X ∈ gΘ ∩ n)}.

Here χπ∗ is the character of the representation (π∗, V ∗) and for µ ∈ a∗ , eµ denotes
the function on a which takes the value eµ(H) at H ∈ a.
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Proof. It is sufficient to prove (26) under the condition that 〈Λ, α〉 is a suffi-
ciently large real number for any α ∈ Ψ(g) \ Θ because both hand sides of (26)
are holomorphic with respect to Λ ∈ a∗ . Put

a∗0 = {µ ∈ a∗; 〈µ, α〉 ∈ R
(
∀α ∈ Σ(g)

)
},

a∗+ = {µ ∈ a∗0; 〈µ, α〉 ≥ 0
(
∀α ∈ Σ(g)+

)
},

χ+
Λ =

∑
w∈WΘ

sgn(w)ew(Λ+ρ)∏
α∈Σ(g)+(e

α
2 − e−

α
2 )

,

χ̄$ =

∑
w′∈WΘ

sgn(w′)ew′($+ρ(Θ))∏
α∈Σ(gΘ)+(e

α
2 − e−

α
2 )

.

Then χπ∗ =
∑

$∈W(π∗)mπ∗,Θ($)χ̄$ by Weyl’s character formula and if $ ∈ W(π∗)

satisfies mπ∗,Θ($) > 0, then Λ +$ ∈ a∗+ and

χ̄$χ
+
Λ

∏
α∈Σ(g)+

(e
α
2 − e−

α
2 ) =

∑
w∈WΘ

sgn(w)ew($+ρ(Θ))∏
α∈Σ(gΘ)+(e

α
2 − e−

α
2 )

eΛ+ρΘ

∑
w′∈WΘ

sgn(w′)ew′ρ(Θ)

=
∑

w∈WΘ

sgn(w)ew(Λ+$+ρ)

≡ eΛ+$+ρ mod
∑

µ∈a∗0\a∗+

Zeµ.

For any w ∈ W \WΘ there exists α ∈ Σ(g)− \ Σ(gΘ) with wα ∈ Σ(g)+ and then
the value −〈w(Λ + ρ), wα〉 = −〈(Λ + ρ), α〉 is sufficiently large and therefore

χ̄$(χΛ − χ+
Λ)

∏
α∈Σ(g)+

(e
α
2 − e−

α
2 ) ∈

∑
µ∈a∗0\a∗+

Zeµ.

Hence

χπ∗χΛ

∏
α∈Σ(g)+

(e
α
2 − e−

α
2 ) ≡

∑
$∈WΘ(π∗)

mπ∗,Θ($)eΛ+$+ρ mod
∑

µ∈a∗0\a∗+

Zeµ

and we have the proposition because χπ∗χΛ

∏
α∈Σ(g)+(e

α
2 −e−α

2 ) is an odd function
under W .

Lemma 2.28 (eigenvalue). Let (πΛ, VΛ) be an irreducible finite dimensional
representation of g with highest weight Λ. Suppose 〈Λ, α〉 = 0 for α ∈ Θ and
〈Λ+$,α〉 ≥ 0 for $ ∈ WΘ(π∗) and α ∈ Ψ(g)\Θ. Then the set of the eigenvalues
of hπ,VΛ

(Fπ) ∈ End(VΛ ⊗ V ∗) without counting their multiplicities equals

{−〈Λ, $〉+
1

2
〈π∗ −$, π∗ +$ + 2ρ〉; $ ∈ WΘ(π∗)}

= {〈Λ, $〉+
1

2
〈π̄ −$, π̄ +$ − 2ρ〉; $ ∈ WΘ(π)}.

Here we identify π∗ with the highest weight of (π∗, V ∗).
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Proof. The assumption of the lemma and Proposition 2.27 imply

π∗ ⊗ πΛ =
∑

$∈WΘ(π∗)

mπ∗,Θ($)πΛ+$

and hence by Lemma 2.19 ii) and Lemma 2.26 the eigenvalues of 2hπ,VΛ
(Fπ) are

〈Λ,Λ+2ρ〉+〈π∗, π∗+2ρ〉−〈Λ+$,Λ+$+2ρ〉 = −2〈Λ, $〉+〈π∗−$, π∗+$+2ρ〉

with $ ∈ WΘ(π∗). Since WΘ(π) = −WΘ(π∗), we have the lemma.

Proof of Theorem 2.24 (the 2nd version). This proof differs from the previ-
ous one in how to deduce the condition (24). The rests of two proofs are the
same.

Note that for fixed (i, j) and (i′, j′) the value T (qπ,Θ(Fπ;λ)(i′,j′)(i,j)) depends
algebraically on the parameter λ ∈ a∗Θ . Since the set

S = {λ ∈ a∗Θ; 〈λΘ +$,α〉 ∈ {0, 1, 2, . . .} for $ ∈ WΘ(π∗)∪{0} and α ∈ Ψ(g) \Θ}

is Zariski dense in a∗Θ , we have only to show (24) for λ ∈ S . In this case we have
from Lemma 2.28 and the definition of qπ,Θ(x;λ),

hπ,VλΘ
(qπ,Θ(Fπ;λ)) = qπ,Θ(hπ,VλΘ

(Fπ);λ) = 0.

Hence qπ,Θ(Fπ;λ)(i′,j′)(i,j) ∈ Ann(VλΘ
) for any (i, j) and (i′, j′). On the other

hand, if we take a highest weight vector vλ of VλΘ
, we get

qπ,Θ(Fπ;λ)(i′,j′)(i,j)vλ ∈ T (qπ,Θ(Fπ;λ)(i′,j′)(i,j))vλ + n̄VλΘ

and therefore T (qπ,Θ(Fπ;λ)(i′,j′)(i,j)) = 0.

Theorem 2.29 (minimality). Let λ ∈ a∗Θ .

i) The set of the roots of qπ,MΘ(λ)(x) equals {〈λΘ, $〉+Dπ($); $ ∈ WΘ(π)}.
ii) If each root of qπ,Θ(x;λ) is simple, then qπ,Θ(x;λ) = qπ,MΘ(λ)(x). Hence we call
qπ,Θ(x;λ) the global minimal polynomial of the pair (π,MΘ(λ)).

Proof. i) Fix an irreducible decomposition
⊕κ

i=1 Ui of the gΘ -module V ∗|gΘ
.

Let $i ∈ a∗ be the highest weight of Ui . With a suitable change of indices we
may assume $i|aΘ

<Θ $j|aΘ
implies i > j . Then putting Vi =

⊕i
ν=1 Uν we get a

pΘ -stable filtration

{0} = V0 ( V1 ( · · · ( Vκ = V ∗|pΘ
.

Note that Vi/Vi−1 ' Ui is an irreducible pΘ -module on which nΘ acts trivially.

Recall MΘ(λ) 'M(Θ,λΘ) = U(g)⊗U(pΘ)U(Θ,λΘ) and dimU(Θ,λΘ) = 1. Hence
writing Cλ instead of U(Θ,λΘ) we get by Theorem A1 of Appendix A

MΘ(λ)⊗ V ∗ =
(
U(g)⊗U(pΘ) Cλ

)
⊗ V ∗ ' U(g)⊗U(pΘ) (Cλ ⊗ V ∗|pΘ

) .

Since Cλ ⊗C · and U(g) ⊗U(pΘ) · = U(n̄Θ) ⊗C · are exact functors, putting Mi =
U(g)⊗U(pΘ) (Cλ ⊗ Vi) we get a g-stable filtration

{0} = M0 ( M1 ( · · · ( Mκ = MΘ(λ)⊗ V ∗
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with

Mi/Mi−1 ' U(g)⊗U(pΘ) (Cλ ⊗ Ui) = M(Θ,λΘ+$i). (27)

Now as a subalgebra of End (MΘ(λ)⊗ V ∗) we take

A = {D; DMi ⊂Mi for i = 1, . . . , κ}.

Then by Lemma 2.26 and Lemma 2.19 ii) we have h(π,MΘ(λ)) (q(Fπ)) ∈ A for any
polynomial q(x) ∈ C[x] . Let ηi : A → End (Mi/Mi−1) ' End

(
M(Θ,λΘ+$i)

)
be

a natural algebra homomorphism. Then using Lemma 2.26 and Lemma 2.19 ii)
again we get

ηi

(
h(π,MΘ(λ))(Fπ)

)
=

1

2
〈λΘ, λΘ + 2ρ〉+

1

2
〈−π̄,−π̄ + 2ρ〉 − 1

2
〈λΘ +$i, λΘ +$i + 2ρ〉

= 〈λΘ,−$i〉+Dπ(−$i).

(28)

and therefore

qπ,MΘ(λ) (〈λΘ,−$i〉+Dπ(−$i)) = qπ,MΘ(λ)

(
ηi

(
h(π,MΘ(λ))(Fπ)

))
= ηi

(
h(π,MΘ(λ))

(
qπ,MΘ(λ)(Fπ)

))
= 0.

Since {$i} = WΘ(π∗) = −WΘ(π) we can conclude 〈λΘ, $〉 +Dπ($) is a root of
the minimal polynomial for each $ ∈ WΘ(π). Conversely Theorem 2.24 assures
any other roots do not exist.

ii) The claim immediately follows from i) and the definition of qπ,Θ(x;λ).

Remark 2.30. In general it may happen for a certain λ that qπ,Θ(x;λ) 6=
qπ,MΘ(λ)(x). Such example is shown in [22] when g is o2n and λ is invariant under
an outer automorphism of g , which is related to the following theorem. It gives
more precise information on our minimal polynomials.

Theorem 2.31. Let λ ∈ a∗Θ . Let WΘ(π) = W1

λ tW
2

λ · · · t W
mλ

λ be a division

of WΘ(π) into non-empty subsets W`

λ such that the relation λΘ −$ ∈ {w.(λΘ −
$′); w ∈ W} holds for $,$′ ∈ WΘ(π) if and only if $,$′ ∈ W`

λ for some `.
For each ` we denote by κ` the maximal length of sequences {$,$′, . . . , $′′} of

weights in W`

λ such that the restriction of each weight to aΘ gives both strictly
and linearly ordered sequences:

$|aΘ
<Θ $′|aΘ

<Θ · · · <Θ $′′|aΘ
.

i) 〈λΘ, $〉+Dπ($) = 〈λΘ, $
′〉+Dπ($′) if $,$′ ∈ W`

λ for some `.

ii) Let q(x) ∈ C[x] and suppose for each ` = 1, . . . ,mλ , q(x) is a multiple of

(x− 〈λΘ, $〉 −Dπ($))κ` with $ ∈ W`

λ . Then q(Fπ)MΘ(λ) = 0.
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Proof. i) By the W -invariance of 〈 , 〉 and the assumption, we have

〈λΘ + ρ−$, λΘ + ρ−$〉 = 〈λΘ + ρ−$′, λΘ + ρ−$′〉,

which implies the claim.

ii) Use the notation in the proof of Theorem 2.29. Let M be a g-module and
µ ∈ a∗ . We say that a non-zero vector v in M is a generalized weight vector for the
generalized infinitesimal character µ if for any ∆ ∈ Z(g) there exists a positive
integer k such that (∆ − ∆a(µ))kv = 0. We denote by (M)(µ) the submodule
of M spanned by the generalized weight vectors for the generalized infinitesimal
character µ . Note that (M)(µ) = (M)(µ′) if and only if µ = w.µ′ for some w ∈ W .
By virtue of (27) and Remark 2.16, MΘ(λ) ⊗ V ∗ is uniquely decomposed as a
direct sum of submodules in {(MΘ(λ)⊗ V ∗)(λΘ+$ν); ν = 1, . . . , i} .

For i = 1, . . . , κ using a pΘ -module

V[i] = Ui ⊕
⊕

ν; $i|aΘ
<Θ$ν |aΘ

Uν ⊂ Vi,

define
M[i] = U(g)⊗pΘ

(Cλ ⊗ V[i]) = U(n̄Θ)⊗ Cλ ⊗ V[i].

It is naturally considered as a g-submodule of Mi = U(n̄Θ)⊗Cλ⊗Vi . If we define
the surjective homomorphism

τ[i] : M[i] ↪→Mi →Mi/Mi−1 'M(Θ,λΘ+$i),

then
Ker τ[i] =

∑
ν; $i|aΘ

<Θ$ν |aΘ

M[ν]. (29)

Since M(Θ,λΘ+$i) has infinitesimal character λΘ +$i we get

M[i] = (M[i])(λΘ+$i) +
∑

ν; $i|aΘ
<Θ$ν |aΘ

M[ν].

Therefore we get inductively

M[i] = (M[i])(λΘ+$i) +
∑

ν; $i|aΘ
<Θ$ν |aΘ

(M[ν])(λΘ+$ν). (30)

Notice that the g-homomorphism h(π,MΘ(λ))(Fπ) leaves any g-submodule
of MΘ(λ)⊗ V ∗ stable. Then from (28) and (29)(

h(π,MΘ(λ))(Fπ)− 〈λΘ,−$i〉 −Dπ(−$i)
)
(M[i])(λΘ+$i)

⊂

 ∑
ν; $i|aΘ

<Θ$ν |aΘ

M[ν]


(λΘ+$i)

=

 ∑
ν; $i|aΘ

<Θ$ν |aΘ

(M[ν])(λΘ+$ν)


(λΘ+$i)

=
∑

ν; $i|aΘ
<Θ$ν |aΘ

,

λΘ+$ν∈{w.(λΘ+$i); w∈W}

(M[ν])(λΘ+$ν).
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By the relation {$i} = WΘ(π∗) = −WΘ(π) and the assumption of ii) we get
inductively

h(π,MΘ(λ))(q(Fπ))(M[i])(λΘ+$i) = q(h(π,MΘ(λ))(Fπ))(M[i])(λΘ+$i) = {0}

for i = 1, . . . , κ . Now our claim is clear because by (30) we have

MΘ(λ)⊗ V ∗ =
κ∑

i=1

M[i] =
κ∑

i=1

(M[i])(λΘ+$i).

Corollary 2.32. Let τ be an involutive automorphism of g which corresponds
to an automorphism of the Dynkin diagram of g. Then τ(a) = a and τ(n) = n.
Furthermore we suppose τ(pΘ) = pΘ , or equivalently, τ(aΘ) = aΘ . For $ ∈ a∗

we identify $|(aΘ)τ as a linear function on (a∗Θ)τ by $|(aΘ)τ (λ) = 〈λΘ, $〉 for
λ ∈ (a∗Θ)τ . Put

Ωπ,Θ,τ = {
(
$|(aΘ)τ , Dπ($)

)
; $ ∈ WΘ(π)},

qπ,Θ,τ (x;λ) =
∏

(µ,C)∈Ωπ,Θ,τ

(
x− µ(λ)− C

)
.

Then for λ ∈ (a∗Θ)τ we have the following.

i) qπ,Θ,τ (Fπ;λ)MΘ(λ) = 0.

ii) If each root of qπ,Θ,τ (x;λ) is simple, then qπ,Θ,τ (x;λ) = qπ,MΘ(λ)(x).

Proof. We naturally identify ρΘ with an element in (a∗Θ)τ . For a given pair
of weights $,$′ ∈ WΘ(π) with $|aΘ

<Θ $′|aΘ
, choose the non-negative integers

{mα; α ∈ Ψ(g)\Θ} so that $′|aΘ
−$|aΘ

=
∑

α∈Ψ(g)\Θmαα|aΘ
. Then $′|aΘ

(ρΘ)−
$|aΘ

(ρΘ) =
∑

α∈Ψ(g)\Θmα〈α, ρΘ〉 > 0. It simply shows(
$|(aΘ)τ , Dπ($)

)
6=

(
$′|(aΘ)τ , Dπ($′)

)
.

Hence from Theorem 2.31 we get i). Now ii) is clear from Theorem 2.29.

We will shift a∗ by ρ so that the action w.µ = w(µ + ρ) − ρ for µ ∈ a∗

and w ∈ W changes into the natural action of W and then we can give the
characteristic polynomial as a special case of the global minimal polynomials. The
result itself is not new and it has already been studied in [11].

Theorem 2.33 (Cayley-Hamilton [11]). The characteristic polynomial qπ(x)
of π is given by

qπ(x) =
∏

$∈W(π)

(
x−$ − 〈π, π + 2ρ〉 − 〈$,$〉

2

)
(31)

under the identification C[x]⊗S(a∗)W ' C[x]⊗S(a)W ' Z(g)[x] by the symmetric
bilinear form 〈 , 〉 and the Harish-Chandra isomorphism:

Z(g) ' U(a)W ; ∆ 7→ Υ(∆),

Υ(∆)(µ) = ∆a(µ− ρ) for µ ∈ a∗.

Here π is identified with its highest weight. In particular qπ(x) ∈ Z(g)[x].
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Proof. Note that 〈π, π + 2ρ〉 = 〈π̄, π̄ − 2ρ〉 . Let q̃π(x) be the element of
Z(g)[x] identified with the right-hand side of (31). Put V =

∑
i, j Cq̃π(Fπ)ij and

Va = {Da; D ∈ V} . Then Theorem 2.24 with Θ = Ø shows Q(µ) = 0 for any
µ ∈ a∗ and Q ∈ Va , which implies Va = {0} . Since V is ad(g)-stable, we have
V = {0} as is shown in [19, Lemma 2.12]. Since the minimality of q̃π(x) follows
from Theorem 2.29, we get qπ(x) = q̃π(x).

Corollary 2.34. i) Let g be a simple Lie algebra. Then the characteristic
polynomial of the adjoint representation of g is given by

qαmax(x) =
∏

α∈Σ(g)∪{0}

(
x− α− 1−B(α, α)

2

)
.

Here B( , ) denotes the Killing form of g.

ii) Suppose that the representation π is minuscule, that is, W(π) is a single
W -orbit. Then

qπ(x) =
∏

$∈W(π)

(
x−$ − 〈π, ρ〉

)
.

Proof. This is a direct consequence of Theorem 2.33 and Lemma 2.19 v).

Corollary 2.35. Put qπ(x) = xm+∆1x
m−1+· · ·+∆m−1x+∆m with ∆j ∈ Z(g)

and define
F̃π = −Fm−1

π −∆1F
m−2
π − · · · −∆m−1IN .

Then

FπF̃π = F̃πFπ = ∆mIN =
∏

$∈W(π)

(
−$ − 〈π, π + 2ρ〉 − 〈$,$〉

2

)
IN ,

In particular, Fπ is invertible in M
(
N, Ẑ(g) ⊗Z(g) U(g)

)
with the quotient field

Ẑ(g) of Z(g).

In the next definition and the subsequent proposition, we do not assume
(10). Namely, g is a general reductive Lie algebra and (π, V ) denotes a finite
dimensional irreducible representation which is not necessarily faithful. Moreover
we use the symbol 〈 , 〉 for the symmetric bilinear form on a∗ defined by the
restriction of the Killing form of g .

Definition 2.36 (dominant minuscule weight). We say a weight πmin of π is
dominant and minuscule if

〈πmin, α〉 ≥ 0 for all α ∈ Σ(g)+

and

〈πmin, πmin〉 ≤ 〈$,$〉 for all $ ∈ W(π).

If the highest weight of π is dominant and minuscule, then (π, V ) is called a
minuscule representation.
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Proposition 2.37. Put Ψ(g) = {α1, . . . , αr} and define α∨ = 2α
〈α,α〉 for α ∈

Σ(g). Let (π, V ) be a finite dimensional irreducible representation of g. Let πmin

be a dominant minuscule weight of π .

i) If the highest weight of π is in the root lattice, then πmin = 0.

ii) πmin is uniquely determined by π . Moreover if (π′, V ′) is a finite dimensional
irreducible representation of g such that the difference of the highest weight of π′

and that of π is in the root lattice of Σ(g), then πmin = π′min .

iii) $ ∈ W(π) is a dominant minuscule weight if and only if

〈$,α∨〉 ∈ {0, 1} for all α ∈ Σ(g)+. (32)

iv) If π is a minuscule representation, then W(π) = Wπmin .

v) Suppose g is simple. Let Σ(g)∨ := {α∨; α ∈ Σ(g)} be the dual root system of
Σ(g). Let β be the maximal root of Σ(g)∨ and put β =

∑r
i=1 niα

∨
i . Define the

fundamental weights Λi by 〈Λi, α
∨
j 〉 = δij . Then π is a minuscule representation

if and only if its highest weight is 0 or Λi with ni = 1.

Proof. For α ∈ Σ(g) we denote by gα the Lie algebra generated by the root
vectors corresponding to α and −α . Note that gα is isomorphic to sl2 .

i) Suppose the highest weight of π is in the root lattice. Put $ =∑r
i=1mi($)αi for $ ∈ W(π). Note that mi($) are integers. Let $0 ∈ W (π)

such that mi($0) ≥ 0 and
∑r

i=1mi($0) ≤
∑r

i=1mi($) for $ ∈ W (π) satisfying
mi($) ≥ 0 for i = 1, . . . , r . The existence of $0 is clear because mi(π) ≥ 0 for
i = 1, . . . , r . Suppose $0 6= 0. Since 0 < 〈$0, $0〉 =

∑r
i=1mi($0)〈$0, αi〉 , there

exists an index k such that 〈$0, αk〉 > 0 and mk($0) > 0. Hence $0−αk ∈ W(π)
by the representation π|gαk , which contradicts the assumption for $0 . Thus
0 = $0 ∈ W(π) and πmin = 0.

ii) – iv) Suppose the existence of α ∈ Σ(g)+ with 〈πmin, α
∨〉 > 1. Then

it follows from the representation π|gα that πmin − α ∈ W(π) and 〈πmin, πmin〉 −
〈πmin − α, πmin − α〉 = 2〈πmin, α〉 − 〈α, α〉 > 0, which contradicts the assumption
of πmin . Thus we have (32) for $ = πmin .

Suppose π is an irreducible representation of g with the highest weight $
satisfying (32). Suppose W(π) 6= W$ . Then there exist µ ∈ W$ and µ′ ∈ W(π)
such that µ′ /∈ W$ with α := µ−µ′ ∈ Σ(g). By the W -invariance we may assume
µ = $ and therefore µ′ = $ − α with α ∈ Σ(g)+ . Then by the representation
πgα together with the condition (32) we have 〈$,α∨〉 = 1 and µ′ = wα$ , which
is a contradiction. Thus we have iv).

Let $ and $′ be the elements of a∗ satisfying the condition (32). Then
$′′ := $ − $′ satisfies 〈$′′, α∨〉 ∈ {−1, 0, 1} for α ∈ Σ(g). Suppose that $′′ is
in the root lattice. Let $0 ∈ W$′′ such that 〈$0, α〉 ≥ 0 for α ∈ Σ(g)+ . Since
$0 also satisfies (32), the finite dimensional irreducible representation π0 with the
highest weight $0 is minuscule by the argument above. Since $0 is in the root
lattice, $0 = 0 by i) and hence $ = $′ . Thus we obtain ii) and iii).

v) Let α ∈ Σ(g)+ . If we denote α∨ =
∑r

i=1 ni(α)α∨i , then ni(α) ≤ ni for
i = 1, . . . , r . Hence the claim is clear.

Remark 2.38. Equivalent contents of Proposition 2.37 are found in exercises
of [3], Ch. VI.

Restore the previous setting (10) on g and (π, V ).
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Proposition 2.39. i) Let V$ denote the weight space of V with weight $ ∈
W(π). Define the projection map p̄Θ : W(π) → W(π)|aΘ

by p̄Θ($) = $|aΘ
and

put V (Λ) =
∑

$∈p̄−1
Θ (Λ) V$ for Λ ∈ W(π)|aΘ

. Then

V =
⊕

Λ∈W(π)|aΘ

V (Λ) (33)

is a direct sum decomposition of the gΘ -module V .

Let V (Λ) = V (Λ)1 ⊕ · · · ⊕ V (Λ)kΛ
be a decomposition into irreducible gΘ -

modules. We denote by $Λ the dominant minuscule weight of (π|gΘ
, V (Λ)1). Then

V$Λ
=

kΛ⊕
i=1

V$Λ
∩ V (Λ)i with dimV$Λ

∩ V (Λ)i > 0. (34)

In particular, V (Λ) is an irreducible gΘ -module if dimV$Λ
= 1.

ii) Put Ψ(g) = {α1, · · · , αr} and put Ψ(g) \Θ = {αi1 , . . . , αik}, define the map

pΘ : Σ(g) → Zk

α =
∑
miαi 7→ (mi1 , . . . ,mik)

and put

LΘ = {0} ∪ {pΘ(α); α ∈ Σ(g)},

V (m) =


∑

α∈p−1
Θ (m)

CXα if m 6= 0,

a +
∑

α∈p−1
Θ (m)

CXα if m = 0

for m ∈ LΘ . Then

g =
⊕

m∈LΘ

V (m) (35)

is a decomposition of the gΘ -module g. If m 6= 0, then V (m) is an irreducible
gΘ -module. On the other hand, V (0) = gΘ is isomorphic to the adjoint repre-
sentation of gΘ = aΘ ⊕ mΘ . Let Θ = Θ1 t Θ2 t · · · t Θ` be the division of
Θ into the connected parts of vertexes in the Dynkin diagram of Ψ(g). Then
mΘ = mΘ1 ⊕mΘ2 ⊕ · · · ⊕mΘ`

gives a decomposition into irreducible gΘ -modules.

iii) Suppose that the representation (π, V ) is minuscule. Put W π = {w ∈ W ; wπ =
π}. Here we identify π with its highest weight. Let {w1, . . . , wk} be a represen-
tative system of W π\W/WΘ such that wi ∈ W (Θ). Then with the notation in
i)

V =
k⊕

i=1

V (w−1
i π|aΘ

) (36)

gives a decomposition into irreducible gΘ -modules. Moreover the gΘ -submodule
V (w−1

i π|aΘ
) has highest weight w−1

i π .
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Proof. i) Since α|aΘ
= 0 for α ∈ Θ, (33) is a decomposition into gΘ -

modules. Then Proposition 2.37 ii) implies that $Λ is the minuscule weight for
any (π|gΘ

, V (Λ)i) and therefore the other statements in i) are clear.

ii) Note that αik |aΘ
, . . . , αi1|aΘ

are linearly independent and gΘ = V (0).
Then the statements in ii) follows from i).

iii) From i) each V (w−1
i π|aΘ

) is an irreducible gΘ -module and

V (w−1
i π|aΘ

) ⊃
∑

{Vw−1π; w ∈ W πwiWΘ}.

Since wi ∈ W (Θ) we have w−1
i π+α /∈ W(π) for α ∈ Σ(gΘ)+ . It shows the highest

weight of V (w−1
i π|aΘ

) is w−1
i π . Since w−1

i π 6= w−1
j π if i 6= j we have (36).

We give the minimal polynomials for some representations in the following
proposition as a corollary of Lemma 2.19 v) and Proposition 2.39.

Proposition 2.40. Retain the notation in Theorem 2.24 and Proposition 2.39.

i) (multiplicity free representation) Suppose dimV$ = 1 for any $ ∈ W(π). Let
Λ̄ be the lowest weight of (π|gΘ

, V (Λ)) for Λ ∈ W(π)|aΘ
. Then

qπ,Θ(x;λ) =
∏

Λ∈W(π)|aΘ

(
x− 〈λΘ, Λ̄〉 −

1

2
〈π̄ − Λ̄, π̄ + Λ̄− 2ρ〉

)

=
∏

Λ∈W(π)|aΘ

(
x− 〈λΘ + ρ, Λ̄〉+ 〈π̄, ρ〉 − 〈π̄, π̄〉 − 〈Λ̄, Λ̄〉

2

)
.

(37)

ii) (adjoint representation) Suppose g is simple and Θ 6= Ø. Let Θ = Θ1t· · ·tΘ`

be the division in Proposition 2.39 ii). Let αi
max denote the maximal root of the

simple Lie algebra mΘi
for i = 1, . . . , `. Put

ΩΘ = {B(α1
max, α

1
max + 2ρ(Θ1)), . . . , B(α`

max, α
`
max + 2ρ(Θ`))}.

Let αm be the smallest root in p−1
Θ (m) for m ∈ LΘ \ {0} under the order in

Definition 2.20. Then for the adjoint representation of g,

qαmax,Θ(x;λ) =

(
x− 1

2

) ∏
C∈ΩΘ

(
x− 1− C

2

)
·

∏
m∈LΘ\{0}

(
x−B(λΘ + ρ, αm)− 1−B(αm, αm)

2

)
. (38)

iii) (minuscule representation) Suppose (π, V ) is minuscule. Then with w1, . . . , wk

in Proposition 2.39 iii),

qπ,Θ(x;λ) =
k∏

i=1

(
x− 〈wi

(
λΘ + ρΘ − ρ(Θ)

)
+ ρ, π〉

)
. (39)

Proof. It is easy to get i) and ii).
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iii) Let w̄Θ denote the longest element in WΘ . Then the gΘ -module
V (w−1

i π|aΘ
) has lowest weight w̄Θw

−1
i π . The claim follows from the next cal-

culation:

〈λΘ, w̄Θw
−1
i π〉 +

1

2
〈π̄ − w̄Θw

−1
i π, π̄ + w̄Θw

−1
i π − 2ρ〉

= 〈λΘ + ρ, w̄Θw
−1
i π〉+ 〈ρ, π〉

= 〈wiw̄Θ(λΘ + ρ) + ρ, π〉 = 〈wi

(
λΘ + ρΘ − ρ(Θ)

)
+ ρ, π〉.

3. Two-sided ideals

Our main concern in this paper is the following two-sided ideal.

Definition 3.1 (gap). Let λ ∈ a∗Θ . If a two-sided ideal IΘ(λ) of U(g) satisfies

JΘ(λ) = IΘ(λ) + J(λΘ), (40)

then we say that IΘ(λ) describes the gap between the generalized Verma module
MΘ(λ) and the Verma module M(λΘ).

It is clear that there exists a two-sided ideal IΘ(λ) satisfying (40) if and
only if

JΘ(λ) = Ann
(
MΘ(λ)

)
+ J(λΘ). (41)

This condition depends on λ but such an ideal exists and is essentially unique for
a generic λ (cf. Proposition 3.11, Theorem 3.12, Remark 4.14). The main purpose
in this paper is to construct a good generator system of the ideal from a minimal
polynomial.

Definition 3.2 (two-sided ideal). Using the global minimal polynomial defined
in the last section, we define a two-sided ideal of U(g):

Iπ,Θ(λ) =
∑
i,j

U(g)qπ,Θ(Fπ;λ)ij +
∑

∆∈Z(g)

U(g)
(
∆−∆a(λΘ)

)
. (42)

From Theorem 2.24 and Remark 2.16 this ideal satisfies

Iπ,Θ(λ) ⊂ JΘ(λ). (43)

In this section we will examine the condition so that

JΘ(λ) = Iπ,Θ(λ) + J(λΘ). (44)

Proposition 3.3 (invariant differential operators). For ∆ ∈ Z(g) and a non-

negative integer k we denote by ∆
(k)
a the homogeneous part of ∆a with degree k

and put

T (k)
π =

∑
$∈W(π)

mπ($)$k. (45)

Here mπ($) is the multiplicity of the weight $ of π and we use the identification
$ ∈ a∗ ' a ⊂ U(a). Let {∆1, . . . ,∆r} be a system of generators of Z(g) as an
algebra over C and let di be the degree of (∆i)a for i = 1, . . . , r . We assume
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that (∆1)
(d1)
a , . . . , (∆r)

(dr)
a are algebraically independent. Suppose a subset A of

{1, . . . , r} satisfies{
dk ≥ degx qπ,Θ(x, λ) if k ∈ {1, . . . , r} \ A,
C[(∆1)

(d1)
a , . . . , (∆r)

(dr)
a ] = C[(∆i)

(di)
a , T

(dk)
π ; i ∈ A, k ∈ {1, . . . , r} \ A].

(46)

Then
Iπ,Θ(λ) =

∑
i,j

U(g)qπ,Θ(Fπ;λ)ij +
∑
i∈A

U(g)
(
∆i − (∆i)a(λΘ)

)
. (47)

Proof. Note that
∑

i,j U(g)qπ,Θ(Fπ;λ)ij 3 Trace
(
F ν

π qπ,Θ(Fπ;λ)
)

if ν ≥ 0. On

the other hand, since Trace
(
F `k

π qπ,Θ

(
Fπ;λ)

)(dk)

a
= T

(dk)
π by Lemma 2.23 with

Θ = Ø if the integer `k = dk − degx

(
qπ,Θ(Fπ;λ)

)
is non-negative, the assumption

implies that for k 6∈ A , ∆k may be replaced by Trace
(
F `k

π qπ,Θ

(
Fπ;λ)

)
, which

implies the proposition.

Lemma 3.4. Let V be an ad(g)-stable subspace of U(g) and let V =
⊕

$ V$

be the decomposition of V into the weight spaces V$ with weight $ ∈ a∗ . Suppose
Da(λΘ) = 0 for D ∈ V0 . Then the following three conditions are equivalent.

i) JΘ(λ) ⊂ U(g)V + J(λΘ).

ii) For any α ∈ Θ there exists D ∈ V−α such that D −X−α ∈ J(λΘ).

iii) For any α ∈ Θ there exists D ∈ V0 such that Da(λΘ − α) 6= 0.

Proof. Let U(g) =
⊕

$ U(g)$ be the decomposition of U(g) into the weight
spaces U(g)$ with weight $ ∈ a∗ . Let µ ∈ a∗ . Since U(g) = U(n̄) ⊕ J(µ), to
D ∈ U(g), there corresponds a unique Dµ ∈ U(n̄) such that D − Dµ ∈ J(µ).
Here we note that D ∈ U(g)$ implies Dµ ∈ U(n̄)$ and that Dµ = Da(µ) ∈ C
whenever D ∈ U(g)0 .

Put Vµ = {Dµ; D ∈ V} . Since ad(X)V ⊂ V for X ∈ b , we have
PD ∈ V + J(µ) and therefore (PD)µ ∈ Vµ for every P ∈ U(b) and D ∈ V .
Owing to U(g) = U(n̄)⊗ U(b), we have

{Dµ;D ∈ U(g)V} = U(n̄)Vµ. (48)

Note that

Vµ =
⊕

{(V$)µ;$ = −
∑

γ∈Ψ(g)

nγγ for some non-negative integers nγ}. (49)

Suppose i). Let α ∈ Θ. Since X−α ∈ JΘ(λ)\J(λΘ), there exists D ∈ U(g)V
with DλΘ = X−α . On the other hand, we can deduce

(
U(n̄)VλΘ

)
−α

= (V−α)λΘ

from (49) because the assumption of the lemma assures (V0)
λΘ = 0. Hence from

(48) we may assume D ∈ V−α . Thus we have ii).

It is clear that ii) implies i) because JΘ(λ) = J(λΘ) +
∑

α∈Θ U(g)X−α .

Let α ∈ Θ. Since ad(H)X−α = −α(H)X−α for H ∈ a , we have

H1 · · ·HkX−α = X−α(H1 − α(H1)) · · · (Hk − α(Hk)) for H1, . . . , Hk ∈ a.
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We also have XγX−α ∈ J(λΘ) for γ ∈ Σ(g)+ because λΘ([Xα, X−α]) = 0 and
[Xγ, X−α] ∈ n if γ 6= α . Hence for any D ∈ U(g)0 ,

(ad(X−α)D)λΘ = [X−α, Da]
λΘ =

(
Da(λΘ)−Da(λΘ − α)

)
X−α. (50)

Now it is clear that iii) implies ii).

Conversely suppose ii). Let α ∈ Θ. Since V−α = ad(X−α)V0 , there exists
D ∈ V0 with (ad(X−α)D)λΘ = X−α and we have iii) from (50).

Remark 3.5. In the above lemma λΘ − α = wα.λΘ for α ∈ Θ because
〈λΘ, α〉 = 0.

By the Duflo theorem ([6]), Ann
(
M(µ)

)
=

∑
∆∈Z(g) U(g)

(
∆ − ∆a(µ)

)
for

any µ ∈ a∗ . Then, by the following theorem, each Ann
(
M(µ)

)
has the same

ad(g)-module structure.

Theorem 3.6 (the Kostant theorem [14]). There exists an ad(g)-submodule H
of U(g) such that U(g) is naturally isomorphic to Z(g)⊗H by the multiplication.
For any finite dimensional g-module V , dim Homg (V,H) = dimV0 .

Similarly on the annihilators of generalized Verma modules we have

Proposition 3.7. Suppose λΘ+ρ is dominant. Then for any finite dimensional
g-module V and H in Theorem 3.6,

dim Homg

(
V,Ann

(
MΘ(λ)

)
/Ann

(
M(λΘ)

))
= dim Homg

(
V,H ∩ Ann

(
MΘ(λ)

))
= dimV0 − dimVgΘ

where VgΘ = {v ∈ V; Xv = 0 (∀X ∈ gΘ)}.
Before proving the proposition, we accumulate some necessary facts from

[2], [1] and [13].

Definition 3.8 (category O [2]). Let O be the abelian category consisting of
the g-modules which are finitely generated, a∗ -diagonalizable and U(n)-finite. All
subquotients of Verma modules are objects of O . For µ ∈ a∗ we denote by L(µ)
the unique irreducible quotient of the Verma module M(µ). There exists a unique
indecomposable projective object P (µ) ∈ O such that Homg(P (µ), L(µ)) 6= 0.

Proposition 3.9 ([2], [1]). i) If µ+ ρ is dominant, then P (µ) = M(µ) and

dim Homg(M(µ),M(µ′)) =

{
1 if µ′ = µ,

0 if µ′ 6= µ.

ii) For any µ, µ′ ∈ a∗

dim Homg(P (µ), L(µ′)) =

{
1 if µ′ = µ,

0 if µ′ 6= µ.

iii) For any finite dimensional g-module V and µ ∈ a∗ , V⊗ P (µ) is a projective
object in O .
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Proposition 3.10 ([1], [13]). Suppose µ ∈ a∗ and µ + ρ is dominant. Then
the map

{I ⊂ U(g); two-sided ideal, I ⊃ Ann
(
M(µ)

)
} → {M ⊂M(µ); submodule} (51)

defined by I 7→ IM(µ) is injective and hence Ann
(
M(µ)/IM(µ)

)
= I for any

two-sided ideal I with I ⊃ Ann
(
M(µ)

)
. The image of the map (51) consists of

the submodules which are isomorphic to quotients of direct sums of P (µ′) with

2
〈µ′ + ρ, β〉
〈β, β〉

∈ {0,−1,−2, . . .} for any β ∈ Σ(g)+ such that 〈µ+ ρ, β〉 = 0. (52)

Proof of Proposition 3.7. We first show the map

Homg (V,H) 3 ϕ 7→ Φ ∈ Homg (V ⊗M(λΘ),M(λΘ)) (53)

defined by Φ(v ⊗ u) = ϕ(v)u is a linear isomorphism. Since U(g) = H ⊕
Ann

(
M(λΘ)

)
the map is injective. To show the surjectivity we calculate the

dimensions of both spaces. By Theorem 3.6 dim Homg (V,H) = dimV0 . On the
other hand, note that

Homg (V ⊗M(λΘ),M(λΘ)) ' Homg (M(λΘ),M(λΘ)⊗V∗)

and there exist a sequence {µ1, . . . , µ`} ⊂ a∗ and a g-stable filtration

{0} = M0 ( M1 ( · · · ( M` = M(λΘ)⊗V∗

such that Mi/Mi−1 ' M(µi) for i = 1, . . . , ` . Here the number of appearances
of λΘ in the sequence {µ1, . . . , µ`} equals dimV∗

0 = dimV0 (cf. the proof of
Theorem 2.29). Since λΘ + ρ is dominant, it follows from Proposition 3.9 i) that
dim Homg (M(λΘ),M(λΘ)⊗V∗) = dimV0 . Thus (53) is isomorphism.

Secondly, consider the exact sequence

0 → JΘ(λ)/J(λΘ) →M(λΘ) →MΘ(λ) → 0.

It is clear that under the isomorphism (53) the subspace

Homg

(
V,H ∩ Ann

(
MΘ(λ)

))
⊂ Homg (V,H)

corresponds to the subspace

Homg (V ⊗M(λΘ), JΘ(λ)/J(λΘ)) ⊂ Homg (V ⊗M(λΘ),M(λΘ)) .

Let us calculate the dimension of the latter space. By Proposition 3.9 i) and iii),
V ⊗M(λΘ) is projective and therefore

dim Homg (V ⊗M(λΘ), JΘ(λ)/J(λΘ))

= dim Homg (V ⊗M(λΘ),M(λΘ))− dim Homg (V ⊗M(λΘ),MΘ(λ)) .

Here we know

Homg (V ⊗M(λΘ),MΘ(λ)) ' Homg (M(λΘ),MΘ(λ)⊗V∗)

and there exist a sequence {µ1, . . . , µ`′} ⊂ a∗ and a g-stable filtration

{0} = M0 ( M1 ( · · · ( M`′ = MΘ(λ)⊗V∗

such that Mi/Mi−1 ' M(Θ,µi) for i = 1, . . . , `′ . The number of appearances
of λΘ in the sequence {µ1, . . . , µ`′} equals dim(V∗)gΘ = dimVgΘ (cf. the proof
of Theorem 2.29). Since the generalized Verma module M(Θ,µi) is a quotient of
M(µi), Proposition 3.9 i) implies dim Homg (M(λΘ),MΘ(λ)⊗V∗) = dimVgΘ .
Thus the proposition is proved.
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Proposition 3.11 (Harish-Chandra homomorphism). Let I be a two-sided ideal
of U(g). Put V(I) = {µ ∈ a; Da(µ) = 0 (∀D ∈ I)}.
i) Fix α ∈ Ψ(g). If µ ∈ V(I) and

2
〈µ+ ρ, α〉
〈α, α〉

/∈ {1, 2, 3, . . .}, (54)

then wα.µ ∈ V(I).

ii) Suppose λ ∈ a∗Θ and
JΘ(λ) = I + J(λΘ). (55)

Then w.λΘ /∈ V(I) for w ∈ WΘ \ {e}.
iii) In addition to the assumption of ii), suppose λΘ + ρ is dominant and

I ⊃ Ann
(
M(λΘ)

)
. (56)

Then I = Ann
(
MΘ(λ)

)
and

V(I) = {w.λΘ; w ∈ W (Θ)}. (57)

Proof. i) Note that µ ∈ V(I) if and only if I ⊂ Ann
(
L(µ)

)
. It is known by

[12] that Ann
(
L(µ)

)
⊂ Ann

(
L(wα.µ)

)
if (54) holds, which implies i).

ii) Since I ⊂ Ann
(
MΘ(λ)

)
⊂ Ann

(
L(λΘ)

)
we have λΘ ∈ V(I). Put

W ′ = {w ∈ WΘ \ {e}; w.λΘ ∈ V(I)} . Then, by Lemma 3.4 with V = I , wα /∈ W ′

for any α ∈ Θ. Suppose W ′ 6= Ø. Let w′ be an element of W ′ with the minimal
length. Then there exists α ∈ Θ such that the length of w′′ = wαw

′ is smaller
than that of w′ . Then w′′ 6= e and

2
〈w′.λΘ + ρ, α〉

〈α, α〉
= 2

〈w′ρ, α〉
〈α, α〉

< 0.

Hence by i), we have w′′.µ ∈ V(I), which is a contradiction.

iii) It immediately follows from Proposition 3.10 that I = Ann
(
MΘ(λ)

)
.

Since Ann
(
M(λΘ)

)
=

∑
∆∈Z(g) U(g)

(
∆ −∆a(λΘ)

)
, V(I) ⊂ {w.λΘ; w ∈ W}. Let

w = w(Θ)wΘ ∈ W with w(Θ) ∈ W (Θ) and wΘ ∈ WΘ . Suppose w(Θ) 6= e .
Then there exists α ∈ Ψ(g) such that the length of wαw(Θ) is less than that of
w(Θ). For this root α we have wαw(Θ) ∈ W (Θ) and w(Θ)−1α,w−1

Θ w(Θ)−1α ∈
Σ(g)− \ Σ(gΘ). The assumption thereby implies

2
〈w.λΘ + ρ, α〉

〈α, α〉
/∈ {1, 2, 3, . . .}.

Hence (wαw).λΘ ∈ V(I) provided that w.λΘ ∈ V(I), which assures

V(I) ∩
{(
W (Θ)wΘ

)
.λΘ; wΘ ∈ WΘ \ {e}

}
= Ø (58)

by ii) and the induction on the length of w(Θ). Similarly we can show that
V(I) ⊃ {w.λΘ; w ∈ W (Θ)} if

2
〈λΘ + ρ, α〉
〈α, α〉

/∈ {1, 2, 3, . . .}
(
∀α ∈ Σ(g)+ \ Σ(gΘ)

)
. (59)
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Let us remove the condition (59) by use of Proposition 3.7. Since U(g) = H ⊕
Ann

(
M(λΘ)

)
, we have only to show for each finite dimensional g-module V(

ϕ(v)
)

a
(w.λΘ) = 0

(
∀ϕ ∈ Homg

(
V,H ∩ Ann

(
MΘ(λ)

))
,∀v ∈ V,∀w ∈ W (Θ)

)
.

(60)
For D ∈ U(g) we denote by Dλ a unique element of U(n̄Θ) such that D −Dλ ∈
JΘ(λ). Then ϕ ∈ Homg (V,H) belongs to Homg

(
V,H ∩ Ann

(
MΘ(λ)

))
if and

only if ϕ(v)λ = 0 for v ∈ V . Let k = dimV0 and take ϕ1, . . . , ϕk ∈ Homg (V,H)
so that they constitute a basis. Note that for v ∈ V and i = 1, . . . , k , ϕi(v)

λ are
U(n̄Θ)-valued polynomials in λ . Let ` = k − dimVgΘ . Then by Proposition 3.7
there exist an open neighborhood S ⊂ a∗Θ of the point in question and complex-
valued rational functions aij(λ) on S such that

a1j(λ)ϕ1 + a2j(λ)ϕ2 + · · ·+ akj(λ)ϕk (j = 1, . . . , `)

form a basis of Homg

(
V,H ∩ Ann

(
MΘ(λ)

))
for any λ ∈ S . Since generic λ ∈ S

satisfy (59), (60) holds for any λ ∈ S .

On the existence of a two-sided ideal IΘ(λ) satisfying (40), we have

Theorem 3.12. Suppose λΘ + ρ is dominant. Then the following four condi-
tions are equivalent.

i) JΘ(λ) = Ann
(
MΘ(λ)

)
+ J(λΘ).

ii) If β ∈ Σ(g)+ \ Σ(gΘ) satisfies 〈λΘ + ρ, β〉 = 0, then 〈β, α〉 = 0 for all α ∈ Θ.

iii) W (Θ).λΘ ∩WΘ.λΘ = {λΘ}.
iv) If wΘ ∈ WΘ satisfies

(
W (Θ)wΘ

)
.λΘ ∩W (Θ).λΘ 6= Ø, then wΘ = e.

In particular, if λΘ + ρ is regular, these conditions are satisfied.

Proof. iv) ⇒ iii) is obvious.

iii) ⇒ ii). Suppose there exist β ∈ Σ(g)+ \ Σ(gΘ) and α ∈ Θ such that
〈λΘ + ρ, β〉 = 0 and 〈β, α〉 6= 0. For γ ∈ Σ(gΘ)+ we have

2
〈λΘ + ρ, wβγ〉
〈wβγ, wβγ〉

= 2
〈λΘ + ρ, γ〉
〈γ, γ〉

= 2
〈ρ, γ〉
〈γ, γ〉

∈ {1, 2, . . .},

which shows 〈β, γ〉 ≤ 0 and wβ ∈ W (Θ). In particular 〈β, α〉 < 0 and hence
wαwβ ∈ W (Θ). Now we get (wαwβ).λΘ = wα.λΘ , a contradiction.

ii) ⇒ i). For each α ∈ Θ we define the g-homomorphism M(λΘ − α) →
M(λΘ) by D mod J(λΘ − α) 7→ DX−α mod J(λΘ). This is an injection and
therefore we identify its image with M(λΘ − α). Note that∑

α∈Θ

M(λΘ − α) =
(
J(λΘ) +

∑
α∈Θ

U(g)X−α

)
/J(λΘ) = JΘ(λ)/J(λΘ)

and we have a surjection P (λΘ−α) →M(λΘ−α) by Proposition 3.9 ii). Moreover
it is clear that the condition (52) with (µ, µ′) = (λΘ, λΘ − α) holds for each
α ∈ Θ. Hence by Proposition 3.10 we have a two-sided ideal I containing
Ann

(
M(λΘ)

)
such that IM(λΘ) = JΘ(λ)/J(λΘ). Then I = Ann

(
MΘ(λ)

)
and

JΘ(λ) = I + J(λΘ).

i) ⇒ iv) follows from (57) and (58).
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Remark 3.13. Through Iπ,Θ , we will get in §4. many sufficient conditions for
(41), which are effective even if λΘ + ρ is not dominant.

Definition 3.14 (extremal low weight). For a simple root α ∈ Ψ(g), we call a
minimal element of {$ ∈ W(π); 〈$,α〉 6= 0} under the order ≤ in Definition 2.20
an extremal low weight of π with respect to α .

Since π is a faithful representation, π(X−α) is not zero and therefore an extremal
low weight $α with respect to α always exists but it may not be unique. The
main purpose in this section is to calculate the function

a∗Θ 3 λ 7→
(
qπ,Θ(Fπ;λ)$α$α

)
a
(λΘ − α) (61)

on a∗Θ . If for any α ∈ Θ there exists $α such that the value of the corresponding
function (61) does not vanish, Lemma 3.4 assures (44).

Lemma 3.15. Fix α ∈ Ψ(g) and let $α be an extremal low weight of π with
respect to α. For λ =

∑
β∈Ψ(g)mββ ∈ a∗ put |λ| =

∑
β∈Ψ(g)mβ . Then there

exists {γ1, . . . , γK} ⊂ Ψ(g) with γK = α such that the following (63)–(69) hold by
denoting

$i = $α −
∑

i≤ν<K

γν . (62)

K = |$α − π̄|+ 1 and $1 = π̄, (63)

〈$i, γi〉 < 0 for i = 1, . . . , K, (64)

〈$i, γj〉 = 0 if 1 ≤ i < j ≤ K, (65)

〈γi, γj〉 6= 0 if and only if |i− j| ≤ 1, (66)

{$1, . . . , $K−1} = {$′ ∈ W(π); $′ < $α}, (67)

$i is an extremal low weight of π with respect to γi for i = 1, . . . , K, (68)

the multiplicity of the weight space of the weight $i equals 1. (69)

The sequence γ1, . . . , γK is unique by the condition $1, . . . , $K ∈ W(π). The part
of the partially ordered set of the weights of π which are smaller or equal to $α is
as follows:

$1 = π̄
γ1−→ $2

γ2−→ $3
γ3−→ · · · · · · γK−1−−−→ $K = $α

γK=α−−−→ (70)

Proof. Let γ1, . . . , γK be a sequence of Ψ(g) satisfying (63), γK = α , and
$1, . . . , $K ∈ W(π) under the notation (62). The existence of such a sequence is
clear. We shall prove by the induction on K that such a sequence is unique and
that it satisfies (64)–(68).

By the minimality of $α we have 〈$i, α〉 = 0 for i = 1, . . . , K − 1. Hence
〈γi, α〉 = 〈$i+1−$i, α〉 = 0 for i = 1, . . . , K−2 and 〈γK−1, α〉 = 〈$α−$K−1, α〉 =
〈$α, α〉 < 0. Thus we get γi 6= α for i = 1, . . . , K − 1. Moreover $α− γi /∈ W(π)
for i = 1, . . . , K − 2 because 〈$α− γi, α〉 = 〈$α, α〉 6= 0 and $α is minimal. This
means {$′ ∈ W(π); $′ < $α} = {$K−1} ∪ {$′ ∈ W(π); $′ < $K−1} .

Suppose 〈$K−1, γK−1〉 ≥ 0. Then $K−1 − γK−1 ∈ W(π) because $K−1 +
γK−1 = $α ∈ W(π). Hence 〈$K−1 − γK−1, α〉 = −〈γK−1, α〉 > 0, which
contradicts with the minimality of $α . Thus we get 〈$K−1, γK−1〉 < 0.
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Suppose $K−1 is not an extremal low weight with respect to γK−1 . Then
there exists an extremal low weight $′ with respect to γK−1 such that $′ < $K−1 .
Then W(π) 3 $′ + γK−1 < $α and 〈$′ + γK−1, α〉 = 〈γK−1, α〉 = 0 by the
minimality of $α . It is a contradiction. Hence $K−1 is an extremal low weight
with respect to γK−1 .

Now by the induction hypothesis we obtain the uniqueness and (64)–(68).
Note that (69) follows from the uniqueness and the following lemma because
V = U(n)vπ̄ with a lowest weight vector vπ̄ of π .

Lemma 3.16. U(n) is generated by {Xγ; γ ∈ Ψ(g)} as a subalgebra of U(g).

Proof. Let U denote the algebra generated by {Xγ; γ ∈ Ψ(g)} . It is sufficient
to show that Xβ ∈ U for β ∈ Σ(g)+ , which is proved by the induction on |β|
as follows. If |β| > 1, there exists γ ∈ Ψ(g) such that β′ = β − γ ∈ Σ(g)+ .
Then Xβ = C(XγXβ′ − Xβ′Xγ) with a constant C ∈ C . Hence the condition
Xγ, Xβ′ ∈ U implies Xβ ∈ U .

Remark 3.17. By virtue of (66) the Dynkin diagram of the system {γ1, . . . , γK}
in Lemma 3.15 is of type AK or BK or CK or F4 or G2 where γ1 and γK corre-
spond to the end points of the diagram. Note that

〈π̄, γ1〉 < 0 and 〈π̄, γi〉 = 0 for i = 2, . . . , K. (71)

Conversely if a subsystem {γ1, . . . , γK} ⊂ Ψ(g) satisfies (66) and (71) then π̄ +
γ1 + · · · + γK−1 is an extremal low weight with respect to γK . Hence we have at
most three different extremal low weights of π with respect to a fixed α ∈ Ψ(g).

The next lemma is studied in [22, Lemma 3.5]. It gives the solutions for
the recursive equations which play key roles in the calculation of (61).

Lemma 3.18. For k = 0, 1, . . . and ` = 1, 2, . . ., define the polynomial f(k, `)
in the variables s1, . . . , s`−1, µ1, µ2, . . . recursively by

f(k, `) =

1 if k = 0,

f(k − 1, `)(µ` − µk) +
`−1∑
ν=1

sνf(k − 1, ν) if k ≥ 1.
(72)

Moreover for k = 1, 2, . . . and ` = 1, 2, . . ., define the polynomial g(k, `) in the
variables t, s1, . . . , s`−1, µ1, µ2, . . . recursively by

g(k, `) =

{
1 if k = 1,

g(k − 1, `)(t− µk) + f(k − 1, `) if k > 1.
(73)

Then the following (74)–(76) hold.

f(k, `) = 0 for k ≥ `, (74)

f(`− 1, `) =
`−1∏
ν=1

(µ` − µν + sν), (75)

g(k, `) =
`−1∏
ν=1

(t− µν + sν)
k∏

ν=`+1

(t− µν) for k ≥ `. (76)
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Now recall (22) with Θ = Ø. Let F k
ii ∈ U(a) be the element in (22)

corresponding to the weight $i for i = 1, . . . , K under the notation in Lemma 3.15.
Then Lemma 3.15 and Lemma 2.19 iv) with ` = 1, β = $i − $ν ∈ Σ(g)+

(1 ≤ ν < i) and $ = $ν show that (22) is reduced to

F k
ii − F k−1

ii

(
$i − µk +Dπ($i)

)
≡

∑
1≤ν<i

〈$ν , $i −$ν〉F k−1
νν mod U(g)n. (77)

Since 〈$i, λΘ〉 = 〈$i, λΘ − α〉 for i = 1, . . . , K − 1, (77) inductively implies(
F k

ii

)
a
(λΘ) =

(
F k

ii

)
a
(λΘ − α) for i = 1, . . . , K − 1 and k = 0, 1, . . . . (78)

From (65) we have

〈$ν , $i −$ν〉 = 〈$ν , γν + · · ·+ γi−1〉 = 〈$ν , γν〉

and hence

F k
i+1i+1 − F k

ii ≡ F k−1
i+1i+1

(
$i+1 − µk +Dπ($i+1)

)
+ F k−1

ii 〈$i, $i+1 −$i〉 − F k−1
ii

(
$i − µk +Dπ($i)

)
mod U(g)n

= (F k−1
i+1i+1 − F k−1

ii )
(
$i+1 − µk +Dπ($i+1)

)
+ F k−1

ii γi.

The last equality above follows from Lemma 2.22 i) with $ = $i and $′ = $i+1

because γi = $i+1 −$i ∈ Ψ(g). Hence by the induction on k we have

F k
i+1i+1 ≡ F k

ii mod U(g)n + U(g)γi.

Now consider general Θ ⊂ Ψ(g). Define integers n0 , n1, . . . , nL with
n0 = 0 < n1 < · · · < nL = K such that

{n1, . . . , nL−1} = {ν ∈ {1, . . . , K − 1}; γν /∈ Θ}.

If n`−1 < ν < n` , then γν ∈ Θ, which implies 〈γν , λΘ〉 = 0 and hence(
F k

ν+1ν+1

)
a
(λΘ) =

(
F k

νν

)
a
(λΘ).

We note that $n0+1|aΘ
<Θ $n1+1|aΘ

<Θ · · · <Θ $nL−1+1|aΘ
and

{$n0+1, . . . , $nL−1+1} = {$′ ∈ WΘ(π); $′ ≤ $α}.

Put µ` = 〈$n`−1+1, λΘ〉+Dπ($n`−1+1) for ` = 1, . . . , L . Since
∏L

`=1(x−µ`)
is a divisor of qπ,Θ(x;λ), we can take µ` for ` = L+1, L+2, . . . , L′ = degx qπ,Θ(x;λ)

so that qπ,Θ(x;λ) =
∏L′

`=1(x− µ`).

For k = 0, 1, . . . , L′ and ` = 1, 2, . . . , L we define

f(k, `) =
(
F k

n`−1+1,n`−1+1

)
a
(λΘ) = · · · =

(
F k

n`,n`

)
a
(λΘ).

Then putting

s` =
∑

n`−1<ν≤n`

〈$ν , γν〉,
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we have from (77) with i = n`−1 + 1

f(k, `) = f(k − 1, `)(µ` − µk) +
`−1∑
j=1

sjf(k − 1, j).

From (78) and (77) with i = nL = K we also have(
F k

KK

)
a
(λΘ − α) =

(
F k−1

KK

)
a
(λΘ − α)

(
〈$α, λΘ − α〉+Dπ($α)− µk

)
+

L−1∑
j=1

sjf(k − 1, j) +

 K−1∑
ν=nL−1+1

〈$ν , γν〉

 f(k − 1, L).

Hence by Lemma 2.22 i)

f(k, L)−
(
F k

KK

)
a
(λΘ − α)

〈$α, α〉

=
f(k − 1, L)−

(
F k−1

KK

)
a
(λΘ − α)

〈$α, α〉
(
〈$α, λΘ − α〉+Dπ($α)− µk

)
+ f(k − 1, L).

Now applying Lemma 3.18 to

g(k, L) =
f(k, L)−

(
F k

KK

)
a
(λΘ − α)

〈$α, α〉

with t = 〈$α, λΘ − α〉+Dπ($α), we obtain(
qπ,Θ(Fπ;λ)$α$α

)
a
(λΘ − α)

=
(
FL′

KK

)
a
(λΘ − α)

= −〈$α, α〉
L−1∏
`=1

(
〈$α, λΘ − α〉+Dπ($α)− µ` + s`

)
·

L′∏
`=L+1

(
〈$α, λΘ − α〉+Dπ($α)− µ`

)
= −〈$α, α〉

L−1∏
`=1

(
〈$′

α −$n`
, λΘ〉+Dπ($′

α)−Dπ($n`+1)
)

·
∏

(µ,C)∈Ωπ,Θ\Ω$α
π,Θ

(
〈$′

α − µ, λΘ〉+Dπ($′
α)− C

)
.

Here we put $′
α = $α + α ∈ W(π) and

Ω$0
π,Θ = {($|aΘ

, Dπ($)); $ ∈ WΘ(π), $ ≤ $0} (79)

for $0 ∈ W(π). To deduce the last equality, we have used

µ` − s` = 〈$n`
, λΘ〉+Dπ($n`+1) if 1 ≤ ` ≤ L− 1.
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Definition 3.19. Suppose α ∈ Θ and $α is an extremal low weight of π with
respect to α . Put $′

α = $α + α ∈ W(π) and

{$1, . . . , $K} = {$ ∈ W(π); $ ≤ $α}

with $1 < $2 < · · · < $K and define n0 = 0 < n1 < · · · < nL < K so that

{$n0+1, . . . , $nL+1} = {$ ∈ WΘ(π); $ ≤ $α}.

Under the notation in Definition 2.20 and (79), define

rα,$α(λ) =
∏

(µ,C)∈Ωπ,Θ\Ω$α
π,Θ

(
〈λΘ, $

′
α − µ〉+Dπ($′

α)− C
)

·
L∏

i=1

(
〈λΘ, $α −$ni

〉 − 〈α,$α〉+Dπ($α)−Dπ($ni+1)
)
. (80)

If there is no extremal low weights with respect to α other than $α , we use the
simple symbol rα(λ) for rα,$α(λ).

Remark 3.20. In the above definition we have the following.

i) If the lowest weight π̄ is an extremal low weight of π with respect to α , then
L = 0.

ii) The second factor

L∏
i=1

(
〈λΘ, $α −$ni

〉 − 〈α,$α〉+Dπ($α)−Dπ($ni+1)
)

is not identically zero because $ni
|aΘ

<Θ $ni+1|aΘ
≤Θ $α|aΘ

.

iii) For $ and $′ ∈ W(π)

〈λΘ, $ −$′〉+Dπ($)−Dπ($′) = 〈λΘ + ρ,$ −$′〉+
〈$′, $′〉 − 〈$,$〉

2
. (81)

iv) Put γν = $ν+1 −$ν for ν = 1, . . . , K − 1 and γK = α . If

−2
〈$ν , γν〉
〈γν , γν〉

(
= −2

〈γν−1, γν〉
〈γν , γν〉

if ν > 1
)

= 1, (82)

then 〈$ν , $ν〉 = 〈$ν+1, $ν+1〉 .
v) Suppose 2〈π̄,γ1〉

〈γ1,γ1〉 = −1 and the Dynkin diagram of the system {γ1, . . . , γK} is
of type AK or of type BK with short root γK or of type G2 with short root γ2 .
Then it follows from Lemma 3.15 and Lemma 2.22 i) that

〈λΘ, $α −$ni
〉 − 〈α,$α〉+Dπ($α)−Dπ($ni+1)

= 〈λΘ, $α −$ni
〉+Dπ($α)−Dπ($ni

)

= 〈λΘ + ρ,$α −$ni
〉 = 〈λΘ + ρ, γni

+ · · ·+ γK−1〉 (83)

for i = 1, . . . , L .
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Theorem 3.21 (gap). Let $α be an extremal low weight with respect to α ∈ Θ.
Then

X−α ∈ Iπ,Θ(λ) + J(λΘ) if rα,$α(λ) 6= 0.

If for all α ∈ Θ there exists an extremal low weight $α with respect to α such
that rα,$α(λ) 6= 0, then

JΘ(λ) = Iπ,Θ(λ) + J(λΘ).

By Proposition 3.11 iii) we have the following corollary.

Corollary 3.22 (annihilator). If λΘ +ρ is dominant and if for all α ∈ Θ there
exists an extremal low weight $α with respect to α such that rα,$α(λ) 6= 0, then
Iπ,Θ(λ) = Ann

(
MΘ(λ)

)
.

Remark 3.23. It does not always hold that for each α ∈ Θ there exists an
extremal low weight $α with respect to α such that the function rα,$α(λ) is not
identically zero. In fact we construct counter examples in Appendix B. However
this condition is valid for many π as we see below.

Recall the notation in Proposition 2.39.

Lemma 3.24. Suppose $α is an extremal low weight with respect to α ∈ Θ.
The function rα,$α(λ) is not identically zero if the space

V ($α|aΘ
) =

∑
$∈W(π); $|aΘ

=$α|aΘ

V$

is irreducible as a gΘ -module.

Proof. In this case we have µ|aΘ
6= $′

α|aΘ
for (µ,C) ∈ Ωπ,Θ \Ω$α

π,Θ and the first
factor of (80) is not identically zero.

Proposition 3.25. Use the notation in Lemma 3.15 and suppose γK = α ∈
Θ. The function rα,$α(λ) is not identically zero if either one of the following
conditions is satisfied.

i) {γ1, . . . , γK} ⊂ Θ.

ii) The connected component of the Dynkin diagram of Θ containing α is orthog-
onal to π̄ . Θ\{γ1, . . . , γK} is orthogonal to {γ1, . . . , γK−1}. Moreover the Dynkin
diagram of the system {γ1, . . . , γK−1} is of type AK−1 .

Proof. i) Since $α|aΘ
= π̄|aΘ

and V (π̄|aΘ
) is an irreducible gΘ -module, the

claim follows from Lemma 3.24.

ii) Suppose $ ∈ WΘ(π) satisfies $|aΘ
= $α|aΘ

. Then we can write

$ = π̄ +
K∑

i=1

miγi +
∑

β∈Θ\{γ1,...,γK}

nββ

with non-negative integers mi and nβ . Put

Θ′ = {γi; mi > 0},
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Θ′′ = {β; nβ > 0},

and define

V ′ =
∑

{V$′ ; $′ ∈ π̄ +
∑

β∈Θ′∪Θ′′

Z β}.

Since V ′ is an irreducible gΘ′∪Θ′′ -module with lowest weight π̄ and {0} ( V$ ⊂ V ′ ,
each connected component of the Dynkin diagram of the system Θ′ ∪ Θ′′ is not
orthogonal to π̄ .

Suppose γK ∈ Θ′ . Then the condition ii) implies Θ′ = {γ1, . . . , γK} and
therefore $′

α = $α + α ≤ $ . However it is clear dimV$′
α

= 1 and $′
α /∈ WΘ(π).

Thus we have $′
α < $ . In this case, by Lemma 2.22 ii), we have D($′

α) < D($).

Suppose γK /∈ Θ′ . Then Θ′ is orthogonal to Θ′′ and hence we have the
direct sum decomposition

gΘ′∪Θ′′ = aΘ′∪Θ′′ ⊕mΘ′ ⊕mΘ′′ .

Since $ is the lowest weight of a mΘ′′ -submodule of V ′ , which is an irre-
ducible mΘ′ ⊕ mΘ′′ -module, Θ′′ must be empty. On the other hand, we see
Θ′ = {γ1, . . . , γK′} with K ′ < K . Now we can find each weight $′ of the gΘ′ -
module V ′ is in the form

$′ = π̄ +
K′∑
i=1

m′
iγi with − 2

〈π̄, γ1〉
〈γ1, γ1〉

≥ m′
1 ≥ m′

2 ≥ · · · ≥ m′
K′ ≥ 0

and its multiplicity is one (cf. Example 4.2 ii)). Fix v ∈ V$ \ {0} . Take i =
1, . . . , K ′ so that mi > mi+1 . Then X−γi

v 6= 0 and therefore γi /∈ Θ. Since
$|aΘ

= $α|aΘ
, we conclude i = K ′ and mK′ = 1. It shows

$ = γ1 + · · ·+ γK′ ≤ $α.

Thus we have proved the function (80) is not identically zero.

Remark 3.26. The condition i) of the proposition is satisfied if the lowest
weight π̄ (or equivalently, the highest weight π ) of (π, V ) is regular.

Proposition 3.27. i) (multiplicity free representation) Suppose dimV$ = 1
for any $ ∈ W(π). Then for any extremal low weight $α with respect to α ∈ Θ,
the function rα,$α(λ) is not identically zero.

ii) (adjoint representation) Suppose g is simple and π is the adjoint representation
of g. Suppose α ∈ Θ. If the Dynkin diagram of Ψ(g) is of type Ar , then we have
just two extremal low weights $α with respect to α. If the diagram is not of type
Ar , then we have a unique $α . In either case, there is at least one $α such that
rα,$α(λ) is not identically zero.

iii) (minuscule representation) Suppose (π, V ) is minuscule. Then for any α ∈ Θ
there is a unique extremal low weight $α with respect to α. Moreover the function
rα(λ) is not identically zero.



192 Oda and Oshima

Proof. i) Thanks to Proposition 2.39 i), V ($α|aΘ
) is an irreducible gΘ -module.

Hence our claim follows from Lemma 3.24.

ii) The lowest weight of the adjoint representation is −αmax . Hence by
Remark 3.17 we can determine the number of extremal low weights from the
completed Dynkin diagram of each type, which is shown in §4..

Note that W(π) = Σ(g) ∪ {0} . Suppose $α /∈ Σ(gΘ). Then Proposi-
tion 2.39 ii) assures the irreducibility of V ($α|aΘ

). Hence rα,$α(λ) is not identi-
cally zero.

Suppose $α ∈ Σ(gΘ). Take {γ1, . . . , γK} ⊂ Ψ(g) as in Lemma 3.15 and
put

$i = −αmax + γ1 + · · ·+ γi−1 for i = 1, . . . , K.

Let Θ1 denote the connected component of the Dynkin diagram of Θ contain-
ing γK = α . Then we can find an integer K ′ ∈ {1, . . . , K − 1} such that
{γ1, . . . , γK′} ⊂ Ψ(g) \ Θ1 and {γK′+1, . . . , γK} ⊂ Θ1 . Then it follows from
Lemma 3.15 that the root vectors X$i

for i = 1, . . . , K ′ are lowest weight vectors
of π|mΘ1

. These lowest weight vectors generate the irreducible mΘ1 -submodules
belonging to the same equivalence class because {γ1, . . . , γK′−1} is orthogonal
to Θ1 . On the other hand, we have $K′+1 ∈ WΘ(π). Then it follows from
Proposition 2.39 ii) that $K′+1 ∈ Σ(gΘ1)

− . Since $K′ − $K′+1 = −γK′ ∈ Σ(g),
[X−$K′+1

, X$K′ ] 6= 0. It shows the equivalence class above is not the class of the
trivial representation. Hence Θ1 is not orthogonal to π̄ = $1 . Now we can take
another extremal low weight $′

α with respect to α which satisfies the condition i)
of Proposition 3.25.

iii) Since a minuscule representation is of multiplicity free, we have only
to show the uniqueness of $α . Let [g, g] = g1 ⊕ · · · ⊕ gm be the decomposition
into simple Lie algebras. Then π|[g,g] is a tensor product of faithful minuscule
representations of gi for i = 1, . . . ,m . Hence, from Proposition 2.37 v), each
connected component of the Dynkin diagram of Ψ(g), which corresponds to some
Ψ(gi), has just one root γ which is not orthogonal to π̄ . Now the uniqueness
follows from Remark 3.17.

We conclude this section with a discussion of the commutative case. Con-
sider Fπ =

(
Fij

)
1≤i≤N
1≤j≤N

as an element of M(N,S(g)). Then we have

Theorem 3.28 (coadjoint orbit). Put

Ω̄π,Θ = {$|aΘ
; $ ∈ WΘ(π)}

q̄π,Θ(x;λ) =
∏

µ∈Ω̄π,Θ

(
x− µ(λ)

)
,

r̄Θ(λ) =
∏

µ, µ′∈Ω̄π,Θ, µ 6=µ′

(
µ(λ)− µ′(λ)

)
.

(84)

Then if r̄Θ(λ) 6= 0,∑
i,j

S(g)q̄π,Θ(Fπ;λ)ij +
∑

f∈I(g)

S(g)
(
f − f(λΘ)

)
= {f ∈ S(g); f |Ad(G)λΘ

= 0}.

Here I(g) is the space of the ad(g)-invariant elements in the symmetric algebra
S(g) of g and G a connected complex Lie group with Lie algebra g.
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Proof. Let {vi; i = 1, . . . , N} be a base of V such that each vi is a weight
vector with weight $i . Then

dq̄π,Θ(Fπ;λ)ij|λΘ
=

{
0 if 〈$i −$j, λΘ〉 6= 0,∏

µ∈Ω̄π,Θ\{$i|aΘ
}
(
〈$i, λΘ〉 − µ(λ)

)
dFij if 〈$i −$j, λΘ〉 = 0.

For α ∈ Σ(g) \ Σ(gΘ) there exists a pair of weights of π whose difference
equals α and therefore r̄Θ(λ) 6= 0 implies 〈α, λΘ〉 6= 0, which assures that the
centralizer of λΘ in g equals gΘ . Since

gΘ =
∑

i=j or $i−$j is a root of gΘ

CFij

and [H,Fij] = ($i − $j)(H)Fij for H ∈ a , we can prove the theorem as in the
same way as in the proof of [22, Theorem 4.11].

Remark 3.29. There is a natural projection p̄π,Θ : Ωπ,Θ → Ω̄π,Θ . We say that
µ ∈ Ω̄π,Θ is ramified in the quantization of q̄π,Θ to qπ,Θ if p̄−1

π,Θ(µ) is not a single
element.

If π is of multiplicity free, then there is no ramified element in Ω̄π,Θ

(cf. Proposition 2.39 i)). In this case, consider g as an abelian Lie algebra acting
on S(g) by the multiplication and define the g-module

M0
Θ(λ) = S(g)/

∑
X∈pΘ

S(g)(X − λΘ(X)).

Then taking a “classical limit” as in [22], we can prove q̄π,Θ(Fπ;λ)M0
Θ(λ) = 0.

Moreover if r̄Θ(λ) 6= 0, the polynomial q̄π,Θ(x;λ) is minimal in the obvious sense.

4. Examples

In this section we give the explicit form of the characteristic polynomials of
some small dimensional representations π of classical and exceptional Lie algebras
g . (As in the previous sections, we always assume that g and π satisfy (10).) In
some special cases we also calculate the global minimal polynomials. Note that if
qπ(x) =

∏
1≤i≤m(x−$i−Ci) with suitable $i ∈ a∗ and Ci ∈ C is the characteristic

polynomial, then the global minimal polynomial qπ,Θ(x, λ) for a given Θ equals∏
i∈I(x− 〈$i, λΘ + ρ〉 − Ci) with a certain subset I of {1, . . . ,m} .

It is clear that if the dimension of π is small, then the degree of qπ,Θ(x, λ) is
small, which means the corresponding ideal Iπ,Θ(λ) is generated by elements with
small degrees. In such a case, for an extremal low weight $α of π with respect
to α ∈ Θ, the degree of the polynomial rα,$α(λ) defined by (80) is also small
and hence the assumptions on λ of Theorem 3.21 and Corollary 3.22 become very
weak.

Lemma 4.1 (bilinear form). Let ( , ) be a symmetric bilinear form on a∗ and
let a∗ = a∗1 ⊕ a∗2 be a direct sum of linear subspaces with (a∗1, a

∗
2) = 〈a∗1, a∗2〉 = 0. If

there exists C ∈ C \ {0} such that

(µ, µ′) = C〈µ, µ′〉 (∀µ, µ′ ∈ a∗1),
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then

C =
∑

$∈W(π)

mπ($)
(α,$)2

(α, α)
for α ∈ a∗1 such that (α, α) 6= 0.

Here mπ($) denotes the multiplicity of the weight $ ∈ W(π).

Proof. Let Hα ∈ a correspond to α by the bilinear form 〈 , 〉 . Then we have

C(α, α) = C2〈α, α〉 = C2 Trace π(Hα)2

= C2
∑

$∈W(π)

mπ($) (〈α,$〉)2 =
∑

$∈W(π)

mπ($)(α,$)2.

In the following examples ε1 , ε2, . . . constitute a base of a vector space with
symmetric bilinear form ( , ) defined by (εi, εj) = δij . We consider a∗ a subspace
of this space where ε1 − ε2 etc. are suitable elements in Ψ(g) (cf. [4]).

Cπ equals the constant C in the above lemma for a1 = a ∩ [g, g] . C ′
π is

the similar constant in the case when a1 is the center of g . Then we can calculate
〈 , 〉 under the base {ε1, ε2, . . .} by the above lemma.

Example 4.2 (An−1 ).

α1 α2 αn−2 αn−1

◦——◦— · · ·—◦——◦
1 1 1 1
◦——◦— · · ·— ◦——◦
\ /
————•————

Ψ = {α1 = ε1 − ε2, . . . , αn−1 = εn−1 − εn}
ρ =

∑n
ν=1(

n−1
2
− (ν − 1))εν =

∑n−1
ν=1

ν(n−ν)
2

αν

i) g = gln
π = $k := ε1 + · · ·+ εk =

∧k $1 (minuscule, k = 1, . . . , n− 1)

dim$k =
(

n
k

)
($k, ρ) = k(n−k)

2

W($k) = {εν1 + · · ·+ ενk
; 1 ≤ ν1 < · · · < νk ≤ n}

C$k
= 1

2

∑
1≤ν1<···<νk≤n(εν1 + · · ·+ ενk

, ε1 − ε2)
2 =

(
n−2
k−1

)
C ′

$k
= 1

n

∑
1≤ν1<···<νk≤n(εν1 + · · ·+ ενk

, ε1 + · · ·+ εn)2 = k
(

n−1
k−1

)
〈εi, εj〉 = (n−k)!(k−1)!

n!

(
n−1
n−k

(nδij − 1) + 1
k

)
q$k

(x) =
∏

1≤i1<···<ik≤n

(
x− (εi1 + · · ·+ εik)−

k!(n−k)!
2(n−2)!

)
ii) g = gln

V = Vm := {homogeneous polynomials of (x1, . . . , xn) with degree m}
π = mε1 (multiplicity free, m = 1, 2, · · · )
W(mε1) = {m1ε1 + · · ·+mnεn; m1 + · · ·+mn = m, mj ∈ Z≥0}
dimmε1 = nHm =

(
n+m−1

m

)
= (n+m−1)!

m!(n−1)!

Cmε1 = 1
2

∑
m1+···+mn=m(m1ε1 + · · ·+mnεn, ε1 − ε2)

2

= 1
2

∑m
k=0

∑k
m1=0(k − 2m1)

2
n−2Hm−k.

= 1
3!

∑m
k=0 k(k + 1)(k + 2) (m+n−k−3)!

(n−3)!(m−k)!

= 1
3!(n−3)!

∑m
k=0 k(k + 1)(k + 2)(m+ n− (k + 3)) · · · (m+ n− (k + n− 1))
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= · · · = (m+n)!
(n+1)!(m−1)!

C ′
mε1

= 1
n

∑
m1+···+mn=m(m1ε1 + · · ·+mnεn, ε1 + · · ·+ εn)2 = m2

n nHm

= (n+m−1)!
(m−1)!n!

m = m(m+1)···(m+n−1)
n!

m

qmε1(x) =
∏

m1+···+mn=m
mi∈Z≥0

(
x−

∑n
i=1miεi − m(m+n−1)−

∑n
i=1 m2

i

2Cmε1

)
iii) g = sln

π = $1 +$n−1 = ε1 − εn (adjoint)

dim($1 +$n) = n2 − 1

C$1+$n−1 = 2n

($1 +$n−1, ρ) = n− 1

q$1+$n−1(x) = (x− 1
2
)
∏

1≤i<j≤n

(
(x− n−1

2n
)2 − (εi − εj)

2
)

In [22] we choose Ψ′ = {α′1 = ε2−ε1, . . . , α
′
n−1 = εn−εn−1} as a fundamental

system of gln and then π̄ = $1 is the lowest weight of the natural representation
π of gln . For a strictly increasing sequence

n0 = 0 < n1 < · · · < nL = n (85)

we put n′j = nj − nj−1 and Θ =
⋃L

k=1

⋃
nk−1<ν<nk

{α′ν} and study the minimal

polynomial qπ,Θ(x;λ) in [22] for λ =
(
λk

)
∈ CL ' a∗Θ . Define ρ′ = −ρ and put

λ̄1ε1 + · · ·+ λ̄nεn = ρ′ +
L∑

k=1

λk

( ∑
nk−1<ν≤nk

εν

)
. (86)

The partially ordered set of the weights of π is as follows

ε1

α′1−−→ ε2

α′2−−→ · · · · · ·
α′nk−1−−−→ εnk

α′nk−−−→ εnk+1

α′nk+1−−−→ · · · · · ·
α′n−1−−−−→ εn.

Then WΘ(π) = {εn0+1, . . . , εnL−1+1} and Theorem 2.24 says

qπ,Θ(x, λ) =
L∏

k=1

(
x− λk −

1

2
(ε1 − εnk−1+1, ε1 + εnk−1+1 − 2ρ′)

)
=

L∏
k=1

(
x− λk − nk−1

)
and it follows from Remark 3.20 that

rα′i
(λ) =

L∏
ν=k+1

(
λ̄i+1 − λ̄nν−1+1

) k−1∏
ν=1

(
λ̄i − λ̄nν

)
in Definition 3.19 if nk−1 < i < nk . This result coincides with [22, Theorem 4.4].
Note that if λ satisfies the condition:

〈λ+ ρ′, β〉 = 0 with β ∈ Σ(g) ⇒ ∀α′ ∈ Θ 〈β, α′〉 = 0, (87)

then rα′(λ) 6= 0 for each α′ ∈ Θ.
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Let π$k
be the minuscule representation $k in i) and we here adopt the

fundamental system Ψ′ as above. The decomposition

π$k
|gΘ

=
⊕

k1+···+kL=k
0≤kj≤n′j (j=1,...,L)

πk1,...,kL
(88)

is a direct consequence of Proposition 2.39 i). Here πk1,...,kL
denotes the irreducible

representation of gΘ with lowest weight
∑L

j=1(εnj−1+1 + · · · + εnj−1+kj
). Then by

Proposition 2.40 i) we have

qπ$k
,Θ(x;λ) =

∏
k1+···+kL=k

0≤kj≤n′j (j=1,...,L)

(
x−

n∑
i=1

L∑
j=1

kj∑
ν=1

λ̄i〈εi, εnj−1+ν〉 −
k!(n− k)!

2(n− 2)!

)

=
∏

k1+···+kL=k
0≤kj≤n′j (j=1,...,L)

(
x− C ′′

$k
(n− 1)

L∑
j=1

kj

(
λj + nj−1 +

kj − k

2

)

+ C ′′
$k

(k − 1)
L∑

j=1

n′j
(
λj + nj−1 +

n′j − n

2

))
with C ′′

$k
= (n−k−1)!(k−1)!

(n−1)!
. To deduce the final form we have used the relation∑L

j=1 n
′
jnj−1 =

n2−
∑L

j=1 n′j
2

.

Remark 4.3 (An−1 ). Put g′Θ = [gΘ, gΘ] . Then the irreducible decomposition
of π$k

|g′Θ is not of multiplicity free if and only if there exist an integer K and
subsets I and J of {1, . . . , L} such that

K =
∑
i∈I

n′i =
∑
j∈J

n′j ≤ k, K ≤ n− k and I 6= J.

This is clear from (88) because πk1,...,kL
|g′Θ = πk′1,...,k′L

|g′Θ if and only if ki = k′i or
(ki, k

′
i) = (0, n′i) or (n′i, 0) for i = 1, . . . , L .

Example 4.4 (Bn ). g = o2n+1

α1 α2 αn−1 αn

◦——◦— · · ·—◦=⇒◦
1 2 2 2
◦——◦— · · ·—◦=⇒◦ n ≥ 3

•

Ψ = {α1 = ε1 − ε2, . . . , αn−1 = εn−1 − εn, αn = εn}
ρ =

∑n
ν=1(n− ν + 1

2
)εν =

∑n
ν=1

ν(2n−ν)
2

αν

i) π = $1 := ε1 (multiplicity free)

dim$1 = 2n+ 1

($1, ρ) = n− 1
2

C$1 =
∑

(±εν , ε1)
2 + (0, ε1)

2 = 2

q$1(x) = (x− n
2
)
∏n

i=1

(
(x− 2n−1

4
)2 − ε2

i

)
ii) π = $n := 1

2
(ε1 + · · ·+ εn) (minuscule)
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dim$n = 2n

($n, ρ) = (2n−1)+(2n−3)+···+1
4

= n2

4

C$n =
∑

(±ε1 ± · · · ± εn, ε1)
2 = 2n

q$n(x) =
∏

c1=±1,··· ,cn=±1

(
x− 1

2
(c1ε1 + · · ·+ cnεn)− n2

2n+2

)
iii) π = $2 := ε1 + ε2 (adjoint) · · · $2 is not a fundamental weight if n = 2.

dim$2 = n(2n+ 1)

C$2 = 4n− 2

($2, ρ) = 2n− 2

ε1 = $2 − α2 − · · · − αn

q$2(x) = (x− 1
2
)
∏

1≤i<j≤n

(
(x− n−1

2n−1
)2 − (εi − εj)

2
)(

(x− n−1
2n−1

)2

−(εi + εj)
2
) ∏n

i=1

(
(x− 4n−3

8n−4
)2 − ε2

i

)
Choose Ψ′ = {α′1 = ε2 − ε1, . . . , α

′
n−1 = εn − εn−1, α

′
n = −εn} as a

fundamental system. Then the partially ordered set of the weights of the natural
representation π of o2n+1 is shown by

ε1

α′1−→ ε2

α′2−→ · · · · · ·
α′nk−1−−−→ εnk

α′nk−−→ εnk+1

α′nk+1−−−→ · · · · · ·
α′n−1−−−→ εn

α′n−→ 0

α′n−→ −εn

α′n−1−−−→ · · · · · ·
α′nk+1−−−→ −εnk+1

α′nk−−→ −εnk

α′nk−1−−−→ · · · · · ·
α′1−→ −ε1.

Here we use the same notation as in (85) and (86). Put Θ =
⋃L

k=1

⋃
nk−1<ν<nk

{α′ν}
and Θ̄ = Θ ∪ {α′n} . Then

WΘ̄(π) = {εn0+1, . . . , εnL−1+1,−εnL−1
, . . . ,−εn1},

WΘ(π) = WΘ̄(π) ∪ {0, −εn}.

Hence by Theorem 2.24

qπ,Θ(x;λ) =
(
x− 1

4
(ε1, ε1 − 2ρ′)

)
·

L∏
j=1

(
x− 1

2
λj −

1

4
(ε1 − εnj−1+1, ε1 + εnj−1+1 − 2ρ′)

)
·

L∏
j=1

(
x+

1

2
λj −

1

4
(ε1 + εnj

, ε1 − εnj
− 2ρ′)

)
=

(
x− n

2

) L∏
j=1

(
x− λj

2
− nj−1

2

)(
x+

λj

2
− 2n− nj

2

)
,

qπ,Θ̄(x;λ) =
(
x− 1

4
(ε1 − εnL−1+1, ε1 + εnL−1+1 − 2ρ′)

)
·

L−1∏
j=1

(
x− 1

2
λj −

1

4
(ε1 − εnj−1+1, ε1 + εnj−1+1 − 2ρ′)

)
·

L−1∏
j=1

(
x+

1

2
λj −

1

4
(ε1 + εnj

, ε1 − εnj
− 2ρ′)

)
=

(
x− nL−1

2

) L−1∏
j=1

(
x− λj

2
− nj−1

2

)(
x+

λj

2
− 2n− nj

2

)
.
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Moreover if nk−1 < i < nk ,

22Lrα′i,Θ
(λ) =

k−1∏
ν=1

(
λ̄i − λ̄nν

) L∏
ν=k+1

(
λ̄i+1 − λ̄nν−1+1

)
·
(
λ̄i+1 −

1

2

) L∏
ν=1

(
λ̄i+1 + λ̄nν

)
=

1

2

k−1∏
ν=1

(
λ̄i − λ̄nν

) L∏
ν=k+1

(
λ̄i+1 − λ̄nν−1+1

)
·
(
λ̄i + λ̄i+1

) L∏
ν=1

(
λ̄i+1 + λ̄nν

)
,

22L−2rα′i,Θ̄
(λ) =

k−1∏
ν=1

(
λ̄i − λ̄nν

) L∏
ν=k+1

(
λ̄i+1 − λ̄nν−1+1

) L−1∏
ν=1

(
λ̄i+1 + λ̄nν

)
,

22L−2rα′n,Θ̄(λ) =
L−1∏
ν=1

(
λ̄n − λ̄nν

) L−1∏
ν=1

(1

2
+ λ̄nν

)
= (−1)L−1

L−1∏
ν=1

(
λ̄n − λ̄nν

)2

.

Here we denote rα(λ) corresponding to Θ and Θ̄ by rα,Θ(λ) and rα,Θ̄(λ), respec-
tively. Note that rα′,Θ̄(λ) 6= 0 for α′ ∈ Θ̄ under the condition (87) for Θ̄. Moreover

suppose λ+ ρ′ is dominant. Then λ̄i + λ̄i+1 = 2λ̄i+1 − 1 = −2 〈λ+ρ′,−εi+1〉
〈−εi+1,−εi+1〉 − 1 6= 0

and hence rα′,Θ(λ) 6= 0 for α′ ∈ Θ under the condition (87).

Example 4.5 (Cn ). g = spn

α1 α2 αn−1 αn

◦——◦— · · ·—◦⇐=◦
2 2 2 1

•=⇒◦——◦— · · ·—◦⇐=◦ n ≥ 2

Ψ = {α1 = ε1 − ε2, . . . , αn−1 = εn−1 − εn, αn = 2εn}
ρ =

∑n
ν=1(n− ν + 1)εν =

∑n−1
ν=1

ν(2n−ν+1)
2

αν + n(n+1)
4

αn

i) π = $1 := ε1 (minuscule)

dim$1 = 2n

C$1 =
∑

(±εν , ε1)
2 = 2

($1, ρ) = n

q$1(x) =
∏n

i=1

(
(x− n

2
)2 − ε2

i )

ii) π = 2$1 = 2ε1 (adjoint)

dim 2$1 = n(2n+ 1)

C2$1 = 4(n+ 1)

(2$1, ρ) = 2n

q2$1(x) = (x− 1
2
)
∏n

i=1

(
(x− n

2n+2
)2 − 2ε2

i

) ∏
1≤i<j≤n

(
(x− 2n+1

4n+4
)2

−(εi − εj)
2
)(

(x− 2n+1
4n+4

)2 − (εi + εj)
2
)

Choose Ψ′ = {α′1 = ε2 − ε1, . . . , α
′
n−1 = εn − εn−1, α

′
n = −2εn} as a

fundamental system. The partially ordered set of the weights of the natural
representation π of spn is shown by

ε1

α′1−→ ε2

α′2−→ · · · · · ·
α′nk−1−−−→ εnk

α′nk−−→ εnk+1

α′nk+1−−−→ · · · · · ·
α′n−1−−−→ εn
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α′n−→ −εn

α′n−1−−−→ · · · · · ·
α′nk+1−−−→ −εnk+1

α′nk−−→ −εnk

α′nk−1−−−→ · · · · · ·
α′1−→ −ε1.

Under the same notation as in the previous example, we have

WΘ̄(π) = {εn0+1, . . . , εnL−1+1,−εnL−1
, . . . ,−εn1},

WΘ(π) = WΘ̄(π) ∪ {−εn}.

If nk−1 < i < nk , it follows from Theorem 2.24, and Remark 3.20 that

qπ,Θ̄(x;λ) =
L∏

j=1

(
x− λj

2
− nj−1

2

) L−1∏
j=1

(
x+

λj

2
− 2n− nj + 1

2

)
,

qπ,Θ(x;λ) =
L∏

j=1

(
x− λj

2
− nj−1

2

)(
x+

λj

2
− 2n− nj + 1

2

)
,

22L−1rα′i,Θ
(λ) =

k−1∏
ν=1

(
λ̄i − λ̄nν

) L∏
ν=k+1

(
λ̄i+1 − λ̄nν−1+1

) L∏
ν=1

(
λ̄i+1 + λ̄nν

)
,

22L−2rα′i,Θ̄
(λ) =

k−1∏
ν=1

(
λ̄i − λ̄nν

) L∏
ν=k+1

(
λ̄i+1 − λ̄nν−1+1

) L−1∏
ν=1

(
λ̄i+1 + λ̄nν

)
,

22L−2rα′n,Θ̄(λ) =
L−1∏
ν=1

λ̄nν

L−1∏
ν=1

(
λ̄n − λ̄nν

)
.

If the condition (87) holds, then we have rα′,Θ(λ) 6= 0 and rα′,Θ̄(λ) 6= 0 for α′ ∈ Θ.
Moreover suppose 〈λ, α′n〉 = 0 and λ+ ρ′ is dominant. In this case λ̄n = −1 and

λ̄nν = −2 〈λ+ρ′,εn−εnν 〉
〈εn−εnν ,εn−εnν 〉

− 1 6= 0. Hence rα′n,Θ̄(λ) 6= 0 under the condition (87) for

Θ̄.

Example 4.6 (Dn ). g = o2n

α1 α2 αn−2 αn−1

◦——◦— · · ·—◦——◦
◦
αn

1 2 2 1
◦——◦— · · ·—◦——◦ n ≥ 4

• ◦
1

Ψ = {α1 = ε1 − ε2, . . . , αn−1 = εn−1 − εn, αn = εn−1 + εn}
ρ =

∑n
ν=1(n− ν)εν =

∑n−2
ν=1

ν(2n−ν−1)
2

αν + n(n−1)
4

(αn−1 + αn)

i) π = $1 := ε1 (minuscule)

dim$1 = 2n

C$1 =
∑

(±εν , ε1)
2 = 2

($1, ρ) = n− 1

q$1(x) =
∏n

i=1

(
(x− n−1

2
)2 − ε2

i

)
ii) π =

{
$n−1 := 1

2
(ε1 + · · ·+ εn−1 − εn) (minuscule)

$n := 1
2
(ε1 + · · ·+ εn−1 + εn) (minuscule)

dim$n−1 = dim$n = 2n−1

C$n−1 = C$n =
∑

(±ε1 ± · · · ± εn, ε1)
2 = 2n−1
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($n−1, ρ) = ($n, ρ) = n(n−1)
4

.

q$n−1(x) =
∏

c1=±1,...,cn=±1
c1···cn=−1

(
x− 1

2
(c1ε1 + · · ·+ cnεn)− n(n−1)

2n+1

)
q$n(x) =

∏
c1=±1,...,cn=±1

c1···cn=1

(
x− 1

2
(c1ε1 + · · ·+ cnεn)− n(n−1)

2n+1

)
iii) π = $2 := ε1 + ε2 (adjoint)

dim$2 = n(2n− 1)

Cε1+ε2 = 4(n− 1)

($2, ρ) = 2n− 3

q$2(x) = (x− 1
2
)
∏

1≤i<j≤n

(
(x− 2n−3

4n−4
)2− (εi−εj)

2
)(

(x− 2n−3
4n−4

)2− (εi +εj)
2
)

Note that the coefficient of ε1ε2 · · · εn in the polynomial
∑

c1=±1,...,cn=±1
c1···cn=1

(c1ε1 +

· · ·+ cnεn)n of (ε1, . . . , εn) does not vanish. Hence

Z(g) = C[TraceF 2
$1
,TraceF 4

$1
, . . . ,TraceF 2(n−1)

$1
,TraceF n

$n
]. (89)

Choose Ψ′ = {α′1 = ε2 − ε1, . . . , α
′
n−1 = εn − εn−1, α

′
n = −εn − εn−1} as a

fundamental system. Then the partially ordered set of the weights of the natural
representation π of o2n is shown by

ε1

α′1−→ ε2

α′2−→ · · · · · ·
α′n−2−−−→ εn−1

α′n−1−−−→ εn

↓ α′n ↓ α′n

− εn

α′n−1−−−→ −εn−1

α′n−2−−−→ · · · · · ·
α′2−→ −ε2

α′1−→ −ε1.

Use the notation as in (85) and (86). Put Θ =
⋃L

k=1

⋃
nk−1<ν<nk

{α′ν} . If α′n−1 ∈ Θ,

we also put Θ̄ = Θ ∪ {α′n} .

Then

π|gΘ
=

L−1⊕
j=0

πεnj+1 ⊕
L⊕

j=1

π−εnj
, π|gΘ̄

=
L−1⊕
j=0

πεnj+1 ⊕
L−1⊕
j=1

π−εnj
.

Here πε denotes the irreducible representation of gΘ or gΘ̄ with lowest weight ε .
Hence if nk−1 < i < nk ,

qπ,Θ(x;λ) =
L∏

j=1

(
x− λj

2
− nj−1

2

) (
x+

λj

2
− 2n− nj − 1

2

)
,

qπ,Θ̄(x;λ) =
L∏

j=1

(
x− λj

2
− nj−1

2

) L−1∏
j=1

(
x+

λj

2
− 2n− nj − 1

2

)
,

22L−1rα′i,Θ
(λ) =

k−1∏
ν=1

(
λ̄i − λ̄nν

) L∏
ν=k+1

(
λ̄i+1 − λ̄nν−1+1

) L∏
ν=1

(
λ̄i+1 + λ̄nν

)
,

22L−2rα′i,Θ̄
(λ) =

k−1∏
ν=1

(
λ̄i − λ̄nν

) L∏
ν=k+1

(
λ̄i+1 − λ̄nν−1+1

) L−1∏
ν=1

(
λ̄i+1 + λ̄nν

)
,

22L−2rα′n,Θ̄(λ) = (−1)L−1

L−1∏
ν=1

(
λ̄n − λ̄nν

)(
λ̄n−1 − λ̄nν

)
.
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If 〈λ, α′n〉 = 0 and i + 1 = nk < n , then λ̄i+1 + λ̄nk
= 2(λ̄i+1 + λ̄n). Hence

rα′,Θ̄(λ) 6= 0 for α′ ∈ Θ̄ under the condition (87) for Θ̄.

Now suppose α′n−1 /∈ Θ. Then nL−1 = n− 1. If λL = 0, then
q′π,Θ(Fπ;λ)MΘ(λ) = 0 by Corollary 2.32 with

q′π,Θ(x;λ) =

(
x− λL

2
− n− 1

2

) L−1∏
j=1

(
x− λj

2
− nj−1

2

) (
x+

λj

2
− 2n− nj − 1

2

)
.

The analogue of rα′i,Θ
(λ) in this case is

r′α′i,Θ(λ) = 22−2Lλ̄i+1

k−1∏
ν=1

(
λ̄i − λ̄nν

) L−1∏
ν=k+1

(
λ̄i+1 − λ̄nν−1+1

) L−1∏
ν=1

(
λ̄i+1 + λ̄nν

)
.

If i+1 = nk then λ̄i+1 + λ̄nk
= 2(λ̄i+1 + λ̄n). Hence r′

α′,Θ̄
(λ) 6= 0 for α′ ∈ Θ under

the condition (87).

Let π$n−1 be the half spin representation $n−1 in ii) and we here use the
fundamental system Ψ′ defined above.

π$n−1|gΘ
=

⊕
(k1,...,kL)∈KΘ

πk1,...,kL
, π$n−1|gΘ̄

=
⊕

(k1,...,kL)∈KΘ̄

πk1,...,kL
,

where

KΘ = {(k1, . . . , kL) ∈ ZL; 0 ≤ kj ≤ n′j (j = 1, . . . , L),

n− k1 − · · · − kL ≡ 1 mod 2},
KΘ̄ = {(k1, . . . , kL) ∈ KΘ; kL ≥ n′L − 1} (Note α′n−1 ∈ Θ and n′L > 1)

and πk1,...,kL
is the irreducible representation of gΘ or gΘ̄ with lowest weight

L∑
j=1

1

2
(εnj−1+1 + · · ·+ εnj−1+kj

− εnj−1+kj+1 − · · · − εnj
).

Then for Θ′ = Θ or Θ̄

qπ$n−1 ,Θ′(x;λ) =
∏

(k1,...,kL)∈KΘ′

(
x− n(n− 1)

2n+1

− 1

2n

L∑
j=1

(λ̄nj−1+1 + · · ·+ λ̄nj−1+kj
− λ̄nj−1+kj+1 − · · · − λ̄nj

)
)
.
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If n′L > 1, then

rα′n−1,Θ′(λ) =
∏

(k1,...,kL)∈KΘ′
(k1,...,kL) 6=(n′1,...,n′L−1,n′L−1)

21−n

·
( L∑

j=1

(λ̄nj−1+kj+1 + · · ·+ λ̄nj−1 + λ̄nj
)− λ̄n−1

)
.

Example 4.7 (E6 ).

α1 α3 α4 α5 α6

◦——◦——◦——◦——◦
◦
α2

1 2 3 2 1
◦——◦——◦——◦——◦

◦2
•

Ψ = {α1 = 1
2
(ε1 + ε8) − 1

2
(ε2 + ε3 + ε4 + ε5 + ε6 + ε7), α2 = ε1 + ε2, α3 =

ε2 − ε1, α4 = ε3 − ε2, α5 = ε4 − ε3, α6 = ε5 − ε4}
ρ = ε2+2ε3+3ε4+4ε5+4(ε8−ε7−ε6) = 8α1+11α2+15α3+21α4+15α5+8α6

i) π =

{
$1 := 2

3
(ε8 − ε7 − ε6) (minuscule)

$6 := 1
3
(ε8 − ε7 − ε6) + ε5 (minuscule)

dim$1 = dim$6 = 27

C$1 = C$6 = 6 (see below)

($1, ρ) = ($6, ρ) = 8

q$i
(x) =

∏
$∈WE6

$i

(
x−$ − 4

3

)
for i = 1 and 6.

ii) π = $2 := 1
2
(ε1 + ε2 + ε3 + ε4 + ε5 − ε6 − ε7 + ε8) (adjoint)

dim$2 = 78

C$2 = 24

($2, ρ) = 11

q$2 = (x− 1
2
)
∏

α∈Σ(E6)

(
x− α− 11

24

)
Expressing a weight by the linear combination of the fundamental weights

$j , we indicate the weight by the symbol arranging the coefficients in the cor-
responding position of the Dynkin diagram. For example, $ =

∑6
j=1mj$j is

indicated by the symbol m1m3m4
m2

m5m6 . Moreover for a positive integer m we

will sometimes write m̄ in place of −m .

Let π be the minuscule representation $1 in i). Then the partially ordered
set of the weights of π is shown by the following. Here the number j beside an



Oda and Oshima 203

arrow represents −αj .

0 100
0
00

↘ 1
1 1̄10

0
00

↘ 3
2 01̄1

0
00

↘ 4
3 001̄

1
10

↙ 2 ↘ 5
4 000

1̄
10 000

1
1̄1

↘ 5 ↙ 2 ↘ 6
5 001

1̄
1̄1 000

1
01̄

↙ 4 ↘ 6 ↙ 2
6 011̄

0
01 001

1̄
01̄

↙ 3 ↘ 6 ↙ 4
7 11̄0

0
01 011̄

0
11̄

↙ 1 ↘ 6 ↙ 3 ↘ 5
8 1̄00

0
01 11̄0

0
11̄ 010

0
1̄0

↘ 6 ↙ 1 ↘ 5 ↙ 3
9 1̄00

0
11̄ 11̄1

0
1̄0

↘ 5 ↙ 1 ↘ 4
10 1̄01

0
1̄0 101̄

1
00

↘ 4 ↙ 1 ↘ 2
11 1̄11̄

1
00 100

1̄
00

↙ 3 ↘ 2 ↙ 1
12 01̄0

1
00 1̄10

1̄
00

↘ 2 ↙ 3
13 01̄1

1̄
00

↙ 4
14 001̄

0
10

↙ 5
15 000

0
1̄1

↙ 6
16 000

0
01̄

The type A5 corresponding to {α1, α3, . . . , α6} is contained in type E6 .
The highest weights of the restriction (E6, π)|A5 are $1 = 100

0
00, $5 − $2 =

w2w4w3w1$1 = 000
1̄
10 and $1 − $2 = w2w4w5w6w3w4w5($5 − $2) = 100

1̄
00.

Here we put wj = wαj
. Hence (E6, π)|A5 = 2(A5, $1) + (A5, $4) and C$1 =

C$6 = 2
(
5−1
1−1

)
+

(
5−1
2−1

)
= 6.

Now use the fundamental system Ψ′ = {α′1 = −α1, . . . , α
′
6 = −α6} . Then

the lowest weight π̄ of π equals $1 . Putting Θi = Ψ′ \ {α′i} , we have

WΘ1(π) =
{
100

0
00, 1̄10

0
00, 1̄00

0
01

}
,

WΘ2(π) =
{
100

0
00, 000

1̄
10, 100

1̄
00

}
,

WΘ3(π) =
{
100

0
00, 01̄1

0
00, 11̄0

0
01, 01̄0

1
00

}
,

WΘ4(π) =
{
100

0
00, 001̄

1
10, 011̄

0
01, 101̄

1
00, 001̄

0
10

}
,

WΘ5(π) =
{
100

0
00, 000

1
1̄1, 010

0
1̄0, 000

0
1̄1

}
,

WΘ6(π) =
{
100

0
00, 000

1
01̄, 000

0
01̄

}
.
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If we identify a∗Θi
with C by λΘi

= λ$i and put π̄−Λ =
∑

j m
j
Λαj for Λ ∈ W(π),

then Proposition 2.40 i) implies

qπ,Θi
(x;λ) =

∏
Λ∈WΘi

(π)

(
x− (〈π̄, $i〉 −mi

Λ〈αi, $i〉)λ−
∑

j

mj
Λ〈αj, ρ〉

)
. (90)

Since 〈αj, $j〉 = 〈αj, ρ〉 = 1
2
〈αj, αj〉 = 1

6
and

〈$1, $1〉 =
2

9
, 〈$1, $2〉 =

1

6
, 〈$1, $3〉 =

5

18
,

〈$1, $4〉 =
1

3
, 〈$1, $5〉 =

2

9
, 〈$1, $6〉 =

1

9
,

we get

qπ,Θ1(x;λ) =
(
x− 2

9
λ
)(
x− 1

18
λ− 1

6

)(
x+

1

9
λ− 4

3

)
,

qπ,Θ2(x;λ) =
(
x− 1

6
λ
)(
x− 2

3

)(
x+

1

6
λ− 11

6

)
,

qπ,Θ3(x;λ) =
(
x− 18

5
λ
)(
x− 1

9
λ− 1

3

)(
x+

1

18
λ− 7

6

)(
x+

2

9
λ− 2

)
,

qπ,Θ4(x;λ) =
(
x− 1

3
λ
)(
x− 1

6
λ− 1

2

)(
x− 1

)(
x+

1

6
λ− 5

3

)(
x+

1

3
λ− 7

3

)
,

qπ,Θ5(x;λ) =
(
x− 2

9
λ
)(
x− 1

18
λ− 2

3

)(
x+

1

9
λ− 4

3

)(
x+

5

18
λ− 5

2

)
,

qπ,Θ6(x;λ) =
(
x− 1

9
λ
)(
x+

1

18
λ− 5

6

)(
x+

2

9
λ− 8

3

)
.

Example 4.8 (E7 ).

α1 α3 α4 α5 α6 α7

◦——◦——◦——◦——◦——◦
◦
α2

2 3 4 3 2 1
•——◦——◦——◦——◦——◦——◦

◦
2

Ψ = {α1 = 1
2
(ε1 + ε8)− 1

2
(ε2 + ε3 + ε4 + ε5 + ε6 + ε7), α2 = ε1 + ε2, α3 =

ε2 − ε1, α4 = ε3 − ε2, α5 = ε4 − ε3, α6 = ε5 − ε4, α7 = ε6 − ε5}
ρ = ε2 + 2ε3 + 3ε4 + 4ε5 + 5ε6 − 17

2
ε7 + 17

2
ε8 = 17α1 + 49

2
α2 + 33α3 + 48α4

+75
2
α5 + 26α6 + 27

2
α7

i) π = $7 := ε6 + 1
2
(ε8 − ε7) (minuscule)

dim$7 = 56.

C$7 = 12 (see below)

($7, ρ) = 27
2

q$7(x) =
∏

$∈WE7
$7

(
x−$ − 9

8

)
ii) π = $1 := ε8 − ε2 (adjoint)

dim$1 = 133

C$1 = 36

($1, ρ) = 17

q$1(x) = (x− 1
2
)
∏

α∈Σ(E7)

(
x− α− 17

36

)
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Let π be the minuscule representation $7 in i). Then the diagram of the
partially ordered set of the weights of π is as follows.

0 000
0
001

↘ 7
1 000

0
011̄

↘ 6
2 000

0
11̄0

↘ 5
3 001

0
1̄00

↘ 4
4 011̄

1
000

↙ 2 ↘ 3
5 010

1̄
000 11̄0

1
000

↘ 3 ↙ 2 ↘ 1
6 11̄1

1̄
000 1̄00

1
000

↙ 4 ↘ 1 ↙ 2
7 101̄

0
100 1̄01

1̄
000

↙ 5 ↘ 1 ↙ 4
8 100

0
1̄10 1̄11̄

0
100

↙ 6 ↘ 1 ↙ 5 ↘ 3
9 100

0
01̄1 1̄10

0
1̄10 01̄0

0
100

↙ 7 ↘ 1 ↙ 6 ↘ 3 ↙ 5
10 100

0
001̄ 1̄10

0
01̄1 01̄1

0
1̄10

↘ 1 ↙ 7 ↘ 3 ↙ 6 ↘ 4
11 1̄10

0
01̄ 01̄1

0
01̄1 001̄

1
010

↘ 3 ↙ 7 ↘ 4 ↙ 6 ↓2
12 01̄1

0
001̄ 001̄

1
11̄1 000

1̄
010

↘ 4 ↙ 7 ↘ 5↙ 6↓2
13 001̄

1
101̄ 000

1̄
11̄1 000

1
1̄01

↙ 7↘ 52↓ ↙ 7↘ 5 ↓2
14 000

1̄
101̄ 000

1
1̄11̄ 001

1̄
1̄01

↙ 6↘ 5 ↙ 7↓2 ↘ 4
15 000

1
01̄0 001

1̄
1̄11̄ 011̄

0
001

↙ 62↓ ↘ 4 ↙ 7 ↘ 3
16 001

1̄
01̄0 011̄

0
011̄ 11̄0

0
001

↘ 4 ↙ 6 ↘ 3 ↙ 7 ↘ 1
17 011̄

0
11̄0 11̄0

0
011̄ 1̄00

0
001

↙ 5 ↘ 3 ↙ 6 ↘ 1 ↙ 7
18 010

0
1̄00 11̄0

0
11̄0 1̄00

0
011̄

↘ 3 ↙ 5 ↘ 1 ↙ 6
19 11̄1

0
1̄00 1̄00

0
11̄0

↙ 4 ↘ 1 ↙ 5
20 101̄

1
000 1̄01

0
1̄00

↙ 2 ↘ 1 ↙ 4
21 100

1̄
000 1̄11̄

1
000

↘ 1 ↙ 2 ↘ 3
22 1̄10

1̄
000 01̄0

1
000

↘ 3 ↙ 2
23 01̄1

1̄
000

↘ 4
24 001̄

0
100

↘ 5
25 000

0
1̄10

↘ 6
26 000

0
01̄1

↘ 7
27 000

0
001̄
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Here we use the similar notation as in Example 4.7.

The type A6 corresponding to {α1, α3, . . . , α7} is contained in type E7 .
The highest weights of the restriction (E7, π)|A6 are $7 = 000

0
001, $3 − $2 =

w2w4w5w6w7$7 = 010
1̄
000, $6−$2 = w2w4w3w1w5w4w3($3−$2) = 000

1̄
010 and

$1 − $2 = w2w4w5w6w7w3w4w5w6($6 − $2) = 100
1̄
000. Therefore (E7, π)|A6 =

(A6, $6)+(A6, $2)+(A6, $5)+(A6, $1) and C$7 =
(
6−1
6−1

)
+

(
6−1
2−1

)
+

(
6−1
5−1

)
+

(
6−1
1−1

)
=

12.

Now use Ψ′ = −Ψ and put Θi = Ψ′ \ {α′i} . Then

WΘ1(π) =
{
000

0
001, 1̄00

1
00, 1̄00

0
001

}
,

WΘ2(π) =
{
000

0
001, 010

1̄
000, 000

1̄
010, 100

1̄
000

}
,

WΘ3(π) =
{
000

0
001, 01̄0

1
000, 01̄0

0
100, 11̄0

0
001, 01̄0

1
000

}
,

WΘ4(π) =
{
000

0
001, 011̄

1
000, 101̄

0
100, 001̄

1
010, 011̄

0
001, 101̄

1
000, 001̄

0
100

}
,

WΘ5(π) =
{
000

0
001, 001

0
1̄00, 100

0
1̄10, 000

1
1̄01, 010

0
1̄00, 000

0
1̄10

}
,

WΘ6(π) =
{
000

0
001, 000

0
11̄0, 100

0
01̄1, 000

1
01̄0, 000

0
01̄1

}
,

WΘ7(π) =
{
000

0
001, 000

0
011̄, 1̄00

0
001̄, 000

0
001

}
.

From (90) with 〈αi, $i〉 = 〈αi, ρ〉 = 1
2
〈αi, αi〉 = 1

12
and

〈$7, $1〉 =
1

12
, 〈$7, $2〉 =

1

8
, 〈$7, $3〉 =

1

6
, 〈$7, $4〉 =

1

4
,

〈$7, $5〉 =
5

24
, 〈$7, $6〉 =

1

6
, 〈$7, $7〉 =

1

8
,

we have

qπ,Θ1(x;λ) =
(
x− 1

12
λ
)(
x− 1

2

)(
x+

1

12
λ− 17

12

)
,

qπ,Θ2(x;λ) =
(
x− 1

8
λ
)(
x− 1

24
λ− 5

12

)(
x+

1

24
λ− 1

)(
x+

1

8
λ− 7

4

)
,

qπ,Θ3(x;λ) =
(
x− 1

6
λ
)(
x− 1

12
λ− 5

12

)(
x− 3

4

)(
x+

1

12
λ− 4

3

)(
x+

1

6
λ− 11

6

)
,

qπ,Θ4(x;λ) =
(
x− 1

4
λ
)(
x− 1

6
λ− 1

3

)(
x− 1

12
λ− 7

12

)(
x− 11

12

)
·
(
x+

1

12
λ− 5

4

)(
x+

1

6
λ− 5

3

)(
x+

1

4
λ− 2

)
,

qπ,Θ5(x;λ) =
(
x− 5

24
λ
)(
x− 1

8
λ− 1

4

)(
x− 1

24
λ− 2

3

)(
x+

1

24
λ− 13

12

)
·
(
x+

1

8
λ− 3

2

)(
x+

5

24
λ− 25

12

)
,

qπ,Θ6(x;λ) =
(
x− 1

6
λ
)(
x− 1

12
λ− 1

6

)(
x− 3

4

)(
x+

1

12
λ− 5

4

)(
x+

1

6
λ− 13

6

)
,

qπ,Θ7(x;λ) =
(
x− 1

8
λ
)(
x− 1

24
λ− 1

12

)(
x+

1

24
λ− 5

6

)(
x+

1

8
λ− 9

4

)
.
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Example 4.9 (E8 ).

α1 α3 α4 α5 α6 α7 α8

◦——◦——◦——◦——◦——◦——◦
◦
α2

2 4 6 5 4 3 2
◦——◦——◦——◦——◦——◦——◦——•

◦
3

Ψ = {α1 = 1
2
(ε1 + ε8)− 1

2
(ε2 + ε3 + ε4 + ε5 + ε6 + ε7), α2 = ε1 + ε2, α3 =

ε2− ε1, α4 = ε3− ε2, α5 = ε4− ε3, α6 = ε5− ε4, α7 = ε6− ε5, α8 = ε7− ε6}
ρ = ε2 + 2ε3 + 3ε4 + 4ε5 + 5ε6 + 6ε7 + 23ε8 = 46α1 + 68α2 + 91α3 + 135α4

+110α5 + 84α6 + 57α7 + 29α8

i) π = αmax := ε7 + ε8 (adjoint)

dimαmax = 248 (mαmax(0) = 8)

Cαmax = 60

(αmax, ρ) = 29

qαmax(x) = (x− 1
2
)
∏

α∈Σ(E8)

(
x− α− 29

60

)
Let π be the adjoint representation αmax and αmax =

∑8
i=1 niαi , that

is, n1 = 2, n2 = 3, . . . . Put Θi = Ψ \ {αi} for i = 1, . . . , 8. The irreducible
decomposition of g as a gΘi

-module is given by Proposition 2.39 ii). In this case
LΘi

in the proposition equals {−ni,−ni+1, . . . , ni} . Suppose m ∈ LΘi
\{0} . Then

V (m) is a minuscule representation since E8 is simply-laced. Let $i (j = 1, . . . , 8)
be the fundamental weights. If we write the lowest weight and the highest weight
of V (m) by αm =

∑8
j=1 cj$j and α′m =

∑8
j=1 c

′
j$j respectively, we clearly have

ci =

{
1 if m 6= 1,−ni,

2 if m = 1,
c′i =

{
−1 if m 6= −1, ni,

−2 if m = −1,

and αm = −α′−m . Since we know the highest weights and the lowest weights of
minuscule representations of gΘi

by the previous examples, starting with αmax =
$8 = 000

0
0001, we can determine αm and α′m for m ∈ LΘi

\ {0} step by step.

For example, suppose i = 4. Then LΘ4 = {−6,−5, . . . , 6} and we have

V (6) :

000
0
0001 h.w.

001
0
1̄000 l.w.

→ 001
0
1̄000− α4 = 011̄

1
0000 is a weight of V (5)

V (5) :


011̄

1
0000 h.w.

1̄01
1̄
0000 l.w.

→ 1̄01
1̄
0000− α4 = 1̄11̄

0
1000 is a weight of V (4)

V (4) :


101̄

0
1000 h.w.

1̄11̄
0
1000

01̄1
0
0001̄ l.w.

→ 01̄1
0
0001̄− α4 = 001̄

1
1001̄ is a weight of V (3)

V (3) :


001̄

1
0100 h.w.

001̄
1
1001̄

001
1̄
001̄0 l.w.

→ 001
1̄
001̄0− α4 = 011̄

0
101̄0 is a weight of V (2)
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V (2) :


011̄

0
0010 h.w.

011̄
0
101̄0

1̄01
0
01̄00 l.w.

→ 1̄01
0
01̄00− α4 = 1̄11̄

1
11̄00 is a weight of V (1)

V (1) :


101̄

1
0001 h.w.

1̄11̄
1
11̄00

01̄2
1̄
1̄000 l.w.

On the other hand, the non-trivial irreducible subrepresentations of V (0)
correspond to the connected parts of Dynkin diagram of Θi . If

∑8
j=1 cj$j is a

lowest weight of such subrepresentations, then ci = 1. Hence, if i = 4, the lowest
weights of the non-trivial irreducible subrepresentations of V (0) are

1̄1̄1
0
0000, 001

2̄
0000, 001

0
1̄001̄.

Thus we get

WΘ4(π) = {001
0
1̄000, 1̄01

1̄
0000, 01̄1

0
0001̄, 001

1̄
001̄0, 1̄01

0
01̄00, 01̄2

1̄
1̄000}

∪ {0} ∪ {1̄1̄1
0
0000, 001

2̄
0000, 001

0
1̄001̄}

∪ {−101̄
1
0001,−011̄

0
0010,−001̄

1
0100,−101̄

0
1000,−011̄

1
0000,−000

0
0001}.

Put λΘi
= λ$i . Then, by (38), we have

qπ,Θ4(x;λ) =
(
x− 1

2

)(
x− 9

20

)(
x− 7

15

)(
x− 5

12

)(
x− 1

10
λ− 9

10

)
·
(
x− 1

12
λ− 5

6

)(
x− 1

15
λ− 11

15

)(
x− 1

20
λ− 13

20

)(
x− 1

30
λ− 17

30

)
·
(
x− 1

60
λ− 1

2

)(
x+

1

60
λ− 7

20

)(
x+

1

30
λ− 4

15

)(
x+

1

20
λ− 1

5

)
·
(
x+

1

15
λ− 2

15

)(
x+

1

12
λ− 1

12

)(
x+

1

10
λ
)
.

Similarly we get

WΘ1(π) = {100
0
0001̄, 21̄0

0
0000} ∪ {0} ∪ {100

0
001̄0} ∪ {−1̄00

1
0000,−000

0
0001},

WΘ2(π) = {1̄00
1
0000, 000

1
001̄0, 001̄

2
0000} ∪ {0} ∪ {1̄00

1
0001̄}

∪ {−000
1̄
0100,−010

1̄
0000,−000

0
0001},

WΘ3(π) = {010
1̄
0000, 1̄10

0
0001̄, 010

0
01̄00, 1̄21̄

0
0000} ∪ {0} ∪ {2̄10

0
0000, 010

1̄
0001̄}

∪ {−11̄0
0
0010,−01̄0

0
1000,−11̄0

1
0000,−000

0
0001},

WΘ5(π) = {000
0
11̄00, 01̄0

0
1000, 000

1̄
1001̄, 1̄00

0
101̄0, 001̄

0
21̄00}

∪ {0} ∪ {1̄00
1̄
1000, 000

0
11̄01̄}
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∪ {−010
0
1̄001,−000

1
1̄010,−100

0
1̄100,−001

0
1̄000,−000

0
0001},

WΘ6(π) = {000
0
011̄0, 000

1̄
0100, 1̄00

0
0101̄, 000

0
1̄21̄0} ∪ {0} ∪ {01̄0

0
0100, 000

0
011̄1̄}

∪ {−000
1
01̄01,−100

0
01̄10,−000

0
11̄00,−000

0
0001},

WΘ7(π) = {000
0
0011̄, 1̄00

0
0010, 000

0
01̄21̄} ∪ {0} ∪ {000

1̄
0010, 000

0
0012̄}

∪ {−100
0
001̄1,−000

0
011̄0,−000

0
0001},

WΘ8(π) = {000
0
0001, 000

0
001̄2} ∪ {0} ∪ {1̄00

0
0001} ∪ {−000

0
0011̄,−000

0
0001},

and

qπ,Θ1(x;λ) =
(
x− 1

2

)(
x− 3

10

)(
x− 1

30
λ− 23

30

)(
x− 1

60
λ− 1

2

)
·
(
x+

1

60
λ− 7

60

)(
x+

1

30
λ
)
,

qπ,Θ2(x;λ) =
(
x− 1

2

)(
x− 11

30

)(
x− 1

20
λ− 17

20

)(
x− 1

30
λ− 2

3

)(
x− 1

60
λ− 1

2

)
·
(
x+

1

60
λ− 13

60

)(
x+

1

30
λ− 1

10

)(
x+

1

20
λ
)
,

qπ,Θ3(x;λ) =
(
x− 1

2

)(
x− 7

15

)(
x− 23

60

)
·
(
x− 1

15
λ− 13

15

)(
x− 1

20
λ− 3

4

)(
x− 1

30
λ− 3

5

)(
x− 1

60
λ− 1

2

)
·
(
x+

1

60
λ− 17

60

)(
x+

1

30
λ− 1

6

)(
x+

1

20
λ− 1

10

)(
x+

1

15
λ
)
,

qπ,Θ5(x;λ) =
(
x− 1

2

)(
x− 5

12

)(
x− 13

30

)(
x− 1

12
λ− 11

12

)(
x− 1

15
λ− 4

5

)
·
(
x− 1

20
λ− 7

10

)(
x− 1

30
λ− 3

5

)(
x− 1

60
λ− 1

2

)(
x+

1

60
λ− 19

60

)
·
(
x+

1

30
λ− 7

30

)(
x+

1

20
λ− 3

20

)(
x+

1

15
λ− 1

15

)(
x+

1

12
λ
)
,

qπ,Θ6(x;λ) =
(
x− 1

2

)(
x− 11

30

)(
x− 9

20

)
·
(
x− 1

15
λ− 14

15

)(
x− 1

20
λ− 3

4

)(
x− 1

30
λ− 19

30

)(
x− 1

60
λ− 1

2

)
·
(
x+

1

60
λ− 4

15

)(
x+

1

30
λ− 1

6

)(
x+

1

20
λ− 1

20

)(
x+

1

15
λ
)
,

qπ,Θ7(x;λ) =
(
x− 1

2

)(
x− 3

10

)(
x− 7

15

)(
x− 1

20
λ− 19

20

)(
x− 1

30
λ− 2

3

)
·
(
x− 1

60
λ− 1

2

)(
x+

1

60
λ− 11

60

)(
x+

1

30
λ− 1

30

)(
x+

1

20
λ
)
,

qπ,Θ8(x;λ) =
(
x− 1

2

)(
x− 1

5

)(
x− 1

30
λ− 29

30

)(
x− 1

60
λ− 1

2

)
·
(
x+

1

60
λ− 1

60

)(
x+

1

30
λ
)
.

Example 4.10 (F4 ).

α1 α2 α3 α4

◦——◦=⇒◦——◦
2 3 4 2

•——◦——◦=⇒◦——◦
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Ψ = {α1 = ε2 − ε3, α2 = ε3 − ε4, α3 = ε4, α4 = 1
2
(ε1 − ε2 − ε3 − ε4)}

ρ = 11
2
ε1 + 5

2
ε2 + 3

2
ε3 + 1

2
ε4 = 8α1 + 15α2 + 21α3 + 11α4

i) π = $4 := ε1 = α1 + 2α2 + 3α3 + 2α4 (dominant short root)

dim$4 = 26 (m$4(0) = 2)

C$4 =
∑4

ν=1(±εν , ε1)
2 + 1

4

∑
(±ε1 ± ε2 ± ε3 ± ε4, ε1)

2 = 2 + 16
4

= 6

($4, ρ) = 11
2

q$4(x) =
(
x− 1

) ∏
α∈Σ(F4)
|β|<|αmax|

(
x− β − 11

12

)
ii) π = $1 := ε1 + ε2 (adjoint)

dim$1 = 52

C$1 = 18

($1, ρ) = 8

q$1(x) = (x− 1
2
)
∏

α∈Σ(F4)
|α|=|αmax|

(
x− α− 4

9

) ∏
β∈Σ(F4)
|β|<|αmax|

(
x− β − 17

36

)
Let π be the representation $4 in i). Then the diagram of the partially

ordered set of the weights of π is as follows. Here the weight 00〉00 is the only
weight with the multiplicity 2 and hence indicated by [00〉00].

0 00〉01
↘ 4

1 00〉11̄
↘ 3

2 01〉1̄0
↘ 2

3 11̄〉10
↙ 1 ↘ 3

4 1̄0〉10 10〉1̄1
↘ 3 ↙ 1 ↘ 4

5 1̄1〉1̄1 10〉01̄
↙ 2 ↘ 4 ↙ 1

6 01̄〉11 1̄1〉01̄
↙ 3 ↘ 4 ↙ 2

7 00〉1̄2 01̄〉21̄
↘ 4 ↙ 3

8 [00〉00]
↙ 4 ↘ 3

9 00〉12̄ 01〉2̄1
↘ 3 ↙ 4 ↘ 2

10 01〉1̄1̄ 11̄〉01
↘ 2 ↙ 4 ↘ 1

11 11̄〉11̄ 1̄0〉01
↙ 3 ↘ 1 ↙ 4

12 10〉1̄0 1̄0〉11̄
↘ 1 ↙ 3

13 1̄1〉1̄0
↙ 2

14 01̄〉10
↙ 3

15 00〉1̄1
↙ 4

16 00〉01̄

Now use Ψ′ = {α′1 = −α1, . . . , α
′
4 = −α4} and put Θi = Ψ′ \ {α′i} . Then we have

WΘ1(π) =
{
00〉01, 1̄0〉10, 1̄0〉01

}
,

WΘ2(π) =
{
00〉01, 11̄〉10, 01̄〉11, 11̄〉01, 01̄〉10

}
,
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WΘ3(π) =
{
00〉01, 01〉1̄0, 10〉1̄1, 00〉1̄2, 00〉00, 01〉2̄1, 10〉1̄0, 00〉1̄1},

WΘ4(π) =
{
00〉01̄, 00〉11̄, 10〉01̄, 00〉00, 00〉12̄, 00〉01̄

}
and

qπ,Θ1(x;λ) =
(
x− 1

6
λ
)(
x− 1

2

)(
x+

1

6
λ− 4

3

)
,

qπ,Θ2(x;λ) =
(
x− 1

3
λ
)(
x− 1

6
λ− 1

3

)(
x− 3

4

)(
x+

1

6
λ− 7

6

)(
x+

1

3
λ− 5

3

)
,

qπ,Θ3(x;λ) =
(
x− 1

4
λ
)(
x− 1

6
λ− 1

6

)(
x− 1

12
λ− 5

12

)(
x− 5

6

)
·
(
x− 1

)(
x+

1

12
λ− 1

)(
x+

1

6
λ− 4

3

)(
x+

1

4
λ− 7

4

)
,

qπ,Θ4(x;λ) =
(
x− 11

6
λ
)(
x− 1

12
λ− 1

12

)(
x− 1

2

)(
x− 1

)
·
(
x+

1

12
λ− 1

)(
x+

1

6
λ− 11

6

)
.

The extremal low weights of π with respect to Ψ′ are as follows:

$α′1
= $4 − α4 − α3 − α2 = α1 + α2 + 2α3 + α4,

$α′2
= $4 − α4 − α3 = α1 + 2α2 + 2α3 + α4,

$α′3
= $4 − α4 = α1 + 2α2 + 3α3 + α4,

$α′4
= $4 = α1 + 2α2 + 3α3 + 2α4.

None of them is a member of Σ(gΘ) ∪ {0} for any Θ ( Ψ′ . Hence by Proposi-
tion 2.39 i) and Lemma 3.24, the functions rα′i

(λ) (i = 1, 2, 3, 4) are not identically
zero.

Example 4.11 (G2 ).

α1 α2

◦W ◦
3 2
◦W ◦——•

Ψ = {α1 = ε1 − ε2, α2 = −2ε1 + ε2 + ε3}
ρ = −ε1 − 2ε2 + 3ε3 = 5α1 + 3α2

i) π = $1 := −ε2 + ε3 = 2α1 + α2 (multiplicity free)

dim$1 = 7

C$1 = 1
2

(
2
∑

1≤i<j≤3(εi − εj, ε1 − ε2)
2 + (0, ε1 − ε2)

2
)

= 6

($1, ρ) = 5

q$1(x) =
(
x− 1

) ∏
1≤i<j≤3

(
(x− 5

6
)2 − (εi − εj)

2
)

ii) π = $2 := −ε1 − ε2 + 2ε3 = 3α1 + 2α2 (adjoint)

dim$2 = 14

C$2 = 24

($2, ρ) = 9

q$2(x) = (x− 1
2
)
∏

α∈Σ(G2)
|α|=|αmax|

(
x− α− 3

8

) ∏
β∈Σ(G2)
|β|<|αmax|

(
x− β − 11

24

)
Consider the representation π with the highest weight $1 . Then as is

shown in [8], the weights of π are indicated by

ε2 − ε3
α1−→ ε1 − ε3

α2−→ −ε1 + ε2
α1−→ 0

α1−→ ε1 − ε2
α2−→ −ε1 + ε3

α1−→ −ε2 + ε3
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and therefore

W{α1}(π) = {ε2 − ε3, −ε1 + ε2, −ε1 + ε3},
W{α2}(π) = {ε2 − ε3, ε1 − ε3, 0, ε1 − ε2, −ε2 + ε3}.

For λ ∈ a∗Θ we put λΘ = λ1$1 + λ2$2 . Then λ1 = 0 (resp. λ2 = 0) if Θ = {α1}
(resp. {α2}) and

qπ,{α1}(x;λ) =
(
x+

λ2

2

)(
x− (α1 + α2, ρ)

6

)(
x− λ2

2
− (3α1 + 2α2, ρ)

6

)
=

(
x+

λ2

2

)(
x− 2

3

)(
x− λ2

2
− 3

2

)
,

qπ,{α2}(x;λ) =
(
x+

λ1

3

)(
x+

λ1

6
− (α1, ρ)

6

)(
x− 1

)
·
(
x− λ1

6
− (3α1 + α2, ρ)

6

)(
x− λ1

3
− (4α1 + 2α2, ρ)

6

)
=

(
x+

λ1

3

)(
x+

λ1

6
− 1

6

)(
x− 1

)(
x− λ1

6
− 1

)(
x− λ1

3
− 5

3

)
.

Moreover, from Remark 3.20, we get

rα1(λ) = 〈λΘ + ρ, (−$1 + α1)− (−$1 + α1 + α2)〉
· 〈λΘ + ρ, (−$1 + α1)− (−$1 + 3α1 + 2α2)〉

= 2〈λΘ + ρ, α2〉〈λΘ + ρ, α1 + α2〉

=
1

6
(λ2 + 1)(3λ2 + 4),

rα2(λ) =
(
〈λΘ, (−$1 + α1)− (−$1)〉 − 〈α2,−$1 + α1〉

)
·
(
〈λΘ, (−$1 + α1 + α2)− 0〉+ 〈−$1 + α1 + α2, α1〉

)
· 〈λΘ + ρ, (−$1 + α1 + α2)− (−$1 + 3α1 + α2)〉
· 〈λΘ + ρ, (−$1 + α1 + α2)− (−$1 + 4α1 + 2α2)〉

= −2

9

(
〈λΘ + ρ, α1〉

)(
〈λΘ + ρ, 3α1 + 2α2〉

)(
〈λΘ + ρ, 3α1 + α2〉

)2

= − 1

216
(λ1 + 1)(λ1 + 2)2(λ1 + 3).

Here we have used the following relations:
− 〈α2,−$1 + α1〉 = −〈α2, α1〉 =

〈ρ, 3α1 + 2α2〉
3

,

〈−$1 + α1 + α2, α1〉 = −〈α1, α1〉 = −〈ρ, 3α1 + α2〉
3

.

Note that α1 + α2, 3α1 + 2α2, 3α1 + α2 ∈ Σ(g) and rαi
(λ) 6= 0 if the condition ii)

of Theorem 3.12 (we do not assume here that λΘ + ρ is dominant) is satisfied.

Let S(a)(m) denote the space of the elements of the symmetric algebra over
a whose degree are at most m . Note that

(TraceF 2m
π )a ≡ 2(ε1 − ε2)

2m + 2(ε2 − ε3)
2m + 2(ε1 − ε3)

2m mod S(a)(2m−1)
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≡ 2(ε1 − ε2)
2m + 2(ε1 + 2ε2)

2m + 2(2ε1 + ε2)
2m

mod S(a)(ε1 + ε2 + ε3),

(TraceF 2
π )a ≡ 12(ε2

1 + ε1ε2 + ε2
2) mod S(a)(1) + S(a)(ε1 + ε2 + ε3),

(TraceF 4
π )a ≡

1

4
((TraceF 2

π )a)
2 mod S(a)(3) + S(a)(ε1 + ε2 + ε3).

Moreover (TraceF 6
π )a and

(
(TraceF 2

π )a

)3
are linearly independent in

S(a)/
(
S(a)(5) + S(a)(ε1 + ε2 + ε3)

)
.

Thus we have
Z(g) = C[TraceF 2

π ,TraceF 6
π ]. (91)

Proposition 4.12. We denote by αi the elements in Ψ(g) which are specified
by the Dynkin diagrams in the examples in this section.

For α ∈ Ψ(g) define Λα ∈ a∗ by

2
〈Λα, β〉
〈β, β〉

=

{
1 if β = α,

0 if β ∈ Ψ(g) \ {α}.
(92)

Let π∗α be the irreducible representation of g with the lowest weight −Λα and let
Λ∗

α be the highest weight of π∗α .

i) Suppose g = gln , sln , spn or o2n+1 and π is the natural representation of g.
Then (44) holds for any Θ if the infinitesimal character of the Verma module
M(λΘ) is regular, that is

〈λΘ + ρ, α〉 6= 0 (∀α ∈ Σ(g)). (93)

If λΘ+ρ is dominant, then (44) is equivalent to (41). Moreover in Proposition 3.3
we may put A = {i; di < degx qπ,Θ}.
ii) Suppose g = G2 and π is the non-trivial minimal dimensional representation
of g. Then the same statement as above holds.

iii) Suppose g = o2n with n ≥ 4 and π is the natural representation of g.

Suppose Θ ⊃ {αn−1, αn}. Then (44) holds if λΘ + ρ is regular and (44) is
equivalent to (41) if λΘ + ρ is dominant.

Suppose Θ∩{αn−1, αn} = Ø and 〈λΘ, αn−αn−1〉 = 0. In this case we may
replace qπ,Θ(x;λ) in the definition of Iπ,Θ by q′π,Θ(x;λ) given in Example 4.6. Then
the same statement as the previous case holds. Note that degx q

′
π,Θ = degx qπ,Θ−1.

In other general cases, (44) holds if the infinitesimal character of M(λΘ) is
strongly regular, that is, λΘ +ρ is not fixed by any non-trivial element of the Weyl
group of the non-connected Lie group O(2n,C). In particular, if Θ∩{αn−1, αn} =
Ø, then (44) holds under the conditions (93) and

〈λΘ + ρ, 2αi + · · ·+ 2αn−2 + αn−1 + αn〉 6= 0

for i = 2, . . . , n− 1 satisfying αi−1 ∈ Θ and αi /∈ Θ. (94)

Suppose Θ ∩ {αn−1, αn} = {αn−1}. Then

JΘ(λ) = Iπ,Θ(λ) + Iπ∗αn−1
,Θ(λ) + J(λΘ) (95)
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if (93), (94) and

〈λΘ + ρ,$ + Λαn−1 − αn−1〉 6= 0

for any $ ∈ WΘ(π∗αn−1
) satisfying $ > αn−1 − Λαn−1 (96)

hold.

In Proposition 3.3 we may put r = n and ∆1, . . . ,∆n−1 are invariant
under the outer automorphism of g corresponding to εn 7→ −εn and A = {i; di <
degx qπ,Θ} ∪ {n}.
iv) Suppose g = En with n = 6, 7 or 8 (cf. Example 4.7, 4.8, 4.9). For αi ∈ Ψ(g)
put

ι(αi) =


α1 if i = 1 or 3,

α2 if i = 2,

αn if i ≥ 4,

α̂i =


αi if i = 1 or 2,

α1 + α3 if i = 3,

αi + · · ·+ αn if i ≥ 4.

(97)

Here ι(αi) satisfies #{β ∈ Ψ(g); 〈ι(αi), β〉 < 0} ≤ 1 and α̂ is the smallest root
with α̂ ≥ α and α̂ ≥ ι(α). Let λ ∈ a∗Θ . If (93) holds and moreover λ satisfies

2〈λΘ + ρ,$ + Λι(α) − α̂〉 6= 〈$,$〉 − 〈Λι(α),Λι(α)〉
for α ∈ Θ and $ ∈ WΘ(π∗ι(α)) satisfying $ > α̂− Λι(α), (98)

then
JΘ(λ) =

∑
α∈ι(Θ)

Iπ∗α,Θ(λ) + J(λΘ). (99)

In particular, under the notation in Definition 2.20 the condition

2
〈λΘ + ρ, µ〉
〈Λι(α),Λι(α)〉

/∈ [−1, 0]

for α ∈ Θ and µ ∈ R+ with 0 < µ ≤ Λι(α) + Λ∗
ι(α) − α̂ (100)

assures (98). Moreover, if π = π∗α1
or π∗αn

, we may put A = {i; di < degx qπ,Θ}
in Proposition 3.3.

v) Suppose g = F4 . For αi ∈ Ψ(g) put

ι(αi) =

{
α1 if i ≤ 2,

α4 if i ≥ 3,
α̂i =


αi if i = 1 or 4,

α1 + α2 if i = 2,

α3 + α4 if i = 3.

(101)

Then the same statement as iv) holds for π = π∗α4
(cf. Example 4.10).

Proof. The statements i) and iii) are direct consequences of [22, Theorem 4.4]
(or Theorem 3.21) and Theorem 3.12. The statement ii) is a consequence of
Example 4.11.

Suppose g is E6 , E7 , E8 , F4 or G2 and π is a minimal dimensional non-
trivial irreducible representation of g . Then in Proposition 3.3 it follows from [17]
that the elements

∑
$∈W(π)mπ($)$di (i = 1, . . . , n) generate the algebra of the
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W -invariants of U(a) (For G2 we confirm it in Example 4.11) and hence we may
put A = {i; di < degx qπ,Θ} .

Suppose g is E6 , E7 , E8 or F4 . Fix α ∈ Θ. Then Theorem 3.21 assures
X−α ∈ Iπ∗

ι(α)
,Θ(λ) + J(λΘ) if rα,$α(λ) 6= 0. Here rα,$α(λ) is defined by (80) with

π = π∗ι(α) and $α = −Λι(α) + (α̂ − α). Then the assumption of Remark 3.20 v)

holds and therefore the second factor
∏L

i=1

(
· · ·

)
of rα,$α(λ) in (80) does not

vanish under the condition (93). On the other hand, $ ∈ W(π∗ι(α)) which does

not satisfy $ ≤ −Λι(α) + α̂ always satisfies $ > −Λι(α) + α̂ because {γ1, . . . , γK}
in Remark 3.20 is of type AK and 〈Λι(α), β〉 = 〈γi, β〉 = 0 for i = 1, . . . , K−1 and
β ∈ Ψ(g) \ {γ1, . . . , γK} . Hence (98) assures that the first factor of rα,$α(λ) does
not vanish. Thus we have X−α ∈ Iπ∗

ι(α)
,Θ(λ) + J(λΘ). It implies (99). It is clear

that (98) follows from (100) since 〈Λι(α),Λι(α)〉 ≥ 〈$,$〉 for $ ∈ W(π∗ι(α)).

Remark 4.13. Suppose g = gln or g is simple. In the preceding proposition
we explicitly give a two sided ideal IΘ(λ) of U(g) which satisfies JΘ(λ) = IΘ(λ)+
J(λΘ) if at least

Re〈λΘ + ρ, α〉 > 0 for α ∈ Ψ(g). (102)

In particular, this condition is valid when λ = 0.

Remark 4.14. Suppose g = gln . Then in [20], the generator system of
Ann

(
MΘ(λ)

)
is constructed for any Θ and λ through quantizations of elementary

divisors. It shows that the zeros of the image of the Harish-Chandra homomor-
phism of Ann

(
MΘ(λ)

)
equals {w.λΘ; w ∈ W (Θ)} and proves that (41) holds if

and only if (103) is not valid for any positive numbers j and k which are smaller
or equal to L . Here we note that this condition for (41) follows from this descrip-
tion of the zeros and Lemma 3.4 and the following Lemma with the notation in
Example 4.2.

Lemma 4.15. Let n0 = 0 < n1 < n2 < · · · < nL = n be a strictly increasing
sequence of non-negative integers. Let λ = (λ1, . . . , λL) ∈ CL . Define λ̄ =
(λ̄1, . . . , λ̄n) ∈ Cn by

λ̄ν = λk + (ν − 1)− n− 1

2
if nk−1 < ν ≤ nk

and put
Λk = {λ̄nk−1+1, λ̄nk−1+2, . . . , λ̄nk

}.

Then there exists ν with nj−1 < ν < nj satisfying (ν, ν + 1)λ̄ ∈ W (Θ)λ̄ if and
only if there exists k ∈ {1, . . . , L} such that

Λk ∩Λj 6= Ø, Λj 6⊂ Λk and
(
µ ∈ Λj \Λk, µ

′ ∈ Λk ⇒ (µ′− µ)(k− j) > 0
)
. (103)

Here (i, j) ∈ Sn is the transposition of i and j and

W (Θ) = {σ ∈ Sn; σ(i) < σ(j) if there exists k with nk−1 < i < j ≤ nk},
σµ = (µσ−1(1), . . . , µσ−1(n)) for µ = (µ1, . . . , µn) ∈ Cn.
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Proof. Suppose (103). Then there exists m such that{
j < k, 1 ≤ m < nj − nj−1 and nk−1 + nj − nj−1 −m ≤ nk,

λ̄nj−1+ν = λ̄nk−1+ν−m for m < ν ≤ nj − nj−1

or {
j > k, 1 ≤ m < nj − nj−1 and nk −m+ 1 > nk−1,

λ̄nj−1+ν = λ̄nk+ν−m for 1 ≤ ν ≤ m.

Defining σ ∈ W (Θ) by

σ = (nj−1 +m,nj−1 +m+ 1)
∏

m<ν≤nj−nj−1

(nj−1 + ν, nk−1 + ν −m),

or

σ = (nj−1 +m,nj−1 +m+ 1)
∏

1≤ν≤m

(nj−1 + ν, nk + ν −m),

respectively, we have (ν, ν + 1)λ̄ = σλ̄ ∈ W (Θ)λ̄ with ν = nj−1 +m .

Conversely suppose (ν, ν+1)λ̄ = σλ̄ for suitable ν ∈ {nj−1 +1, . . . , nj − 1}
and σ ∈ W (Θ). Put

{`1, . . . , `m} = {`; ` ≤ nj−1 and λ̄` = λ̄nj−1+1},
{`′m+2, . . . , `

′
m+m′+1} = {`′; `′ > nj and λ̄`′ = λ̄nj

}

and define 
`′i = `i + (nj − nj−1 − 1) if i ≤ m,

`i = `′i − (nj − nj−1 − 1) if i ≥ m+ 2,

`m+1 = nj−1 + 1, `′m+1 = nj.

Assume that (103) is not valid for any k . Then for i ∈ I := {1, . . . ,m+m′ + 1} ,
there exist integers Ni with nNi−1

< `i < `′i ≤ nNi
and therefore λ̄`i

= λ̄nj−1+1

and λ̄`′i
= λ̄nj

.

Note that #I1 ≤ m+ 1 and #I2 ≤ m′ by denoting

I1 = {i ∈ I; σ(`i) ≤ nj} and I2 = {i ∈ I; σ(`′i) > nj}.

Since σ(`i) < σ(`′i), we have I1∪I2 = I and therefore #I1 = m+1 and #I2 = m′ .
Then there exists i0 with nj−1 < σ(`i0) ≤ nj . Since I1 ∩ I2 = Ø, we have
σ(`′i0) ≤ nj , which implies σ−1(ν ′) = `i0 + ν ′ − nj−1 − 1 for nj−1 < ν ′ ≤ nj . It
contradicts to the assumption (ν, ν + 1)λ̄ = σλ̄ .

Remark 4.16. Suppose g = gln and π is its natural representation. Then the
condition rα(λ) 6= 0 for any α ∈ Θ is necessary and sufficient for (44) (cf. [22,
Remark 4.5]). Under the notation in the preceding lemma, it is easy to see that
the condition is equivalent to the fact that

Λk∩Λj 6= Ø, Λj 6⊂ Λk and
(
∃µ ∈ Λj \Λk, ∃µ′ ∈ Λk such that (µ′−µ)(k−j) > 0

)
does not hold for any positive numbers k and j smaller or equal to L .



Oda and Oshima 217

A Infinitesimal Mackey’s Tensor Product Theorem

In this appendix we explain infinitesimal Mackey’s tensor product theorem
following the method given in [16].

Let g be a finite dimensional Lie algebra over C and p a subalgebra of
g . Let V and U be a U(g)-module and a U(p)-module, respectively. We denote
by V |p and Indg

p U the restriction of the coefficient ring U(g) to U(p) and the
induced representation U(g)⊗U(p) U in the usual way.

Theorem A1 (infinitesimal Mackey’s tensor product theorem). The map de-
fined by

U(g)⊗U(p) (U ⊗C V |p) → (U(g)⊗U(p) U)⊗C V,

D ⊗U(p) (u⊗C v) 7→ D · [(1⊗U(p) u)⊗C v]
(104)

gives a canonical U(g)-module isomorphism

Indg
p(U ⊗C V |p) '

(
Indg

p U
)
⊗C V. (105)

To prove this we need two lemmas.

Lemma A2. Let R be a ring and R-Mod the category of left R-modules. For
M,N ∈ R-Mod consider FM : · 7→ HomR(M, ·) and FN : · 7→ HomR(N, ·), which
are functors from R-Mod to the category of abelian groups. Suppose that FM and
FN are naturally equivalent, namely, there exists an assignment A 7→ τA for each
object A ∈ R-Mod of an isomorphism τA : HomR(M,A) → HomR(N,A) such that
FN(f)◦ τA = τB ◦FM(f) for each f ∈ HomR(A,B). Then M ' N as R-modules.

Proof. Put ϕ = τ−1
N (idN) ∈ HomR(M,N) and ψ = τM(idM) ∈ HomR(N,M).

Then ϕ ◦ ψ = FN(ϕ)(ψ) = FN(ϕ) ◦ τM(idM) = τN ◦ FM(ϕ)(idM) = τN(ϕ) = idN .
Similarly ψ ◦ ϕ = idM . Hence M ' N .

Lemma A3. Let (πi, Vi) (i = 1, 2, 3) be U(g)-modules. Consider HomC(V2, V3)
as a U(g)-module by XΦ = π3(X) ◦ Φ − Φ ◦ π2(X) for Φ ∈ HomC(V2, V3) and
X ∈ g. Then naturally

HomU(g)(V1 ⊗C V2, V3) ' HomU(g)(V1,HomC(V2, V3)).

Proof. We have only to define the mapping ϕ 7→ Φ from the left-hand side to
the right-hand side by (Φ(v1)) (v2) = ϕ(v1 ⊗ v2) for v1 ∈ V1 and v2 ∈ V2 .

Proof of Theorem A1. Lemma A3 implies the following isomorphism for a
given U(g)-module A :

HomU(g)

(
(U(g)⊗U(p) U)⊗C V,A

)
' HomU(g)

(
U(g)⊗U(p) U,HomC(V,A)

)
' HomU(p) (U,HomC(V |p, A|p))
' HomU(p) (U ⊗C V |p, A|p)
' HomU(g)

(
U(g)⊗U(p) (U ⊗C V |p), A

)
.

It gives a natural equivalence between F(U(g)⊗U(p)U)⊗CV and FU(g)⊗U(p)(U⊗CV |p) under
the notation of Lemma A2 with R = U(g). Hence by Lemma A2, we have (105).
It is easy to see the isomorphism is explicitly given by (104).
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B Undesirable Cases

In this appendix we give counter examples stated in Remark 3.23. Let
g = sln and use the notation in §2. and §3.. Suppose the Dynkin diagram of
the fundamental system Ψ = {α1, . . . , αn−1} is the same as in Example 4.2. Let
{Λ1, . . . ,Λn−1} be the system of fundamental weights corresponding to Ψ. Let π
be the irreducible representation of g with lowest weight π̄ = −m1Λ1 − m2Λ2 .
Here m1 and m2 are positive integers. Then the multiplicity of the weight
$′ := π̄ + α1 + α2 ∈ W(π) equals 2.

Now take Θ = Ψ \ {α2} = {α1, α3, α4, . . . , αn−1} . Since the multiplicity
of the weight π̄ + α2 is 1, both $′ and π̄ + α2 belong to WΘ(π). On the other
hand, by Remark 3.17, the weight $αn−1 := π̄ + α2 + α3 + · · ·+ αn−2 is a unique
extremal low weight of π with respect to αn−1 . Note that {$ ∈ WΘ(π); $ ≤
$αn−1} = {π̄, π̄ + α2} and the weight $′

αn−1
:= π̄ + α2 + α3 + · · ·+ αn−1 satisfies

$′
αn−1

|aΘ
= $′|aΘ

= (π̄ + α2)|aΘ
6= π̄|aΘ

. Moreover, it follows from Lemma 2.22

Dπ($′)−Dπ(π̄ + α2) = −〈π̄ + α2, α1〉 =
m1 + 1

2
〈α1, α1〉,

Dπ($′
αn−1

)−Dπ(π̄ + α2) = −〈α2, α3〉 − · · · − 〈αn−2, αn−1〉 =
n− 3

2
〈α1, α1〉.

It shows the first factor of the function (80) with (α,$α) = (αn−1, $αn−1) is
identically zero if n = m1 + 4.
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[4] —, “Groupes et algèbres de Lie, Chapitres 7 et 8, ” Diffusion C.C.L.S.,
Paris, 1975.
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Henri Poincaré, Sect. A 32 (1980), 203–219.



Oda and Oshima 219

[11] , Characteristic identities for semi-simple Lie algebras, J. Aus-
tral. Math. Soc. Ser. B 26 (1985), 257–283.

[12] Joseph, A., A characteristic variety for the primitive spectrum of a semi-
simple Lie algebra, In: “Non-Commutative Harmonic Analysis Marseille-
Liminy, 1976”, Lect. Notes in Math. 587 (1977), Springer, 102–118.

[13] —, Dixmier’s problem for Verma and principal series submodules, J. Lon-
don Math. Soc. 20 (1979), 193–204.

[14] Kostant, B., Lie group representations on polynomial rings, Amer. J.
Math. 85 (1963), 327–404.

[15] —, On the tensor product of a finite and an infinite dimensional represen-
tation, J. Funct. Anal. 20 (1975), 257–285.

[16] Matsumoto, H., “Enveloping algebra Nyûmon”,” Lectures in Mathemati-
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