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Parametrized Vector Fields and the Zero-Curvature Condition

Mitchell Rothstein∗

Communicated by F. Knop

Abstract. We apply the notion of a parametrized vector field on a manifold
M , where the parameters are also in M , to the study of the zero-curvature
condition that arises in the context of integrable systems.
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1. Motivation

Consider the following result, which is perhaps well-known to experts. Let R be
a ring of characteristic zero, equipped with a derivation ∂ , and let

L = ∂ +
−1∑

i=−∞

fi∂
i

be a first-order monic formal pseudodifferential operator with coefficients in R .
Let ΨL denote the ring of pseudodifferential operators commuting with L . Given
positive integers n,m , there is a Lie algebra homomorphism

ΨL → ΨL[[s, t]]

K 7→ K(s, t)

given by solving the initial value problem

∂K

∂s
= [(Ln)+, K] (1)

∂K

∂t
= [(Lm)+, K] (2)

K(0, 0) = K . (3)

In particular, flows (1) and (2) commute. This appears paradoxical at first, since
(Ln)+ and (Lm)+ do not, in general, commute. The resolution of the paradox
is that the L appearing in equations (1) and (2) is really L(s, t), defined by the
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specialization K = L . Indeed, when K = L and R = C[[x]] we get the well-known
family of KP flows, whose commutativity may be understood from various points
of view [1, 2].

Here is a somewhat sharper statement, which may not be so well-known:
Let L1 and L2 be commuting pseudodifferential operators. Let ΨL1,L2 denote the
ring of pseudodifferential operators commuting with L1 and L2 . Given positive
integers n,m , there is a Lie algebra homomorphism

ΨL1,L2 → ΨL1,L2 [[s, t]]

K 7→ K(s, t)

given by solving the initial value problem

∂K

∂s
= [L1+, K] (4)

∂K

∂t
= [L2+, K] (5)

K(0, 0) = K . (6)

The assumption that K commutes with L1 and L2 is not fundamental.
Its role is to guarantee that the order of K remains bounded. Issues of this sort
arise in the infinite dimensional setting. Indeed, the commutativity of the flows (4)
and (5) holds with ΨL1,L2 replaced by an arbitrary finite dimensional Lie algebra.
(Corollary 4.2.)

The purpose of this note is to give an understanding of the commutativity
of the flows (4) and (5), in terms of a notion we call “n-parametrized vector field”,
meaning a vector field ξ on a manifold M , such that ξ depends on additional
parameters, a1, . . . , an , which are themselves elements of M . Given such a vector
field, and given a choice of the parameters, one obtains a flow, with the under-
standing that the parameters also flow. The next section describes this setup. We
specialize to Lie algebras in the subsequent section. To avoid irrelevant complica-
tions, we will work with finite-dimensional manifolds. Throughout the paper, M
denotes such a manifold.

2. n-parametrized vector fields

Definition 2.1. Let n be a positive integer and let pi : Mn+1 → M denote
projection onto the ith factor. An n-parametrized vector field on M , n-pvf for
short, is a section

ξ : Mn+1 → p∗n+1(TM) ,

Denote the space of n-pvf’s by pvfn(M).

One may think of an n-pvf as an object which, for every choice of a1, . . . , an ∈
M , determines a flow on M in the following way. Given b ∈M , one has a tangent
vector ξ(a1, . . . , an, b) to M at b . Move infinitesimally in the direction of that vec-
tor, to a nearby point b′ . Having done this for all b , one has done it in particular
for a1, . . . , an , so at the next iteration, move in the direction ξ(a′1, . . . , a

′
n, b

′).
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To put this more precisely, let vf(Mn) denote the space of vector fields on
Mn . For i = 1, . . . , n , set

τi : Mn →Mn

τi(a) = (a1, . . . , an−1, ai) ,

where a = (a1, . . . , an). Taking account of the natural isomorphism

T (Mn) = ⊕
i
pi
∗(TM) , (7)

define

pvfn−1(M)
β→ vf(Mn)

ξ 7→ ξ̃ ,

by
ξ̃(a1, . . . , an) = (ξ ◦ τ1(a), . . . , ξ ◦ τn(a)) .

Note that β has a left inverse,

vf(Mn)
πn→ pvfn−1(M)

given by projection onto the nth summand in equation (7).

Proposition 2.2. β maps pvfn−1(M) isomorphically onto the Lie subalgebra

{ η ∈ vf(Mn) | ∀i τ ∗i ◦ η = η ◦ τ ∗i } ,

where η and τ ∗i are regarded as endomorphisms of C∞(Mn). Thus pvfn−1(M)
forms a Lie algebra, with bracket

[ξ, ψ] = πn([ξ̃, ψ̃]) .

Proof. If k 6= n ,

τ ∗i ◦ p∗k = p∗k
τkτi = τk

while

τ ∗i ◦ p∗n = p∗i
τnτi = τi .

Let ξ ∈ pvfn−1(M). Let f ∈ C∞(M). Then for all k ,

ξ̃ ◦ p∗k(f)|a = ξ|τk(a)(f) .

If k 6= n ,

ξ̃ ◦ τ ∗i ◦ p∗k(f)|a = ξ|τk(a)(f) =

ξ|τkτi(a)(f) = τ ∗i ◦ ξ̃ ◦ p∗k(f)|a
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while

ξ̃ ◦ τ ∗i ◦ p∗n(f)|a = ξ|τi(a)(f) =

ξ|τnτi(a)(f) = τ ∗i ◦ ξ̃ ◦ p∗n(f)|a .

Thus, τ ∗i ◦ ξ̃ = ξ̃ ◦ τ ∗i for all i .

Conversely, let η be a vector field such that τ ∗i ◦ η = η ◦ τ ∗i holds for all i .
Let ηn denote the nth component of η . Then

η ◦ p∗i (f)|a = η ◦ τ ∗i ◦ p∗n(f)|a =

τ ∗i ◦ η ◦ p∗n(f)|a = ηn|τi(a)(f)

= π̃n(η) ◦ p∗i (f)|a .

Thus η = π̃n(η).

Example 2.3. If M = R , then a 1-pvf is simply a function f(x, y). Then

f̃ = f(x, x)
∂

∂x
+ f(x, y)

∂

∂y

Then the bracket of 1-pvf’s is given by

[f, g] = f(x, x)
∂g

∂x
+ f(x, y)

∂g

∂y
− g(x, x)

∂f

∂x
− g(x, y)

∂f

∂y

Now let ξ be a 1-pvf. Introduce the following 2-pvf’s:

ξ1(a, b, c) = ξ(a, c) (8)

ξ2(a, b, c) = ξ(b, c) (9)

Definition 2.4. [Zero-curvature condition] Fix a 1-pvf, ξ , on M . A pair of
points a, b ∈M satisfies the zero-curvature condition (for ξ ), zcc, if, for all y ∈M ,

Φ1
sΦ

2
t (a, b, y) = Φ2

t Φ
1
s(a, b, y) ,

where Φi
· is the flow of ξ̃i .

In other words, (a, b) satisfies zcc if the flow determined by b commutes with the
flow determined by a .

Infinitesimal criterion. Let Fn denote the free Lie algebra on n letters α1, . . . , αn .
Let In ⊂ Fn denote the commutator ideal. Given w ∈ In , and given elements
x1, . . . , xn in a Lie algebra g , let w(x1, . . . , xn) ∈ g denote the element obtained by
evaluating αi at xi . For a vector field X on M , denote by ΦX the one-parameter
group of diffeomorphisms generated by X .

Lemma 2.5. Let X and Y be smooth vector fields on M , and let p ∈ M . If
there is a neighborhood (0, 0) ∈ U ⊂ R2 such that for all (s, t) ∈ U ,

ΦY
t ΦX

s (p) = ΦX
s ΦY

t (p) , (10)

then
∀w ∈ I2 , w(X, Y )(p) = 0 . (11)

Conversely, if X and Y are analytic vector fields on an analytic manifold M ,
then (11) implies (10).
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Proof. Assume (10). Let

U
α→M

α(s, t) = ΦX
s ΦY

t (p) .

¿From the two sides of (10) respectively, one has
∂α

∂t
= Y |α and

∂α

∂s
= X|α . It

follows that if X and Y are linearly independent at p , one may choose coordinates
(x1, . . . , xn) centered at p , such that

X =
∂

∂x1

+ X̃

Y =
∂

∂x2

+ Ỹ ,

where X̃ and Ỹ vanish along x2 = x3 = . . . = xn = 0. Then (11) holds. It is also
clear that (11) holds if both X and Y vanish at p .

It remains to consider the case that X is nonvanishing in a neighborhood of
p , and Y (p) is a multiple of X(p). Note that equation (10) holds with p replaced
by α(s, t). Therefore, if there is a sequence sk → 0, such that X(α(sk, 0)) and
Y (α(sk, 0)) are linearly independent, (11) will hold at p , by continuity. The
remaining possibility is that Y is a multiple of X at α(s, 0) for all s in a
neighborhood of 0. Then we may assume

X =
∂

∂x1

Y = f(x1, . . . , xn)
∂

∂x1

+ Ỹ ,

where Ỹ vanish along x2 = x3 = . . . = xn = 0. This reduces to the case that

M = R1 , X =
d

dx
, Y = f(x)

d

dx
and p = 0. Let γ(t) be the integral curve of Y

with γ(0) = 0. Then

ΦY
t1
(γ(t2)) = ΦY

t1
ΦY

t2
(0) = γ(t1 + t2) .

Now

ΦY
t1
ΦX

γ(t2)(0) = ΦY
t1
(γ(t2)) = γ(t1 + t2)

= Φγ(t2)Φ
Y
t1
(0) = ΦX

γ(t2)(γ(t1)) = γ(t1) + γ(t2) .

Then there exists a constant, c , such that Y = c
d

dx
, so (11) holds.

Conversely, in the analytic setting, the Baker-Campbell-Hausdorff formula
furnishes a set of elements wi,j ∈ I2 with the following property: Given any
analytic function f in a neighborhood of p ,

f(ΦX
−sΦ

Y
−tΦ

X
s ΦY

t (p)) =
∞∑

k=0

1

k!
(
∑
i,j>0

sitjwi,j(X, Y ))k(f)|p .

Thus (11) implies (10).

Thus one has the following infinitesimal criterion.
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Corollary 2.6. Fix an analytic 1-pvf ξ on an analytic manifold M . Then zcc
holds for (a, b) if and only if , for all w ∈ I2 , w(ξ1, ξ2)(a, b, z) = 0 for all z ∈M ,
where ξ1 and ξ2 are the 2-pvf ’s defined in equations (8) and (9).

3. The case of a Lie algebra

Let g be a finite-dimensional Lie algebra. An n-pvf n on g is simply a smooth
function ξ : gn+1 → g . In particular, for all smooth f : gn → g , consider the n-pvf

ξf (x1, . . . , xn, y) = [f(x1, . . . , xn), y] . (12)

We will say that such an n-pvf is of Lax type.

Proposition 3.1. The n-pvf ’s of Lax type form a Lie subalgebra of the n-pvf ’s.
More precisely, set x = (x1, . . . , xn) and set [f(x), x] = ([f(x), x1], . . . , [f(x), xn]).
Then

[ξf , ξg] = ξ[f,g]′ ,

where

[f, g]′(x) = dgx([f(x), x])− dfx([g(x), x] + [g(x), f(x)] . (13)

Proof.

[ξf , ξg](x, y) =
d

dt
|0([g(x+ t[f(x), x]), y + t[f(x), y]]− (f ↔ g)) .

Then use the Jacobi identity.

Proposition 3.2. Equation (13) endows C∞(gn; g) with the structure of a Lie
algebra.

Proof. It is not difficult to prove the proposition by direct calculation. A more
conceptual proof is as follows. Given a manifold M equipped with an infinitesimal
g-action, ∇ : g → Der(C∞(M)), the space C∞(M)⊗ g has a natural Lie algebra
structure, [·, ·]′ , given by

[a⊗X, b⊗ Y ]′ = a∇X(b)⊗ Y − b∇Y (a)⊗X + ab⊗ [X, Y ] .

There is a natural infinitesimal action of g on C∞(gn), induced by the coadjoint
action. The resulting bracket is precisely (13), up to sign.

4. Main Result

Note that C∞(gn, g) now has two Lie algebra structures, the pointwise bracket
and the bracket given by (13) . Denote these two Lie algebras by C∞(gn, g)P and
C∞(gn, g)′ respectively.

Though the next theorem shares the hypothesis of the AKS theorem, [1], it
seems not to be a corollary.
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Theorem 4.1. Let g = g+ ⊕ g− be a vector space direct sum decomposition
of g, such that g± are Lie subalgebras. Let GP ⊂ C∞(gn, g)P denote the Lie
subalgebra generated by the projections p1, . . . , pn . Let G′ ⊂ C∞(gn, g)′ denote the
Lie subalgebra generated by p1+, . . . , pn+ , where (·)+ denotes projection onto g+ .
Then the map of vector spaces

C∞(gn, g) → C∞(gn, g)

f 7→ f+

restricts to a Lie algebra homomorphism

GP → G′ .

Proof. As before, let Fn denote the free Lie algebra on n letters α1, . . . , αn .
We must prove that for all ω ∈ Fn ,

ω(p1, . . . , pn)+ = ω(p1+, . . . , pn+) . (14)

Given a word w = b1b2 . . . bk over the alphabet α1, . . . , αn , let

w̃ = [b1, [b2, [. . . [bk−1, bk]] . . .] .

The words w̃ span Fn , so it suffices to establish (14) when ω = w̃ . Fix an index i ,
and consider the set of functions f ∈ C∞(gn, g) satisfying the following equation:

df([pi+, p]) = [pi+, f ] , (15)

where p = (p1, . . . , pn). It is clear that this set of functions forms a Lie subalgebra
of C∞(gn, g)P . Furthermore, for all j , (15) holds when f = pj . Thus, (15) holds
for all f ∈ GP . Given (15), one has

[pi+, f+]′ = df+([pi+, p])− pi+([f+, p]) + [f+, pi+]

= [pi+, f ]+ − [f+, pi]+ − [pi+, f+]

= [pi+, f−]+ − [f+, pi]+

= [pi, f−]+ − [f+, pi]+

= [p, f ]+ .

Then (14) holds for all words, by induction on the length.

As a corollary, one finds that when a and b are commuting elements of g ,
the flows

∂c

∂s
= [a+, c]

∂c

∂t
= [b+, c]

commute, irrespective of any functional dependence among a , b and c . This is
made precise in the following corollary.
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Corollary 4.2. With g as in theorem 4.1, consider the 1-pvf

ξ(x, y) = [x+, y] .

Then a pair of elements (a, b) ∈ g× g satisfies zcc is and only if, for all w ∈ I2 ,
w(a, b)+ belongs to the center of g.

In particular, for a and b to satisfy zcc it is sufficient that a and b commute.

Proof. By corollary 2.6 , the necessary and sufficient condition is that for all
w ∈ I2 and all z ∈ g , w(ξ1, ξ2)(a, b, z) = 0. Now ξ1 and ξ2 are the Lax type
2-pvf’s ξp1+

and ξp2+
respectively. Then, by proposition 3.1 and theorem 4.1

w(ξ1, ξ2) = ξw(p1+,p2+) = ξw(p1,p2)+ .

This corollary recovers the commutativity of the flows (4) and (5). We
conclude with a finite-dimensional example.

5. Example

Let g = sl3(R). Let g+ be the subalgebra of skew-symmetric matrices and let g−
be the subalgebra of upper triangular matrices. Take

a =


0 0 0

0 0 0

1 0 0

 ; b =


0 0 0

0 0 0

0 1 0

 .
First we solve the initial value problem

da(s)

ds
= [a(s)+, a(s)]

a(0) = a .

By developing the solution in a power series about s = 0, one finds the following
solution.

a(s) =


− s

1+s2 0 − s2

1+s2

0 0 0

1
1+s2 0 s

1+s2


Now the problem

db(s)

ds
= [a(s)+, b(s)]

b(0) = b .

can be solved by the dressing method. That is, we let σ(s) ∈ SL(3,C[[s]]) be the
solution of the initial value problem

dσ(s)

ds
σ(s)−1 = a(s)+

σ(0) = I .



Rothstein 91

Then
b(s) = adσ(s)(b) .

It is clear that σ(s) is of the following form:

σ(s) =


u 0 −v

0 1 0

v 0 u

 .

Then one readily finds u = 1√
1+s2 and v = s√

1+s2 .

This gives

b(s) =


0 − s√

1+s2 0

0 0 0

0 1√
1+s2 0

 .

Next, solve

∂b(s, t)

∂t
= [b(s, t)+, b(s, t)]

b(s, 0) = b(s) .

From looking at the power series expansion of the solution, one is led to
make a guess of the following form:

b(s, t) =


0 X(t) Y (t)

0 − t
1+s2+t2

− t2√
1+s2(1+s2+t2)

0
√

1+s2

1+s2+t2
t

1+s2+t2

 .
One finds the following solution:

b(s, t) =


0 − s√

1+s2+t2
− st√

1+s2
√

1+s2+t2

0 − t
1+s2+t2

− t2√
1+s2(1+s2+t2)

0
√

1+s2

1+s2+t2
t

1+s2+t2

 .
Finally, one obtains a(s, t) in the form

a(s, t) = adτ(s,t)(a(s)) ,

where τ(s, t) satisfies

dτ(s, t)

dt
τ(s, t)−1 = b(s, t)+

τ(s, 0) = σ(s) .

Here is τ :

τ(s, t) =


1√

1+s2 0 − s√
1+s2

− s t√
1+s2

√
1+s2+t2

√
1+s2√

1+s2+t2
− t√

1+s2
√

1+s2+t2

s√
1+s2+t2

t√
1+s2+t2

1√
1+s2+t2
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Then

a(s, t) =


− s

1+s2
s2t

(1+s2)
√

1+s2+t2
− s2
√

1+s2
√

1+s2+t2

− t
(1+s2)

√
1+s2+t2

t2s
(1+s2+t2)(1+s2)

− ts
(1+s2+t2)

√
1+s2

1√
1+s2

√
1+s2+t2

− ts
(1+s2+t2)

√
1+s2

s
1+s2+t2


Finally, for all c ∈ sl3(R), the solution to

∂c(s, t)

∂s
= [a(s, t)+, c(s, t)]

∂c(s, t)

∂t
= [b(s, t)+, c(s, t)]

c(0, 0) = c

is given by
c(s, t) = adτ(s,t)adσ(s)(c) .
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