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Abstract. Four dimensional simply connected Lie groups admitting a pseudo-
Kähler metric are determined. The corresponding Lie algebras are modelled and
the compatible pairs (J, ω) are parametrized up to complex isomorphism (where
J is a complex structure and ω is a symplectic structure). Such structure gives
rise to a pseudo-Riemannian metric g , for which J is a parallel. It is proved that
most of these complex homogeneous spaces admit a compatible pseudo-Kähler
Einstein metric. Ricci flat and flat metrics are determined. In particular Ricci
flat unimodular pseudo-Kähler Lie groups are flat in dimension four. Other
algebraic and geometric features are treated. A general construction of Ricci
flat pseudo-Kähler structures in higher dimension on some affine Lie algebras is
given. Walker and hypersymplectic metrics are compared.
Mathematics Subject Classification: 32Q15, 32Q20, 53C55, 32M10, 57S25,
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1. Introduction

Simply connected real Lie groups endowed with a left invariant pseudo-Riemannian
Kähler metric are in correspondence with Kähler Lie algebras. Kähler Lie algebras
are real Lie algebras g equipped with a pair (J, ω) consisting of a complex structure
J and a compatible symplectic structure ω . A Kähler structure on a Lie algebra
determines a pseudo-Riemannian metric g defined as

g(x, y) = ω(Jx, y) x, y ∈ g

not necessarily definite, and for which J is parallel. The Lie algebra (g, J, g) is
also known as a pseudo-Kähler Lie algebra or indefinite Kähler Lie algebra. Kähler
Lie algebras are special cases of symplectic Lie algebras and of pseudometric Lie
algebras and therefore tools of both fields can be used to their study.

Lie algebras (resp. homogenous manifolds) admitting a definite Kähler
metric were exhaustive studied by many authors. Indeed the condition of the
pseudometric to be definite impose restrictions on the structure of the Lie algebra
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[7] [13] [12] [17]. In the nilpotent case the metric associated to a pair (J, ω) cannot
be definite positive [6]. However this is not the case in general for solvable Lie
algebras.

In this paper we describe Kähler four dimensional Lie algebras. Since four
dimensional symplectic Lie algebras must be solvable [9], our results concern all
possibilities in this dimension. Similar studies in the six dimensional nilpotent
case were recently given in [11].

We prove that four dimensional completely solvable Kähler Lie algebras and
aff(C) are modelled on one of the following short exact sequences of Lie algebras:

0 −→ h −→ g −→ Jh −→ 0 orthogonal sum

0 −→ h −→ g −→ k −→ 0 h and k J-invariant subspaces,

where in both cases h is an ω -lagrangian ideal of g and (hence abelian) and Jh

and k are ω -isotropic subalgebras. While the first sequence splits, the second one
does not necessarily split. There are also three kind of non completely solvable
four dimensional Lie algebras admitting a Kähler structure which can be modelled
on other sequences. In all cases the compatible pairs (J, ω) are parametrized up
to complex isomorphism.

The next step is to do a geometric study of these spaces. We compute
metrics, curvature and Ricci curvature tensors. Making use of the above sequences
it is possible to get information about totally geodesic subspaces. The results from
this study are summarized in the following:

- the neutral metric on the Lie algebras satisfying the second short exact
sequence are Walker metrics;

- in 8 of the 11 families of Kähler Lie algebras there exists an Einstein
representative among the compatible pseudo-Kähler metrics.

- in the unimodular case there is an equivalence between Ricci flat and flat
metrics in dimension four.

- aside from the hypersymplectic Lie algebras [15] [1], any Ricci flat metric
is provided either by (R× e(2), J), with e(2) the Lie algebra of the group of rigid
motions of R2 or by (aff(C), J2), the real Lie algebra underlying the Lie algebra
of the affine motions group of C . Furthermore the Ricci flat pseudometrics are
deformations of flat pseudo-Kähler metrics.

If we look at the Lie algebras admitting abelian complex structures we prove
that a Lie algebra which admits this kind of complex structures and it is symplectic
then it is also Kähler. Moreover if this is the case, (g, J) is Kähler if and only if J
is abelian. For instance the Lie algebra aff(C) has both abelian and non abelian
complex structures; however only the abelian ones admit a compatible symplectic
form.

Finally we try to generalize our results. We construct Kähler structures
on affine Lie algebras aff(A), where A is a commutative algebra. This type of
Lie algebras cover all cases of four dimensional Lie algebras having abelian com-
plex structures [5]. We give examples in higher dimensions of Ricci flat pseudo-
Riemannian metrics by generalizing the Kähler structure of (aff(C), J2) to affine
Lie algebras aff(A) where A is a commutative complex associative algebra. It is
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proved that a Walker Kähler metric on a Lie algebra g can be hypersymplectic
whenever some extra condition is satisfied. In particular a Walker metric compat-
ible with the canonical complex structure of aff(C) is shown.

In a final section we compute the obtained pseudo-Riemannian metrics in
global coordinates.

The author thanks I. Dotti for suggestions and is grateful to the referee for
useful comments and references to get an improvement of a previous version of
this work.

2. Preliminaries

Kähler Lie algebras are endowed with a pair (J, ω) consisting of a complex struc-
ture J and a compatible symplectic structure ω : ω(Jx, Jy) = ω(x, y), namely a
Kähler structure on g .

Recall that an almost complex structure on a Lie algebra g is an endomor-
phism J : g → g satisfying J2 = −I , where I is the identity map. The almost
complex structure J is said to be integrable if NJ ≡ 0 where NJ is the tensor
given by

NJ(x, y) = [Jx, Jy]− [x, y]− J [Jx, y]− J [x, Jy] for all x, y ∈ g. (1)

An integrable almost complex structure J is called a complex structure on g .

An equivalence relation is defined among Lie algebras endowed with com-
plex structures. The Lie algebras with complex structures (g1, J1) and (g2, J2) are
equivalent if there exists an isomorphism of Lie algebras α : g1 → g2 such that
J2 ◦ α = α ◦ J1 .

Examples of special classes of complex structures are the abelian ones and
those that determine a complex Lie bracket on g .

A complex structure J is said to be abelian if it satisfies [JX, JY ] = [X,Y ]
for all X, Y ∈ g . A complex structure J introduces on g a structure of complex
Lie algebra if J ◦ adX = ad ◦ JX for all X ∈ g , and so (g, J) is a complex Lie
algebra, and that means that the corresponding simply connected Lie group is also
complex, that is, left and right multiplication by elements of the Lie group are
holomorphic maps.

A symplectic structure on a 2n-dimensional Lie algebra g is a closed 2-
form ω ∈ Λ2(g∗) such that ω has maximal rank, that is, ωn 6= 0. Lie algebras
(groups) admitting symplectic structures are called symplectic Lie algebras (resp.
Lie groups).

The existence problem of compatible pairs (J, ω) on a Lie algebra g is set
up to complex isomorphism. In other words to search for Kähler structures on
g it is sufficient to determine the compatibility condition between any symplectic
structure and a representative of the class of complex structures. In fact, assume
that there is a complex structure J1 for which there exists a symplectic structure
ω satisfying ω(J1X, J1Y ) = ω(X, Y ) for all X, Y ∈ g and assume that J2 is
equivalent to J1 . Thus there exists an automorphism σ ∈ Aut(g) such that
J2 = σ−

1

∗ J1σ∗ . Then it holds

ω(X,Y ) = σ∗−1σ∗ω(X, Y ) = σ∗−1ω(J1σ∗X, J1σ∗Y ) = ω(J2X, J2Y ).
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Kähler Lie algebras belong to the class of symplectic Lie algebras. Spe-
cial objects on a symplectic Lie algebra (g, ω) are the isotropic and lagrangian
subspaces. Recall that a subspace W ⊂ g is called ω -isotropic if and only if
ω(W, W ) = 0 and is said to be ω -lagrangian if it is ω -isotropic and ω(W, y) = 0
implies y ∈ W .

Lemma 2.1. Let (g, J, ω) be a Kähler Lie algebra. If h is a isotropic ideal,
then:

• h is abelian

• J(h) is a isotropic subalgebra of g.

Thus h+Jh is a subalgebra of g and the sum is not necessarily direct. Furthermore
h ∩ Jh is a J-invariant ideal of h + Jh.

Proof. Since h is a isotropic ideal, the first assertion follows ¿from the condition
of ω of being closed.

The integrability condition of J restricted to h , which was proved to be
abelian, implies

[Jx, Jy] = J([Jx, y] + [x, Jy])

showing that Jh is a subalgebra of g . The compatibility between J and ω says
that ω(Jx, Jy) = ω(x, y) = 0 for x, y ∈ h , and so Jh is isotropic. Furthermore if
h is ω -lagrangian, then Jh is ω -lagrangian, and the second assertion is proved.

A Kähler structure on a Lie algebra determines a pseudo-Riemannian metric
g defined as

g(x, y) = ω(Jx, y) x, y ∈ g (2)

for which J is parallel with respect to the Levi Civita connection for g . Note that
g is not necessarily definite; the signature is (2k, 2l) with 2(k + l) = dim g .

Conversely if (g, J, g) is a Lie algebra endowed with a complex structure J
compatible with the pseudometric g then (2) defines a 2-form compatible with J
which is closed if and only if J is parallel [16]. Hence the Lie algebra (g, J, g) is
called a Kähler Lie algebra with pseudo-(Riemannian) Kähler metric g .

Let g be a pseudo-Riemannian metric on g . For a given subspace W of g ,
the orthogonal subspace W⊥ is defined as usual by

W⊥ = {x ∈ g / g(x, y) = 0, for all y ∈ W}.

The subspace W is said to be isotropic if W ⊂ W⊥ and is called totally isotropic
if W = W⊥ .

Lemma (2.1) can be rewritten in terms of the pseudo-Riemannian metric g
as in the following one.

Lemma 2.2. Let (g, J, g) be Kähler Lie algebra. Assume that an ideal h ⊂ g

satisfies Jh ⊂ h⊥ . Then

• h is abelian and

• J(h) is a subalgebra of g with h ⊂ (Jh)⊥ = J(h⊥) := Jh⊥ .

Thus h + Jh is a subalgebra of g invariant by J and the sum is not
necessarily direct. However h ∩ Jh is a J invariant ideal of h + Jh.
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Proof. The subspace h is ω -isotropic if and only if Jh ⊂ h⊥ . Hence h is
ω -lagrangian if and only if Jh = h⊥ . These remarks prove the assertions.

In [12] it is proved that if g is a Kähler Lie algebra whose respective metric
is positive definite then g is isomorphic to h o Jh when g admits an ideal h such
that h⊥ = Jh .

2.1. On four dimensional solvable Lie algebras. It is known that a four
dimensional symplectic Lie algebra must be solvable [9]. Let us recall the classifi-
cation of four dimensional solvable real Lie algebras. For a proof see for instance
[2]. Notations used along this paper are compatible with the following table.

Proposition 2.3. Let g be a four dimensional solvable real Lie algebra. Then
if g is not abelian, it is equivalent to one and only one of the Lie algebras listed
below:

rh3 : [e1, e2] = e3

rr3 : [e1, e2] = e2, [e1, e3] = e2 + e3

rr3,λ : [e1, e2] = e2, [e1, e3] = λe3 λ ∈ [−1, 1]
rr′3,γ : [e1, e2] = γe2 − e3, [e1, e3] = e2 + γe3 γ ≥ 0
r2r2 : [e1, e2] = e2, [e3, e4] = e4

r′2 : [e1, e3] = e3, [e1, e4] = e4, [e2, e3] = e4, [e2, e4] = −e3

n4 : [e4, e1] = e2, [e4, e2] = e3

r4 : [e4, e1] = e1, [e4, e2] = e1 + e2, [e4, e3] = e2 + e3

r4,µ : [e4, e1] = e1, [e4, e2] = µe2, [e4, e3] = e2 + µe3 µ ∈ R
r4,α,β : [e4, e1] = e1, [e4, e2] = αe2, [e4, e3] = βe3,

with − 1 < α ≤ β ≤ 1, αβ 6= 0, or − 1 = α ≤ β ≤ 0
r′4,γ,δ : [e4, e1] = e1, [e4, e2] = γe2 − δe3, [e4, e3] = δe2 + γe3 γ ∈ R, δ > 0
d4 : [e1, e2] = e3, [e4, e1] = e1, [e4, e2] = −e2

d4,λ : [e1, e2] = e3, [e4, e3] = e3, [e4, e1] = λe1, [e4, e2] = (1− λ)e2 λ ≥ 1
2

d′4,δ : [e1, e2] = e3, [e4, e1] = δ
2
e1 − e2, [e4, e3] = δe3, [e4, e2] = e1 + δ

2
e2 δ ≥ 0

h4 [e1, e2] = e3, [e4, e3] = e3, [e4, e1] = 1
2
e1, [e4, e2] = e1 + 1

2
e2

Remark 2.4. Observe that r2r2 is the Lie algebra aff(R)×aff(R), where aff(R)
is the Lie algebra of the Lie group of affine motions of R , r′2 is the real Lie algebra
underlying on the complex Lie algebra aff(C), r′3,0 is the trivial extension of e(2),
the Lie algebra of the Lie group of rigid motions of R2 ; r3,−1 is the Lie algebra
e(1, 1) of the group of rigid motions of the Minkowski 2-space; rh3 is the trivial
extension of the three-dimensional Heisenberg Lie algebra denoted by h3 .

A Lie algebra is called unimodular if tr(adx )=0 for all x ∈ g , where tr
denotes the trace of the map. The unimodular four-dimensional solvable Lie
algebras algebras are: R4 , rh3 , rr3,−1 , rr′3,0 , n4 , r4,−1/2 , r4,µ,−1−µ (−1 < µ ≤
−1/2), r′4,µ,−µ/2 , d4 , d′4,0.

Recall that a solvable Lie algebra is completely solvable when adx has real
eigenvalues for all x ∈ g .

Invariant complex structures in the four dimensional solvable real case were
classified by J. Snow [22] and G. Ovando [20]. The following propositions show
all Lie algebras of dimension four admitting special kinds of complex structures,
making use of notations in (2.3).
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Proposition 2.5. If g is a four dimensional Lie algebra admitting an abelian
complex structure, then g is isomorphic to one of the following Lie algebras R4 ,
R× h3 , R2 × aff(R), aff(R)× aff(R), aff(C), d4,1 .

Proof. If g is a four dimensional Lie algebra admitting abelian complex struc-
tures then g must be solvable and its commutator has dimension at most two (see
[5] ). Let g be a four dimensional Lie algebra satisfying these conditions. The first
case is the abelian one which clearly possesses an abelian complex structure. If
dim g′ = 1 then g is isomorphic either to R× h3 or to R× aff(R), both admitting
abelian complex structures (see [22] or [4]). If the commutator is two dimensional
then it must be abelian and therefore g must satisfy the following splitting short
exact sequence of Lie algebras:

0 −→ R2 −→ g −→ h −→ 0

with h ' aff(R) or R2 . The solvable four dimensional Lie algebras which satify
these conditions are: R4 , rh3 , rr3,λ , rr3 , rr′3,λ , r2r2 , r′2 , d4,1 (see for example [2]
). The Lie algebras rr3 , r′3,λ, r3,λ λ 6= 0 do not admit abelian complex structures
and the other Lie algebras admit such kind of complex structures (see [22] ).

Proposition 2.6. Let g be a solvable four dimensional Lie algebra such that
(g, J) is a complex Lie algebra, then g is either R4 or aff(C) = r′2 .

Proof. Let (g, J) be Lie algebra with a complex structure J satisfying J [x, y] =
[Jx, y] for all x, y ∈ g . Then Jg′ ⊂ g′ and hence dim g′ = 2 or 4. Assume now
that g is solvable but not abelian and let x, Jx be a basis of g′ . Let y, Jy not
in g′ such that {x, Jx, y, Jy} is a basis of g . Then [Jy, y] = 0 = [x, Jx] and the
action of y, Jy restricted to g′ has the form

ady =

(
a −b
b a

)
adJy =

(
b a
−a b

)
where a and b are real numbers such that a2 + b2 6= 0. This implies that
g ' aff(C). In fact taking y′ = 1

a2+b2
(ay + bJy) then {y′, Jy′, x, Jx} is a basis of

g satisfying the Lie bracket relations of r′2 in (2.3).

3. Four dimensional Kähler Lie algebras

In this section we determine all four dimensional Kähler Lie algebras and we
parametrize their compatible pairs (J, ω).

Most Kähler Lie algebras can be found in a constructive way. In fact,
according to [21] any symplectic Lie algebra (g, J, ω) which is either completely
solvable or isomorphic to aff(C) admits a ω -lagrangian ideal or equivalently in
terms of the pseudometric g admits an ideal h with Jh = h⊥ .

In four dimensional Kähler Lie algebras admitting such ideal h there are
two possibilities for h∩Jh : it is trivial or coincides with h . If it is trivial then g is
isomorphic to h o Jh . Hence we have the following splitting short exact sequence
of Lie algebras

0 −→ h −→ g −→ Jh −→ 0. (3)
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If h ∩ Jh is not trivial, then Jh = h . So g can be decomposed as h⊕ k , where h

and k are J -invariant totally isotropic subspaces and one has the following short
exact sequence of Lie algebras, which does not necessarily splits:

0 −→ h −→ g −→ k −→ 0. (4)

In every case h is abelian (2.1) and therefore will be identified with R2 .

These facts will help us to construct four dimensional Kähler Lie algebras.
The results of the following propositions can be verified with Table (3.3).

Proposition 3.1. Let (g, J, g) be a four dimensional Kähler Lie algebra. As-
sume that there exists an abelian ideal h such that the following splitting exact
sequence holds

0 −→ h −→ g −→ Jh −→ 0.

where the sum is orthogonal. Then g is isomorphic to: R4 , R× h3 , R2 × aff(R),
aff(C), aff(R)× aff(R), r4,−1,−1 , d4,1 , d4,2 , d4,1/2 .

Proof. Let J be an almost complex structure on g compatible with the pseudo-
Riemannian metric g . The splitting short exact sequence (3) is equivalent to one
of the following short exact sequences of Lie algebras

0 −→ R2 −→ g −→ R2 −→ 0. (5)

0 −→ R2 −→ g −→ aff(R) −→ 0. (6)

The pseudometric g restricted to h defines a pseudo-Riemannian metric on the
Euclidean two dimensional ideal. Up to equivalence on R2 there exist two pseudo-
Riemannian metrics: the canonical one and the indefinite one of signature (1,1).

Case (5): If g is a Lie algebra satisfying the short sequence (5) then the
almost complex structure J is integrable if and only if it satisfies

[Jx, y] = [Jy, x] for all x, y ∈ h (7)

and J is parallel with respect to the Levi Civita connection for g if and only if

g([Jx, z], y) = g([Jy, z], x) for all x, y, z ∈ h. (8)

While for the canonical metric the Lie algebras satisfying conditions (7) and (8) are
R4 , R2 × aff(R), aff(R)× aff(R), for the neutral metric one gets the Lie algebras
R× h3 , R2 × aff(R),aff(R)× aff(R), aff(C) and d4,1 .

Case (6): If g is a Lie algebra where (6) holds, then the almost complex
structure J is integrable if and only if

e2 = [Je1, e2]− [Je2, e1] (9)

where span{e1, e2} = h ' R2 , and J is parallel with respect to the Levi Civita
connection for g if and only if

g(Je2, Jek) = g([Je2, ek], e1)− g([Je1, ek], e2) for k = 1, 2 (10)

By considering the conditions (9) and (10) one gets the Lie algebras d4,1/2 , d4,2

for the canonical metric and the Lie algebras r4,−1,−1 , d4,1/2 , d4,2 for the neutral
metric.
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Proposition 3.2. Let (g, J, g) be a four dimensional Kähler Lie algebra. As-
sume that there exists an abelian ideal h such that the short exact sequence of Lie
algebras (4) holds

0 −→ h −→ g −→ k −→ 0,

where h and k are J -invariant totally isotropic subspaces. Then g is isomorphic
to: R× h3 , aff(C), r4,−1,−1 , d4,1 , d4,2 .

Proof. At the algebraic level, the sequence (4) takes the form (5) or (6), where
h = span{e1, Je1} ' R2 and k = span{e2, Je2} ' R2 in (5) or aff(R) in (6). Let
J be a complex structure on g and let ω be a 2-form compatible with J . Then
ω being closed is equivalent to:

ω([e2, Je2], x) + ω([x, e2], Je2) + ω([Je2, x], e2) = 0.

If (4) splits then in the case (5) one gets the Lie algebra aff(C), and in the case
(6) one gets the Lie algebras r4,−1,−1 , d4,1 and d4,2 . If (4) does not splits then one
gets R× h3 .

Notice that according to the classifications of complex structures in [22]
[20] and symplectic structures [21] the non completely solvable Lie algebras which
could admit compatible pairs (J, ω) are R×e(2), r′4,0,δ , δ 6= 0, and d′4,δ with δ 6= 0.
These Lie algebras admit Kähler structures (see Table (3.3)) and moreover the Lie
algebras R× e(2) and r′4,0,δ satisfy the following splitting short exact sequence of
Lie algebras

0 −→ h = Jh −→ g −→ h⊥ −→ 0,

where h is an abelian ideal but not a ω -lagrangian ideal of (g, ω).

Let g be a Lie algebra admitting a complex structure J and let us denote
by Sc(g, J) the set of all symplectic forms ω that are compatible with J . Our
goal now is to parametrize the elements of Sc(g, J). In the previous paragraphs
we found the Lie algebras g for which Sc(g, J) 6= Ø for some complex structure
J .

Let {ei} denotes the dual basis on g∗ of the basis {ei} in g (as in (2.3)).
Then we use eijk... to denote ei ∧ ej ∧ ek ∧ . . . .

Proposition 3.3. Let g be a Kähler Lie algebra, then g is isomorphic to one
of the following Lie algebras endowed with complex and compatible symplectic
structures listed in Table 3.3 below.

Proof. The complete proof follows a case by case study. Making use of the
classifications of complex structures we found in [22] and [20], then for a fixed
complex structure J on a given Lie algebra g we verify the compatibility condition
with the symplectic forms given in [21].

We shall give the details in the case r′2 , the Lie algebra corresponding to
aff(C). The other cases should be handled in a similar way.
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g Complex structure Compatible symplectic 2-forms

rh3 : Je1 = e2, Je3 = e4
a13+24(e

13 + e24) + a14−23(e
14 − e23)+

+a12e
12, a2

13 + a2
14 6= 0

rr3,0 : Je1 = e2, Je3 = e4 a12e
12 + a34e

34, a12a34 6= 0

rr′3,0 : Je1 = e4, Je2 = e3 a14e
14 + a23e

23, a14a23 6= 0

r2r2 : Je1 = e2, Je3 = e4 a12e
12 + a34e

34, a12a34 6= 0

r′2 : J1e1 = e3, J1e2 = e4
a13−24(e

13 − e24) + a14+23(e
14 + e23),

a2
13−24 + a2

14+23 6= 0

J2e1 = −e2, J2e3 = e4
a13−24(e

13 − e24) + a14+23(e
14 + e23)+

+a12e
12, a2

13−24 + a2
14+23 6= 0

r4,−1,−1 : Je4 = e1, Je2 = e3
a12+34(e

12 + e34) + a13−24(e
13 − e24)+

+a14e
14, a2

12+34 + a2
13−24 6= 0

r′4,0,δ :
J1e4 = e1, J1e2 = e3,
J2e4 = e1, J2e2 = −e3

a14e
14 + a23e

23, a14a23 6= 0

d4,1 : Je1 = e4, Je2 = e3 a12−34(e
12 − e34) + e14e

14, a12−34 6= 0

d4,2 :
J1e4 = −e2, J1e1 = e3

J2e4 = −2e1, J2e2 = e3

a14+23(e
14+e23)+a24e

2 ∧ e4, a14+23 6= 0

a14e
14 + a23e

23, a14a23 6= 0

d4,1/2 :
J1e4 = e3, J1e1 = e2

J2e4 = e3, J2e1 = −e2
a12−34(e

12 − e34), a12−34 6= 0

d′4,δ :

J1e4 = e3, J1e1 = e2,
J2e4 = −e3, J2e1 = e2,
J3e4 = −e3, J3e1 = −e2,
J4e4 = e3, J4e1 = e2,

a12−δ34(e
12 − δe34), a12−34 6= 0

Table 3.3

As we can see in the classification of Snow [22] the complex structures
on r′2 are given by: J1e1 = e3 , J1e2 = e4 ; and for the other type of complex
structures, denoting a1 ∈ C by a1 = µ + iν , with ν 6= 0; we have Jµ,νe1 =
µ
ν
e1 + (ν2+µ2

ν
)e2 , Jµ,νe3 = e4 . On the other hand any sympletic structure has

the form: ω = a12(e
1 ∧ e2) + a13−24(e

1 ∧ e3 − e2 ∧ e4) + a14+23(e
1 ∧ e4 + e2 ∧ e3),

with a2
14+23 + a2

13−24 6= 0. Assuming that there exists a Kähler structure it holds
ω(JX, JY ) = ω(X,Y ) for all X, Y ∈ g and this condition produces equations on
the coefficients of ω which should be verified in each case.

For J1 we need to compute only the following:

ω(e1, e2) = a12 = ω(e3, e4) ω(e1, e4) = a14+23 = ω(e3,−e2)
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Thus these equalities impose the condition a12 = 0. And so any Kähler structure
concerning J1 has the form ω = a13−24(e

1 ∧ e3− e2 ∧ e4) + a14+23(e
1 ∧ e4 + e2 ∧ e3)

with a2
13−24 + a2

14+23 6= 0.

For the second case corresponding to Jµ,ν , by computing ω(e2, e4), ω(e1, e3),
we get respectively:

i) (1 + 1
ν
)a24−13 = µ

ν
a14+23 ii) (1 + µ2+ν2

ν
)a24−13 = −µ

ν
a14+23

By comparing i) and ii) we get:

(1 + 1
ν
)a24−13 = −(1 + µ2+ν2

ν
)a24−13

and this equality implies either iii)a24−13 = 0 or iv) 1 + 1
ν

+ 1 + µ2+ν2

ν
= 0. As

a24−13 6= 0 (since in this case we would also get a14+23 = 0 and this would be a
contradiction) then it must hold iv), that is 1 + µ2 + ν2 = −2ν and that implies
µ2 = −2ν − 1 − ν2 = −(ν + 1)2 and that is possible only if µ = 0 and ν = −1.
For this complex structure J , given by Je1 = −e2 Je3 = e4 , it is not difficult to
prove that for any symplectic structure ω it always holds ω(JX, JY ) = ω(X, Y ),
that is, any symplectic structure on g is compatible with J . In this way we have
completed the proof of the assertion.

In the following we shall simplify the notation: parameters with four
subindices will be denoted only with the first two ones, hence for instance a14+23 →
a14 . By the computations of the pseudo-Kähler metrics the parameters are those
satisfying conditions of Table (3.3).

Remark 3.4. The set Sc(g, J) can be parametrized by R∗ , R × R∗ , R∗ × R∗

or R2 − {0} and by R× (R2 − {0}).

Remark 3.5. The complex structure which endowes the Lie algebra r′2 with a
complex Lie bracket is given by Je1 = e2 and Je3 = e4 , which does not admit a
compatible symplectic structure. In fact, assume that Ω is a 2-form compatible
with J , then Ω = αe12 + β(e13 + e24) + γ(e14 − e23) . Hence dΩ = 0 if and only
if β = 0 = γ . Thus there is no symplectic structure compatible with J . In [10] it
is proved that any closed 2-form is always degenerate when it is compatible with
a complex structure J which gives g a structure of complex Lie algebra.

Remark 3.6. Among the four dimensional Lie algebras we find many examples
of Lie algebras, such that the set of complex structures C and the set of symplectic
structures S are both nonempty and however there is no compatible pair (J, ω).
This situation occurs for instance on the Lie algebras h4 or the family d4,λ for
λ 6= 1/2, 1, 2 (Compare results in [20] [21] and [22]).

Reading the previous list of Proposition 3.3 by looking at the structure of
the Lie algebras we get the following Corollary.

Corollary 3.7. Let g be a Kähler four dimensional Lie algebra. If g is uni-
modular then it is isomorphic either to R× h3 or R× e(2).

If g is not unimodular then either:

i) dim g′ = 1 and it is isomorphic to R2 × aff(R),
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ii) dim g′ = 2 and g is a non trivial extension of e(1, 1), aff(R)× aff(R),
or an extension of e(2) or

iii) g′ ' R3 and g ' r4,−1,−1 or r′4,0,δ or

iv) g′ ' h3 and the action of e4 /∈ g′ diagonalizes with set of eigenvalues
one of the following ones {1, 1, 0}, {1, 2,−1}, {1, 1

2
, 1

2
}, {1, 1

2
+ iδ, 1

2
− iδ}, with

δ > 0.

Proof. According to [2], if dim g′ = 1 then g is a trivial extension of h3 or
aff(R); the non trivial extension of e(1, 1) is r2r2 and the extensions of e(2) are
isomorphic either to aff(C) or R×e(2). The rest of the proof follows by looking at
the adjoint actions on any Kähler Lie algebra with three dimensional commutator.

Corollary 3.8. Let g be a nilpotent (non abelian) four dimensional Kähler Lie
algebra, then it is isomorphic to R× h3 and any complex structure is abelian.

Proof. Among the four dimensional Lie algebras the non abelian nilpotent ones
are R× h3 and n4 . Only R× h3 admits a compatible pair (J, ω) and in fact the
previous table parametrizes elements of Sc(R×h3, J) for a fixed complex structure
J .

Remark 3.9. R × h3 is the Lie algebra underlying the Kodaira Thurston
nilmanifold [23] for which actually any complex structure J admits a compatible
symplectic form ω .

Corollary 3.10. Let g be a four dimensional Lie algebra for which any complex
structure gives rise to a Kähler structure on g. Then g is isomorphic either to
R× h3 , R2 × aff(R), R× e(2), r4,−1,−1 , r′4,0,δ , d4,1 d4,2 .

Corollary 3.11. Let g be a four dimensional Lie algebra admitting abelian
complex structures. Then (g, J) is Kähler if and only if g is symplectic and J is
abelian.

Proof. According to (2.5) and the results of [22], the four dimensional Lie
algebras which are Kähler and admit abelian complex structures are R × h3 ,
R2 × aff(R), aff(R) × aff(R), aff(C) and d4,1 . Among these Lie algebras only
aff(C) admits complex structures which are not abelian. On aff(C) there is a
curve of non equivalent complex structures. Among the points of this curve there
is one which belongs to the abelian class. The class which represent this point
and one class more corresponding to an abelian structure admit a compatible
symplectic structure and the complex structure which are not abelian do not admit
a compatible symplectic structure.

In dimension four a pseudo-Riemannian Kähler metric must be definite or
neutral. Notice that the set of pseudo-Riemannian Kähler metrics on each Kähler
Lie algebra (g, J, g) can be identified with the set Sc(g, J).

We use the following notation to describe the pseudo-Riemannian metrics.
If {ei} is the basis of Proposition (2.3) then {ei} is its dual basis on g∗ and
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symmetric two tensors are of the form ei · ej where · denotes the symmetric
product of 1-forms. We denote by zi the coordinates of z ∈ g with respect to the
basis {ei} .

Corollary 3.12. Let (g, J) be a non abelian four dimensional Kähler Lie al-
gebra with complex structure J admitting only definite Kähler metrics then (g, J)
is isomorphic either to the Lie algebra (d4,1/2, J1), or to (d′4,δ, J1, J3).

The Kähler Lie algebras (R×h3, J), (aff(C), J1, J2) , (r4,−1,−1, J), (d4,1, J)
and (d′4,δ, J2, J4) admit only neutral pseudo-Riemannian metrics.

Proof. In the case of the completely solvable Kähler Lie algebras or aff(C)
the assertions follow from the proof of Propositions (3.1) and (3.2). In fact these
Kähler Lie algebras can be constructed in terms of splitting exact sequences of
Lie algebras, verifying some extra conditions. We need to study the assertions in
the cases R × e(2), r′4,0,δ and d′4,δ with δ 6= 0. Looking at the pseudo-Kähler
metrics on R × e(2), r′4,0,δ (see Propositions (4.4) and (4.9)) it is possible to
verify that both cases admit definite and neutral metrics. In the case of d′4,δ the
complex structures J1 and J3 admit only definite compatible pseudometrics and
the complex structures J2 and J4 admit only neutral compatible pseudometrics.

The following propositions offer an alternative model for four dimensional
Kähler Lie algebras since the existence of a lagrangian ideal is a strong condition.
The next constructions are based on the existence of an abelian ideal which does
not need to be lagrangian.

Proposition 3.13. The following Kähler four dimensional Lie algebras:
(R2 × aff(R), J), (R × e(2), J), (aff(R) × aff(R), J), (r′4,0,δ, J1, J2) endowed with
a pseudo-Kähler metric, satisfy the following splitting short exact sequence of Lie
algebras:

0 −→ h = Jh −→ g −→ h⊥ −→ 0

where the sum is orthogonal.

Proof. For the Lie algebras of the proposition, with a given pseudo-Kähler
metric, we exhibit a abelian ideal satisfying Jh = h :

R2 × aff(R), J g = a12(e
1 · e1 + e2 · e2) + a34(e

3 · e3 + e4 · e4) h = span{e1, e2}
R× e(2), J g = a14(e

1 · e1 + e4 · e4) + a23(e
2 · e2 + e3 · e3) h = span{e2, e3}

aff(R)2, J g = a12(e
1 · e1 + e2 · e2) + a34(e

3 · e3 + e4 · e4) h = span{e1, e2}
r′4,0,δ, J1, J2 g = a14(e

1 · e1 + e4 · e4) + a23(e
2 · e2 + e3 · e3) h = span{e2, e3}

Proposition 3.14. The following Kähler four dimensional Lie algebras:
(R× h3, J), (r4,−1,−1, J), (d4,2, J1), endowed with a pseudo-Kähler metric, satisfy
the following splitting exact sequence of Lie algebras:

0 −→ h = h⊥ −→ g −→ Jh −→ 0.
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Proof. For the Lie algebras of the proposition, with a fixed pseudo-Kähler
metric g , we exhibit an ideal satisfying h = h⊥ and h ∩ Jh = 0:

R× h3, J g = e1 · e3 − e2 · e4 h = span{e2, e3}
r4,−1,−1, J g = a13(e

1 · e2 − e3 · e4) h = span{e1, e3}
d4,2, J1 g = a14(e

1 · e2 + e3 · e4) h = span{e2, e3}

Remark 3.15. The Lie algebras of Proposition (3.14) are those admitting a
hypersymplectic structure [1].

4. On the geometry of left invariant pseudo-Kähler metrics in four
dimensional Lie algebras

In this section we study the geometry of the Lie group G whose Lie algebra g is
endowed with a Kähler structure. Because of the left invariant property all results
in this sections are presented at the level of the Lie algebra. We make use of the
models (3.1) and (3.2) to find totally geodesic submanifolds. We determine Ricci
flat and Einstein Kähler metrics. In the definite case Ricci flat metrics are flat [3].
In the non definite case this is not true in general. However in dimension four if
g is unimodular and the Kähler metric is Ricci flat, then it is flat. Some proofs in
this section follow a case by case study. In those situations, we shall explain the
computations and give them just only in one case to exemplify the work should be
done.2

Let ∇ be the Levi Civita connection corresponding to the pseudo-Riemann-
ian metric g . This is determined by the Koszul formula

2g(∇xy, z) = g([x, y], z)− g([y, z], x) + g([z, x], y)

It is known that the completeness of the left invariant connection ∇ on G can be
studied by considering the corresponding connection on the Lie algebra g . Indeed
the connection ∇ on G will be (geodesically) complete if and only if the differential
equation on g

ẋ(t) = −∇x(t)x(t)

admits solutions x(t) ⊂ g defined for all t ∈ R (see for instance [14]).

A submanifold N on a Riemannian manifold (M, g) is totally geodesic if
∇xy ∈ TN for x, y ∈ TN . At the level of the Lie algebra we have totally geodesic
subspaces, subalgebras, etc. which are in correspondence with totally geodesic
submanifolds, subgroups, etc on the corresponding Lie group G with left invariant
pseudometric g .

Proposition 4.1. Let (g, J, g) be a Kähler Lie algebra and assume that h is
an ideal satisfying Jh = h⊥ and h∩Jh = 0 (that is h is ω -lagrangian as in (3.1))
then for x, y ∈ h it holds

∇xy ∈ Jh; ∇JxJy ∈ Jh; ∇xJy ∈ h; ∇Jxy ∈ h.

Thus the subgroup corresponding to Jh on the Lie group G is totally geodesic.

2More details can be found in a previous version of this paper available in arxiv.



384 Ovando

Proposition 4.2. Let (g, J, g) be a Kähler Lie algebra and assume that h is a
abelian ideal satisfying Jh = h = h⊥ . Thus g = h o k with Jk ⊂ k. Then it holds:

• ∇zy ∈ h for all x, y ∈ h, and z ∈ g;

• for z ∈ k it holds g([x, y], z) = 2g(∇xy, z) = 2g(∇xz, y) = −2g(∇zx, y);

Therefore the normal subgroup H corresponding to the ideal h on the Lie group
G is totally geodesic.

The proofs of the previous two propositions follow from the Koszul formula
for the Levi Civita connection and the features announced in Propositions (3.1)
and (3.2).

Recall that a pseudometric on a Lie algebra g is called a Walker metric
if there exists a null and parallel subspace W ⊂ g , i.e. there is a subspace
W satisfying g(W, W ) = 0 and ∇yW ⊂ W for all y (see [24]). The previous
proposition show examples of Walker metrics in dimension four (compare with
[18]).

Corollary 4.3. The neutral metrics on the Kähler Lie algebras of Proposition
(3.2) are Walker.

The curvature tensor R(x, y) and the Ricci tensor ric(x, y) are respectively
defined by:

R(x, y) = [∇x,∇y]−∇[x,y] ric(x, y) = −
∑

i

εig(R(x, vi)y, vi)

where {vi} is a frame field on g and εi equals g(vi, vi). The left invariant property
allows to speak in the following setting. We say that the metric is flat if R ≡ 0
and Ricci flat if ric ≡ 0.

It is clear that the existence of flat or non flat pseudo-Kähler metrics is
a property which is invariant under complex isomorphisms, i.e. if J and J ′ are
equivalent complex structures then there exists a flat (resp. non flat) pseudo-
Kähler metric for J if and only there exists such a metric for J ′ .

Theorem 4.4. Let g be a unimodular four dimensional Kähler Lie algebra with
pseudo-Kähler metric g. Then g is flat and its Levi Civita connection is complete.

Proof. Among the Kähler Lie algebras of (3.3) the unimodular ones are R×h3

and R× e(2).

Let us work in detail the case R × e(2) (the other one can be done in a
similar way).

Any pseudo-Kähler metric is g = a14(e
1 · e1 − e4 · e4) + a23(e

2 · e2 + e3 · e3)
and the corresponding Levi Civita connection is

∇zy = z1y3e2 − z1y2e3.

Then g is complete; in fact looking at the geodesic equation in coordinates we
have:

x′1 = 0, x′2 = x1x3, x′3 = −x1x2, x′4 = 0

whose solution for a given initial condition is defined in R . It also holds ∇[x,y] ≡ 0
and since ∇x∇y = ∇y∇x , the curvature tensor vanishes which implies that g is
flat.
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In the non definite case Ricci flat metrics do not need to be flat. Known
counterexamples for this in the case of neutral metrics are provided by hypersym-
plectic structures [15] [1].

Hypersymplectic four dimensional Lie algebras were classified in [1]. Aside
from the abelian Lie algebra there are only three Lie algebras which admit a
hypersymplectic structure: R × h3 , r4,−1,−1 and d4,2 . In theorem (4.4) the Lie
algebra R × e(2) is flat and do not admit hypersymplectic structures [1]. In the
following theorem we shall complete the list of Kähler Lie algebras (g, J, g) whose
pseudometric is Ricci flat.

Remark 4.5. It is known that for a given complex product structure on a four
dimensional Lie algebra there is only one compatible metric, up to a non zero
constant (see for instance [1]).

Theorem 4.6. Let (g, J) be a non unimodular four dimensional Kähler Lie
algebra with Kähler metric g which is Ricci flat. Then (g, J) is isomorphic either
to (r4,−1,−1, J), (d4,2, J2), (aff(C), J1) . Moreover these Lie algebras have flat
metrics and also Ricci flat but non flat metrics.

Proof. For each one of these Lie algebras the pseudo-Kähler metrics can be ob-
tain from Table (3.3). With these we do the computations to prove the assertions.
We shall show the Levi Civita connection, curvature and Ricci curvature tensors
only on aff(C).

aff(C) :
J2e2 = e1, J2e3 = e4
−s 0 a14 −a13

0 −s −a13 −a14

a14 −a13 0 0
−a13 −a14 0 0



∇ZY = (−z1y1 + z2y2)e1 − (z2y1 + z1y2)e2

+( s
ε
αy1 + s

ε
βy2 + z1y3 − z2y4)e3+

+( s
ε
βy1 − s

ε
αy2 + z2y3 + z1y4)e4

ε = a2
13 + a2

14

α = −a14z1 + a13z2

β = a13z1 + a14z2

R(X, Y )Z = 2 (x1y2−x2y1)
ε

[(a13z1+
a14z2)e3 + (a14z1 − a13z2)e4]

ric(X, Y ) = 0
g(R(v, w)w, v) = −s(v1w2 − v2w1)

2

The other Kähler Lie algebras do not admit Ricci flat metrics (see results
of Proposition (4.8) and Theorem (4.9)).

Notice that in all cases the commutator is a totally geodesic submanifold.
Moreover in aff(C) we have ∇g′g′ = 0, and in the other cases ∇g′g′ ⊂ span{e3} for
any s . If s = 0 then in r4,−1,−1 we get that the Levi Civita connection restricted
to the commutator is always zero.

Remark 4.7. Among these Ricci flat metrics there are examples of complete
and non complete metrics [1].

An Einstein metric g is proportional to its corresponding Ricci tensor, i.e.
g(x, y) = ν ric(x, y) for all x, y ∈ g and ν be a real constant. We shall determine
Einstein Kähler metrics in the four dimensional case.
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Proposition 4.8. Let (g, J, g) be a Kähler Lie algebra with Einstein metric
g . Then if g is non Ricci flat, g is a Kähler metric corresponding to one of the
following Lie algebras:

aff(R)× aff(R) J g = α(e1.e1 + e2.e2 + e3.e3 + e4.e4)
aff(C) J1 g = α(e1.e1 − e2.e2 + e3.e3 − e4e4)

d4,1/2
J1,
J2

g = α(e1.e1 + e2.e2 + e3.e3 + e4.e4)
g = α(e1.e1 + e2.e2 − e3.e3 − e4.e4)

d′4,δ

J1, J3

J2, J4

g = α(e1.e1 + e2.e2 + δ(e3.e3 + e4.e4))
g = α(e1.e1 + e2.e2 − δ(e3.e3 + e4.e4))

In all cases α 6= 0.

Proof. Let us work with the following Lie algebra and give the details in this
case. The other cases should be handled in a similar way. One must write the
pseudo-Kähler metric, compute the Levi Civita connection, the curvature and
Ricci curvature tensors and finally one compares the Ricci tensor with the metric
tensor.

aff(C) :
J1e1 = e3, J1e2 = e4

a13 a14 0 0
a14 −a13 0 0
0 0 a13 a14

0 0 a14 −a13



∇ZY = (z3y3 − z4y4)e1 + (z4y3 + z3y4)e2−
−(z3y1 − z4y2)e3 − (z4y1 + z3y2)e4

R(X, Y ) = −∇[X,Y ]

ric(X, Y ) = 2(−x1y1 + x2y2 − x3y3 + x4y4)
g(R(v, w)w, v) = −a13(α

2 − β2)− 2a14αβ
α = v1w3 − v3w1 + v4w2 − v2w4

β = w4v1 − v4w1 + v2w3 − v3w2

Therefore when a14 = 0 and a13 6= 0 the corresponding metric is Einstein.

The proof will be completed with the results of the Theorem (4.9), proving
that there are no more Einstein metrics.

We shall finish this geometric study with the characterization of four di-
mensional Kähler Lie algebras which are not Einstein.

Theorem 4.9. Let (g, J, g) be a Kähler Lie algebra. If g does not admit an
Einstein Kähler metric then g is isomorphic to R2 × aff(R), r′4,0,δ , d4,1 .

Proof. The previous propositions show all examples of Lie algebras admitting
Einstein Kähler pseudometrics. The Lie algebras R2 × aff(R), r′4,0,δ , d4,1 do not
admit Einstein Kähler metrics and this follows from a case by case study. We shall
show computations only in case d4,1 .

d4,1 : ∇ZY = −z1y4e1 − (z3y1 + z1y3)e2+
+(z1y2 − z3y4)e3 + z1y1e4

R(X,Y ) = −∇[X,Y ]

ric(X, Y ) = −2(x1y1 + x4y4)
g(R(v, w)w, v) = −α(a14α− 2βa12)
α = v4w1 − v1w4

β = v1w2 − w1v2 + v4w3 − w4v3

Je1 = e4, Je2 = e3
a14 0 −a12 0
0 0 0 a12

−a12 0 0 0
0 a12 0 a14
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Finally let us remark that the Lie algebra d4,2 admits two non equivalent complex
structures, one of them admits a compatible Einstein pseudometric. But for the
other one J2 this is not the case as similar computations as done above show.

Corollary 4.10. Let (g, J) be a four dimensional Kähler Lie algebra. Then
the commutator is totally geodesic.

Proof. It follows from the Levi Civita connection computed at the correspond-
ing elements in the commutator.

5. A picture in global coordinates

In this section we shall write the pseudo-Kähler metrics in global complex coor-
dinates (the real expression can also be done with the information we present in
the following paragraphs). The following table summarizes the results. In the first
column we write the corresponding Lie algebra, the invariant complex structure
and the homogeneous complex manifold according to [22] and [20]. In the sec-
ond column we present left invariant 1-forms and the metric in terms of complex
coordinates.

R× h3

Jv1 = v2, Jv3 = v4

C2

v1 = dx, v2 = dy, v3 = dz + y
2
dx− x

2
dy, v4 = dt

with u = v1 + iv2, w = v3 + iv4

g = a12dudu + (a14 − ia13)dudw + (a14 + ia13)dudw
flat (4.4)

R2 × aff(R)
Jv1 = v2, Jv3 = v4

C×H

v1 = dt, v2 = e−tdx, v3 = dy, v4 = dz
with u = v1 + iv2, w = v3 + iv4

g = a12dudu + a34dwdw

R× e(2)
Jv1 = v4, Jv2 = v3

C2

v1 = dt, v2 = cos tdx + sin tdy, v3 = sin tdx+
+ cos tdy, v4 = dz with u = v1 + iv4, w = v2 + iv4

g = a14dudu + a23dwdw

aff(R)× aff(R)
Jv1 = v2, Jv3 = v4

H×H

v1 = dx, v2 = e−xdy, v3 = dz, v4 = e−zdt
with u = v1 + iv2, w = v3 + iv4

g = a12dudu + a34dwdw
Einstein if a12 = a34 6= 0 (4.8)

aff(C)
J1v1 = v3, J1v2 = v4

C2

v1 = dt, v3 = e−t(cos z dx + sin z dy),
v2 = dz, v4 = e−t(− sin z dx + cos z dy),

with u = v1 + iv3, w = v2 + iv4

g = a13(du2 + du2 + dw2 + dw2)+
+a14i(du2 − du2 + dw2 − dw2)

Einstein if a14 = 0 (4.8)
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J2v1 = −v2, J2v3 = v4

C2

with u = v1 + iv2, w = v3 + iv4

g = sdudu + a14(dudw + dudw)−
−ia13(dudw − dudw)

Ricci flat always & flat if s = 0 (4.6)

r4,−1,−1

Jv4 = v1, Jv2 = v3

C×H

v1 = e−tdx, v2 = etdy, v3 = etdz, v4 = dt
with u = v4 + iv1, w = v2 + iv3

g = −sdudu− (a12 + ia13)dudw − (a12−
−ia13)dudw, Ricci flat always & flat if s = 0 (4.6)

r′4,0,δ

J1v4 = v1, J1v2 = v3

C×H

v1 = e−tdx, v2 = (cos tdy + sin tdz), v4 = dt
v3 = (− sin tdy + cos tdz), with u = v4 + iv1,

w = v2 + iv3g1 = −a14dudu + a23dwdw

J2v4 = v1, J2v2 = −v3

C×H
with u = v4 + iv1, w = v2 + iv3

g2 = a14dudu + a23dwdw

d4,1

Jv1 = v4, Jv2 = v3

C×H

v1 = e−tdx, v2 = dy, v3 = e−tdz − x
2
e−tdy, v4 = dt

with u = v1 + iv4, w = v2 + iv3

g1 = a14dudu− ia12(dudw − dudw)

d4,1/2

J1v1 = v2, J1v2 = v3

D2

v1 = e−t/2dx, v2 = e−t/2dy, v3 = e−tdz − x
2
e−tdy,

v4 = dt with u = v1 + iv2, w = v4 + iv3

g1 = a12(dudu + dwdw), Einstein (4.8)

J2v1 = −v2, J2v2 = v3

(D2c
)0

with u = v1 + iv2, w = v4 + iv3

g1 = a12(−dudu + dwdw), Einstein (4.8)

d4,2

J1v2 = v4, J1v1 = v3

C×H

v1 = e−2tdx, v2 = etdy, v3 = e−tdz − x
2
e−tdy,

v4 = dt with u = v2 + iv4, w = v1 + iv3

g1 = sdudu + a14(dudw + dudw)
Ricci flat always & flat if s = 0 (4.6)

J2v1 = 1/2v4, J2v2 = v3

C×H
with u =

√
2/2v1 + i

√
2v4, w = v2 + iv3

g1 = a14dudu + a23dwdw

d′4,δ

J1v1 = v2, J1v4 = v3

D2

v1 = e−δt/2(cos tdx− sin tdy), v4 = dt
v2 = e−δt/2(sin tdx + cos tdy),

v3 = e−tdz + xe−tδ/2(sin 2tdx− cos 2tdy),
with u = v1 + iv2, w = v4 + iv3,

g1 = a12(dudu + δdwdw), Einstein (4.8)

J2v1 = v2, J2v4 = −v3

(D2c
)0

with u = v1 + iv2, w = v4 + iv3

g2 = a12(dudu− δdwdw)
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6. Some generalizations

In this section we show some geometric features in higher dimensions. On the one
hand we shall give constructions of Kähler Lie algebras in higher dimensions. We
obtain examples of Ricci flat metrics by generalizing a Kähler structure on aff(C).
On the other hand we shall compare hypersymplectic and Walker metrics.

Let A be an associative Lie algebra. Then aff(A) is the Lie algebra A⊕A
with Lie bracket given by:

[(a, b)(c, d)] = (ac− ca, ad− cb)

An almost complex structure on aff(A) is defined by K(a, b) = (b,−a) which is
integrable and parallel for the torsion free connection ∇(a,b)(c, d) = (ac, ad).

Affine Lie algebras play an important role in the characterization of the
solvable Lie algebras admitting an abelian complex structure [5]. In dimension
four the list of affine Lie algebras consists of R× h3 , R2× aff(R), aff(R)× aff(R),
d4,1 and aff(C).

Assume that A is commutative and that ei i= 1 . . . n is a basis of A . Let
vi = (ei, 0) and wi = (0, ei) be a basis of aff(A). Consider the dual basis vi wi of
aff(A)∗ and define a non degenerate two form by ω =

∑
vi ∧ wi . Indeed ω is K

invariant and by computing dω one gets that it is closed.

Proposition 6.1. The Lie algebras aff(A) carry a Kähler structure for any
commutative algebra A.

This Kähler structure does not necessarily induces a Ricci flat metric. See
for example R2 × aff(R).

Assume now that A is a commutative complex algebra and consider J to
be the almost complex structure on aff(A) given by J(a, b) = (−ia, ib). Let ∇ be
the connection on aff(A) given by

∇(a,b)(c, d) = (−ac, ad).

Then since A is commutative ∇ is torsion free. Furthermore the connection is
flat. Indeed

R((a, b), (c, d)) = ∇[(a,b),(c,d)] = 0

and J is parallel, that is ∇J = 0. We shall prove that ∇ is a metric connection.

Take coordinates ui on A ⊕ 0 and wi on 0 ⊕ A . Let g be the (pseudo-)
metric on aff(A) defined by:

g((a, b), (c, d)) =
∑

i

(duidwi + duidwi) =
∑

i

Re (ad + bc)i

then ∇ is the Levi Civita connection of g . It is easy to verify that ∇(a,b) is skew
symmetric with respect to g .

Proposition 6.2. The Lie algebras aff(A) are endowed with a neutral Ricci
flat Kähler metric for a commutative complex algebra A.
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For a curve (a(t), b(t)) on aff(A) the geodesic equation related to the
previous pseudo-Kähler metric: −∇(a,b)(a, b) = (a′, b′) gives rise the following
equations a′ = a2 , b′ = −ab , which have the non trivial solutions a = (κ1 − t)−1 ,
b = κ2(t−κ1) for κ1, κ2 constants, showing that the metric is not complete except
when a = 0 and b = κ is also constant.

A Walker metric g on a Lie algebra g is characterized by the existence of
a subspace W ⊂ g satisfying: (∗) g(W, W ) = 0 and ∇yW ⊂ W for all y ∈ g

where ∇ denotes the Levi Civita connection for g .

Since g([x, y], z) = g(∇xy, z) + g(∇yz, x) = 0 for all x, y, z ∈ g then
W ⊂ W⊥ . Thus if the dimension of W is a half of the dimension of W then W
must be a subalgebra.

A hypersymplectic metric on a Lie algebra g is an example of a Walker
metric (see section 4). The following result explains how to construct hypersymm-
plectic metrics from Walker Kähler metrics. The proof follows from the previous
observation and features of hypersymplectic Lie algebras (see [1] for instance).

Proposition 6.3. Let g be a Walker Kähler metric on a Lie algebra g for
which W satisfies conditions (∗) and assume that g = W ⊕ JW . Then g is a
hypersymplectic metric on g.

The condition W ⊕JW is necesary as proved by (aff(C), J2, g2). In fact g2

is a Walker Kähler metric but not hypersymplectic. The condition for g of being
Kähler is necessary as we see in the following example.

Example 6.4. Consider on aff(C) the complex structure given by J(a, b) =
(ia, ib) and consider the metric g defined by g((a, b), (c, d)) = Re(ad + bc). Then
g is compatible with J and the Levi Civita connection for g is

∇(a,b)(c, d) = (−1

2
(ac + ca), a

(d + d)

2
+ c

(b− b)

2
)

It is proved that J is not parallel (see (3.5)), hence this metric is not pseudo-
Kähler. However the metric is Walker (compare with [18])
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