On Centralizers of Elements in the Lie Algebra of the Special Cremona Group $SA_2(k)$

A. P. Petravchuk and O. G. Iena

Communicated by E. B. Vinberg

Abstract. We give a description of maximal abelian subalgebras and centralizers of elements in the Lie algebra $sa_2(k) = \{D \in \text{Der} k[x, y] \mid \text{div} D = 0\}$ over an algebraically closed field k of characteristic 0. This description is given in terms of closed polynomials.

Mathematics Subject Classification: 17B65, 17B05.

Keywords and Phrases: Lie algebra, derivation, closed polynomial, maximal abelian subalgebra.

1. Introduction

The special affine Cremona group $SA_n(k)$ over a field k consists of all automorphisms $F = (f_1, \ldots, f_n)$ of the polynomial algebra $k[x_1, \ldots, x_n]$ with $\text{det}(JF) = 1$, where JF is the Jacobian matrix of F. From [4] it follows that the Lie algebra $sa_n(k)$ of the infinite dimensional algebraic group $SA_n(k)$ consists of all derivations $D = \sum_{i=1}^{n} a_i(x_1, \ldots, x_n) \frac{\partial}{\partial x_i}$, $a_i(x_1, \ldots, x_n) \in k[x_1, \ldots, x_n]$ of the algebra $k[x_1, \ldots, x_n]$ with $\text{div} D = \sum_{i=1}^{n} \frac{\partial a_i}{\partial x_i} = 0$.

The aim of this paper is to give a description of centralizers of elements in the Lie algebra $sa_2(k)$ and to describe all maximal abelian subalgebras of this algebra over an algebraically closed field k of characteristic 0. The investigation of the structure of subalgebras in $sa_2(k)$ is of great interest, because many problems (in particular the Jacobian conjecture for $n = 2$) are closely connected with properties of subalgebras in $sa_2(k)$.

To describe centralizers of elements in $sa_2(k)$ we represent this Lie algebra as a quotient algebra of the Lie algebra $P_2(k)$ of all polynomials in two variables with multiplication rule $[f, g] = \text{det}(J(f, g))$, where $\text{det}(J(f, g))$ is the Jacobian of polynomials $f, g \in k[x, y]$. In fact, $P_2(k)$ is a Poisson algebra but we mainly consider it as a Lie algebra. Using results from [3], it is easy to obtain a description of centralizers of elements and of maximal abelian subalgebras in $P_2(k)$ (see also [5]). This description is given in terms of closed polynomials, i.e., polynomials...
Let \(f \in k[x, y] \) for which the subalgebra \(k[f] \) is integrally closed in \(k[x, y] \). Using some results from [1], one can replace here closed polynomials by irreducible ones.

Notations in the paper are standard. The ground field \(k \) is algebraically closed of characteristic 0. The center of a Lie algebra \(L \) is denoted by \(Z(L) \). It is easy to show that \(Z(P_2(k)) = k \), where \(k \) is considered as a subalgebra in \(P_2(k) \).

For a polynomial \(f \in k[x, y] \) we denote by \(k[f] \) the (associative) subalgebra in \(k[x, y] \) generated by \(f \). The one-dimensional vector subspace of \(k[x, y] \) spanned on \(f \) is denoted by \(kf \).

A polynomial \(f(x, y) \in k[x, y] \) is called a Jacobian polynomial if there exists a polynomial \(g \) such that \([f, g] = \text{det}(J(f, g)) \in k^* \) (see, for example [2], p.245).

\[2. \text{ Closed polynomials} \]

Lemma 2.1. The Lie algebra \(\text{sa}_2(k) \) is isomorphic to the quotient algebra of \(P_2(k) \) by \(Z(P_2(k)) = k \), i.e.,

\[\text{sa}_2(k) \cong P_2(k)/k. \]

Proof. Any element \(f(x, y) \) of the Lie algebra \(P_2(k) \) induces the inner derivation \(\text{ad} f : P_2(k) \to P_2(k) \), \(\text{ad} f(g) = [f, g] \) of the Lie algebra \(P_2(k) \). The linear mapping \(\text{ad} f \) is also a derivation of the associative algebra \(k[x, y] \). It is easy to see that the kernel of the homomorphism of Lie algebras \(\text{ad} : P_2(k) \to \text{Der}(k[x, y]) \) coincides with \(k \), where \(k \) is considered as a subalgebra in \(P_2(k) \). Since \(\text{ad} f = -\frac{\partial f}{\partial y} \frac{\partial}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial}{\partial y} \), we get \(\text{div}(\text{ad} f) = -\frac{\partial^2 f}{\partial y \partial x} + \frac{\partial^2 f}{\partial x \partial y} = 0 \). Therefore, \(\text{ad} f \in \text{sa}_2(k) \).

This proves \(\text{ad}(P_2(k)) \subseteq \text{sa}_2(k) \).

Let us show that \(\text{ad} \) is a surjective map. Let \(D = P(x, y) \frac{\partial}{\partial x} + Q(x, y) \frac{\partial}{\partial y} \) be an element of \(\text{sa}_2(k) \). Then \(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} = 0 \). This condition guarantees the existence of a polynomial \(\varphi(x, y) \) (a potential) such that \(\frac{\partial \varphi}{\partial x} = Q(x, y), \frac{\partial \varphi}{\partial y} = -P(x, y) \). For \(\varphi \) we obtain \([\varphi, x] = -\frac{\partial \varphi}{\partial y} = P(x, y), [\varphi, y] = \frac{\partial \varphi}{\partial x} = Q(x, y) \), in other words \(\text{ad}(\varphi) = D \). This proves the surjectivity of the map \(\text{ad} \). Using that \(\ker \text{ad} = k \), we obtain \(P_2(k)/k \cong \text{sa}_2(k) \).

Lemma 2.2. 1) A polynomial \(f \in k[x_1, \ldots, x_n] \setminus k \) is closed if and only if \(k[f] \) is a maximal element in the partially ordered set (with respect to inclusion)

\[\mathcal{M} = \{ k[h] \mid h \in k[x_1, \ldots, x_n] \setminus k \}. \]

2) Let \(D \) be a derivation of \(k[x, y] \), \(D \neq 0 \). Then \(\ker D = k[f] \) for some closed polynomial \(f \).

Proof. 1) See [3], Lemma 3.1.

2) From [3], Theorem 2.8, it follows that \(\ker D = k[f] \) for some polynomial \(f \). The subalgebra \(\ker D = k[f] \) is integrally closed in \(k[x, y] \) by the Lemma 2.1 from [3]. Therefore the polynomial \(f \) is closed.

Let \(f, h \in k[x_1, \ldots, x_n] \). We call a polynomial \(h \) a generative polynomial of \(f \) if \(h \) is closed and if \(f \in k[h] \), i.e., \(f = F(h) \) for some \(F(t) \in k[t] \).
Lemma 2.3. Let \(f \in k[x,y] \setminus k \). The polynomial \(f \) is closed in the following two cases:

1) when \(f \) is irreducible;
2) when \(f \) is a Jacobian polynomial.

Proof. 1) If \(f \) is not closed, then \(f = F(h) \) for some polynomials \(h \in k[x,y] \) and \(F(t) \in k[t], \deg F > 1 \). Since \(F \) is reducible (as a polynomial in one indeterminate) \(f \) is reducible as well.

2) Let \(f \) be Jacobian but not closed. Then there exists a polynomial \(F(t) \in k[t], \deg F \geq 2 \) such that \(f = F(h) \) for some polynomial \(h \in k[x,y] \). As \(f \) is Jacobian there exists a polynomial \(g \in k[x,y] \) with \(\det(J(f,g)) = c \in k^* \). Then

\[
\det(J(f,g)) = \det(J(F(h),g)) = F'(h) \det(J(h,g)) = c.
\]

This is impossible because \(\deg F'(h) \geq 1 \).

Lemma 2.4. 1) If polynomials \(f, g \in k[x,y] \setminus k \) are algebraically dependent, there exists a closed polynomial \(h \in k[x,y] \) such that \(f \in k[h] \) and \(g \in k[h] \);

2) For any polynomial \(f \in k[x,y] \setminus k \), there exists a generative polynomial. If \(h_1, h_2 \) are two generative polynomials of \(f \), there exist \(c_1 \in k^*, \ c_2 \in k \) such that \(h_2 = c_1h_1 + c_2 \);

3) In the set of all generative polynomials of a polynomial \(f \in k[x,y] \setminus k \) there exists at least one irreducible polynomial.

Proof. 1) If \(f \) and \(g \) are algebraically dependent, by Corollary 3 from [5] we obtain \([f, g] = 0\). By Lemma 2.2, we get \(\ker \text{ad} f = k[h] \) for some closed polynomial \(h(x,y) \). Since \(f \in \ker \text{ad} f \) and \(g \in \ker \text{ad} f \), one concludes \(f \in k[h] \) and \(g \in k[h] \).

2) Since from the inclusion \(k[f] \subsetneq k[g] \) it follows \(\deg g \leq \deg f \), \(f \) is contained in some maximal one-generated subalgebra \(k[h] \). By Lemma 2.2 \(h \) is a generative polynomial of \(f \). Suppose \(h_1 \) and \(h_2 \) are generative polynomials of \(f \). It means in particular that \(f \in k[h_1] \) and \(f \in k[h_2] \). Therefore, \(f = F_1(h_1) \) and \(f = F_2(h_2) \) for some polynomials \(F_1(t), F_2(t) \in k[t] \). Then \(F_1(h_1) - F_2(h_2) = 0 \) and this implies that \(h_1 \) and \(h_2 \) are algebraically dependent. By 1) we conclude \(h \in k[h], h_2 \in k[h] \) for some closed polynomial \(h \). Clearly \(k[h_1] = k[h] = k[h_2] \). Therefore \(h_2 = c_1h_1 + c_2 \) for some elements \(c_1 \in k^*, \ c_2 \in k \).

3) Let \(h \) be a generative polynomial of \(f \). Since \(h \) is closed it follows from [1] (see Théorème 8) that there exists \(c \in k \) such that \(h - c \) is an irreducible polynomial. Because \(k[h] = k[h - c] \), \(h - c \) is also a generative polynomial of \(f \). This proves the Lemma.

Corollary 2.5. If polynomials \(f(x,y) \) and \(g(x,y) \) are algebraically dependent then \(f = c_1g + c_2 \) for some \(c_1 \in k^*, \ c_2 \in k \).

Proof. Since \(f \) and \(g \) are algebraically dependent, by Lemma 2.4 there exists a closed polynomial \(h \) such that \(f \in k[h], \ g \in k[h] \). The irreducible polynomials \(f \) and \(g \) are closed by Lemma 2.3. Therefore \(k[f] = k[h] = k[g] \) and \(f = c_1g + c_2 \), for some \(c_1 \in k^*, \ c_2 \in k \).
Corollary 2.6. For any polynomial \(f \in k[x, y] \setminus k \) there exist an irreducible polynomial \(h(x, y) \) and a polynomial \(F(t) \in k[t] \) such that \(f = F(h) \).

Proof. By Lemma 2.4 there exists an irreducible polynomial \(h \) such that \(f \in k[h] \). This implies the required statement. \(\blacksquare \)

Lemma 2.7. 1) For any polynomial \(f \in P_2(k) \setminus k \) its centralizer \(C_{P_2(k)}(f) \) coincides with \(k[h] \) for any generative polynomial \(h \) of \(f \).

2) Let \(A \) be a maximal abelian subalgebra of the Lie algebra \(P_2(k) \). Then \(A = k[f] \) for some irreducible polynomial \(f \in P_2(k) \setminus k \). Conversely, for any irreducible polynomial \(f \in P_2(k) \setminus k \), the subalgebra \(k[f] \) is a maximal abelian subalgebra of \(P_2(k) \).

Proof. 1) Follows from Lemma 2.2, since \(C_{P_2(k)}(f) = \ker \text{ad } f \).

2) Let \(A \) be a maximal abelian subalgebra of the Lie algebra \(P_2(k) \) and let \(f \) be any non-constant polynomial from \(A \). Obviously, \(A \subseteq C_{P_2(k)}(f) = k[h] \) for some closed polynomial \(h \). Since \(k[h] \) is an abelian subalgebra, \(A = k[h] \). By Lemma 2.4, \(h \) can be chosen irreducible.

Now let \(f \) be an irreducible polynomial. The polynomial \(f \) is closed by Lemma 2.3. We shall show that \(k[f] \) is a maximal abelian subalgebra. Let \(g \) be a polynomial such that \([f, g] = 0 \). Then as in the proof of Lemma 2.4 \(f \in k[h] \), \(g \in k[h] \) for some closed polynomial \(h \). Therefore, using that \(f \) is closed, we conclude \(g \in k[h] = k[f] \). We proved that all polynomials commuting with \(f \) belong to \(k[f] \). Therefore \(k[f] \) is a maximal abelian subalgebra in \(P_2(k) \). \(\blacksquare \)

3. Main results

Theorem 3.1. Let \(D = P(x, y) \frac{\partial}{\partial x} + Q(x, y) \frac{\partial}{\partial y} \) be a non-zero element of the Lie algebra \(sa_2(k) \). Let \(f(x, y) \in k[x, y] \) be a polynomial such that \(\frac{\partial f}{\partial x} = Q(x, y) \), \(\frac{\partial f}{\partial y} = -P(x, y) \) and let \(f \) be a generative polynomial of \(f \). Then

1) if \(f(x, y) \) is not a Jacobian polynomial,

\[
C_{sa_2(k)}(D) = k[f] \left(-\frac{\partial f}{\partial y} \frac{\partial}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial}{\partial y} \right);
\]

2) if \(f(x, y) \) is a Jacobian polynomial and \(g(x, y) \) is a polynomial such that \(\det(J(f, g)) \in k^* \),

\[
C_{sa_2(k)}(D) = k[f] \left(-\frac{\partial f}{\partial y} \frac{\partial}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial}{\partial y} \right) + k \left(-\frac{\partial g}{\partial y} \frac{\partial}{\partial x} + \frac{\partial g}{\partial x} \frac{\partial}{\partial y} \right).
\]

Proof. 1) By Lemma 2.7 \(C_{P_2(k)}(f) = k[f] \). The homomorphism \(\text{ad} : P_2(k) \to sa_2(k) \) takes the polynomial \(f \) to the derivation \(\text{ad } f = -\frac{\partial f}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial}{\partial y} \). Let \(D_1 = P_1(x, y) \frac{\partial}{\partial x} + Q_1(x, y) \frac{\partial}{\partial y} \) be an arbitrary non-zero element of \(C_{sa_2(k)}(D) \).

By Lemma 2.1 there exists a polynomial \(f_1(x, y) \) such that \(\text{ad } f_1 = D_1 \). Since \(\ker \text{ad} = k \), \([f, f_1] \) lies in \(k \). But \(f \) is not a Jacobian polynomial, so we can
conclude $[f, f_1] = 0$. Therefore f_1 lies in $C_{P_2(k)}(f) = k[\bar{f}]$. This means that $\text{ad}^{-1}(C_{\text{sa}_2(k)}(D)) = k[\bar{f}]$. Using the surjectivity of the homomorphism ad we obtain $C_{\text{sa}_2(k)}(D) = \text{ad}(k[\bar{f}]) = k[\bar{f}] \left(-\frac{\partial f}{\partial y} \frac{\partial}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial}{\partial y} \right)$.

2) Let f be a Jacobian polynomial, i.e., there exists a polynomial g such that $\det(J(f, g)) = c \in k^*$. By Lemma 2.3 the polynomial f is closed, i.e., one can assume $\bar{f} = f$. Since $[\text{ad} f, \text{ad} g] = \text{ad} c = 0$, we have $\text{ad} g \in C_{\text{sa}_2(k)}(\text{ad} f) = C_{\text{sa}_2(k)}(D)$. It is easy to see that

$$\text{ad}^{-1}(C_{\text{sa}_2(k)}(D)) = \{ h \in P_2(k) | [f, h] \in k \} = k[\bar{f}] + kg = k[f] + kg.$$ Therefore,

$$C_{\text{sa}_2(k)}(D) = \text{ad}(k[f] + kg) = k[f] \left(-\frac{\partial f}{\partial y} \frac{\partial}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial}{\partial y} \right) + k \left(-\frac{\partial g}{\partial y} \frac{\partial}{\partial x} + \frac{\partial g}{\partial x} \frac{\partial}{\partial y} \right).$$

Remark 3.2. From Lemma 2.4 it follows that the polynomial \bar{f} in Theorem 3.1 can be chosen irreducible.

Remark 3.3. From the description of centralizers of elements in Theorem 3.1 it follows that the centralizer of a derivation corresponding to a non-Jacobian polynomial is an abelian subalgebra, and the centralizer of a derivation corresponding to any Jacobian polynomial is solvable of derived length 2.

Lemma 3.4. Let $L = k[f] + kg$ be a subalgebra of the Lie algebra $P_2(k)$ with $\det(J(f, g)) = c \in k^*$. If A is a nilpotent subalgebra of L and the nilpotency class of A is at most 2 then either $A \subseteq k[f]$ or A is contained in the subalgebra $k + kf + k(g + p(f))$ for some $p(t) \in k[t]$.

Proof. Suppose that A is not contained in $k[f]$. As $\dim L/k[f] = 1$ the $k-$subspace $A \cap k[f]$ is of codimension 1 in A. Therefore $A = (A \cap k[f]) + k(g + p(f))$ for some $p(t) \in k[t]$. Since $[q(f), g + p(f)] = q'(f) \cdot c$ for any polynomial $q(t) \in k[t]$ the subspace $A \cap k[f]$ may not contain polynomials of degree > 1. So the intersection $A \cap k[f]$ is contained in the subalgebra $k + kf$ and therefore $A \subseteq k + kf + k(g + p(f))$.

Theorem 3.5. Let A be a maximal abelian subalgebra of the Lie algebra $\text{sa}_2(k)$. Then

1) if $\dim A = \infty$, then $A = k[f] \left(-\frac{\partial f}{\partial y} \frac{\partial}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial}{\partial y} \right)$, where $f(x, y)$ is an irreducible polynomial. Conversely, for any irreducible polynomial f, the algebra

$$k[f] \left(-\frac{\partial f}{\partial y} \frac{\partial}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial}{\partial y} \right)$$

is a maximal abelian subalgebra in $\text{sa}_2(k)$;

2) if $\dim A < \infty$ then $A = kD_1 + kD_2$, where $D_1 = -\frac{\partial f}{\partial y} \frac{\partial}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial}{\partial y}$, $D_2 = -\frac{\partial g}{\partial y} \frac{\partial}{\partial x} + \frac{\partial g}{\partial x} \frac{\partial}{\partial y}$ for some polynomials f, g such that $\det(J(f, g)) \in k^*$. Conversely, for any two polynomials f, g with condition $\det(J(f, g)) \in k^*$ the subalgebra $kD_1 + kD_2$, where D_1 and D_2 are defined as above, is a maximal abelian subalgebra of $\text{sa}_2(k)$.
Proof. Let D be an arbitrary non-zero element of A. Then $A \subseteq C_{sa_2(k)}(D)$ and clearly A is a maximal abelian subalgebra of $C_{sa_2(k)}(D)$. By Theorem 3.1 either

$$C_{sa_2(k)}(D) = k[f] \left(-\frac{\partial f}{\partial y} \frac{\partial}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial}{\partial y} \right)$$

or

$$C_{sa_2(k)}(D) = k[f] \left(-\frac{\partial f}{\partial y} \frac{\partial}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial}{\partial y} \right) + k \left(-\frac{\partial g}{\partial y} \frac{\partial}{\partial x} + \frac{\partial g}{\partial x} \frac{\partial}{\partial y} \right).$$

In the first case f is a closed irreducible polynomial, in the second one the polynomials f and g satisfy the condition $\det(J(f,g)) \in k^*$. In the first case $C_{sa_2(k)}(D)$ is an abelian subalgebra. Thus $A = C_{sa_2(k)}(D) = k[f] \left(-\frac{\partial f}{\partial y} \frac{\partial}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial}{\partial y} \right)$. Consider the second case. Denote $L = \text{ad}^{-1}(C_{sa_2(k)}(D))$ where $\text{ad} : P_2(k) \to sa_2(k)$ is the homomorphism from the Lemma 2.1. Then $\text{ad}^{-1}(A)$ is a subalgebra in L. It is easy to see that $L = k[f] + kg$. Since $\ker \text{ad} = Z(P_2(k)) = k$, we conclude that $\text{ad}^{-1}(A)$ is a nilpotent subalgebra of the nilpotency class ≤ 2. By Lemma 3.4 it holds either $\text{ad}^{-1}(A) \subseteq k[f]$ or $\text{ad}^{-1}(A) \subseteq k + k[f] + k(g + p(f))$ for some $p(t) \in k[t]$. Since A is a maximal abelian subalgebra of $sa_2(k)$ it follows from inclusion $\text{ad}^{-1}(A) \subseteq k[f]$ that $\text{ad}^{-1}(A) = k[f]$. Then we have $A = k[f] \left(-\frac{\partial f}{\partial y} \frac{\partial}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial}{\partial y} \right).

Let now $\text{ad}^{-1}(A) \subseteq k + k[f] + k(g + p(f))$. Applying the map ad we get the inclusion $A \subseteq \text{ad}(k + k[f] + k(g + p(f))) = kD_1 + kD_2$, where $D_1 = \text{ad} f, D_2 = \text{ad}(g + p(f))$. The subalgebra $kD_1 + kD_2$ is abelian and therefore $A = kD_1 + kD_2$. Denoting $g + p(f)$ by g we have $D_1 = \text{ad} f, D_2 = \text{ad} g$. So we have proved the necessary conditions for both statements of the Theorem.

Let f be an irreducible polynomial. We will show that $k[f] \left(-\frac{\partial f}{\partial y} \frac{\partial}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial}{\partial y} \right)$ is a maximal abelian subalgebra in $sa_2(k)$. Clearly, since f is an irreducible polynomial, by Lemma 2.7 $k[f]$ is a maximal abelian subalgebra in $P_2(k)$. It is obvious that

$$\text{ad}(k[f]) = k[f] \left(-\frac{\partial f}{\partial y} \frac{\partial}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial}{\partial y} \right)$$

is an abelian subalgebra in $sa_2(k)$. Suppose that $\text{ad}(k[f])$ is not maximal abelian. Then it is properly contained in some maximal abelian subalgebra B of the algebra $sa_2(k)$. Since $\dim B = \infty$, as it was proved above there exists a closed polynomial g such that $B = k[g] \left(-\frac{\partial g}{\partial y} \frac{\partial}{\partial x} + \frac{\partial g}{\partial x} \frac{\partial}{\partial y} \right)$. From this one easily concludes that $k[f]$ is properly contained in $\text{ad}^{-1}(B) = k[g]$. This is impossible by Lemma 2.2, since $k[f]$ is a maximal in the set of subalgebras of the form $k[h]$ in $P_2(k)$. This proves that $k[f] \left(-\frac{\partial f}{\partial y} \frac{\partial}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial}{\partial y} \right)$ is a maximal abelian subalgebra in $sa_2(k)$.

Let now f and g be two polynomials from $k[x, y]$ such that $\det(J(f,g)) \in k^*$. Then the elements $D_1 = \text{ad} f$ and $D_2 = \text{ad} g$ commute. Therefore $A = kD_1 + kD_2$ is an abelian two-dimensional subalgebra in $sa_2(k)$. Suppose, A is not a maximal abelian subalgebra of the algebra $sa_2(k)$. Then A is contained in some maximal abelian subalgebra B of $sa_2(k)$. If $\dim B = \infty$, by the above proved statement, $B = k[h] \left(-\frac{\partial h}{\partial y} \frac{\partial}{\partial x} + \frac{\partial h}{\partial x} \frac{\partial}{\partial y} \right)$ for some closed polynomial h. Then $\text{ad}^{-1}(B) = k[h]$ is an abelian subalgebra in $P_2(k)$ which contains the non-abelian subalgebra $k + k[f] + kg$. This is impossible and therefore $\dim B < \infty$. As above one
can obtain $\dim B = 2$. This implies $A = B$ which contradicts to our assumption. This contradiction proves that A is a maximal abelian subalgebra in $so_2(k)$. The sufficient conditions for the both statements of the Theorem are proved. ■

References

