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Symplectic Submanifolds and Symplectic Ideals
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Abstract. Let N be a Poisson manifold with global coordinate functions.
We define a symplectic ideal of the ring C∞(N) of smooth functions and investi-
gate a relationship between symplectic submanifolds of N and symplectic ideals
of C∞(N).
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Introduction

Poisson structures have recently played an important role in many branches of
mathematics and have been studied by many mathematicians, for instance, in [1],
[2], [5], [6], [7], [8] and [9]. It is well known that every Poisson manifold can be
written as a disjoint union of maximal connected symplectic submanifolds, called
symplectic leaves (see [9]), and Hodges-Levasseur-Toro and Vancliff proved in [5]
and [8] that symplectic leaves of certain Poisson varieties correspond bijectively
to primitive ideals of quantized algebras of the coordinate ring of a given Poisson
variety if the Poisson structure is algebraic. But every symplectic leaf of a Poisson
variety is not determined by a Poisson ideal (see Remark 2.3) and thus symplectic
leaf is a concept of a Poisson manifold but not a Poisson variety. The purpose of
this note is to give a definition for symplectic ideal in the ring of smooth functions
on a Poisson manifold and see how closely the concept ‘symplectic ideal’ is related
to the geometric concept ‘symplectic submanifold’(see Definition 1.2 and Theorem
1.4), and find symplectic submanifolds for several Poisson manifolds using the main
result Theorem 1.4.

Assume throughout that all spaces will be over the complex number field
C . Recall that a finite dimensional smooth manifold N is said to be a Poisson
manifold if the ring C∞(N) of its smooth functions is a Poisson algebra, that is,
there exists a bilinear map {·, ·} : C∞(N) × C∞(N) −→ C∞(N) such that, for
any f, g, h ∈ C∞(N),
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• {f, g} = −{g, f} (Lie identity)

• {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (Jacobi identity)

• {fg, h} = f{g, h}+ {f, h}g (Leibniz rule)

Assume throughout the paper that N denotes a finite dimensional Poisson
manifold with global coordinate functions x1, x2, · · · , xn .

1. Symplectic submanifolds

For any f ∈ C∞(N), the linear map

hf : C∞(N) −→ C∞(N), hf (g) = {f, g}

is a derivation which is called the Hamiltonian vector field induced by f . For each
p ∈ N , there exists a natural bilinear form 〈·, ·〉p on the cotangent space T ∗

p (N)
defined by

〈df, dg〉p = {f, g}(p)

for all f, g ∈ C∞(N). This is equivalent to the property that, for each p ∈ N ,
there exists a natural linear map

Bp : T ∗
p (N) −→ Tp(N), Bp(df)(g) = {f, g}(p)

for all f, g ∈ C∞(N). If the bilinear form 〈·, ·〉p is non-degenerate for each p ∈ N
then N is said to be symplectic.

Define an equivalence relation ∼ on N as follows: For p, q ∈ N , p ∼ q
if and only if there exists a piecewise smooth curve in N joining p to q , each
smooth segment of which is part of an integral curve determined by Hamiltonian
vector field. Then, by [9, Proposition 1.3], the equivalence classes are (immersed)
symplectic submanifolds of N , called symplectic leaves. Moreover, if M is a
symplectic leaf of N then

rank(Bp) = dim(M) (1)

for each p ∈ M .

Note that T ∗
p (N) is canonically isomorphic to mp/m

2
p as vector spaces,

where
mp = {f ∈ C∞(N) | f(p) = 0}.

An ideal I of C∞(N) is said to be a Poisson ideal if {I, C∞(N)} ⊆ I . For an
ideal I of C∞(N), denote by (I : H(C∞(N))) the largest Poisson ideal of C∞(N)
contained in I . That is, (I : H(C∞(N))) is the sum of all Poisson ideals contained
in I .

Lemma 1.1. For any f ∈ (mp : H(C∞(N))), df ∈ ker Bp .

Proof. Since (mp : H(C∞(N))) is a Poisson ideal contained in mp , we have
immediately that {f, g} ∈ mp for any f ∈ (mp : H(C∞(N))) and g ∈ C∞(N). It
completes the proof.

The above lemma motivates the following definition.
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Definition 1.2. A Poisson ideal P of C∞(N) is said to be a symplectic ideal
if there exists an element p ∈ N such that P = (mp : H(C∞(N))). That is, P is
the largest Poisson ideal contained in a maximal ideal of the form mp .

Setting cij = {xi, xj} , i, j = 1, 2, · · · , n , the Lie identity and the Jacobi
identity induce the following conditions:

cij = −cji (2)∑
i

cir
∂cst

∂xi

+ cis
∂ctr

∂xi

+ cit
∂crs

∂xi

= 0 (3)

since {f, xr} =
∑

i
∂f
∂xi

cir for all f ∈ C∞(N). Let Id be the ideal of C∞(N)
generated by all d× d-minors of the n× n-matrix [cij] . Note that

C∞(N) ⊇ I1 ⊇ I2 ⊇ I3 ⊇ · · ·

and that I1 is a Poisson ideal. In fact, we have the following.

Lemma 1.3. For each d, Id is a Poisson ideal of C∞(N).

Proof. Let

C =


cs1t1 cs1t2 · · · cs1td

cs2t1 cs2t2 · · · cs2td

· · · · · ·
csdt1 csdt2 · · · csdtd


be a d× d-submatrix of [cij] . Using (2) and (3), we have that, for each k ,

{|C|, xk} =
∑
σ∈Sd

sgn(σ){cs1tσ(1)
cs2tσ(2)

· · · csdtσ(d)
, xk}

=
n∑

i=1

∑
σ∈Sd

d∑
`=1

sgn(σ)(cs1tσ(1)
· · · ĉs`tσ(`)

· · · csdtσ(d)
)
∂cs`tσ(`)

∂xi

=
n∑

i=1

∑
σ∈Sd

d∑
`=1

sgn(σ)(cs1tσ(1)
· · · cs`i · · · csdtσ(d)

)
∂ctσ(`)k

∂xi

− sgn(σ)(cs1tσ(1)
· · · citσ(`)

· · · csdtσ(d)
)
∂cks`

∂xi

=
n∑

i=1

d∑
`=1

|C(`,i)|∂ct`k

∂xi

− |C(`,i)|
∂cks`

∂xi

∈ Id,

where ĉs`tσ(`)
= cik and C(`,i) (resp., C(`,i) ) is the d × d-matrix obtained from C

by replacing `-row (resp., `-column) by the row vector (cit1 , · · · , citd) (resp., the
column vector (cs1i, · · · , csdi)

T ). It follows that Id is a Poisson ideal of C∞(N)
since

{|C|, f} =
n∑

k=1

{|C|, xk}
∂f

∂xk

for any f ∈ C∞(N).
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For any symplectic ideal P of C∞(N), set

S(P ) = V(P )−
⋃

P ⊂ Q

symplectic

V(Q),

where
V(I) = {p ∈ N | f(p) = 0 for all f ∈ I}

for a subset I ⊆ C∞(N).

Theorem 1.4. For every symplectic ideal P of C∞(N), S(P ) is a symplectic
submanifold of N and

N =
⊔

P symplectic

S(P ).

Proof. For any p, q ∈ N , define a relation

p ∼ q ⇔ (mp : H(C∞(N))) = (mq : H(C∞(N))).

Then the relation ∼ is an equivalence relation and thus N is a disjoint union of
the equivalence classes S(P ), P symplectic ideals.

We begin with adapting the proof of [1, 3.5 Lemma]. For any element
p ∈ N , the Poisson ideal P = (mp : H(C∞(N)) is symplectic, p ∈ V(P ) and, for
any element f ∈ C∞(N), the canonical image of f in C∞(N)/P , denoted by f ,
may be considered as a smooth function on V(P ). Let B(ε) be the ε-ball and
denote by

φ : B(ε) −→ N, φ : B(ε) −→ V(P )

the integral curves to the respective Hamiltonian vector fields hf and hf such that

φ(0) = p = φ(0). For any g ∈ C∞(N), we have that

d

dt
(g ◦ φ) = {f, g} ◦ φ (4)

d

dt
(g ◦ φ) = {f, g} ◦ φ (5)

by the definition of integral curve. The left hand side of (5) is d
dt

(g ◦ φ) and the

right hand side of (5) is {f, g} ◦ φ since P is a Poisson ideal. Hence, comparing
this with (4), we deduce from the uniqueness of integral curves in a neighborhood
of 0 that φ = φ . Since symplectic leaves are determined by integral curves to
Hamiltonians, we conclude that the symplectic leaf containing p is contained in
V(P ).

Let M be a symplectic leaf of N with dimension m . Then the canonical
map

jM : C∞(N) −→ C∞(M), jM(f) = f |
M

is a Poisson homomorphism by [2, 1.1 B] and

dim(mq/ ker(jM) + m2
q) = dim(M) = m (6)
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for every q ∈ M . Fix an element p ∈ M and let

P = (mp : H(C∞(N)), Q = (mq : H(C∞(N))),

where q ∈ M . Then M ⊆ V(P )∩V(Q) by the above paragraph, and thus P = Q
since Q ⊆ mp and P ⊆ mq . It follows that p ∼ q and M ⊆ S(P ). Moreover, we
have that

ker(jM) ⊆ P = (mp : H(C∞(N)) ⊆ mp

and thus

m = rank(Bp) ≤ dim(mp/P + m2
p) ≤ dim(mp/ ker(jM) + m2

p) = m

by (1), (6) and Lemma 1.1, where

Bp : T ∗
p (N) = mp/m

2
p −→ Tp(N) = (mp/m

2
p)
∗

is the canonical linear map. It follows that

rank(Bp) = dim(mp/P + m2
p) = dim(mp/ ker(jM) + m2

p). (7)

Suppose that there exists r ∈ S(P ) such that rank(Br) 6= rank(Bp), say
d − 1 = rank(Br) < rank(Bp). Let Z be the symplectic leaf containing r . Then
Z ⊆ S(P ) by the above paragraph and, by (7),

dim(mp/P + m2
p) = rank(Bp) 6= rank(Br) = dim(mr/P + m2

r).

The ideal Id of C∞(N) generated by all d × d-minors of the matrix [cij] is a
Poisson ideal contained in P by Lemma 1.3 since r ∈ V(Id), and thus p ∈
V(Id). It follows that rank(Bp) ≤ d − 1, a contradiction. Hence, for each
q ∈ S(P ), rank(Bq) is constant m . For each point q ∈ S(P ), we may find a
local coordinate y1, · · · , ym, z1, · · · , zm, u1, · · · , uk of an open neighborhood U of
q such that dim(N) = 2m + k , {yi, zj} = δij = −{zj, yi} and the brackets of the
rest pairs are zero at the point q . Identify U and an open subset of Cn such that
q is the origin in the identification. Note that

hyi
(q) =

∂

∂zi

|q, hzi
(q) = − ∂

∂yi

|q, hui
(q) = 0.

Denote by ϕi and ϕm+i the local flows of the respective Hamiltonian vector fields
hyi

and hzi
around the origin 0 = p . Then since

d

dt
(
∑

ϕi(ait) + ϕm+i(bit)) =
∑

aihyi
+

∑
bihzi

= hv,

where v =
∑

aiyi + bizi , the map ϕv(t) =
∑

ϕi(ait) + ϕm+i(bit) is the local
flow of the Hamiltonian vector field hv . This shows that S(P ) is an immersed
submanifold with dimension 2m which is symplectic and the proof is complete.

Remark 1.5. Let N be a Poisson variety. Then N is a smooth Poisson
manifold and the coordinate ring C[N ] of the Poisson variety N is contained in the
ring C∞(N) of all smooth functions. By Theorem 1.4 and Remark 2.3 below, we
have that the symplectic submanifolds of N are determined by symplectic ideals
of C∞(N) but not of C[N ] . That is, the coordinate ring C[N ] does not have
sufficiently many elements enough to determine symplectic submanifolds.
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2. Examples

Here we find symplectic submanifolds for several Poisson manifolds using Theorem
1.4.

Example 2.1. The 2-space C2 is a Poisson manifold such that C∞(C2) has
the Poisson bracket {x, y} = xy , where x, y are the coordinate functions. Since
yC∞(C2) is a Poisson ideal and C∞(C2)/yC∞(C2) has the trivial Poisson bracket,
m(α,0) is a symplectic ideal for each α ∈ C . Similarly m(0,α) is also a symplectic
ideal for each α ∈ C .

Let p = (α, β) ∈ (C×)2 . Then Bp : T ∗
p (C2) −→ Tp(C2) is an isomorphism

because the matrix[
{x− α, x− α} {x− α, y − β}
−{x− α, y − β} {y − β, y − β}

]
|p

=

[
0 αβ

−αβ 0

]
is nonsingular. Hence (C×)2 is a symplectic submanifold. It follows that the
maximal symplectic submanifolds are as follows:

0-dim. symp. : {(γ, 0)}, {(0, γ)} (γ ∈ C)
2-dim. symp. : {(α, β) | α, β ∈ C×}

Example 2.2. The manifold C3 is a Poisson manifold such that C∞(C3) has
the Poisson bracket

{x, y} = 0, {x, z} = αx, {y, z} = y (8)

for some nonzero real number α , where x, y, z are the coordinate functions.
Since the ideal xC∞(C3) + yC∞(C3) is a Poisson ideal and the Poisson algebra
C∞(C3)/(xC∞(C3) + yC∞(C3)) has the trivial Poisson bracket, we have immedi-
ately that xC∞(C3) + yC∞(C3) + (z − c)C∞(C3) is a symplectic ideal for each
c ∈ C .

Since xC∞(C3) and yC∞(C3) are Poisson ideals, X = 0 × C × C and
Y = C × 0 × C are Poisson submanifolds with the respective coordinate rings
C∞(C3)/xC∞(C3) and C∞(C3)/yC∞(C3). For any p = (0, α, β) ∈ X , α 6= 0, the
natural linear map Bp : T ∗

p (X) −→ Tp(X) is an isomorphism, and thus X is a
symplectic submanifold. Similarly, Y is also a symplectic submanifold. Note that
(x − dyα)C∞(C3) is a Poisson ideal for each d ∈ C× . Setting Zd = {(dcα, c, e) |
c ∈ C×, e ∈ C} for each d ∈ C× , Zd is a symplectic submanifold since the natural
linear map Bp : T ∗

p (Zd) −→ Tp(Zd) is an isomorphism. Therefore the maximal
symplectic submanifolds are as follows:

0-dim. symp. : {(0, 0, c)} (c ∈ C)
2-dim. symp. : {(0, c, d) | c ∈ C×, d ∈ C}

{(c, 0, d) | c ∈ C×, d ∈ C}
{(dcα, c, e) | c ∈ C×, e ∈ C} (d ∈ C×)

Remark 2.3. Suppose that α given in (8) is irrational. Then the smooth
function x − dyα ∈ C∞(C3) defining the symplectic submanifold Zd is not an
element of the polynomial ring C[x, y, z] , hence C3 with Poisson bracket (8) is not
algebraic. That is, all symplectic leaves of the Poisson variety C3 with Poisson
bracket (8) are not induced by Poisson ideals of its coordinate ring C[x, y, z] .
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Example 2.4. Let A be the ring of smooth functions of the smooth manifold
M2(C) of 2 × 2-matrices and let a, b, c, d be the coordinate functions. It is well-
known that M2(C) is a Poisson manifold with Poisson bracket

{a, b} = 2ab {a, c} = 2ac {b, c} = 0
{b, d} = 2bd {c, d} = 2cd {a, d} = 4bc

Note that (ad − bc − µ)A , (b − λc)A , bA and cA are Poisson ideals of A for all
µ ∈ C and λ ∈ C× . Since A/(bA + cA) is a Poisson algebra with trivial Poisson
bracket, every symplectic ideal containing bA + cA is of the form

(a− α)A + bA + cA + (d− β)A (α, β ∈ C).

Now A/cA is a Poisson algebra with Poisson bracket

{a, b} = 2ab, {a, d} = 0, {b, d} = 2bd

and its symplectic ideals contain ad − µ , µ ∈ C . Similarly, A/bA is a Poisson
algebra with Poisson bracket

{a, c} = 2ac, {a, d} = 0, {c, d} = 2cd

and its symplectic ideals contain ad− µ , µ ∈ C .

Note that (ad− bc− µ)A + (b− λc)A , λ ∈ C× , is a Poisson ideal of A and

X = V((ad−bc−µ)A+(b−λc)A) is a Poisson submanifold. Let p =

[
α β
γ δ

]
∈ X

such that βγ 6= 0. Now the bilinear map Bp in X is an isomorphism since the
induced matrix [

{a, a} {a, d}
{d, a} {d, d}

]
|p

=

[
0 2βγ

−2βγ 0

]
is nonsingular. Therefore the maximal symplectic submanifolds of M2(C) are as
follows.

0-dim. symp. :

{
(

α 0
0 β

)
}, {

(
0 α
0 0

)
}, {

(
0 0
α 0

)
} α, β ∈ C

2-dim. symp. :

{
(

0 0
α β

)
| α, β ∈ C×}, {

(
0 α
0 β

)
| α, β ∈ C×}

{
(

α 0
β 0

)
| α, β ∈ C×}, {

(
α β
0 0

)
| α, β ∈ C×}

{
(

α 0
β α−1λ

)
| α, β ∈ C×} λ ∈ C×

{
(

α β
0 α−1λ

)
| α, β ∈ C×} λ ∈ C×

{
(

α λγ
γ β

)
| α, β ∈ C, γ ∈ C×, αβ − λγ2 = µ} µ ∈ C, λ ∈ C×
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Example 2.5. In the ring A of smooth functions on M2(C) given in Example
2.4, the ideal (ad − bc − 1)A is a Poisson ideal and thus the special linear group
SL2(C) is a Poisson manifold with Poisson bracket induced from M2(C). By
Example 2.4, the maximal symplectic submanifolds of SL2(C) are as follows (see
[4, Theorem B.2.1]).

0-dim. symp. :

{
(

λ 0
0 λ−1

)
} λ ∈ C×

2-dim. symp. :

{
(

α 0
β α−1

)
| α, β ∈ C×}

{
(

α β
0 α−1

)
| α, β ∈ C×}

{
(

α λγ
γ β

)
| α, β ∈ C, γ ∈ C×, αβ − λγ2 = 1} λ ∈ C×
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