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Abstract. In this paper, we prove that the commuting variety of the family
of symmetric pairs (sop+2, sop × so2), p ≥ 2, is irreducible.
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1. Introduction and notations

Let g be a complex reductive Lie algebra and θ an involutive automorphism of g .
Let g = k⊕ p be the decomposition of g into eigenspaces with respect to θ , where
k = {X ∈ g | θ(X) = X} , p = {X ∈ g | θ(X) = −X} . In this case, we say that
(g, k) is a symmetric pair.

Let G be the adjoint group of g and K the connected algebraic subgroup
of G whose Lie algebra is k .

Let a be a maximal abelian subspace of p consisting of semisimple elements.
Any such subspace is called a Cartan subspace of p . All the Cartan subspaces are
K -conjugate. Its dimension is called the rank of the symmetric pair (g, k).

We define the commuting variety of (g, k) as the following set:

C(p) = {(x, y) ∈ p× p | [x, y] = 0}.

We may also consider the commuting variety C(g) of g , defined in the
same way. Richardson proved in [10] that, if h is a Cartan subalgebra of g , then
C(g) = G.(h× h). In particular, the commuting variety C(g) is an irreducible
algebraic variety.

On the other hand, the commuting variety of any semisimple symmetric pair
is not irreducible in general. Panyushev showed in [7] that in the case of the sym-
metric pair (sln, gln−1), n > 2, associated to the involutive automorphism, defined
via conjugation by the diagonal matrix diag(−1, . . . ,−1, 1), the corresponding
commuting variety has three irreducible components of dimension, respectively,
2n− 1, 2n− 2, 2n− 2.

Nevertheless, in some cases, the irreducibility problem has been solved.
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- As an obvious consequence of the classical case proved by Richardson, the
symmetric pair (g × g, ∆(g)), associated to the automorphism (X, Y ) 7→
(Y,X), has an irreducible commuting variety.

- If the rank of the symmetric pair (g, k) is equal to the semisimple rank of
g (called the maximal rank case), then Panyushev proved in [7] that the
corresponding commuting variety is irreducible.

- The rank 1 case has been considered independently by the authors [11] and
Panyushev [8]. In this case, it has been proved that (som+1, som) is the only
simple symmetric pair whose commuting variety is irreducible.

- In [8], Panyushev proves the irreducibility of the commuting variety for the
symmetric pairs (sl2n, sp2n) and (E6, F4).

For a symmetric pair of rank strictly larger than one, we observe that due
to the rank 1 case, the inductive arguments used by Richardson in the classical
case [10] do not apply. However, if a is a Cartan subspace, then it is well-known
that C0 = K.(a× a) is the unique irreducible component of C(p) of maximal
dimension, which is equal to dim p + dim a . The main problem is therefore to
determine if there exist components other than the maximal one.

In [8], it has been conjectured that C(p) is irreducible if the rank of the
symmetric pair is greater than or equal to 2.

In this paper, by showing that an even nilpotent element in p is contained
in a K -sheet containing non-zero semisimple elements, we obtain that for the com-
muting variety of a symmetric pair to be irreducible, it suffices that p-distinguished
elements in every symmetric subpair are even. We use this to prove that the com-
muting variety of the family (sop+2, sop × so2), p ≥ 2, of rank 2 symmetric pairs
is irreducible.

Let us point out that this family of symmetric pairs comes from a larger
family of symmetric pairs associated to parabolic subalgebras with abelian nilpo-
tent radical. For such a symmetric pair in this larger family, it is possible to
obtain descriptions of symmetric subpairs associated to centralizers of semisimple
elements of p by considering a suitable Cartan subspace. Unfortunately, we are
not able to apply the arguments used here.

We shall conserve the notations above in the sequel. The reader may refer
to [12] for basic definitions and properties of symmetric pairs.

The authors would like to thank Patrice Tauvel and Abderrazak Bouaziz
for many useful discussions, and the referee for his suggestions.

2. Sheets and commuting varieties

Let (g, k) be a symmetric pair. Recall that the connected algebraic group K acts
on p . For n ∈ N , we set:

p(n) = {X ∈ p ; dim K.X = n}.

The set p(n) is locally closed, and an irreducible component of p(n) shall be called
a K -sheet of p . Clearly, K -sheets are K -invariant, and by [12], each K -sheet
contains a nilpotent element.
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Let π1 : C(p) → p be the projection (X, Y ) 7→ X . Recall the following
result concerning the commuting variety of p .

Theorem 2.1. There exist K -sheets S1, . . . ,Sr of p such that π−1
1 (Si), i =

1, . . . , r , are the irreducible components of C(p).

The proof of Theorem 2.1 is a simple consequence of the following result.
For the sake of completeness, we have included a proof.

Lemma 2.2. Let V be a vector space, E ⊂ V × V a locally closed subvariety
and for i = 1, 2, πi : E → V be the projection (x1, x2) 7→ xi . Suppose that:

1. π1(E) is locally closed.

2. There exists r ∈ N such that for all x ∈ π1(E), π2(π
−1
1 (x)) is a vector

subspace of dimension r .

If π1(E) is irreducible, then so is E .

Proof. Let G be the Grassmann variety of r -dimensional subspaces of V ,
x ∈ π1(E) and W = π2(π

−1
1 (x)) ∈ G . Fix a complementary subspace U of W in

V and set:

F = {T ∈ G ; T ∩ U = {0}} = {T ∈ G ; T + U = V }.

Clearly, F is an open subset of G containing W . For τ ∈ Hom(W, U) the set of
linear maps from W to U , we define:

T (τ) = {w + τ(w) ; w ∈ W}.

Then we check easily that T (τ) ∈ F , and we have a map Hom(W, U) → F , τ 7→
T (τ). We claim that this map is an isomorphism.

Since w1 + τ1(w1) = w2 + τ2(w2) is equivalent to w1−w2 = τ2(w2)− τ1(w1),
we deduce that the above map is injective.

Now if T ∈ F , then for w ∈ W , we define τ(w) to be the unique element
in U such that w + τ(w) ∈ T . We then verify easily that T (τ) = T . So we have
proved our claim.

The map
Φ : π1(E) → G , y 7→ π2(π

−1
1 (y))

is a morphism of algebraic varieties. So F = Φ−1(F) is an open subset of π1(E)
containing x . The above claim says that we have a well-defined map:

Ψ : F ×W → E , (y, w) 7→ (y, w + τ(w))

where T (τ) = Φ(y). It is then a straightforward verification that Ψ is an isomor-
phism of the algebraic varieties F ×W and π−1

1 (F ).

It follows that the map π1 : E → π1(E) is an open map whose fibers are
irreducible. Hence by a classical result on topology [3, T.5], if π1(E) is irreducible,
then E is irreducible.

Since the set of p-generic elements and the set preg of p-regular elements
are open subsets of p , we have the following corollary:
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Corollary 2.3. Let a be a Cartan subspace in p. The set

C0 = K.(a× a) = π−1
1 (preg) = π−1

2 (preg)

is the unique irreducible component of C(p) of maximal dimension.

Let X ∈ p be a nilpotent element, and (H, Y ) ∈ k×p be such that (X,H, Y )
is a normal sl2 -triple (called a normal S-triple in [12]). Recall that X is even if
the eigenvalues of adgH are even. In fact, this is equivalent to the condition that
the eigenvalues of adpH are even.

Proposition 2.4. Let X ∈ p be an even nilpotent element, then X belongs to
a K -sheet containing semisimple elements.

Proof. Let (X, H, Y ) be a normal sl2 -triple and s = CX + CH + CY . Then
g decomposes into a direct sum of simple s-modules, say Vi , i = 1, . . . , r . Since
X is even, dim Vi is odd for i = 1, . . . , r .

For λ ∈ C , we set Xλ = X + λY ∈ p . If λ 6= 0, then Xλ is semisimple
because Xλ is G-conjugate to a multiple of H . We claim that dim pXλ = dim pX

for all λ ∈ C .

First of all, observe that pXλ =
⊕r

i=1(Vi∩p)Xλ because Vi = (Vi∩k)⊕(Vi∩p).
Moreover dim(Vi ∩ p)Xλ ≤ 1.

Now if (Vi ∩ p)Xλ 6= {0} , then a simple weight argument shows that
(Vi ∩ p)X 6= {0} .

Conversely, suppose that (Vi ∩ p)X 6= {0} . Let dim Vi = 2n + 1 and
v−n, . . . , vn be a basis of weight vectors of Vi such that Hvk = 2kvk ,
k = −n, . . . , n . Then (Vi ∩ p)X = Cvn .

So vk ∈ k (resp. vk ∈ p) when n − k is odd (resp. even). In particular,
v−n ∈ p . It follows that for k such that n−k odd, λY vk+1 = −akXvk−1 for some
ak ∈ C . We may therefore renormalize the vk ’s so that v = v−n + v−n+2 + · · · +
vn−2 + vn verifies Xλv = 0.

We have therefore proved that dim pXλ = dim pX for all λ .

Now, consider the morphism Φ : K × C → p , (k, λ) 7→ k.Xλ . The image
of Φ is irreducible and contains semisimple elements, so it contains strictly K.X .
Consequently, K.X is contained strictly in a K -sheet with semisimple elements.

Recall that an element of p is said to be p-distinguished if its centralizer in p

does not contain any non-zero semisimple element. In particular, a p-distinguished
element is nilpotent. So the number of K -orbits of p-distinguished elements is
finite.

Definition 2.5. We say that the symmetric pair (g, k) satisfies condition (E)
if for every symmetric subpair (g′, k′) of (g, k), all the p′ -distinguished elements of
p′ are even.

Theorem 2.6. If (g, k) satisfies condition (E), then the commuting variety
C(p) is irreducible.



Sabourin and Yu 61

Proof. We proceed as in the proof of Richardson in the case of semisimple Lie
algebras (see [10]) by using inductive arguments. Let (X, Y ) ∈ C(p).

1. If X is semisimple, then X commutes with a p-regular semisimple
element Z . The line LZ = {(X, tY +(1− t)Z), t ∈ C} is contained in C(p). Since
{tY +(1−t)Z, t ∈ C} meets the set of p-regular semisimple elements which is open
in p , we conclude that LZ , and hence (X, Y ), is contained in C0 (Corollary 2.3).

2. We may assume that neither X nor Y is semisimple.

Suppose that X is not nilpotent. Let X = Xs + Xn be the corresponding
decomposition into semisimple and nilpotent components. Then (X, Y ) ∈ gXs .
Since (gXs , kXs) is a symmetric subpair of (g, k), we may apply induction to show
that (X, Y ) ∈ C0 .

3. So we may further assume that X and Y are both nilpotent. If X
commutes with a non-zero semisimple element Z ∈ p , then the same argument as
in 1) works because the set of non-nilpotent elements is open.

4. So we are reduced to the case where both X and Y are p-distinguished.
Denote by π1 : C(p) → p the projection (X1, X2) 7→ X1 , O the set of non p-
distinguished elements in p , and Ω1, . . . , Ωr the set of K -orbits of p-distinguished
elements in p . Thus p = O ∪Ω1 ∪ · · · ∪Ωr , and C(p) = π−1

1 (O)∪ π−1
1 (Ω1)∪ · · · ∪

π−1
1 (Ωr).

¿From the previous paragraph, we obtain that π−1
1 (O) ⊂ C0 . Consequently,

C(p) is the union of C0 with π−1
1 (Ωi1), . . . , π

−1
1 (Ωis). Now we check easily that

for X ∈ p , π−1
1 (K.X) = K.(X, pX) is an irreducible subset of C(p) of dimension

dim k − dim kX + dim pX = dim p . It follows that all irreducible components of
C(p) other than C0 , if they exist, are of dimension dim p .

Suppose that C(p) is not irreducible. By the previous discussion, there ex-

ists a p-distinguished element X such that π−1
1 (K.X) is an irreducible component

of dimension dim p .

On the other hand, Condition (E) and Proposition 2.4 say that X belongs
to a K -sheet S containing non-zero semisimple elements. So dimS > dim K.X .
Now Lemma 2.2 says that π−1

1 (S) is an irreducible subset of C(p) containing
π−1

1 (K.X) and dim π−1
1 (S) > dim p . We have therefore obtained a contradiction.

So the theorem follows.

3. The case of the symmetric pair (sop+2, sop × so2)

Let us fix an integer p ≥ 2, h a Cartan subalgebra of g = sop+2 and a Borel
subalgebra b containing h . Denote by R ⊃ R+ ⊃ Π the corresponding set of
roots, positive roots and simple roots. Let us also fix root vectors Xα , α ∈ R , and
for α ∈ R , we set gα = CXα . The rank ` of g is the integer part of (p + 2)/2.

Let us first consider the case where g is simple and not of type An , or
equivalently, p 6= 2, 4. We shall use the numbering of simple roots α1, . . . , α` in
[1]. Let H ∈ h be such that

αi(H) =

{
1 if i = 1,
0 if i 6= 1.

Then it follows that g = g−1 ⊕ g0 ⊕ g1 where gi = {X ∈ g; [H, X] = iX} .
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Observe that g0⊕g1 is simply the maximal parabolic subalgebra associated
to Π \ {α1} . Its nilpotent radical g1 is abelian.

The above decomposition defines a symmetric pair (g, g0) where p =
g−1 ⊕ g1 . It is clear that this is precisely the rank 2 symmetric pair (sop+2, sop ×
so2).

Let a be the vector space span of the elements Xα1 + X−α1 and Xαmax +
X−αmax where αmax denotes the largest root in R . Then a is a 2-dimensional
abelian subalgebra of g contained in p . So a is a Cartan subspace in p .

Let X ∈ a . Then gX is a Levi factor of a parabolic subalgebra of g . Denote
by l = [gX , gX ] the semisimple part of gX , and set l+ = l ∩ kX , l− = l ∩ pX and
r+ = [l−, l−] . Then the decompositions

gX = kX ⊕ pX , l = l+ ⊕ l− and r = r+ ⊕ l−

define symmetric subpairs of (g, k), and the ranks of the pairs (l, l+) and (r, r+)
are strictly inferior to that of (g, k).

We shall determine the symmetric pair (r, r+) for any non-zero non p-
regular element X ∈ a , i.e. pX contains a non-zero nilpotent element.

Let us recall the classification of simple symmetric pairs of rank 1.

(sln+1, sln × C), (son+1, son),
(sp2n, sp2n−1 × sp2), (F4, B4).

Lemma 3.1. Let X ∈ a be a non-zero non p-regular element. There exists
m ∈ N such that (r, r+) = (som+1, som).

Proof. From the definition of a , we verify easily that a commutes with the Lie
subalgebra s generated by the root vectors X±α , α ∈ Π\{α1, α2} . So kX contains
s . Note that s ' sop−2 .

Let t be a Cartan subalgebra of s , then a ⊕ t is a Cartan subalgebra of
gX (and also of g). It follows that the root system of the semisimple part l of gX

contains as a subsystem the root system of s . In particular, the semisimple rank
of l is equal to `− 2 or `− 1 (where ` is the rank of g).

Moreover, since X is not p-regular, pX contains a non-zero nilpotent
element, and so l contains strictly s .

If p+2 = 2`+1, then the preceding discussion implies that the root system
R(l) of l is of one of the following types: A`−1 , B`−1 or A1 ×B`−2 .

Since l+ contains a simple Lie subalgebra of type B`−2 , by considering the
Satake diagram of the corresponding involution (see for example [4]), it follows
easily that R(l) is of type B`−1 or A1 ×B`−2 . Consequently, we deduce from the
classification of rank 1 symmetric pairs that (r, r+) has the required form.

If p + 2 = 2` , then the root system R(l) is of one of the following types:
A`−1 , D`−1 or A1 × D`−2 . The same argument as above applies, and again, we
may conclude by using the classification of rank 1 symmetric pairs.

Remark 3.2. Note that we may extend Lemma 3.1 to the symmetric pairs
(so4, so2 × so2) and (so6, so4 × so2).
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In the first case, we have (so4, so2 × so2) = (so3, so2) × (so3, so2). Take a

to be the direct product of a rank 1 Cartan subspace a0 of the symmetric pair
(so3, so2). Then (X,Y ) ∈ a is non p-regular if X = 0 or Y = 0. It follows that
gX ' so3 × C , and (r, r+) = (so3, so2).

In the second case, we have (so6, so4 × so2) = (sl4, sl2 × sl2 × C). Take a

to be the vector space span of the vectors X1 = Xα1+α2+α3 + X−(α1+α2+α3) and
X2 = Xα2 + X−α2 . Then a is a Cartan subspace, and X = λ1X1 + λ2X2 ∈ a

is non p-regular if and only if λ1λ2 = 0. A direct computation shows that
(r, r+) = (so3, so2).

Summarizing, since Cartan subspaces are K -conjugate, we have therefore
obtained the following result:

Proposition 3.3. Let (g, k) be the symmetric pair (sop+2, sop × so2), p ≥ 2.
For any non-zero non p-regular semisimple element X in p, the subpair (r, r+) is
of the form (som+1, som) for some m ∈ N.

Corollary 3.4. The commuting variety of (sop+2, sop × so2) is irreducible.

Proof. By the previous proposition and theorem 2.6, it suffices to check that
all p-distinguished elements are even for the symmetric pairs (sop+1, sop) and
(sop+2, sop × so2).

One may use the classification of Popov-Tevelev [9] of p-distinguished ele-
ments. However, it is not difficult to do the checking directly. The case (sop+1, sop)
is trivial because for any X ∈ p \ {0} , pX is kX (see for example [11, Proposition
3]). For (sop+2, sop), via the Kostant-Sekiguchi correspondence as described in [2]
using signed partitions, we observe that there are 6 (resp. 7) non-zero nilpotent
K -orbits in p for p > 4 (resp. p = 4). Then it is a simple verification that the
p-distinguished nilpotent elements correspond to the orbits whose partition has
parts all of the same parity. This in turn implies that p-distinguished elements
are even.

Remark 3.5. The above realization of the symmetric pair (sop+2, sop × so2)
and the construction of the specific Cartan subspace a come from a more general
construction.

Namely, let α ∈ Π be a simple root such that the corresponding standard
maximal parabolic subalgebra has an abelian nilpotent radical n . Then g =
g−1 ⊕ g0 ⊕ g1 as above and we obtain a symmetric pair. Let R(Π) be the
set of pairwise strongly orthogonal roots in R+ constructed via the “cascade”
construction of Kostant (see for example [5], [6] or [13]). Then the vector subspace
spanned by the elements Xβ +X−β , β ∈ R(Π) and Xβ ∈ n , is a Cartan subspace.
The list of all such symmetric pairs is as follows:

(slp+1, slp+1−i × sli × C) (i = 1, . . . , p) , (sop+2, sop × so2) (p 6= 2, 4) ,
(sp2p, glp) , (so2n, gln) (n ≥ 4) , (E6, D5 × C) , (E7, E6 × C).

It is possible to describe in the same way symmetric subpairs associated to the
centralizer of non p-regular semisimple elements for these symmetric pairs. For
example, for (E7, E6×C), the symmetric subpair (r, r+) is a product of symmetric
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pairs of the form (som+1, som) or (som+2, som × so2). pairs of rank 2. However,
this symmetric pair does not satisfy condition (E) since there is a non-even p-
distinguished element. Namely, the orbit corresponding to label 3 of Table 13
of [9].

Let us also point out that in all the other rank 2 cases listed above, there
exists X ∈ a non p-regular such that pX contains two non proportional commuting
nilpotent elements. Hence by the result of [11, Proposition 3], the corresponding
symmetric subpair cannot be of the form (som+1, som).
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Téléport 2 - BP 30179
86962 Futuroscope Chasseneuil cedex
France
sabourin@math.univ-poitiers.fr

Rupert W. T. Yu
UMR 6086 CNRS
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