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Abstract. Let X be an algebraic variety with a generically free action of
a connected algebraic group G . Given an automorphism φ : G → G , we will
denote by Xφ the same variety X with the G -action given by g : x → φ(g) · x .

We construct examples of G -varieties X such that X and Xφ are not G -
equivariantly isomorphic. The problem of whether or not such examples can
exist in the case where X is a vector space with a generically free linear action,
remains open. On the other hand, we prove that X and Xφ are always stably
birationally isomorphic, i.e., X × Am and Xφ × Am are G -equivariantly bira-
tionally isomorphic for a suitable m ≥ 0.
Mathematics Subject Index 2000: 14L30, 14E07, 16K20.
Keywords and phrases: Group action, algebraic group, no-name lemma, bira-
tional isomorphism, central simple algebra, Galois cohomology.

1. Introduction

Throughout this note all algebraic varieties, algebraic groups, group actions and
maps between them will be defined over a fixed base field k . By a G-variety X
we shall mean an algebraic variety with a (regular) action of a linear algebraic
group G . A morphism (respectively, rational map, birational isomorphism) of
G-varieties is a G-equivariant morphism (respectively, rational map, birational
isomorphism).

Given an automorphism φ of G , we can “twist” a group action α : G ×
X −→ X by φ to obtain a new G-action αφ on X as follows:

αφ : G×X
(φ,id)−→ G×X

α−→ X .

Note that the new action has the same orbits as the old one. If X is a G-variety
(via α) then we will denote the “twisted” G-variety (i.e., X with the G-action
via αφ ) by Xφ .

Now suppose that the action α of G on X is generically free, i.e., that
there exists a G-invariant open dense subset U of X such that the stabilizer of
every geometric point of U is trivial. In this paper we will address the following
question:

1Z. Reichstein was partially supported by an NSERC research grant.
2A. Vistoli was partially supported by the University of Bologna, funds for selected research

topics.

ISSN 0949–5932 / $2.50 c© Heldermann Verlag



792 Reichstein and Vistoli

Problem 1.1. Are X and Xφ birationally isomorphic as G-varieties over k?

Katsylo [6] conjectured that when k = C generically free linear G-repre-
sentations V and W are (G-equivariantly) birationally isomorphic if and only if
dim(V ) = dim(W ). This conjecture is known to be false for some finite groups
G ; in particular, there are counterexamples where W = V φ for an automorphism
φ of G , see [16, Section 7]. V. L. Popov has suggested that counterexamples
of this form should also exist in the case where G is connected. (In this case
Katsylo’s conjecture is still open.) The present paper was largely motivated by
this suggestion.

Before proceeding to state our main results, we will make two simple ob-
servations. First, the answer to Problem 1.1 depends only on the class of φ in
the group of outer automorphisms of G . Indeed, suppose φ′ = φ ◦ innh , where
innh : G −→ G is conjugation by h ∈ G , i.e., φ(g) = hgh−1 . Then Xφ and Xφ′

are isomorphic via x 7→ h · x . In particular, X and Xφ are always isomorphic if
G has no outer automorphisms, e.g., if G is the full symmetric group Sn (n 6= 6)
or if G is a semisimple algebraic group whose Dynkin diagram has no non-trivial
automorphisms; cf. [10, Theorem 25.16]. The latter class of groups includes every
split (almost) simple algebraic group, other than those of type An , Dn and E6 ;
cf. [10, Sections 24A and 25B].

Secondly, the G-invariant rational functions for X and Xφ are exactly the
same, i.e.,

k(X)G = k(Xφ)G ⊂ k(X) . (1)

Recall that the inclusion k(X) ⊂ k(X)G induces a dominant rational map
π : X 99K X/G , which is called the rational quotient map. The k -variety X/G
is defined (up to birational isomorphism) by the condition k(X/G) = k(X)G ;
cf. [13, Section 2.4]. Thus (1) can be rephrased by saying that a rational quotient
map π for X is also a rational quotient map for Xφ .

The main results of this note are Theorems 1.2 and 1.3 below.

Theorem 1.2. Let X be a generically free G-variety and φ : G −→ G be an
automorphism of G. Then the G-varieties X and Xφ are stably birationally
isomorphic. More precisely there exists an integer m ≥ 0 and a G-equivariant
birational isomorphism

f : X × Am 99K Xφ × Am

such that the diagram

X × Am f //___

���
�
� Xφ × Am

���
�
�

X/G Xφ/G,

commutes.

Here Am is the m-dimensional affine space with trivial G-action, and the
vertical map on the left is the composition of the projection X ×Am −→ X with
the rational quotient map X 99K X/G (similarly for the vertical map on the right).
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Theorem 1.3. Let n ≥ 3 and let φ be the (outer) automorphism of G = PGLn

given by g −→ (g−1)transpose . Assume the base field k contains a primitive nth
root of unity. Then there exists a generically free PGLn -variety X such that X
and Xφ are not birationally isomorphic over k .

This gives a negative answer to Problem 1.1. The question of whether or not
similar examples can exist in the case where X is a vector space with a generically
free linear action of a connected linear algebraic group G , remains open.

2. The no-name lemma

Recall that a G-bundle π : E −→ X is an algebraic vector bundle with a G-action
on E and X such that π is G-equivariant and the action of every g ∈ G restricts
to a linear map π−1(x) −→ π−1(gx) for every x ∈ X .

Our proof of Theorem 1.2 in the next section will heavily rely the following
result.

Lemma 2.1. (No-name Lemma) Let π : E −→ X be a G-bundle of rank r .
Assume that the G-action on X is generically free. Then there exists a birational

isomorphism π : E
'

99K X × Ar of G-varieties such that the following diagram
commutes

E
φ //___

π

��

X × Ar

pr1zzvvvvvvvvv

X

(2)

Here G is assumed to act trivially on Ar , and pr1 denotes the projection to the
first factor.

The term “no-name lemma” is due to Dolgachev [4]. In the case where G is
a finite group, it is a variant of Hilbert’s Theorem 90 classically known as Speiser’s
Lemma [21]; for a modern treatment, see [5, Proposition 1.1], [9, Proposition 1.3]
or [20, Appendix 3]. In the case where the base field k is algebraically closed,
char(k) = 0, and G is an arbitrary linear algebraic group, to the best of our
knowledge the no-name lemma first appeared in [1], [6]. For a detailed proof in
this setting, see [2, Section 4].

In the sequel we would like to use Lemma 2.1 in the case where k is not
necessarily algebraically closed. With this in mind, we will prove a more general
variant of this result (Proposition 2.3 below). For the rest of this section we will
work over an arbitrary base field k .

Remark 2.2. Suppose G is a group scheme of finite type over k , X is an
arbitrary quasi-separated scheme (or algebraic space) over k on which G acts
(quasi-separated means that the diagonal embedding X ↪→ X ×Spec k X is quasi-
compact; this is automatically satisfied when X is of finite type over k ). Assume
further that the G-action on X is free, i.e., that the stabilizers of all geometric
points of X are trivial (as group schemes). Equivalently, the morphism G×Spec k

X −→ X ×Spec k X defined in functorial terms by (g, x) 7→ (gx, x) is categorically
injective (i.e., it is injective on geometric points and unramified). Then, by a
result of Artin [8, Corollaire 10.4], the quotient sheaf X/G in the fppf topology is
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an algebraic space, and G ×Spec k X = X ×X/G X . There is a Zariski open dense
subspace V ⊆ X/G that is a scheme ([7, Proposition 6.7]); if U is the inverse image
of V in X , then the restriction U → U/G = V is a G-torsor (i.e. a principal
G-bundle in the fppf topology, cf. [3]). In the case where X is a k -variety, this is
a the rational quotient map, i.e., k(U/G) = k(X)G ; cf. [13, Lemma 2.1].

Proposition 2.3. Assume that G is a group scheme of finite type over k , act-
ing on a quasi-separated k -scheme X , with a non-empty invariant open subscheme
on which the action is free. Let E be a G-equivariant locally free sheaf of rank r
on X . Then there exists a non-empty open G-invariant subscheme U of X , such
that the restriction E |U is isomorphic to the trivial G-equivariant sheaf Or

U .

To see that Lemma 2.1 (over an arbitrary base field k ) follows from Propo-
sition 2.3, recall the the well-known equivalence between the category of G-
equivariant vector bundles on X and the category of G-equivariant locally free
sheaves on X . One passes from a G-bundle V → X to the G-equivariant locally
free sheaf of sections of V ; conversely, to each G-equivariant locally free sheaf E
on X one associates the spectrum of the sheaf of symmetric algebras of the dual
E∨ over X .

Note also that in the course of proving Lemma 2.1, we may assume without
loss of generality that X is primitive, i.e., G transitively permutes the irreducible
components of X (equivalently, k(X)G is a field). Indeed, an arbitrary G-variety
X is easily seen to be birationally isomorphic to a disjoint union of primitive G-
varieties X1, . . . , Xr , and it suffices to prove Lemma 2.1 for each Xi . On the other
hand, if X is primitive, then every non-empty G-invariant open subset is dense
in X . This shows that Lemma 2.1 follows from Proposition 2.3, as claimed.

Proof of Proposition 2.3. After replacing X by a non-empty open sub-
scheme we may assume that the action of G on X is free. By passing to a dense
invariant subscheme of X , we may assume that X/G is a scheme, and X → X/G
is a G-torsor; see Remark 2.2. By descent theory, the G-equivariant sheaf E
comes from a locally free sheaf F on X/G ; see, for example, [22, Theorem 4.46].
By restricting to a non-empty open subscheme of X/G once again, we may assume
that F is isomorphic to Or

X/G . Then E is G-equivariantly isomorphic to Or
X , as

claimed.

Remark 2.4. The same argument goes through if the base field k (or, equiv-
alently, the base scheme Spec(k)) is replaced by a algebraic space B , so that X
is defined over B , and the group scheme G is assumed to be flat and finitely
presented over B .

3. Proof of Theorem 1.2

We will prove Theorem 1.2 in two steps: first in the case where X = V is a
generically free linear representation of G , then for arbitrary X .

Step 1: Suppose X = V is a generically free linear representation of G .

Let m = dim(V ). By the no-name lemma, there exist G-equivariant
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birational isomorphisms α and β such that the diagram

V × Am α //___

pr1

��

V × V φ

pr1

��

V × V φ
β //___

pr2

��

V φ × Am

pr1

��
V

πV

���
�
� V

πV

���
�
� V φ

π
V φ

���
�
� V φ

π
V φ

���
�
�

V/G V/G V φ/G V φ/G

commutes. Now we can take f = β ◦ α : V × Am 99K V φ × Am .

Step 2: Suppose X is an arbitrary generically free G-variety.

Let V be a generically free linear representation of G and p : X×V −→ V
be the projection onto the second factor. By the no-name lemma, X × V is
birationally isomorphic to X × Am ; this yields a dominant rational map of G-
varieties X×Am 99K V , which we will continue to denote by p . After replacing X
by X×Am , we may assume that there exists a dominant rational map p : X 99K V .
We now consider the commutative diagram

X
p //____

���
�
� V

���
�
�

X/G
p/G //___ V/G,

where the vertical arrows are rational quotient maps. We claim that X is bira-
tionally isomorphic to the fiber product X/G×V/G V , where the G-action on this
fiber product is induced from the G-action on V (in other words, G acts trivially
on X/G and on V/G). In the case where k is an algebraically closed field of
characteristic zero, this is proved in [14, Lemma 2.16]. For general k , choose an
open invariant subscheme U of V such that G acts freely over U , the quotient
U/G is a scheme, and the projection U → U/G is a G-torsor; see Remark 2.2. By
restricting X , we may assume that the morphism X → X/G is also a G-torsor,
and that X maps into U . Then we get a commutative diagram

X
p //

��

U

��
X/G

p/G // U/G

where the columns are G-torsors and the top row is G-equivariant. Any such
diagram is well known to be cartesian; this proves our claim.

Similarly, Xφ ' Xφ/G ×V φ/G V φ . By Step 1 there is a G-equivariant
birational isomorphism f : V × Am 99K V φ × Am which makes the diagram

V × Am

πV

���
�
�

f

&&MMMMMM

X/G
p/G //____

id

$$I
I

I
I

I
V/G

id

&&M
M

M
M

M V φ × Am

π
V φ

���
�
�

Xφ/G
p/G //____ V φ/G
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commute. Consequently, f induces a G-equivariant birational isomorphism be-
tween the fiber products X/G ×V/G (V × Am) and Xφ/G ×V/G (V φ × Am) i.e.,
between X × Am and Xφ × Am . This completes the proof of Theorem 1.2.

Remark 3.1. Our proof shows that the integer m in the statement of Theo-
rem 1.2 can be taken to be the minimal value of 2 dim(W ), as W ranges over the
generically free linear representations of G .

4. Examples where X and Xφ are birationally isomorphic

The question of whether or not X and Xφ are birationally isomorphic over k is
delicate in general. Birational isomorphism over K = k(X)G is more accessible
because it has a natural interpretation in terms of Galois cohomology. In this
section we will to show that in many cases X and Xφ are, indeed, birationally
isomorphic over K (and thus over k ).

Let X be a primitive G-variety. Recall that X is called primitive if G
transitively permutes the irreducible components of X ; see Section 2. That is,
X is primitive if K = k(X)G is a field or equivalently, if the rational quotient
variety X/G is irreducible. As we saw in Remark 2.2, after replacing X by
an open G-invariant subvariety we may assume that the rational quotient map
π : X 99K X/G is regular and is a G-torsor. Hence, the G-action on X gives rise
to a Galois cohomology class in H1(K, G), which we shall denote by [X] ; cf., [18],
[12].

An automorphism φ of G induces an automorphism φ∗ of the (pointed)
cohomology set H1(K, G), where [Xφ] = φ∗([X]). The G-varieties X and Xφ

are birationally isomorphic over K if and only if φ∗([X]) = [X] in H1(K, G).

Example 4.1. If [X] = 1 then φ∗([X]) = 1; hence, X and Xφ are birationally
isomorphic. Explicitly, in this case X is birationally isomorphic to the “split” G-
variety Y ×G , with G acting on the second component by left translations, and
a birational isomorphism between Y × G and (Y × G)φ is given by (y, g) −→
(y, φ(g)). In particular, if G is a special group, i.e., H1(K, G) = {1} for every
K/k , then X and Xφ are birationally isomorphic for every generically free G-
variety X . Examples of special groups are G = GLn , SLn , Sp2n ; see [19,
Chapter X].

The following lemma extends this simple argument a bit further.

Lemma 4.2. Let X be a primitive generically free G-variety and K = k(X)G .
Suppose [X] lies in the image of the natural map H1(K, G0) −→ H1(K,G), where
G0 is a closed subgroup of G such that φ|G0 = id: G0 −→ G0 . Then X and Xφ

are birationally isomorphic as K -varieties.

Proof. Let i : G0 ↪→ G be the inclusion map. The commutative diagram

G0
i //

id
��

G

φ

��
G0

i // G
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of groups induces a commutative diagram of cohomology sets

H1(K, G0)
i∗ //

id
��

H1(K, G)

φ∗
��

H1(K, G0)
i∗ // H1(K, G).

Since [X] is in the image of i∗ , this diagram shows that φ∗([X]) = [X] .

Note that if [X] = 1 then [X] is the image of the trivial element of
H1(K, G0), where G0 = {1} . Example 4.1 is thus a special case of Lemma 4.2.
We now turn to a more sophisticated application of Lemma 4.2, with non-trivial
G0 .

Lemma 4.3. Let k be a field of characteristic 6= 2, n be a positive integer,
a1, . . . , an ∈ k∗ ,

q(x1, . . . , xn) = a1x
2
1 + · · ·+ ax2

n

be a non-degenerate quadratic form and φ be the automorphism of the special
orthogonal group SO(q) given by

φ(g) = hgh−1 , where h = diag(−1, 1, . . . , 1) ∈ O(q). (3)

Then X and Xφ are birationally isomorphic over K = k(X)SO(q) (and hence,
over k) for any irreducible generically free SO(q)-variety X .

We remark that if n is odd then φ is an inner automorphism; indeed,
φ(g) = (−h)g(−h)−1 and −h ∈ SO(q). In this case a K -isomorphism between X
and Xφ is given by x 7→ (−h) · (x). Thus the above lemma is only of interest in
the case where n is even; however, the argument below is valid for every n ≥ 1.

Proof. Let D0 ' (Z/2Z)n−1 , D ' (Z/2Z)n be the subgroups of diagonal
matrices in SO(q), O(q) respectively, and i : D0 ↪→ SO(q), j : D ↪→ SO(q) be
the natural inclusion maps. Note that φ restricts to a trivial automorphism of
D0 . Thus, in view of Lemma 4.2 it suffices to show that i∗ : H1(K,D0) −→
H1(K, SO(q)) is surjective.

Consider the commutative diagram

1 // D0
//

i
��

D

j

��

det // Z/2Z // 1

SO(q) // O(q)

of algebraic groups and the induced commutative diagram

1 // H1(K, D0) //

i∗
��

(K∗/(K∗)2)n

j∗
��

p // K∗/(K∗)2 // 1

H1(K, SO(q)) // H1(K, O(q))
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in cohomology. The top row is an exact sequence of abelian groups; H1(K, D0)
can thus be identified with the kernel of the product map p : (K∗/(K∗)2)n −→
K∗/(K∗)2 , where p(b1, . . . , bn) = b1 . . . bn (mod (K∗)2).

Now recall that H1(K, O(q)) is in a natural 1-1 correspondence with isom-
etry classes of n-dimensional quadratic forms q′ and that j∗ takes (b1, . . . , bn) ∈
(K∗/K∗2)n to the quadratic form q′ = a1b1x

2
1 + · · ·+ anbnx

2
n . Similarly,

H1(K, SO(q)) is in a natural 1-1 correspondence with isometry classes of n-
dimensional quadratic forms q′ such that q′ has the same discriminant as q ,
and i∗ takes (b1, . . . , bn) ∈ (K∗/K∗2)n , with b1 . . . bn = 1 in K∗/K∗2 , to q′ =
a1b1x

2
1 + · · ·+anbnx

2
n ; cf., [10, Section 29.E] or [18, III, Appendix 2, §2]. It is clear

from this description that both i∗ and j∗ are surjective.

We will now assume that the base field k is algebraically closed (and
still of characteristic 6= 2). In this case, up to isomorphism, there is only
one non-degenerate quadratic form q of each dimension n ≥ 1, so we will set
q(x1, . . . , xn) = x2

1 + · · ·+ x2
n and write SOn in place of SO(q).

Proposition 4.4. Let k be an algebraically closed base field of characteristic
6= 2 and let X be a generically free SOn -variety defined over k . Then X and Xφ

are birationally isomorphic over K = k(X)SOn for every automorphism φ of SOn .

Proof. If n = 1 then the group SOn is trivial, and there is nothing to prove.
If n = 2 then SOn is isomorphic to the 1-dimensional torus Gm . Since this group
is special (see e.g., [18, Proposition X.2]), in this case the proposition follows from
Example 4.1.

We may thus assume that n ≥ 3. As we remarked in the introduction, we
are allowed to replace φ by φ′ = φ ◦ innh , where innh denotes conjugation by
h ∈ SO(q); indeed, Xφ and Xφ′

are isomorphic (over K ) via x 7→ h · x . For this
reason we will be interested in the group Out(SOn) of outer automorphisms of
SOn .

Since SOn is semisimple for every n ≥ 3 (in fact, it is even simple, unless
n = 4), we have

|Out(SOn)| ≤ |Aut( Dyn(SOn) )| ,
where Dyn(SOn) is the Dynkin diagram of SOn ; see [10, Theorem 25.16].

If n = 2m + 1 ≥ 3 is odd, then SOn is a simple group of type Bm . In this
case Dyn(SOn) has no non-trivial automorphisms and thus Out(SOn) = {1} . In
other words, φ is an inner automorphism, and the proposition follows.

Now suppose n = 2m ≥ 4 is even. Recall that SO4 is a semisimple group of
type A1 +A1 , and SOn is a simple group of type Dm for any n ≥ 6. In both cases
|Aut(Dyn(SOn))| = 2 and thus |Out(SOn)| ≤ 2. On the other hand, it is easy to
see that the automorphism φ defined in (3) is not inner. Thus |Out(SOn)| = 2,
and after composing φ with an inner automorphism, we may assume that either
φ = id or φ is as in (3). In the former case the assertion of the proposition is
trivial, in the latter if follows from Lemma 4.3.

5. Proof of Theorem 1.3

Recall that elements of H1(K, PGLn) are in a natural 1-1 correspondence with
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(i) generically free PGLn -varieties X , with k(X)PGLn = K , up to birational
isomorphism over K , or alternatively, with

(ii) central simple algebras A/K of degree n , up to K -isomorphism;

see [18], [12], [15]. We will denote the central simple algebra corresponding
to an irreducible generically free PGLn -variety X (respectively, to an element
α ∈ H1(K, PGLn)) by AX (respectively, by Aα ). If φ : PGLn −→ PGLn is the
automorphism given by g −→ (g−1)transpose then Aφ∗(α) is the opposite algebra
Aop

α ; cf. e.g., [19, pp. 152-153]. In other words, AXφ = Aop
X . The following

lemma gives a necessary and sufficient conditions for X and Xφ to be birationally
isomorphic over K .

Lemma 5.1. Let X be an irreducible generically free PGLn -variety. Then the
following conditions are equivalent.

(a) X and Xφ are birationally isomorphic over K = k(X)PGLn ,

(b) AX is K -isomorphic to Aop
X ,

(c) AX has order 1 or 2 in the Brauer group Br(K).

Proof. (a) ⇐⇒ (b): Let α = [X] ∈ H1(K, PGLn). Then as we observed in
Section 4, [Xφ] = φ∗(α). Thus AXφ = Aφ∗(α) = Aop

α = Aop
X , so that X and Xφ

are birationally isomorphic over K if and only if AX is K -isomorphic to Aop
X .

The equivalence of (b) and (c) is obvious, since Aop is the inverse of A in
Br(K).

Lemma 5.1 does not directly address Problem 1.1, i.e., it does not tell us
under what conditions X and Xφ are birationally isomorphic over the base field
k . Note however, that a birational isomorphism α : X −→ Xφ defined over k , re-
stricts to a k -automorphism of the field of invariants K = k(X)PGLn = k(Xφ)PGLn .
Our proof of Theorem 1.3 is based on the observation that if Autk(K) = {1} , then

X and Xφ are isomorphic over k ⇐⇒
X and Xφ are isomorphic over K ⇐⇒
AX has order 1 or 2 in the Brauer group of K .

Thus in order to prove Theorem 1.3 it suffices to construct (i) a finitely
generated field extension K/k such that Autk(K) = {1} and (ii) a central simple
algebra A/K of degree n and exponent n . These constructions are carried out in
Lemmas 5.2 and 5.3 below.

Lemma 5.2. For any field k there exists a smooth projective geometrically
connected algebraic surface S/k such that S(k) 6= Ø which admits no non-trivial
birational automorphisms. In other words, Autk k(S) = {1}.

Proof. According to [11], there exist smooth projective geometrically connected
curves C/k , of arbitrary genus g ≥ 3, such that the automorphism group of the
extension Ck to the algebraic closure of k is trivial. It is easy to see that all the
examples constructed in [11] have rational points over k (for example, each has
a rational point over the origin in P1

k , and another one at infinity). Choose two
such curves C1 and C2 , of genus g1 and g2 respectively, with g1 < g2 , and set
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S = C1 × C2 . By the Hurwitz formula every map from C1 to C2 is constant and
every non-constant separable map from Ci to itself is the identity.

We claim that every birational automorphism f : S 99K S is trivial. To
prove this, we may extend the base field to k , and assume that k is algebraically
closed. Note that there are no rational curves in S , since there are no non-
constant maps from P1 to C1 or to C2 . By the standard result on the resolution
of indeterminacies of rational maps by sequences of blow-ups, we see that every
rational map S 99K S is in fact regular. Hence a birational isomorphism of S is a
biregular isomorphism.

Since every morphism C1 → C2 is constant, we see that the composite

S
f−→ S

pr2−−→ C2 factors through the second projection pr2 : S → C2 to give a
commutative diagram

S
f //

pr2
��

S

pr2
��

C2
g // C2.

Since pr2 ◦ f is smooth, g must be separable, so it is the identity. Then f sends
each fiber pr−1

2 (y) ' C1 isomorphically to itself; and each of these restrictions
must be the identity. This implies that f is the identity, as claimed.

Lemma 5.3. Let X be an algebraic variety over a field k of dimension d ≥ 2
with a smooth rational k -point, K its fraction field, n a positive integer not
divisible by char(k) such that k contains all nth roots of 1. Then there exists
a division algebra D/K of degree n and exponent n.

Proof. Let x ∈ X(k) be a smooth rational point; consider a system of local
parameters t1, . . . , td in the local ring Ox(X)X,x ; here d = dim(X) = trdegk(K) ≥
2. We claim that the symbol algebra D = (t1, t2)n , i.e., the K -algebra given by
generators x1, x2 and relations xn

1 = t1 , xn
2 = t2 , x1x2 = ζx2x1 has exponent n in

Br(K). (Here ζn is a primitive nth root of unity in k .)

To prove this, consider the completion Ôx(X) = k[[t1, . . . , td]] of the local
ring Ox(X), where k[[t1, . . . , td]] denotes the ring of formal power series in the

variables t1, . . . , td . Note that Ox(X) ⊂ Ôx(X) and thus, after passing to the
fields of fractions, K ⊂ k((t1, . . . , td)). The image of D under the restriction
map Br(K) −→ Br

(
k((t1, . . . , td))

)
is the symbol algebra D′ = (t1, t2)n over

k((t1, . . . , td)). A simple valuation-theoretic argument shows that D′ has exponent
n ; cf. [17, Proposition 3.3.26]. Hence, so does D . This completes the proof of
Lemma 5.3 and thus of Theorem 1.3.

Remark 5.4. Theorem 1.3 remains valid if the condition that k contains a
primitive nth root of unity is replaced by the (weaker) condition that k contains a
primitive mth root of unity for some divisor m of n such that m ≥ 3. The proof
is the same, except that instead of the symbol algebra D = (t1, t2)n of degree n
and exponent n , we use the algebra Mn/m(E) of degree n and exponent m , where
E = (t1, t2)m .
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Remark 5.5. Theorem 1.3 fails for n = 2; indeed, A and Aop are isomorphic
over K for any central simple algebra A/K of degree 2. Alternatively, PGL2 '
SO3 , so if Theorem 1.3 were true for n = 2, it would contradict Proposition 4.4.

6. Further examples

In this section we will assume that G is a finite group and k is an algebraically
closed field of characteristic zero.

Proposition 6.1. (a) For every finitely generated field extension K/k with
K 6= k and every finite group G there exists a G-Galois extension L/K . Equiva-
lently, there exists an irreducible G-variety X such that k(X)G = K .

(b) Suppose Autk(K) = {1} and φ : G −→ G is an outer automorphism of
a finite group G. Then for every X , as in (a), the G-varieties X and Xφ are
not birationally isomorphic.

Proof. (a) By the Riemann existence theorem there exists a G-Galois extension
L0/k(t), where t is an independent variable. Hence, there exists a G-Galois
extension L1/K(t), where L1 = L ⊗k(t) K(t). The Hilbert irreducibility theorem
now allows us to construct a G-Galois extension L/K by suitably specializing t
in K .

(b) Irreducible G-varieties X (up to birational isomorphism) such that
k(X)G = K , are in 1-1 correspondence with G-Galois field extensions L/K . A
birational isomorphism α : X 99K Xφ of G-varieties induces an isomorphism

L = k(X) α // k(Xφ) = L

K K.

Then α ∈ Gal(L/K) = G , and since the above diagram commutes, we have
αg(l) = φ(g)α(l) for every g ∈ G and l ∈ L . In other words, φ(g) = αgα−1 ,
contradicting our assumption that φ is an outer automorphism.
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