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Abstract. We prove a combinatorial formula for the Poisson bracket of

two elements of the free Lie algebra on two generators, which has a particu-
larly nice cocycle form when the two elements are Lie monomials containing

only one y . By relating this cocycle form with the period polynomials intro-

duced by Eichler-Shimura and Zagier, we completely describe and classify a
set of fundamental relations in Ihara’s stable derivation algebra, generalizing

the first few cases of these relations which he had observed and computed

by hand.
Mathematics Subject Index 2000: 17B63, 17B70, 11F11.

Keywords and phrases: Poisson bracket, graded Lie algebras, modular

forms.

0. Introduction

The Poisson bracket on the elements of the free Lie algebra L = L[x, y] on two
generators is given by

{f, g} = [f, g] + Df (g)−Dg(f),

where [f, g] = fg−gf , and to each element f ∈ L one associates a derivation Df

of L via Df (x) = 0, Df (y) = [y, f ] . The main result of this article (theorem 3.1
of §3) is a formula expressing Df (g), for arbitrary elements f, g ∈ L , in terms of
a certain permutation action on monomials in x and y introduced in §2. This
yields a formula for the Poisson bracket {f, g} , and as a consequence, we find a
particularly simple “cocycle” form for {f, g} when f and g are Lie monomials
containing only one y (proposition 3.2).

The next part of the article, §4, contains an application of this cocycle
form to answer a question which was originally raised by Y. Ihara (see [2]). Let
Ln denote the graded part of L generated by Lie words of length n , so that
L = ⊕n≥1Ln , and set FmL = ⊕n≥mLn . For each odd n ≥ 3, choose an element
fn ∈ Ln satisfying the following condition: its expansion as a polynomial in the
non-commutative variables x , y contains the monomial xn−1y with coefficient
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20 Schneps

1. For even n ≥ 12, let En denote the vector space of linear combinations{
G =

∑
i+j=n

i,j≥3 odd

aij{fi, fj} | G ≡ 0 mod F3L.
}
.

Ihara studied a certain very interesting graded Lie subalgebra of L , called
the stable derivation algebra D , whose graded parts Dn = 0 for n = 1, 2, 4, 6
and are 1-dimensional for n = 3, 5, 7, 8, 9. He chose one generator f̃n for each
Dn , n = 3, 5, 7, 9 (the graded part D8 being generated by [f̃3, f̃5]), however
instead of normalizing them by taking the coefficient of the monomial xn−1y
which appears in each one to be 1, he required f̃n to have integral coefficients.
He then observed (cf. [2], I.5, (6.3)) the following surprising fact:

2{f̃3, f̃9} − 27{f̃5, f̃7} ≡ 0 mod 691 = numerator of the Bernoulli number B12.

Replacing f̃i by its scalar multiple fi with the coefficient of xn−1y normalized
to 1, this can be written as

{f3, f9} − 3{f5, f7} ≡ 0 mod 691 (0.1)

It is easy to see that the linear combination {f3, f9}−3{f5, f7} is the only linear
combination of {f3, f9} and {f5, f7} whose polynomial expansion contains no
monomials with less than three y ’s, i.e. which is ≡ 0 mod F3L . It is therefore a
natural question to determine, for each odd n ≥ 3, all linear combinations of the
brackets {fi, fj} for i+ j = n which are ≡ 0 modulo F3L , and then ask oneself
whether they all satisfy similar surprising arithmetic properties with respect to
numerators of Bernoulli numbers. Ihara and Takao found that there is no such
linear combination when n = 14, i.e. E14 = 0, and that E16 is 1-dimensional,
generated by

−2{f3, f13}+ 7{f5, f11} − 11{f7, f9}. (0.2)

The elements f11 and f13 are not uniquely determined, since the dimensions of
D11 and D13 are not equal to 1, but in fact it is easy to compute that there are
(non-unique) choices of these elements for which this linear combination is indeed
congruent to 0 modulo 3617, the numerator of the Bernoulli number B16 .

This is where the theory of modular forms makes its surprising appear-
ance. Ihara and Takao proved that the dimension of the space En is equal to
the dimension of Sn

(
SL2(Z)

)
, the space of cusp forms of weight n on SL2(Z),

namely [(n− 4)/4]− [(n− 2)/6] (cf. [2], II.4, Theorem 2). This result does not
depend in any way on the actual elements fn ∈ Dn they consider; it holds for
any fixed choice of one fn ∈ Ln for each odd n ≥ 3, as long as fn contains the
monomial xn−1y with non-zero coefficient.

In §4 of this article, using their result on the dimension and the cocycle
form mentioned above, we prove (theorem 4.1, corollary 4.2) that En is in fact
canonically isomorphic to the space of the even period polynomials associated
to holomorphic cusp forms by the Eichler-Shimura-Manin correspondence, which
were also studied by Zagier. They are polynomials P (X), of degree n−4 without
constant terms, satisfying the period relations

P (X) + Xn−2P (
−1
X

) = 0
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and
P (X) + Xn−2P (1− 1

X
) + (X − 1)n−2P (

1
1−X

) = 0.

The Eichler-Shimura-Manin correspondence shows that the vector space of these
period polynomials is canonically isomorphic to Sn

(
SL2(Z)

)
. What we show

is that a linear combination G =
∑

i+j=n aij{fi, fj} lies in En if and only
if the associated polynomial P (X) =

∑
i+j=n aij(Xj−1 − Xi−1) is a period

polynomial (see §4 and [3]). For instance, the first period polynomials are
(X8 − X2) − 3(X6 − X4) for n = 12, and −2(X12 − X2) + 7(X10 − X4) −
11(X8 − X6) for n = 16; compare with (0.1) and (0.2) above. As the space of
period polynomials is very easy to compute, by solving the small linear system
given by the period relations above, the results of §4 mean that the spaces En

can also easily be determined even for large n ; the complete list up to n = 22 is
given at the end of §4.

Hopefully, the complete knowledge of the elements of En , applied to
the case where the fn lie in D , may provide some insight into the surprising
appearance of the numerators of the Bernoulli numbers.
Acknowledgments: We are very grateful to Herbert Gangl for drawing our atten-
tion to the fact that the coefficients of the linear combinations we were computing
in small ranks E3 , E5 , E7 ... were turning out to be identical to the coefficients
of the period polynomials. We also thank Romyar Sharifi for informing us, after
having seen a preprint of this article, that he was actually able to deduce the rela-
tion between Ihara’s relations and period polynomials directly from Ihara-Takao’s
theorem, with a little extra work (R. Sharifi, unpublished communication), and
also from Theorem 2.4 of [1]; both ways use different methods from the Poisson
bracket given here.

1. The free Lie algebra L on two letters and the Poisson bracket

Let L denote the free Lie algebra over Q on two letters x and y ; its elements lie in
the ring Q〈x, y〉 of power series in the non-commutative variables x and y . There
is a natural grading on this algebra obtained by letting deg(x) = deg(y) = 1; let
Ln denote the graded part of weight n for n ≥ 1.

A typical element of L is a linear combination of Lie monomials; these
are the expressions formed from x and y by using only brackets, but not addition,
such as for instance [[x, y], [x, [[x, y], x]]] . For n ≥ 2, the dimension of the
subspace Ld

n of Ln generated by Lie monomials containing d y ’s and (n − d)
x ’s is given by

1
n

( ∑
a|d,n−d

µ(a)
(n

a )!
(n−d

a )!( d
a )!

)
,

where µ denotes the Möbius function. In particular, the dimension of L1
n is al-

ways equal to 1, and this space is generated by the Lie monomial
[x, [x, · · · , [x, y] · · ·]] , which we usually abbreviate as [xn−1y] .

To each element f of the Lie algebra L , one can associate a derivation
Df of L by setting Df (x) = 0, Df (y) = [y, f ] . The set of derivations LD
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thus obtained is naturally equipped with a law of addition, and defining the Lie
bracket [Df , Dg] = Df ◦Dg −Dg ◦Df for composition of derivations makes LD

into a Lie algebra. Indeed, we have

[Df , Dg](x) = 0

and
[Df , Dg](y) = Df ([y, g])−Dg([y, f ])

= [Df (y), g] + [y, Df (g)]− [Dg(y), f ]− [y, Dg(f)]
= [[y, f ], g] + [y, Df (g)]− [[y, g], f ]− [y, Dg(f)]
= [[y, f ], g] + [[g, y], f ] + [y, Df (g)]− [y, Dg(f)]
= [y, [f, g]] + [y, Df (g)]− [y, Dg(f)],

so that in fact
[Df , Dg] = Dh

with h = [f, g]+Df (g)−Dg(f). Since L and LD are bijective as sets, this leads
us to introduce a new Lie bracket directly onto the vector space L , namely the
Poisson bracket defined by

{f, g} = [f, g] + Df (g)−Dg(f).

Thus, the vector space L can be viewed as a Lie algebra in two different ways.
Note that L cannot be viewed as being generated by x and y as a Lie algebra
under the Poisson bracket; for instance {x, y} = 0.

2. Permutation action on elements of L

Definition . Let Qd〈x, y〉 denote the vector subspace of Q〈x, y〉 generated by
all words (monomials) in the non-commutative variables x and y of depth d , i.e.
containing d y ’s. Let Qn〈x, y〉 denote the vector subspace generated by words
of length n . Let Qd

n〈x, y〉 be generated by words of length n and depth d .
There is a canonical Sd+1 action on the set of monomials in Qd〈x, y〉 ,

which preserves Qd
n〈x, y〉 for each n , given by letting σ ∈ Sd+1 map the word

xi1yxi2y · · ·xidyxid+1 to xiσ−1(1)yxiσ−1(2)y · · ·xiσ−1(d)yxiσ−1(d+1) .

This action extends by linearity to an automorphism of the vector space
Qd〈x, y〉 , i.e. it extends to polynomials by linearity.
Notation. Let us introduce some notation concerning this permutation action.
• For any d ≥ 0, let ωd ∈ Sd+1 denote the cycle (1, 2, . . . , d + 1) (we index ω
by d rather than d + 1 because it will be acting on words of depth d).
• For d ≥ 0 and 0 ≤ i < j ≤ d + 1, define the permutation θi,j

d ∈ Sd+1 by

θi,j
d =

(
1 · · · i i + 1 · · · j j + 1 · · · d d + 1
1 · · · i j · · · i + 1 j + 1 · · · d d + 1

)
,
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where the notation a · · · b denotes the increasing or decreasing consecutive se-
quence according to whether a < b or a > b . In other words, the permutation
θi,j

d lies in Sd+1 , and breaks the sequence 1, . . . , d + 1 into three subsequences
(1, . . . , i), (i + 1, . . . , j) and (j + 1, . . . , d + 1): it fixes the first subsequence, in-
verts the middle one and again fixes the last one. The case i = 0 means that the
first (fixed) subsequence is empty; the case j = d +1 means that the last (fixed)
subsequence is empty. Thus, θ0,d+1

d is simply the “backwards” permutation in
Sd+1 . We drop the superscript 0, d + 1 and simply write θd for the backwards
permutation of length d + 1.
• Let f ∈ Qd

n〈x, y〉 . Then for every word v of length n and depth d , we write
(f, v) for the coefficient of the word v in f . Clearly we have(

τ(f), τ(v)
)

=
(
f, v
)
, i.e.

(
f, τ(v)

)
=
(
τ−1(f), v

)
(2.1)

for every τ ∈ Sd+1 .

Lemma 2.1. (i) For every element f ∈ L of homogeneous length `f and depth
df , we have

f = (−1)`f−1 θdf
(f). (2.2)

(ii) For every pair of elements f and g as in (i), we have

fg = (−1)`f +`g θdf +dg
(gf). (2.3)

Proof. By linearity, it is enough to consider the case where f and g are
both just Lie monomials. Let us prove (i) by induction on the length of f . If
f is of length 1, i.e. equal to x or y , the statement f = (−1)`f−1θdf

(f) holds.
Now let f be a Lie monomial of length `f ; then f can be written as AB −BA
with A and B Lie words of length < `f . Let `A and `B denote the lengths
of A and B , so that `A + `B = `f , and let dA and dB denote their depths,
so that df = dA + dB ; it is also the depth of AB . By induction, we assume
that the first statement holds for A and B , i.e. A = (−1)`A−1θdA

(A) and
B = (−1)`B−1θdB

(B). Consider the expansions of the Lie monomials A and
B as polynomials in x and y . Then by (2.1) and the induction hypothesis, for
every word v of length `A and depth dA , we have(

θdA
(A), v

)
=
(
A, θdA

(v)
)

= (−1)`A−1
(
θdA

(A), θdA
(v)
)

= (−1)`A−1(A, v),

and similarly for B .
A given word v of length n will appear in the expansion of AB if and

only if it is the concatenation v = v1v2 of two words v1 and v2 , where v1 appears
in A , so is of length `A and depth dA , and v2 appears in B , so is of length `B

and depth dB . Then the coefficient (AB, v) of the word v in AB is equal to the
product of the coefficients (A, v1)(B, v2). By the induction hypothesis, this is
equal to (−1)`A+`B (A, θdA

(v1))(B, θdB
(v2)), and since θdf

(v) = θdB
(v2)θdA

(v1),
we find that (AB, v) = (−1)`f (BA, θdf

(v)). Exchanging the roles of A and
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B , we also have (BA, v) = (−1)`f (AB, θdf
(v)). Therefore, for every word v

appearing in f , we have

(f, v) = (AB −BA, v)
= (AB, v)− (BA, v)

= (−1)`f
(
BA, θdf

(v)
)
− (−1)`f

(
AB, θdf

(v)
)

= (−1)`f−1
(
AB −BA, θdf

(v)
)

= (−1)`f−1
(
θdf

(AB −BA), v
)

=
(
(−1)`f−1θdf

(f), v
)
.

Thus, for every word v appearing in f , the coefficients of f and (−1)`f−1θdf
(f)

are equal, so these two polynomials are equal (given that they contain the same
number of monomials), which proves (i).

The same argument also automatically proves the second statement,
since now it is no longer an induction hypothesis, but a proven fact that A =
(−1)`A−1θdA

(A) and B = (−1)`B−1θdB
(B) for every pair of Lie monomials A

and B , and we saw that this led to

(BA, v) = (−1)`A+`B
(
AB, θdA+dB

(v)
)

=
(
(−1)`A+`BθdA+dB

(AB), v
)

for all v , i.e. BA = (−1)`A+`BθdA+dB
(AB).

3. A formula for the Poisson bracket

We now come to the main theorem of this article; it gives an explicit expression
for Df (g), which a fortiori gives rise to an explicit expression for {f, g} , in terms
of permutation actions on the elements of L .

Theorem 3.1. Let f (resp. g ) be an element of L of homogeneous length
`f and depth df (resp. `g and dg ); assume that dg ≥ 1 . Set ` = `f + `g and
d = df + dg . Then

Df (g) = (−1)`f−1
(
θ

dg,d+1
d (gf)− θ

0,df +1
d (fg)

)
+

dg−1∑
i=1

(
(−1)`f−1θ

dg−i,d−i+1
d

(
ω−i

d (ωi
dg

(g)f)
)
− ω−i

d (ωi
dg

(g)f)
)

.
(3.1)

In particular, when dg = 1 , we have

Df (g) = (−1)`f−1
(
θ1,d+1

d (gf)− θ
0,df +1
d (fg)

)
. (3.2)

To prove this theorem, one proceeds by setting Ef (x) = 0 and then, for all
g ∈ L with dg ≥ 1, defining Ef (g) to be the right-hand side of (3.1); one then
shows that Ef (y) = yf − fy (easy) and finally that Ef is a derivation, so that
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Ef (g) = Df (g). The proof of this theorem is essentially a long computation
using several properties of the permutation action; it has been relegated to the
Appendix.

As we noted in §1, the space L1
n of elements of L of length n and depth

1 is one-dimensional, generated by the Lie monomial [xn−1y] . Let us now study
the Poisson bracket of two such elements of odd length.

Proposition 3.2. Let f = [xn−1y] ∈ L1
n and g = [xm−1y] ∈ L1

m , with n, m
odd ≥ 3 . Let θ = (13) and ω = (123) in S3 . Then

{f, g} = [f, g] + ω([f, g]) + ω2([f, g]). (3.3)

Proof. By (3.2) of theorem 3.1, we have

Df (g) = θ1,3
2 (gf)− θ0,2

2 (fg), Dg(f) = θ1,3
2 (fg)− θ0,2

2 (gf),

so
{f, g} = [f, g] + θ1,3

2 (gf)− θ0,2
2 (fg)− θ1,3

2 (fg) + θ0,2
2 (gf).

Writing out the permutations, we have θ1,3
2 = (23) and θ0,2

2 = (12), so

{f, g} = [f, g] + (23)(gf)− (12)(fg)− (23)(fg) + (12)(gf).

By lemma 2.1 (ii), we have fg = θ2(gf), but θ2 = (13), so

{f, g} = [f, g] + (23)(13)(fg)− (12)(13)(gf)− (23)(13)(gf) + (12)(13)(fg)
= [f, g] + (123)(fg)− (132)(gf)− (123)(gf) + (132)(fg)
= [f, g] + (123)(fg − gf) + (132)(fg − gf)

= [f, g] + ω([f, g]) + ω2([f, g]).

which proves the result.

4. Relation with period polynomials

Definition . Let n be a positive even number. An even polynomial P (X) of
degree n−4 with no constant term is said to be a period polynomial if it satisfies
the period relations

P (X) + Xn−2P (
−1
X

) = 0

and
P (X) + Xn−2P (1− 1

X
) + (X − 1)n−2P (

1
1−X

) = 0.

It is known [3] that these polynomials are in bijection with cusp forms of weight
n on SL2(Z), and therefore the vector space of such polynomials has dimension
equal to dim Sn

(
SL2(Z)

)
.
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Theorem 4.1. Fix an even number n ≥ 12 and set

F =
(n−4)/2∑

i=1

ai[x2iy][xn−2−2iy]; (4.1)

consider the S3 action on the polynomial expansion of F in Q2
n〈x, y〉 . Let

θ = (13) and ω = (123) ∈ S3 . Then F satisfies the cocycle relations

F + θ(F ) = 0 and F + ω(F ) + ω2(F ) = 0

if and only if the associated one-variable polynomial

P (X) =
(n−4)/2∑

i=1

aiX
n−2−2i,

which is even of degree n− 4 with no constant term, is a period polynomial.

Proof. By lemma 2.1 (ii), the condition F + θ(F ) = 0 is satisfied if and only
if

an/2−1−i = −ai

for 1 ≤ i ≤ [(n− 4)/4], i.e. if F can be written

F =
[(n−4)/4]∑

i=1

ai

[
[x2iy], [xn−2−2iy]

]
.

This is exactly equivalent to the first cocycle relation P (X)+Xn−2P (−1/X) = 0
on P (X). The proof is more complicated for the second cocycle condition.
Assume that F and P (X) satisfy the first cocycle condition.

Set Q(X) = P (X) + Xn−2P (1 − 1/X) + (X − 1)n−2P (1/(1 −X)) and
expand Q(X) in powers of X . We easily see that the degree of Q(X) is equal
to n − 3 and that it has no constant term, so if Q(X) = 0, we obtain n − 3
linear equations in the ai . By symmetry, the coefficient of Xi is equal to the
opposite of that of Xn−2−i , so that it is enough to consider the coefficients
of X, X2, . . . , X(n−4)/2 (even this is redundant). For j = 1, . . . , (n − 4)/2,
let bj be the coefficient of Xj in Q(X), so that bj is a linear combination
of a1, . . . , a[(n−4)/4] .

Let us compute the bj explicitly. Each bj is a linear combination of
a1, . . . , a[(n−4)/4] which is the coefficient of Xj in Q(X). There are three
separate contributions to this coefficient coming from the Xj terms of the three
polynomials

P (X), Xn−2P (1− 1/X), (X − 1)n−2P (1/(1−X)).

So we compute the coefficient of ai in the Xj term of each of these three
polynomials. We find:
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• The contribution from P (X) is equal to{−1 for j = 2i
0 otherwise.

(4.2)

• The contribution from Xn−2P (1− 1/X) is equal to

(−1)j

(
n− 2− 2i

j − 2i

)
. (4.3)

• The contribution from (X − 1)n−2P (1/(1−X)) is equal to

(−1)j

(
2i

j

)
− (−1)j

(
n− 2− 2i

j

)
. (4.4)

(To check this last equality, it is easier to write P (X) = a1X
n−4+· · ·+a(n−4)/2X

2

and separately consider the contribution from ai , which is equal to (−1)j

(
2i
j

)
and from a(n−2−2i)/2 = −ai , which is equal to (−1)j

(
n−2−2i

j

)
.)

As a total, we find that the coefficient of ai in bj for 1 ≤ j ≤ (n− 4)/2
is equal to the sum of (4.2), (4.3), (4.4), i.e. to

−δj,2i + (−1)j

(
n− 2− 2i

j − 2i

)
+ (−1)j

(
2i

j

)
− (−1)j

(
n− 2− 2i

j

)
. (4.5)

Now consider F satisfying F + θ(F ) = 0, so that F is of the form

[(n−4)/4]∑
i=1

ai

[
[x2iy], [xn−2−2iy]

]
,

and set G = F + ω(F ) + ω2(F ). If we expand G as a homogeneous polynomial
of length n and depth 2, then the coefficient of each word occurring in G is a
linear combination in a1, . . . , a[(n−4)/4] , so that if G = 0 we have a very large
and redundant linear system in the ai .

We will now show that the solutions of this linear system are the same
as those of the linear system b1 = 0, b2 = 0, . . . , b(n−4)/2 = 0 coming from the
second cocycle relation Q(X) = 0. We proceed in two steps; first we show that
the linear combinations bj coming from Q(X) = 0 occur explicitly in the linear
system coming from G = 0, as the (negatives of the) coefficients of the words
xjy2xn−2−j for 1 ≤ j ≤ (n − 4)/2 in the expansion of G . Then we conclude
that the two systems coming from Q(X) = 0 and from G = 0 are equivalent, by
using known results on the dimensions of the space of solutions.

For the first step, we need to compute the coefficient of the word
xjy2xn−2−j in G for 1 ≤ j ≤ (n − 4)/2. Like bj , this coefficient has three
contributions, which are the coefficients of the word xjy2xn−2−j coming from
F , ω(F ) and ω2(F ) respectively. But by the definition of ω , these are equal to
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the coefficients of the three words xjy2xn−2−j , xn−2−jyxjy and yxn−2−jyxj in
F . For all three coefficients, we directly use the expansions

[x2iy] =
2i∑

u=0

(−1)u

(
2i

u

)
xuyx2i−u (4.6)

and

[xn−2−2iy] =
n−2−2i∑

v=0

(−1)v

(
n− 2− 2i

v

)
xn−2−2i−vyxv. (4.7)

Let us first compute the coefficient in F of xjy2xn−2−j for 1 ≤ j ≤
(n − 4)/2. We first compute the coefficient of xjy2xn−2−j in the product
[x2iy] · [xn−2−2iy] ; it comes from the term u = j , v = n − 2 − j and thus
has coefficient

(−1)j

(
2i

j

)
· (−1)n−2−j

(
n− 2− 2i

n− 2− j

)
=
(

2i

j

)(
n− 2− 2i

n− 2− j

)
. (4.8)

Clearly this quantity is thus equal to{ 0 j > 2i
1 j = 2i
0 j < 2i.

(4.9)

Similarly, we compute the coefficient of xjy2xn−2−j in the product [xn−2−2iy] ·
[x2iy] and obtain

(−1)n−2−j

(
2i

n− 2− j

)
· (−1)j

(
n− 2− 2i

j

)
=
(

2i

n− 2− j

)(
n− 2− 2i

j

)
.

Now, we have 1 ≤ i ≤ [(n − 4)/4] and 1 ≤ j ≤ (n − 2)/4 so 2i + j ≤
(n − 4)/2 + (n − 2)/4 = (3n − 10)/4 < n − 2. Thus 2i < n − 2 − j and
the first binomial coefficient is zero, so we have shown that the coefficient of
xjy2xn−2−j in [xn−2−2iy] · [x2iy] , is always zero, and therefore the coefficient of
xjy2xn−2−j in

[
[x2iy], [xn−2−2iy]

]
is given by (4.9), i.e.

• coefficient of xjy2xn−2−j in F :{ 0 j > 2i
1 j = 2i
0 j < 2i.

(4.10)

We are sorry this is taking so long. Fortunately, it is easier to compute the
coefficient of xjy2xn−2−j in ω(F ). By computing the coefficient of yxn−2−jyxj

in F , again using (4.6) and (4.7), we directly obtain
• coefficient of xjy2xn−2−j in ω(F ):

(−1)j

(
n− 2− 2i

j

)
− (−1)j

(
2i

j

)
. (4.11)
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Finally, we compute the coefficient of xjy2xn−2−j in ω2(F ) by computing the
coefficient of xn−2−jyxjy in F . The same direct computation yields

(−1)j

(
2i

n− 2− j

)
− (−1)j

(
n− 2− 2i

n− 2− j

)
.

But we saw above that 2i + j < n− 2 so 2i < n− 2− j so the first term is zero,
and using

(
a
b

)
=
(

a
a−b

)
, we finally obtain

• coefficient of xjy2xn−2−j in ω2(F ):

−(−1)j

(
n− 2− 2i

j − 2i

)
. (4.12)

The sum of (4.10), (4.11) and (4.12) give the coefficient of ai in the
linear combination of a1, . . . , a[(n−4)/4] which is the coefficient of xjy2xn−2−j in
G , and it is equal to the negative of the quantity in (4.5). Therefore, we have
shown that the coefficient of the word xjy2xn−2−j in G = F + ω(F ) + ω2(F ) is
equal to −bj , where we recall that bj is the coefficient of Xj in

Q(X) = P (X) + Xn−2P (1− 1/X) + (X − 1)n−2P (1/(1−X)).

We thus see that the linear system given by the coefficients of G strictly
contains the much smaller linear system given by the coefficients of Q . Our
second step is to show that the sets of solutions coincide by a dimension count.
Indeed, Zagier [3] has shown that the dimension of the space of solutions of
Q(X) = 0 for P (X) of even degree n ≥ 12 is equal to dim Sn(SL2(Z)). But by
proposition 3.2, the space of solutions to G = 0 is equal to the space of solutions
of linear combinations of the form

[(n−4)/4]∑
i=0

ai

{
[x2iy], [xn−2−2iy]

}
= 0

and Ihara and Takao (see [2], Theorem 2 of II.4) have shown that the dimension
of this space of solutions is also equal to dim Sn(SL2(Z)). This concludes the
proof of theorem 4.1.

For each odd n ≥ 3, let FnL denote the subspace of L generated by all
Lie monomials containing n or more y ’s.

Corollary 4.2. For each odd n ≥ 3 , choose an element fn of Ln whose
polynomial expansion contains the monomial xn−1y with coefficient 1 . Let

G =
[(n−4)/4]∑

i=1

ai

{
f2i+1, fn−1−2i

}
∈ Ln.

Then
G ≡ 0 mod F3L
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if and only if the polynomial

P (X) =
[(n−4)/4]∑

i=1

ai(Xn−2−2i −X2i)

is a period polynomial.

Proof. Clearly G ≡ 0 mod F3L if and only if G′ = 0, where

G′ =
[(n−4)/4]∑

i=1

ai

{
[x2iy], [xn−2−2iy]

}
∈ Ln.

By proposition 3.2, G′ is equal to

[(n−4)/4]∑
i=1

ai

([
[x2iy], [xn−2−2iy]

]
+ ω

([
[x2iy], [xn−2−2iy]

])
+ ω2

([
[x2iy], [xn−2−2iy]

]))

which is equal to F + ω(F ) + ω2(F ) for F =
∑[(n−4)/4]

i=1 ai

[
[x2iy], [xn−2−2iy]

]
.

But we saw that for such an F , we have F + θ(F ) = 0. Therefore G′ = 0 if and
only if F satisfies the two cocycle relations, which by theorem 4.2 can happen if
and only if the associated polynomial P (X) is a period polynomial.

Examples . For n = 12, 16, 18, 20, 22 we have dim Sn(SL2(Z)) = 1, so up to
scalar multiple, there is exactly one relation for each of these values of n , and
exactly one even period polynomial of degree n− 4. They are given by
1) n = 12 :

{
f3, f9

}
− 3
{
f5, f7

}
≡ 0 mod F3L

P (X) = X8 − 3X6 + 3X4 −X2 .
2) n = 16: −2{f3, f13}+ 7{f5, f11} − 11{f7, f9} ≡ 0 mod F3L

P (X) = −2X12 + 7X10 − 11X8 + 11X6 − 7X4 + 2X2 .
3) n = 18: 8{f3, f15} − 25{f5, f13}+ 26{f7, f11} ≡ 0 mod F3L

P (X) = 8X14 − 25X12 + 26X10 − 26X6 + 25X4 − 8X2 .
4) n = 20: 3{f3, f17} − 10{f5, f15}+ 14{f7, f13} − 13{f9, f11} ≡ 0 mod F3L

P (X) = 3X16−10X14+14X12−13X10+13X8−14X6+10X4−3X2 .
5) n = 22: 32{f3, f19}−105{f5, f17}+136{f7, f15}−85{f9, f13} ≡ 0 mod F3L
P (X) = 32X18 − 105X16 + 136X14 − 85X12 + 85X8 − 136X6 + 105X4 − 32X2 .

Appendix: Proof of Theorem 3.1

Let us begin by assembling some properties of the action of the permutations θi,j
d

on products of words; they are all immediate, so we do not include the proofs.
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Lemma A.1. Let f be a homogeneous polynomial of length `f and depth df ;
let 0 ≤ i < j ≤ d + 1 . Then

x θi,j
df

(f) = θi,j
df

(xf) if i > 0, (A.1)

θi,j
df

(f)x = θi,j
df

(fx) if j < df + 1, (A.2)

x θdf
(f) = θdf

(fx) and θdf
(f)x = θdf

(xf) (A.3)

y θi,j
df

(f) = θi+1,j+1
df +1 (yf) (A.4)

θi,j
df

(f)y = θi,j
df +1(fy) (A.5)

If g is homogeneous of length `g and depth dg , then

x θ
0,df +1
df +dg

(fg) = θ
0,df +1
df +dg

(fxg) (A.6)

θ
df ,df +dg+1
df +dg

(fg) x = θ
df ,df +dg+1
df +dg

(fxg) (A.7)

Some of these equalities can be generalized to entire words instead of just x and
y . Let h be a word of length `h and depth dh . Then

h θi,j
df

(f) = θi+dh,j+dh

df +dh
(hf) if i > 0 (A.8)

θi,j
df

(f)h = θi,j
df +dh

(fh) if j < df + 1 (A.9)

Lemma A.2. For 1 ≤ i ≤ dg , we have

ω−i
d

(
ωi

dg
(g)f)x = ω−i

d

(
ωi

dg
(gx)f) and xω−i

d

(
ωi

dg
(g)f) = ω−i

d

(
ωi

dg
(xg)f),

(A.10)
and more generally,{

ω−i
dg+df

(
ωi

dg
(g)f)h = ω−i−dh

dg+df +dh

(
ωi+dh

dg+dh
(gh)f)

hω−i
df +dg

(
ωi

dg
(g)f) = ω−i

df +dg+dh

(
ωi

dg+dh
(hg)f).

(A.11)

Lemma A.3. We have the following relations between θ ’s and ω ’s:

g θ
0,df +1
df +dh

(fh) = (−1)`f−1ω−dh

d

(
ωdh

dg+dh
(gh)f

)
(A.12)

and
θ

dh,df +dh+1
df +dh

(hf) g = θ
dh,df +dh+1
d

(
ω
−dg

d

(
ω

dg

dg+dh
(hg)f

))
(A.13)
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Theorem 3.1. Let f be an element of L of homogeneous length `f and depth
df , and similarly, let g be an element of L of homogeneous length `g and depth
dg ; assume that dg ≥ 1 . Set ` = `f + `g and d = df + dg . Then

Df (g) = (−1)`f−1
(
θ

dg,d+1
d (gf)− θ

0,df +1
d (fg)

)
+

dg−1∑
i=1

(
(−1)`f−1θ

dg−i,d−i+1
d

(
ω−i

d (ωi
dg

(g)f)
)
− ω−i

d (ωi
dg

(g)f)
)

.
(∗)

Proof. For all g of depth ≥ 1, let Ef (g) be the right-hand side of (*), and
set Ef (x) = 0. In order to prove that Ef (g) = Df (g), it suffices to show first
that Ef (y) = Df (y) and then that Ef is a derivation.

For g = y , we have

Ef (y) = (−1)`f−1
(
θ
1,df +2
df +1 (yf)− θ

0,df +1
df +1 (fy)

)
= (−1)`f−1

(
y θ

0,df +1
df

(f)− θ
0,df +1
df

(f) y
)

(by (A.4) and (A.5))

= yf − fy (by lemma 2.1 (i))
= Df (y).

Let us now show that Ef is a derivation, i.e. that

Ef ([g, h]) = [Ef (g), h] + [g,Ef (h)]

for all elements g , h ; by linearity, we may assume that g and h are Lie
monomials. We first expedite the case where one of g, h is equal to x (these
two cases are equivalent since [g, h] = −[h, g] . Assume thus that h = x ; then
Ef (h) = 0, so we need to show that

[Ef (g), x] = Ef ([g, x]).

We begin by computing [Ef (g), x] = Ef (g)x− xEf (g). Using (*) and identities
(A.1), (A.2), (A.3), (A.6) and (A.7) from lemma A.1, we compute

Ef (g)x = (−1)`f−1
(
θ

dg,d+1
d (gf)x− θ

0,df +1
d (fg)x

)
+

dg−1∑
i=1

(
(−1)`f−1θ

dg−i,d−i+1
d

(
ω−i

d (ωi
dg

(g)f)
)
x− ω−i

d (ωi
dg

(g)f)x
)

= (−1)`f−1
(
θ

dg,d+1
d (gxf)− θ

0,df +1
d (fgx)

)
+

dg−1∑
i=1

(
(−1)`f−1θ

dg−i,d−i+1
d

(
ω−i

d (ωi
dg

(g)f)x
)
− ω−i

d (ωi
dg

(g)f)x
)

,
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and

xEf (g) = (−1)`f−1
(
xθ

dg,d+1
d (gf)− xθ

0,df +1
d (fg)

)
+

dg−1∑
i=1

(
(−1)`f−1xθ

dg−i,d−i+1
d

(
ω−i

d (ωi
dg

(g)f)
)
− xω−i

d (ωi
dg

(g)f)
)

= (−1)`f−1
(
θ

dg,d+1
d (xgf)− θ

0,df +1
d (fxg)

)
+

dg−1∑
i=1

(
(−1)`f−1θ

dg−i,d−i+1
d

(
xω−i

d (ωi
dg

(g)f)
)
− xω−i

d (ωi
dg

(g)f)
)

,

Thus the difference [Ef (g), x] = Ef (g)x− xEf (g) is given by

(−1)`f−1
(
θ

dg,d+1
d (gxf)− θ

0,df +1
d (fgx)

)
− (−1)`f−1

(
θ

dg,d+1
d (xgf) + θ

0,df +1
d (fxg)

)
+

dg−1∑
i=1

(
(−1)`f−1θ

dg−i,d−i+1
d

(
ω−i

d (ωi
dg

(g)f)x
)
− ω−i

d (ωi
dg

(g)f)x

− (−1)`f−1θ
dg−i,d−i+1
d

(
xω−i

d (ωi
dg

(g)f)
)

+ xω−i
d (ωi

dg
(g)f)

)
.

Using (A.10) from lemma A.2 and combining terms, this reduces to

[Ef (g), x]

= Ef (g)x− xEf (g) = (−1)`f−1
(
θ

dg,d+1
d ((gx− xg)f)− θ

0,df +1
d (f(gx− xg))

)
+

dg−1∑
i=1

(
(−1)`f−1θ

dg−i,d−i+1
d

(
ω−i

d (ωi
dg

(gx− xg)f)
)
− ω−i

d (ωi
dg

(gx− xg)f)
)

= Ef (gx− xg)

as desired.
Let us now pass to the case where neither g nor h is equal to x , i.e.

dg, dh ≥ 1. We will compute

[Ef (g), h] + [g,Ef (h)]

and show that it is equal to Ef ([g, h]) . In fact, we begin by computing

(−1)`f−1
(
[Ef (g), h] + [g,Ef (h)]

)
=
[
θ

dg,df +dg+1
df +dg

(gf)− θ
0,df +1
df +dg

(fg)

+
dg−1∑
i=1

(
θ

dg−i,dg+df−i+1
df +dg

(
ω−i

dg+df
(ωi

dg
(g)f)

)
− (−1)`f−1ω−i

dg+df
(ωi

dg
(g)f)

)
, h
]

+
[
g , θ

dh,df +dh+1
df +dh

(hf)− θ
0,df +1
df +dh

(fh)

+
dh−1∑
i=1

(
θ

dh−i,dh+df−i+1
dh+df

(
ω−i

dh+df
(ωi

dg
(g)f)

)
− (−1)`f−1ω−i

dh+df
(ωi

dg
(g)f)

)]
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=

(
θ

dg,df +dg+1
df +dg

(gf) h− θ
0,df +1
df +dg

(fg) h− h θ
dg,df +dg+1
df +dg

(gf) + h θ
0,df +1
df +dg

(fg)

+g θ
dh,df +dh+1
df +dh

(hf)− g θ
0,df +1
df +dh

(fh)− θ
dh,df +dh+1
df +dh

(hf) g + θ
0,df +1
df +dh

(fh) g

)

+
dg−1∑
i=1

(
θ

dg−i,dg+df−i+1
df +dg

(
ω−i

dg+df
(ωi

dg
(g)f)

)
h− (−1)`f−1ω−i

dg+df
(ωi

dg
(g)f)h

−hθ
dg−i,dg+df−i+1
df +dg

(
ω−i

dg+df
(ωi

dg
(g)f)

)
+ (−1)`f−1hω−i

dg+df
(ωi

dg
(g)f)

)

+
dh−1∑
i=1

(
gθ

dh−i,dh+df−i+1
dh+df

(
ω−i

dh+df
(ωi

dh
(h)f)

)
− (−1)`f−1gω−i

dh+df
(ωi

dh
(h)f)

−θ
dh−i,dh+df−i+1
dh+df

(
ω−i

dh+df
(ωi

dh
(h)f)

)
g + (−1)`f−1ω−i

dh+df
(ωi

dh
(h)f)g

)
,

which by (A.8)-(A.9) gives

=

(
θ

dg,df +dg+1
df +dg

(gf) h− θ
0,df +1
df +dg+dh

(fgh)

− θ
dg+dh,df +dg+dh+1
df +dg+dh

(hgf) + h θ
0,df +1
df +dg

(fg)

+ θ
dh+dg,df +dg+dh+1
df +dh+dg

(ghf)− g θ
0,df +1
df +dg

(fh)

− θ
dh,df +dh+1
df +dh

(hf) g + θ
0,df +1
df +dg+dh

(fhg)

)

+
dg−1∑
i=1

(
θ

dg−i,dg+df−i+1
df +dg+dh

(
ω−i

dg+df
(ωi

dg
(g)f)h

)
− (−1)`f−1ω−i

dg+df
(ωi

dg
(g)f)h

−θ
dg+dh−i,dg+df +dh−i+1
df +dg+dh

(
hω−i

dg+df
(ωi

dg
(g)f)

)
+ (−1)`f−1hω−i

dg+df
(ωi

dg
(g)f)

)

+
dh−1∑
i=1

(
θ

dh+dg−i,dh+df +dg−i+1
dh+df +dg

(
gω−i

dh+df
(ωi

dh
(h)f)

)
−(−1)`f−1gω−i

dh+df
(ωi

dh
(h)f)

−θ
dh−i,dh+df−i+1
dh+df +dg

(
ω−i

dh+df
(ωi

dh
(h)f)g

)
+ (−1)`f−1ω−i

dh+df
(ωi

dh
(h)f)g

)
.

Applying (A.11) to the terms in the sum part yields

= θ
dg,df +dg+1
df +dg

(gf) h− θ
0,df +1
df +dg+dh

(fgh)− θ
dg+dh,df +dg+dh+1
df +dg+dh

(hgf) + h θ
0,df +1
df +dg

(fg)

+θ
dh+dg,df +dg+dh+1
df +dh+dg

(ghf)− g θ
0,df +1
df +dg

(fh)− θ
dh,df +dh+1
df +dh

(hf) g + θ
0,df +1
df +dg+dh

(fhg)
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+
dg−1∑
i=1

(
θ

dg−i,dg+df−i+1
df +dg+dh

(
ω−i−dh

dg+df +dh
(ωi+dh

dg+dh
(gh)f)

)
− (−1)`f−1ω−i−dh

dg+df +dh
(ωi+dh

dg+dh
(gh)f)

− θ
dg+dh−i,dg+df +dh−i+1
df +dg+dh

(
ω−i

dg+df +dh
(ωi

dg+dh
(hg)f)

)
+ (−1)`f−1ω−i

dg+df +dh
(ωi

dg+dh
(hg)f)

)
+

dh−1∑
i=1

(
θ

dh+dg−i,dh+df +dg−i+1
dh+df +dg

(
ω−i

dh+df +dg
(ωi

dh+dg
(gh)f)

)
− (−1)`f−1ω−i

dh+df +dg
(ωi

dh+dg
(gh)f)

− θ
dh−i,dh+df−i+1
dh+df +dg

(
ω
−i−dg

dh+df +dg
(ωi+dg

dh+dg
(hg)f)

)
+ (−1)`f−1ω−i

dh+df +dg
(ωi

dh+dg
(hg)f)

)
.

Pairing similar terms, setting d = df + dg + dh , and reindexing part of the sum
yields

= θ
dh+dg,d+1
d (ghf)− θ

dg+dh,d+1
d (hgf)− θ

0,df +1
d (fgh) + θ

0,df +1
d (fhg)

+θ
dg,df +dg+1
df +dg

(gf) h + h θ
0,df +1
df +dg

(fg)− g θ
0,df +1
df +dg

(fh)− θ
dh,df +dh+1
df +dh

(hf) g

+
dg+dh−1∑
i=dh+1

(
θ

dg+dh−i,d−i+1
d

(
ω−i

d (ωi
dg+dh

(gh)f)
)
− (−1)`f−1ω−i

d (ωi
dg+dh

(gh)f)
)

−
dg−1∑
i=1

(
θ

dg+dh−i,d−i+1
d

(
ω−i

d (ωi
dg+dh

(hg)f)
)
− (−1)`f−1ω−i

d (ωi
dg+dh

(hg)f)
)

+
dh−1∑
i=1

(
θ

dg+dh−i,d−i+1
d

(
ω−i

d (ωi
dg+dh

(gh)f)
)
− (−1)`f−1ω−i

d (ωi
dg+dh

(gh)f)
)

−
dg+dh−1∑
i=dg+1

(
θ

dg+dh−i,df +dh−i+1
d

(
ω−i

d (ωi
dg+dh

(hg)f)
)

− (−1)`f−1ω−i
d (ωi

dg+dh
(hg)f)

)
. (A.14)

Recall that this quantity is equal to (−1)`f−1([Ef (g), h]+[g,Ef (h)]) . In order for
Ef to be a derivation, it should be equal to (−1)`f−1Ef ([g, h]) , which according
to (*) is given by

(−1)`f−1Ef ([g, h]) = θ
dg+dh,d+1
d ([g, h]f)− θ

0,df +1
d (f [g, h])

+
dg+dh−1∑

i=1

(
θ

dg+dh−i,d−i+1
d

(
ω−i

d (ωi
dg+dh

([g, h])f)
)
− ω−i

d (ωi
dg+dh

([g, h])f)
)
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= θ
dg+dh,d+1
d ([g, h]f)− θ

0,df +1
d (f [g, h]) (A.15a)

+
dg+dh−1∑

i=1

θ
dg+dh−i,d−i+1
d

(
ω−i

d (ωi
dg+dh

(gh)f)
)

(A.15b)

−(−1)`f−1

dg+dh−1∑
i=1

ω−i
d (ωi

dg+dh
(gh)f) (A.15c)

−
dg+dh−1∑

i=1

θ
dg+dh−i,d−i+1
d

(
ω−i

d (ωi
dg+dh

(hg)f)
)

(A.15d)

+(−1)`f−1

dg+dh−1∑
i=1

ω−i
d (ωi

dg+dh
(hg)f). (A.15e)

Let us successively subtract off the terms of (A.14) from this and show that we
obtain zero. We first subtract off the first four terms (first line) of (A.14), noting
that they are equal to

θ
dg+dh,d+1
d

(
(gh− hg)f

)
− θ

0,df +1
d

(
f(gh− hg)

)
= θ

dg+dh,d+1
d

(
[g, h]f

)
− θ

0,df +1
d

(
f [g, h]

)
,

which is exactly (A.15a). We now subtract the third sum (fifth line) of (A.14)
from (A.15b,c) and the second sum (fourth line) from (A.15d,e), yielding

+
dg+dh−1∑

i=dh

θ
dg+dh−i,d−i+1
d

(
ω−i

d (ωi
dg+dh

(gh)f)
)

(A.15b′)

−(−1)`f−1

dg+dh−1∑
i=dh

ω−i
d (ωi

dg+dh
(gh)f) (A.15c′)

−
dg+dh−1∑

i=dg

θ
dg+dh−i,d−i+1
d

(
ω−i

d (ωi
dg+dh

(hg)f)
)

(A.15d′)

+(−1)`f−1

dg+dh−1∑
i=dg

ω−i
d (ωi

dg+dh
(hg)f). (A.15e′)

Now subtract the first sum (third line) of (A.14) from (A.15b’,c’) and the fourth
sum (sixth line) from (A.15d’,e’); we obtain

θ
dg,df +dg+1
d

(
ω−dh

d

(
ωdh

dg+dh
(gh)f

))
− (−1)`f−1ω−dh

d

(
ωdh

dg+dh
(gh)f

)
−θ

dh,df +dh+1
d

(
ω
−dg

d

(
ω

dg

dg+dh
(hg)f

))
+ (−1)`f−1ω

−dg

d

(
ω

dg

dg+dh
(hg)f

)
.
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To finish, we need to subtract off the remaining (second) line of (A.14) from this
and show that the result is zero, i.e. that

θ
dg,df +dg+1
d

(
ω−dh

d

(
ωdh

dg+dh
(gh)f

))
− (−1)`f−1ω−dh

d

(
ωdh

dg+dh
(gh)f

)
−θ

dh,df +dh+1
d

(
ω
−dg

d

(
ω

dg

dg+dh
(hg)f

))
+ (−1)`f−1ω

−dg

d

(
ω

dg

dg+dh
(hg)f

)
−θ

dg,df +dg+1
df +dg

(gf) h− h θ
0,df +1
df +dg

(fg) + g θ
0,df +1
df +dg

(fh) + θ
dh,df +dh+1
df +dh

(hf) g = 0.

In fact, the eight terms of this sum cancel out in pairs as follows.
The second and seventh terms

−(−1)`f−1ω−dh

d

(
ωdh

dg+dh
(gh)f

)
+ g θ

0,df +1
df +dh

(fh)

sum to zero, using (A.12) from lemma A.3. The fourth and sixth terms

(−1)`f−1ω
−dg

d

(
ω

dg

dg+dh
(hg)f

)
− h θ

0,df +1
df +dg

(fg)

sum to zero, again by (A.12) but exchanging the roles of g and h .
The first and fifth terms give:

θ
dg,df +dg+1
d

(
ω−dh

d

(
ωdh

dg+dh
(gh)f

))
− θ

dg,df +dg+1
df +dg

(gf) h

sum to zero by (A.13), and the third and eighth terms

−θ
dh,df +dh+1
d

(
ω
−dg

d

(
ω

dg

dg+dh
(hg)f

))
+ θ

dh,df +dh+1
df +dh

(hf) g

sum to zero by (A.13) with g and h exchanged. This concludes the proof.
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